
ar
X

iv
:2

40
4.

12
93

4v
2

 [
cs

.P
L

]
 2

2
A

pr
 2

02
4

AuDaLa is Turing Complete

Tom T.P. Franken, Thomas Neele

April 19, 2024

Abstract

AuDaLa is a recently introduced programming language that follows
the new data autonomous paradigm. In this paradigm, small pieces of
data execute functions autonomously. Considering the paradigm and the
design choices of AuDaLa, it is interesting to determine the expressiveness
of the language and to create verification methods for it. In this paper, we
take our first steps to such a verification method by implementing Turing
machines in AuDaLa and proving that implementation correct. This also
proves that AuDaLa is Turing complete.

1 Introduction

Nowadays, performance gains are increasingly obtained through parallelism.
The focus is often on how to get the hardware to process the program effi-
ciently and languages are often designed around that, focusing on threads and
processes. Recently, AuDaLa [9] was introduced, which completely abstracts
away from threads. In AuDaLa, data is autonomous, meaning that the data
executes its own functions. It follows the new data autonomous paradigm [9],
which abstracts away from active processor and memory management for par-
allel programming and instead focuses on the innate parallelism of data. This
paradigm encourages parallelism by making running code in parallel the de-
fault setting, instead of requiring functions to be explicitly called in parallel.
The paradigm also promotes separation of concerns and a bottom-up design
process. A compiler for AuDaLa [15] enables execution of AuDaLa on GPUs.

AuDaLa is built to be simple and focusses fully on parallel data elements.
This design principle relates AuDaLa to domain specific languages, which are
often less expressive than general purpose languages. It is therefore relevant
to establish the expressiveness of AuDaLa, as AuDaLa is built as a general
purpose language. Additionally, establishing the expressiveness of AuDaLa also
indicates how expressive the data-autonomous paradigm is. AuDaLa has a fully
defined semantics, unlike many other languages, which we can use to answer
this question.

Turing completeness is a well known property in computer science, which
applies to a language or system that can simulate Turing machines. As a Turing

1

http://arxiv.org/abs/2404.12934v2

machine can compute all effectively computable functions following the Church-
Turing thesis [5], a Turing complete language or system can do the same. Two
approaches to showing Turing completeness are implementing a Turing machine
in the target language [4, 16] and implementing µ-recursive functions [6, 12].

To prove AuDaLa’s expressiveness, we prove AuDaLa Turing complete. We
do this by implementing a Turing machine in AuDaLa (Section 2.2). We then
give the intuition of the proof that this implementation is correct (Section 3).
Constructing this implementation to exhibit correct behaviour is intricate due to
AuDaLa’s view on the behaviour of data elements and proofs (specifically those
in Appendix A) involve detailed reasoning about the semantics and the inference
rules defined in it and lay the foundation for proving AuDaLa programs correct.

Related Work. AuDaLa is a data-autonomous language and related to other
data-focussed languages, like standard data-parallel languages (CUDA [10] and
OpenCL [3]), languages which apply local parallel operations on data structures
(Halide [18], ReLaCS [19]) and actor-based languages (Ly [20], A-NETL [1]).

Though the expressivity of actor languages has been studied before [2] and
there is research into suitable Turing machine-like models for concurrency [14,
17,21], there does not seem to be a large focus on proving Turing completeness
of parallel languages. We estimate that this is because many of these languages
extend other languages, e.g., CUDA and OpenCL are built upon C++. For these
languages, Turing completeness is inherited from their base language. Further-
more, parallel domain specific languages such as Halide [18] are simple by design,
only focussing on their domain. Languages may also not be Turing complete on
purpose [8, 11], for example to make automated verification decidable.

The proof for the Turing completeness of Circal [7] follows the same line of
our proof. Other parallel systems that have been proven Turing complete include
water systems [12] and asynchronous non-camouflage cellular automata [22].

2 The Turing Machine Implementation

2.1 Basic Concepts

We define a Turing machine following the definition of Hopcroft et al. [13]. Let
D = {L,R} be the set of the two directions left and right. A Turing machine T is
a 7-tuple T = (Q, q0, F,Γ,Σ, B, δ), with a finite set of control states Q, an initial
state q0 ∈ Q, a set of accepting states F ⊆ Q, a set of tape symbols Γ, a finite
set of input symbols Σ ⊆ Γ, a blank symbol B ∈ Γ \Σ (the initial symbol of all
cells not initialized) and a partial transition function δ : (Q\F)×Γ 9 Q×Γ×D.

Every Turing machine T operates on an infinite tape divided into cells. Ini-
tially, this tape contains an input string S = s0 . . . sn with symbols from Σ, but
is otherwise blank. The cell the Turing machine operates on is called the head.
We represent the tape as a function t : Z → Γ, where cell i contains symbol
t(i) ∈ Γ. In this function, cell 0 is the head, cells i s.t. i < 0 are the cells left
from the head and cells i s.t. i > 0 are the cells right from the head. We restrict

2

ourselves to deterministic Turing machines. We also assume the input string is
not empty, without loss of generality.

