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A SHINTANI LIFT FOR RIGID COCYCLES

ISABELLA NEGRINI

Abstract. We construct a Shintani lift for rigid analytic cocycles of higher weight,

attaching modular forms of half-integral weight to such cocycles. The expression for

the Fourier coefficients of the modular form RS(J) attached to a cocycle J is given in

terms of the residues of J , and shares a striking similarity with the expression for the

coefficients of the classical Shintani lift S(f) of an integral weight modular form f .

This work aligns with the ideas of the nascent p-adic Kudla program and strengthens

the analogy between rigid cocycles and modular forms.
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Introduction

This work mirrors the classical theory of theta correspondences between automorphic
forms in the new setting of rigid cocycles. As such, it fits into the emerging p-adic Kudla
program initiated in [DGL], one of whose goals is to build modular generating series
from rigid cocycles.
Rigid cocycles were introduced in [DV1] with the idea to extend the theory of com-

plex multiplication to real quadratic fields. They were initially defined as elements of
the parabolic cohomology H1

par(Γ,M), where Γ := SL2(Z[1/p]) and M is a Γ-module
of certain functions on Drinfeld’s p-adic upper half-plane Hp (see Section 1 for a de-
tailed introduction on rigid cocycles). The values of rigid meromorphic cocyles were
conjectured in [DV1] to be analogues of singular moduli for real quadratic fields. In
loc. cit. and other works, rigid cocycles behave like modular forms or at least modu-
lar functions. As an example, in [DV2] certain rigid cocycles are seen as analogues of
some modular functions with CM divisor by means of a rigid analytic Borcherds lift.
In [Neg], some rigid analytic cocycles play the role of integral weight modular forms
in the construction of a rigid analytic Shimura lift. The present work strengthens this
analogy between rigid cocycles and modular forms.
Our main result is as follows. Let k ≥ 0 be an integer. Given a suitable weight 2k

rigid cocycle J , we construct a modular form RS(J) of weight k + 1/2 attached to J .
1
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In order to give a rough statement, consider the following set of binary quadratic forms

Fp := {ax2 + bxy + cy2| a, b, c ∈ Z; b2 − 4ac > 0; p ∤ a, p|b, p|c},
and let D(Q) := b2 − 4ac.

Theorem. Given a suitable rigid cocycle J , we can construct a half-integral weight
modular form RS(J) as

RS(J) :=
∑

Q∈Fp/Γ0(p)

Îk(J,Q)q
D(Q)/p,

where the coefficient Îk(J,Q) is obtained by pairing Q with a certain residue polynomial
of J . Here q := e2πiτ with τ ∈ H. The assignment J 7→ RS(J) is Hecke-equivariant
away from p.

The residue polynomials mentioned in the statement will be defined in Section 1.1,
here we will limit ourselves to mention that they are p-adic counterparts for period
polynomials of modular forms. A more precise, though still not completely accurate,
statement of the theorem above will be given in Section 1.2.2. For the fully rigorous
statement, see Theorem 3.1. Note that RS(J) is a classical modular form but its
coefficients are written in terms of J , a p-adic object.
The series above gives the rigid Shintani map of the cocycle J , which is an analogue

of the classical Shintani lift S of [Shn]. The map S associates a modular form of weight
k + 1/2 to a modular form of weight 2k, so in our analogy rigid cocycles play the role
of integral weight modular forms. Moreover, the functions S and RS have a similar
construction: indeed, given f of weight 2k, the Fourier coefficients of the Shintani lift
S(f) are given by period integrals of f . This analogy between residues of rigid cocycles
and periods of modular forms was already exploited in [Neg], where an analogue for
rigid cocycles of the Shimura lift of [Shim] was contructed by providing a theta kernel
function with coefficients in rigid cocycles. The rigid analytic analogues of [Neg] and of
the present work behave similarly to their classical counterparts, and their constructions
shed light on some parallels between the classical setting and that of rigid cocycles. In
particular the coefficients of the modular form RS(J) share a striking similarity with
the ones of the Shintani lift S(f). For more details on the analogy between classical
and rigid analytic Shimura and Shintani lifts, see Section 1.2.
Both the present work and [Neg] fit into the p-adic Kudla program, the ideas of

which were already present in [DV2], as they construct modular generating series whose
coefficients arise from rigid cocycles, and use them to define maps which are counterparts
to theta correspondences in this new setting.