We define a configuration to be a tuple (q, t), with q the current state of
the Turing machine and t the current tape function. Given input string S =
s0 . . . sn, the initial configuration of a Turing machine T is (q0, tS), with q0 as
defined for T , and tS(i) = si for 0 ≤ i ≤ n and tS(i) = B otherwise.

During the execution, a Turing machine T performs transitions, defined as:

Definition 1 (Turing machine transition). Let T = (Q, q0, F,Γ,Σ, B, δ) be a
Turing machine and let (q, t) be a configuration such that δ(q, t(0)) = (q′, s′, D),
with D ∈ D. Then (q, t) → (q′, t′), where t′ is defined as

t′(i) =

{

s′ if i = 1
t(i− 1) otherwise

if D=L and t′(i) =

{

s′ if i = −1
t(i+ 1) otherwise

if D=R.

We say a Turing machine T accepts a string S iff, starting from (q0, tS) and
taking transitions while possible, T halts in a configuration (q, t) s.t. q ∈ F .

2.2 The Implementation of a Turing Machine in AuDaLa

In this section, we describe the implementation of a Turing machine in AuDaLa.
Let T = (Q,Σ,Γ, δ, q0, B, F) be a Turing machine and S an input string. We
implement T and initialize the tape to S in AuDaLa. W.l.o.g., we assume that
Q ⊆ Z with q0 = 0 and that Γ ⊆ Z with B = 0.

An AuDaLa program contains three parts: the definitions of the data types
and their parameters are expressed as structs, functions to be executed in par-
allel are given to these data types as steps, and these steps are ordered into
the execution of a method by a schedule separate from the data system. Steps
cannot include loops, which are instead managed by the schedule.

We model a cell of T ’s tape by a struct TapeCell, with a left cell (parameter
left), a right cell (right) and a cell symbol (symbol). The control of T is modeled
by a struct Control, which saves a tape head (variable head), a state q ∈ Q

(state) and whether q ∈ F (accepting). See Listing 1.

1 struct TapeCell (left : TapeCell , right : TapeCell , symbol : Int){} //def. of TapeCell
2 struct Control (head : TapeCell , state: Int, accepting : Bool) {
3 transition {see Listing 2 and 3} //definition of the step "transition"
4 init {see Listing 4} //definition of the step "init"
5 }
6 init < Fix(transition) //schedule: run "init" once and then iterate "transition"

Listing 1: The AuDaLa program structure

The step transition in the Control struct models the transition function δ. For
every pair (q, s) ∈ Q×Γ s.t. δ(q, s) = (q′, s′, D) with D ∈ D, transition contains
a clause as shown in Listing 2 (assuming D = R). This clause updates the state
and symbol, and saves whether the new state is accepting. It also moves the
head and creates a new TapeCell if there is no next element, which we check in

3

1 if (state == q && head.symbol == s) then {
2 head.symbol := s′; //update the head symbol
3 state := q′; //update the state
4 accepting := (q′ ∈ F); //the new state is accepting or rejecting
5 if (head != null && head.right == null) then {
6 head.right := TapeCell(head , null, 0); //call constructor to create a new TapeCell
7 }
8 head := head.right; //move right
9 }

Listing 2: A clause for δ(q, s) = (q′, s′, R).

1 transition {
2 if (state == q1 && head.symbol == s1) then{ /∗clause 1∗/ }
3 else if (state == q2 && head.symbol == s2) then { /∗clause 2∗/ }
4 else if (state == q3 && head.symbol == s3) then { /∗clause 3∗/ }
5 // etc.
6 }

Listing 3: The transition step. The shown pairs all have an output in δ.

line 5. For this, as s can be null , we need to explicitly check whether head is
a null -element. Note that B = 0, and that if D = L the code only minimally
changes.

The clauses for the transitions are combined using an if-else if structure
(syntactic sugar for a combination of ifs and variables), so only one clause is
executed each time transition is executed. See Listing 3. In the step init in the
Control struct, we create a TapeCell for every symbol s ∈ S from left to right,
which are linked together to create the tape. We also create a Control -instance.
Listing 4 shows this for an example tape S = s0, s1, s2.

In the semantics of AuDaLa [9], the initial state of any program contains
only the special null-element of each struct. All parameters of the null-element
are fixed to a null -value. They can create other elements but cannot write to
their own parameters. Therefore, the call of init in the schedule causes the
null-element of Control to initialize the tape. It also initializes a single non-null
element of Control. The schedule will then have that element of Control run the
transition step until the program stabilizes. Listing 1 shows the final structure
of the program.

3 Turing Completeness

In this section, we show why AuDaLa is Turing Complete. We establish an
equivalence between the configurations of a Turing machine and the configura-
tions that can be extracted from the semantics of the corresponding AuDaLa
program. We use the fact that the steps executed by the implementation are

4

1 init {
2 TapeCell cell0 := TapeCell(null, null, s0); // initialize the tape
3 TapeCell cell1 := TapeCell(null, null, s1);
4 TapeCell cell2 := TapeCell(null, null, s2);
5 cell1.left := cell0; // connect the tape
6 cell0.right := cell1;
7 cell2.left := cell1;
8 cell1.right := cell2;
9 Control(cell0, 0, (q0 ∈ F)); //initialize the control

10 }

Listing 4: Initializing input string S.

deterministic, as there is at most one non-null Control structure that executes
the steps. We omit the full proof of Lemmas 3 and 6, which can be found in
Appendix A.

Henceforth, let PTS be the implementation of a Turing machine T and an
input string S = s0 . . . sn as specified in Section 2.2. In AuDaLa’s semantics, a
struct instance is a data element instantiated from a struct during runtime. For
the proof we consider a specific kind of AuDaLa state, the idle state, which has
the property that none of its the struct instances are in the process of executing
a step. In AuDaLa, the next step to be executed from an idle state is determined
by the schedule. With this we define implementation configurations:

Definition 2 (Implementation Configuration). Let P be an idle state of PTS

containing a single non-null instance c of Control. Then we define the imple-
mentation configuration of P as a tuple (qP , tP) s.t. qP is the value of the state
parameter of c and tP : Z → Z defined as:

tP (i) =

c.head .symbol if i = 0

c.head .left -i.symbol if i < 0

c.head .right i.symbol if i > 0

,

where the dot notation x.p indicates the value of parameter p in x and, for i ≥ 1,
x.pi is inductively defined as x.p.pi−1 (with x.p0 = x).

Note that an implementation configuration is also a Turing machine config-
uration. Next we define determinism for AuDaLa, as well as data races.

Definition 3 (Determinism). Let s be a step in an AuDaLa program. Then s

is deterministic iff for all states that can execute s, there exists exactly one state
that is reached by executing s.

Definition 4 (Data Race). Let s be a step of PTS . Let P be an idle state.
Then s contains a data race starting in P iff P can execute s (according to its
schedule) and during this execution, there exist a parameter v which is accessed
by two distinct struct instances a and b, with one of these accesses writing to

5

v. We call a data race between writes a write-write data race, and a data race
between a read a read-write data race.

We use this to prove the following lemma:

Lemma 1 (AuDaLa Determinism). An AuDaLa step s is deterministic if it
cannot be executed by an idle state P in the execution of PTS s.t. s contains a
data race starting in P .

Proof. If s contains no data races but is not deterministic, then some parameter
v can have multiple possible values after executing s from some idle state P .
As the operational semantics of AuDaLa do not allow interleaving by a single
struct instance (as defined in the semantics of AuDaLa [9]), v must have been
accessed by multiple struct instances during execution. The semantics also do
not allow randomness, which means that all non-determinism in AuDaLa results
from data races. These struct instances must then be in a data race. This is a
contradiction.

In practice, when a step is deterministic we can ignore interleaving of struct
instances during the execution of the step.

Lemma 2. The execution of init in PTS is deterministic.

Proof. To prove this we need to prove that the execution of init contains no
data races (Lemma 1). The step init is only executed once, at the start of the
program, by the null -instance of Control (as no other instances exist). As only
one instance exists, there cannot be a data race between two struct instances.

Lemma 3 (Executing init in the initial state). Let P0 be the idle state at the
start of executing PTS and let the input string S = s0 . . . sn. Executing the step
init on P0 results in a state P1 with a single non-null Control instance such that
(q0, tS) is the implementation configuration of P1.

Proof. The proof consists of sequentially walking through the statements of init
when executed from the initial state (which is idle) of PTS as defined in the
semantics of AuDaLa, processing the statements using those semantics.

Lemma 4. Let P be an idle state reachable in PTS with a single non-null
Control instance. Any execution of transition executed from P is deterministic.

Proof. As per Lemma 1, we prove that the execution contains no data races.
Let c be an arbitrary clause in the transition step (Listing 2). If transition has
a data race during the execution of c, this data race must occur between the one
non-null instance and the null-instance of Control. Let the non-null instance
be x0 and let x1 be the null -instance of Control. Then the parameter which is
accessed must be shared by both. This can only be head.symbol, as x0 will not
get through the if-statement and the other parameters are relative to x0 and x1.
However, as x0.head = null , this means head .symbol cannot be written to, as
parameters of null-instances cannot be written to in AuDaLa. This contradicts
that it can be in a data race.

6

Lemma 5. Every transition step executed in PTS is deterministic.

Proof. By induction. As a base case, the first execution of transition happens
from P1 as defined in Lemma 3, which has only one non-null Control instance.

Then consider the execution of transition from an idle state P ′ with one non-
null Control instance, resulting in idle state P . Due to Lemma 4, we know that
the execution of transition is deterministic, so we can consider the sequential
execution of transition. As transition is made up of multiple mutually exclusive
clauses, considering only a single clause suffices. As in none of the statements a
Control instance is created, as seen in Listing 2, it follows that P will also have
only a single non-null Control instance.