Acknowledgements. We are grateful to Vinayak Vatsal for many insightful conversa-
tions, and to Stephen Kudla for for his thorough review of earlier drafts of this paper,
which resulted in several improvements in the presentation. We also thank Alice Pozzi
for helpful comments on the exposition. This paper is based upon work supported by
the National Science Foundation under Grant No. DMS-1928930 while the author was
in residence at the Mathematical Sciences Research Institute in Berkeley, California,
during the Spring 2023 semester.
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1. Motivation and background

1.1. Rigid cocycles. Let Hp and Γ be as defined in the Introduction, and let k ≥ 0
be an integer. We will denote by A2k the additive group of rigid analytic functions on
Hp, the Drinfeld’s p-adic upper-half plane, with the weight 2k action of the group Γ
defined as

f |γ(z) = (cz + d)−kf

(
az + b

cz + d

)
, for f ∈ A2k and γ =

(
a b
c d

)
∈ Γ.

. For more details on Hp and rigid functions see [DT].

Definition 1.1. A weight 2k rigid analytic cocycle is an element of the Cp-vector space
H1

par(Γ,A2k).

Here H1
par(Γ,A2k) ⊂ H1(Γ,A2k) is the parabolic cohomology of Γ, defined as usual

(see for example [Hida]). Although the definition above agrees with the one of [DV1],
in the present work we will adopt an equivalent definition given in terms of A2k-valued
modular symbols. These are functions

m : P1(Q)× P1(Q) → A2k

such that

m{r, s} = −m{s, r} and m{r, s}+m{s, t} = m{r, t}, for all r, s, t ∈ P1(Q).

Such a modular symbol is called Γ-invariant if

m{γr, γs}|γ = m{r, s}, for all γ ∈ Γ.

We will denote by MSΓ(A2k) the Cp vector space of Γ-invariant modular symbols with
values in A2k. Lemmas 1.3 and 1.9 of [DV1] imply that there is an isomorphism between
H1

par(Γ,A2k) and MSΓ(A2k), so we can give the following definition, which we will
adopt for the rest of the paper, noting that it is much more explicit and convenient for
computations.

Definition 1.2. A weight 2k rigid analytic cocycle is an element of the Cp-vector space
MSΓ(A2k). This definition is equivalent to Definition 1.1.

We will now define a rational structure on MSΓ(A2k) using the residues of rigid
cocycles. This is an anlogue of the rational structure on classical modular forms defined
via their periods (see [KZ]). We need to recall from [Neg] the definition of the residue
map on MSΓ(A2k). Let P2k−2 be the homogeneous polynomials with coefficients in Cp

and degree 2k, with the action of Γ defined as

(h|γ)(X, Y ) := h(aX + bY, cX + dY ), for h ∈ P2k−2, γ =

(
a b
c d

)
∈ Γ.

Denote by MSΓ0(p)(P2k−2) the space of Γ0(p)-invariant modular symbols with values
in P2k−2. Let T be the Buhat-Tits tree of PGL2(Qp). This object can be seen as a
skeleton for Hp by means of a PGL2(Qp)-equivariant reduction map red : Hp → T . We
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will not use any property of T or the reduction map in the present work, but we will
sometimes refer to the edges of T . In particular, e0 will denote the standard edge of
the Bruhat-Tits tree. Given f a rigid function and e an edge of T , one can define the
annular residue Rese(f) ∈ Cp of f at e using the reduction map from Hp to T . For
more on T and its relationship with Hp, see [DT].