Lemma 6 (Effect of a transition execution). Let P be an idle state of PTS from
which transition can be executed and let (q, t) be the implementation configura-
tion of P . Assume that (q, t) is also a configuration of T . Then the result of a
transition in T is a configuration (q′, t′) iff the result of executing the transition
step from P in PTS is an idle state P ′ such that (q′, t′) is its implementation
configuration.

Proof. We know from Lemma 5 that p has one non-null Control instance. The
proof consists of walking through the statements of transition starting at p.

By induction, using Lemma 3 as base case and Lemma 6 as step, any idle
state of PTS after executing init corresponds directly to a state (q, t) of T ,
including terminating and accepting states. We conclude: AuDaLa is Turing
complete.

4 Conclusion

In this paper, we have proven AuDaLa Turing complete by implementing a
sequential Turing machine. In future work, we hope to extend the principles
here to a full system to prove AuDaLa programs correct. We may also extend
the proofs to the weak memory model variant of the AuDaLa semantics [15].

References

[1] Baba, T., Yoshinaga, T.: A-NETL: a language for massively parallel
object-oriented computing. In: PMMPC Proc. pp. 98–105. IEEE (1995).
https://doi.org/10.1109/PMMPC.1995.504346

[2] de Boer, F.S., et al.: Decidability Problems for Actor Systems. In:
CONCUR 2012 – Concurrency Theory. pp. 562–577. Springer (2012).
https://doi.org/10.1007/978-3-642-32940-1_39

[3] Chong, N., Donaldson, A.F., Ketema, J.: A sound and complete ab-
straction for reasoning about parallel prefix sums. SIGPLAN Not. 49(1),
397–409 (2014). https://doi.org/10.1145/2578855.2535882

7

[4] Churchill, A., Biderman, S., Herrick, A.: Magic: The Gathering Is Turing
Complete. In: 10th International Conference on Fun with Algorithms (FUN
2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 157,
pp. 9:1–9:19. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2020). https://doi.org/10.4230/LIPIcs.FUN.2021.9

[5] Copeland, B.J.: The Church-Turing Thesis (1997),
https://plato.stanford.edu/ENTRIES/church-turing/, last Mod-
ified: 2017-11-10

[6] Date, P., Potok, T., Schuman, C., Kay, B.: Neuromorphic Computing is
Turing-Complete. In: Proceedings of the International Conference on Neu-
romorphic Systems 2022. pp. 1–10. ICONS ’22, Association for Computing
Machinery (2022). https://doi.org/10.1145/3546790.3546806

[7] Detrey, J., Diessel, O.: A Constructive Proof of the Turing Completeness
of Circal. School of Computer Science and Engineering, University of New
South Wales, Australia (2002)

[8] Deursen, A.V., Klint, P.: Little languages: little maintenance? Journal
of Software Maintenance: Research and Practice 10, 75–92 (1998).
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-
SMR168>3.0.CO;2-5

[9] Franken, T.T.P., Neele, T., Groote, J.F.: An Autonomous Data Language.
In: Theoretical Aspects of Computing – ICTAC 2023. LNCS, vol. 14446,
pp. 158–177. Springer International Publishing (2023)

[10] Garland, M., et al.: Parallel Computing Experiences with CUDA. IEEE
Micro 28(4), 13–27 (2008). https://doi.org/10.1109/MM.2008.57

[11] Gibbons, J.: Functional Programming for Domain-Specific Languages. In:
CEFP 2013, pp. 1–28. LNCS, Springer International Publishing (2015).
https://doi.org/10.1007/978-3-319-15940-9_1

[12] Henderson, A., Nicolescu, R., Dinneen, M.J., Chan, T.N., Happe, H.,
Hinze, T.: Turing completeness of water computing. J Membr Comput
pp. 182–193 (2021). https://doi.org/10.1007/s41965-021-00081-3

[13] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata the-
ory, languages, and computation. Addison-Wesley, Boston, 2nd ed edn.
(2001)

[14] Kozen, D.: On parallelism in turing machines. In: 17th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1976). pp. 89–97 (1976).
https://doi.org/10.1109/SFCS.1976.20

[15] Leemrijse, G.: Towards relaxed memory semantics for the Autonomous
Data Language (2023), MSc. thesis, Eindhoven University of Technology

8

https://plato.stanford.edu/ENTRIES/church-turing/

[16] Pitt, L.: Turing Tumble is Turing-Complete. Theoretical Computer Science
948, 113734 (2023). https://doi.org/10.1016/j.tcs.2023.113734

[17] Qu, P., Yan, J., Zhang, Y.H., Gao, G.R.: Parallel Turing Ma-
chine, a Proposal. J. Comput. Sci. Technol. 32, 269–285 (2017).
https://doi.org/10.1007/s11390-017-1721-3

[18] Ragan-Kelley, J., et al.: Halide: decoupling algorithms from schedules for
high-performance image processing. Commun. ACM 61, 106–115 (2017).
https://doi.org/10.1145/3150211

[19] Raimbault, F., Lavenier, D.: RELACS for systolic pro-
gramming. In: ASAP Proc. pp. 132–135. IEEE (1993).
https://doi.org/10.1109/ASAP.1993.397128

[20] Ungar, D., Adams, S.S.: Harnessing emergence for manycore program-
ming: early experience integrating ensembles, adverbs, and object-
based inheritance. In: OOPSLA Proc. pp. 19–26. ACM (2010).
https://doi.org/10.1145/1869542.1869546

[21] Wiedermann, J.: Parallel turing machines. Department of Computer Sci-
ence, University of Utrecht The Netherlands (1984)

[22] Yamashita, T., et al.: Turing-Completeness of Asynchronous Non-
camouflage Cellular Automata. In: Cellular Automata and Discrete Com-
plex Systems. pp. 187–199. LNCS, Springer International Publishing
(2017). https://doi.org/10.1007/978-3-319-58631-1_15

A Proofs

In this appendix, we first present some auxiliary lemmas in Section A.1, after
which we present the in detail proofs to support Lemmas 3 and 6 in Section A.2.

The auxiliary lemmas in Section A.1 use the AuDaLa semantics to prove that
update statements actually perform updates, constructor statements actually
construct new data elements and so forth. We recommend reading it only to
those familiar with the semantics of AuDaLa. Section A.2 does not use any
concepts other than those introduced in the paper and references to lemmas
from Section A.1 and should not prove a challenge for those who read this
paper.

A.1 Auxiliary AuDaLa lemmas

The lemmas presented here are generally useful for any program to be proven
correct. They make use of the AuDaLa semantics, so familiarity with these
semantics [9] is assumed.

For the rest of this section, let P be an AuDaLa program without read-write
data races. Let P = 〈Sc, σ, sχ〉 be a state of P , and let ℓp ∈ L be a label and p

9

a struct instance s.t. p = σ(ℓp) = 〈sLp, JEK; γp, χp, ξp〉. In the first lemma, we
prove the result of resolving references in AuDaLa:

Lemma 7 (AuDaLa reference resolution). Let E be a variable expression of
the form “A.a” in AuDaLa, where A has the syntax “a1.· · · .an” with variable
identifiers a, a1, a2, a3, . . . , an. Let the state P ′ = 〈Sc, σ′, sχ′〉 be a state resulting
from the last transition to resolve A, s.t. σ(ℓp) = 〈sLp, γ

′
p;χ

′
p, ξp〉. Then χ′

p =
χp; ℓ, where

ℓ =

{

ℓp if n = 0

p.a1. · · · .an otherwise,

Proof. First, E is either a variable that has to be read from, or a variable that
has to be written to. In both cases, JAK = push(this); rd(a1); . . . ; rd(an). We
prove by induction on n that for any n, the value on the stack resulting from the
resolution of A is a single label. As induction hypothesis we take that after the
reads up till and including rd(aj), with χp,j being the stack after those reads,
χp,j = χp; ℓj, where ℓj is the only possible label that can be read from the reads
so far.

n = 0: If n = 0, JAK = push(this), which is resolved using the derivation rule
ComPushThis and results in χ′

p = χp; ℓp. Therefore, the base case holds.

n = i: By the induction hypothesis, we know that after the i−1th read, χp,i−1 =
χp; p.a1. · · · .ai−1. Then due to the form of E and by the well-typedness
of the syntax of P , we know that p.a1. · · · .ai−1.ai ∈ L. As there are
no read-write data races, we know that there is only a single possible
label p.a1. · · · .ai−1.ai. Then it follows by the transition ComRd that the
read of p.a1. · · · .ai−1.ai removes p.a1. · · · .ai−1 from the stack and adds
p.a1. · · · .ai to it. Therefore, χp,i = χp; p.a1. · · · .ai and the step holds.

As the induction holds, the lemma holds.

We then prove the effect of executing an expression:

Lemma 8 (AuDaLa expression execution). Let E be an AuDaLa expression.
Let the state P ′ = 〈Sc, σ′, sχ′〉 be a state resulting from the transition of the last
command of JEK, with p′ = σ′(ℓp) = 〈sLp, γ

′
p;χ

′
p, ξ

′
p〉. Then there exists a value

v s.t. χ′
p = χp; v. Moreover:

1. If E = “this”, v = ℓp.

2. If E = “null”, and T is the type as determined by the context of E,
v = defaultVal (T)

3. If E = lit , where lit ∈ LT , with semantic value val (lit), then v = val (lit).

4. If E = x1. · · · .xn.x, with x1, . . . , xn ∈ ID , then v = x1. · · · .xn.x.

10

5. If E = “sL (E1, . . . , En)”, for a struct type sL with parameters
par 1, . . . , parn, then v ∈ L s.t. σ(v) = ⊥ and σ′(v) = 〈sL, ε, ε, ξ〉. More-
over, with v1, . . . vn as the values resulting from resolving JE1K, . . . JEnK,
ξ = ξ0

sL
[par1 7→ v1, . . . , parn 7→ vn].

6. If E = “! E′”, then v = ¬v′, with v′ as the value resulting from resolving
JEK.

7. If E = “(E′)”, then v = v′, with v′ as the value resulting from resolving
JEK.

8. If E = “E1 o E2”, for syntactic operator o with semantic equivalent ◦,
then v = v1 ◦ v2, with v1 as the value resulting from resolving JE1K and
with v2 as the value resulting from resolving JE2K

9. If E creates a new struct instance, sχ′ = false |sχ|.

Proof. We prove the lemma by implicit structural induction, with our induction
hypothesis being that the lemma holds for any subexpression encountered in
cases 5-8, and with as base cases the cases 1-4. Due to our assumption that
P has no read-write data races, we can assume that there is only one possible
value read from any variable. We then prove the cases separately:

1. If E = “this”, then according to the interpretation function, this is in-
terpreted as the command push(this), which is then resolved using the
derivation rule ComPushThis, executed by p. The result of this deriva-
tion rule is that p pushes ℓp on it’s stack, so this base case holds and
v = ℓp.

2. If E = “null”, and T is the type as determined by the context of E, then
according to the interpretation function, this is interpreted as the com-
mand push(()defaultVal (T)). This is then resolved using the derivation
rule ComPush executed by p, which pushes defaultVal (T) on the stack.
Therefore, this base case holds and v = defaultVal(T).

3. If E = lit , where lit ∈ LT , with semantic value val (lit), then accord-
ing to the interpretation function, this is interpreted as the command
push(val (lit)). This is resolved using the derivation rule ComPush exe-
cuted by p, which pushes val(lit) to the stack. Therefore, this base case
holds and v = val(lit).

4. If E = x1. · · · .xn.x, with x1, . . . , xn ∈ V , then according to the interpre-
tation function, this is interpreted as the commands
push(this); rd(x1); . . . ; rd(xn); rd(x). Then, let P1 be the state after
resolving push(this); rd(x1); . . . ; rd(xn) with struct environment σ1 s.t.
σ1(ℓp) has stack χ1. From Lemma 7 we know that χ1 = χ; ℓp.x1. · · · .xn

and that ℓp.x1. · · · .xn ∈ L. Then, by ComRd, we know that v =
ℓp.x1. · · · .xn.x. Therefore, this base case holds.

11

5. If E = “sL (E1, . . . , En) ”, for a struct type sL with parameters
par 1, . . . , parn, then from the interpretation function, we know that E

is interpreted as JE1K; . . . ; JEnK; cons(sL). By the structural induction
hypothesis, we know that JE1K; . . . ; JEnK results in the sequence of val-
ues v1; . . . ; vn at the end of the stack of p. Then by the derivation
rule ComCons, we know that there exists a label ℓ s.t. σ(ℓ) = ⊥ and
σ′(ℓ) = 〈sL, ε, ε, ξ〉, where ξ = ξ0

sL
[par1 7→ v1, . . . , parn 7→ vn]. Also by

ComCons, we know that v = ℓ. Therefore, this case holds

6. If E = “! E′”, then by the interpretation function, this gets interpreted
as JE′K;not. Then by the structural induction hypothesis, we know that
JE′K results in a value v′ at the end of the stack of s. Then by derivation
rule ComNot, we know that v = ¬v′, so this case holds.

7. If E = “(E′) ”, then as the concrete syntax gets converted into an
abstract syntax tree, JEK = JE′K, as JE′K pushes a value v′ to the stack as
per the structural induction hypothesis, it follows that JEK also pushes v′

to the stack, so v = v′. Therefore, this case holds.

8. If E = “E1 o E2”, for syntactic operator o with semantic equivalent ◦, this
is interpreted by the interpretation function as JE1K; JE2K;op(o). Then by
the structural induction hypothesis, we know that JE1K; JE2K results in the
values v1; v2 on the stack of p. Then by derivation rule ComOp, we know
that v = v1 ◦ v2. Therefore, this case holds.

9. If E creates a new struct instance, then either E = “sL (E1, . . . , En) ”
or a subexpression of E creates a new struct instance. In the second case,
sχ′ = false

|sχ| by the structural induction hypothesis. In the first case, due
to the execution of ComCons during the resolution of E, sχ′ = false |sχ|.

As the structural induction and all cases within it hold, the lemma holds.

We can use this lemma to prove the effects of statement executions. Firstly,
for constructor statements, note the following:

Corollary 1 (AuDaLa constructor execution). A constructor statement has the
same effects as a constructor expression, as defined in case 5 of Lemma 8, and
also resets the stability stack as defined in case 9 of Lemma 8.

We then prove the update statement execution effects:

Lemma 9 (AuDaLa update execution). Let Z be an AuDaLa statement of the
form “A.a := E”, where A has the syntax “a1.· · ·.ax” with a, a1, a2, a3, . . . ,

an ∈ ID and E is an expression. Let label ℓα be uniquely defined as

ℓα =

{

p.a1.a2.a3. · · · .an if n > 0

ℓp if n = 0
.

Let the state P ′ = 〈Sc, σ′, sχ′〉 be the state resulting from the transition of the
last command of JZK. Let v be the value pushed to the stack as a result of

12

resolving JEK (as per Lemma 8). Let σ(ℓα) = 〈sLα, γα, χα, ξα〉 and let σ′(ℓα) =
〈sLα, γ

′
α, χ

′
α, ξ

′
α〉.

Then, if ℓα 6= L0, ξ
′
α(a) = v and if ξα(a) 6= v ∧ a ∈ Par sLα

, sχ′ = false |sχ|.

Proof. We know that JZK = JEK; Ja1; · · · ; axK;wr(a) by the definition of the
interpretation function. From Lemma 8 we know that through JEK, v is put on
the stack first. Then, by Lemma 7, we know that the result of Ja1; · · · ; axK is
that ℓα is pushed on the stack. Then if ℓα 6= L0, we know through the derivation
rule ComWr that ξα(a) = v. If ξα(a) 6= v∧a ∈ Par sLα

, we know that the value
of a before ComWr can either still be ξα(a) or it can have been written to by
another struct instance p′, also using a ComWr transition. In the first case,
it follows from ComWr that sχ′ = false |sχ|. In the second case, if the other
struct instance writes v to a, sχ′ = false |sχ| due to the ComWr transition done
by p′, and if not, then sχ′ = false |sχ| due to the ComWr transition of p. In
any case, sχ′ = false |sχ|.

The above lemma also suffices for assignment statements:

Corollary 2 (Assignment statements). Lemma 9 also holds for statements of
the form “T a := E”, with T ∈ T and “a := E”.

Proof. As J“T a := E”K = J“a := E”K, the effects of executing “T a := E”
are the same as executing “a := E” (with n = 0). The stability stack will
not be updated, as a cannot be a parameter according to our static syntax
requirements.

Lastly, we prove the effects of executing an if-then statement:

Lemma 10 (If-then Statements). Let Z be a statement of the form “if E then

{ S }”, where S is a list of statements and E is an expression.
Let the state P ′ = 〈Sc, σ′, sχ′〉 be the state resulting from the transition of

the last command of JZK, and let σ′(ℓp) = sLp, γ
′
p, χ

′
p, ξ

′
p〉. Let v be the value

pushed to the stack as a result of resolving JEK (as per Lemma 8).
Then either v = true and γ′

p = JSK; γp or v = false and γ′
p = γp.

Proof. We know that JZK = JEK; if(JSK) by the definition of the interpretation
function. By our assumption of well-typedness, we know that the value v to
which JEK resolves is a boolean value, and therefore the value at the end of the
stack after resolving JEK will be either true or false . Then if v = true, we know
by the derivation rule ComIfT that γ′

p = JSK; γp, and if v = false, we know by
the derivation rule ComIfF that γ′

p = γp.

We have now proven the effects of every type of statement. For if-statements
and constructor statements, the result of the statement are permanent during
the execution of a step s. Assignment statements can only work with local
variables, of which the values are irrelevant at the end of s. We do however need
to prove what we can guarantee about updated parameters after the execution
of an update:

13

Lemma 11 (AuDaLa update results). Let s be a step in P and let Z be an
update statement s.t. p executing Z updates a parameter p′.x with type T of
some struct instance p′ to a value b during s (along Lemma 9). Let a be the
original value of p′.x. Let P be a state during s after the execution of Z by p

and before the execution of the statement after Z by p. Then all of the following
holds:

a. If p′ is a null-instance, p′.x = a = defaultVal (T).

b. If p′ is not a null-instance:

i. If p′.x is not involved in a write-write data race, p′.x = b.

ii. If p′.x is involved in a write-write data race, let N be the set of all
values written to p′.x during s by all data elements involved in the
write-write data race. Then p′.x ∈ N .

Additionally, we know that if a 6= b, the stability stack is reset.

Proof. If p′ is a null-instance, then by the rule ComWrSkip and by the initial-
ization of null -instances, we know that p′.x = a = null after the execution of Z
by p. If p′ is not a null-instance, and p′.x is not involved in a write-write data
race, p′.x is not involved in any data race, as P does not have read-write data
races. Then as no other element other than p can have written to p′.x during or
after the execution of Z by p and b is deterministic during the execution of Z
(as there are no read-write data races), p′.x = b. If p′ is not a null-instance and
p′.x is in a write-write data race, as AuDaLa does not allow for nondeterminism
in a single data element, this data race must be between different data elements.
As these can execute their update statements in any order, any value in N can
be the last value written to p′.x before p executes the statement after Z, so
p′.x ∈ N .

This extends to step executions:

Corollary 3 (AuDaLa parameters after a step). Let s be a step in P and let P
be a state resulting from an execution of s. Let Z be the last update statement
in s of some parameter p′.x with type T of some struct instance p′ by p, which
updates p′.x to a value b. Let the value of p′.x before the execution of s be a.
Then in P :

a. If p′ is a null-instance, p′.x = a = defaultVal (T).

b. If p′ is not a null-instance:

i. If p′.x is not involved in a write-write data race, p′.x = b.

ii. If p′.x is involved in a write-write data race, let N be the set of all
values written to p′.x during s by all data elements involved in the
write-write data race. Then p′.x ∈ N .

Additionally, we know that if p′.x has had its value changed during the execution
of s, the stability stack has been reset during the execution of s.

14

A.2 Turing Complete Lemmas Proofs

In this section, we will prove Lemma 3 and 6 in more detail, using the auxiliary
lemmas of the previous section. Recall Lemma 3:

Lemma 3 (Executing init in the initial state). Let P0 be the idle state at the
start of executing PTS and let the input string S = s0 . . . sn. Executing the step
init on P0 results in a state P1 with a single non-null Control instance such that
(q0, tS) is the implementation configuration of P1.

Proof. First, note that the idle state at the start of executing PTS is the initial
state of PTS . The initial state for PTS , as defined in the AuDaLa semantics,
contains the schedule of PTS , the null-instances of all structs, and a stability
stack. The stability stack has no bearing on this proof, and will be disregarded.

We need to show that p1 has implementation configuration (q0, tS). To show
that, we first prove that p1 contains only one non-null struct instance of Control
and that its state parameter is set to q0. To prove this, we can assume the init -
code is executed without nondeterministic behaviour, due to Lemma 2. Only
the null-instance of Control executes init (as it is the only instance to exist in
p0). The step code makes only a single Control -instance, and as the code is
deterministic and the null -instance executes it, we know that this means only
one Control -instance is present in p1, following Lemma 1, which we will call
c. Also following Lemma 1, we know that the state parameter of c is set to q0
(represented by integer 0).

We then prove that the function made according to Definition 2 in p1 from
the TapeCells is tS . To do this, we first prove that in p1, there exists a TapeCell
for all symbols si ∈ S, and no others, s.t. every TapeCell si is be connected
to si−1 and si+1 (if they exist) through parameters left and right respectively.
Then we prove that the head parameter of c will be set to the TapeCell of s0.

The first follows from the template in Listing 4, which we can follow sequen-
tially due to Lemma 2. According to Lemma 2, the first part makes one TapeCell
instance for every si ∈ S, and according to Corollary 11 and Lemma 2, these
are then connected to the correct left and right neighbours. It follows from the
listing and Lemma 1 that head parameter of c will be set to the TapeCell for
s0.

Then the lemma holds: the implementation configuration of p1 is (q0, tS).

Now recall Lemma 6:

Lemma 6 (Effect of a transition execution). Let P be an idle state of PTS from
which transition can be executed and let (q, t) be the implementation configura-
tion of P . Assume that (q, t) is also a configuration of T . Then the result of a
transition in T is a configuration (q′, t′) iff the result of executing the transition
step from P in PTS is an idle state P ′ such that (q′, t′) is its implementation
configuration.

Proof. Let p and (q, t) be as defined in the lemma. Then by definition of PTS ,
there exists a single transition in p for PTS iff δ(q, t) is defined. Additionally, δ
is a function, so it is always uniquely defined for (q, t).

15

Let δ(q, t) = (q′, s′, D). W.l.o.g., let D = R (the proof of D = L is analo-
gous). Then as a transition in T is deterministic, by Definition 1, the resulting
state of taking a transition from (q, t) is the state (q′, t′), with

t′(i) =

{

s′ if i = −1

t(i+ 1) otherwise
.

Taking the transition in p for PTS is also deterministic (Lemma 5), and
therefore we can walk through the statements of the clause to determine its
effect. By definition of PTS , this clause is based on the template shown in
Listing 2. Let c be the single Control instance of p, and let h be the TapeCell
instance which is referenced in the head parameter of c. Due to Lemma 11, the
result of the transition is that the state of c is updated to q′, the symbol of h is
updated to s′, the accepting parameter of c is updated to whether q′ ∈ F and
that the head parameter of c shifts one TapeCell to the right (making a new
TapeCell if required, by Lemma 10 and Lemma 11).

Creating a function of the TapeCells as in Definition 2 then results in function
t′′, s.t. t′′(−1) = s′ and t′′(i) = t(i + 1) for all i 6= −1, which is equal to t′.
Then, by Definition 2, the implementation configuration of the resulting state
is (q′, t′). Therefore the lemma holds.

16

	Introduction
	The Turing Machine Implementation
	Basic Concepts
	The Implementation of a Turing Machine in AuDaLa

	Turing Completeness
	Conclusion
	Proofs
	Auxiliary AuDaLa lemmas
	Turing Complete Lemmas Proofs