Definition 1.3. The residue map Res0 : MSΓ(A2k) → MSΓ0(p)(P2k−2) is defined as
Res0(J) := µ, where

(1) µ{r, s}(X, Y ) :=
2k−2∑

i=0

(
2k − 2

i

)
(−1)i Rese0(z

2k−2−iJ{r, s}(z))X iY 2k−i.

Note that expression (1) will never be used in this paper and we only included it to
provide some background. We are now ready to define a rational structure on MSΓ(A2k).

Definition 1.4. We denote by MSΓ(A2k)
(Q̄) the rigid analytic cocycles J such that

Res0(J) is a modular symbol with values in polynomials with coefficients in Q̄. In other
words, J ∈ MSΓ(A2k)

(Q̄) if and only if the numbers Rese0(z
2k−2−iJ{r, s}(z)) are in Q̄

for i = 0, ..., 2k − 2.

Note that MSΓ(A2k)
(Q̄) is not empty, as it contains the cocycles Jk,D of [Neg] (see loc.

cit., Theorem 4.1).

We will now define the space of harmonic cocycles on the edges of T , which is used
in some proofs of Section 2 and was used in [Neg] to give an alternate decription of
MSΓ(A2k). For any Γ-module Ω, the harmonic cocycles Char(Ω) are Ω-valued functions
on the edges of T satisfying certain harmonicity conditions. More precisely any c ∈
Char(Ω) is such that ∑

s(e)=v

c(e) = 0,

where the sum is taken over all the edges e having the same vertex v = s(e) as their
starting point, and

c(ē) = −c(e),
where ē is the edge obtained by flipping the orientation of e (i.e. by switching the
starting and ending points of e). The action of Γ on Char(Ω) is given by

(c|γ)(e) := c(γe)|γ.
For any edge of T , the evaluation map Char(Ω) → Ω is defined as eve(c) := c(e). We
will work with harmonic cocycles with Ω = P2k−2, and more precisely with modular
symbols values in such harmonic cocycles.

Definition 1.5. We will denote by MSΓ(Char(P2k−2)) the space of Γ-invariant modular
symbols with values in Char(P2k−2).
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It was shown in [Neg] that there is an isomorphism ST : MSΓ(Char(P2k−2)) →
MSΓ(A2k), called the Schneider-Teitelbaum lift. Its inverse Res is the generalized
residue map, which we do not need to define here. We will limit ourselves to show
the following diagram for the sake of clarity

(2) MSΓ(A2k)
Res−−→ MSΓ(Char(P2k−2))

eve0−−→ MSΓ0(p)(P2k−2),

where, with a slight abuse of notation, eve0 is the map induced on modular symbols by
the Γ0(p)-equivariant evaluation of harmonic cocycles at the edge e0.

Remark 1.1. The residue map Res0 of Definition 1.3 can be seen as Res0 = eve0 ◦Res
(see Section 4 of [Neg] for more details). This will be used in the proof of Lemma 2.1.

Finally, we can consider a different action on P2k−2, given by

(h ⋆ γ)(X, Y ) := h(dX − cY,−bX + aY ), with γ =

(
a b
c d

)
∈ Γ.

Note that h⋆γ = h|(γT )−1 and let S := ( 0 1
−1 0 ). Then (γT )−1 = S−1γS and we can pass

from one action to the other with the following Γ-equivariant map

α : (P2k−2, |) → (P2k−2, ⋆)

h 7→ h|S.
We consider both actions in order to be consistent with the literature: indeed [Shn]
and [Ste] use ⋆ while the action used in [Neg] and in the literature on rigid cocycles is
the | one. Consequently, the proofs involving polynomials in Section 3 use the ⋆ action,
while the definitions and proofs in Section 2 use the | one. This is not an issue, as the
map α is used in Section 3 to phrase everything in the ⋆ notation.

As α is Γ-equivariant, it induces a map on MSΓ0(p)(P2k−2), so let R̃es0 := α ◦ Res0.

We will often adopt the notation µJ := Res0(J) and µ̃J := R̃es0(J).

1.2. Classical and rigid analytic Shimura-Shintani lifts. In this Section we are
going to recall some facts about the classical Shimura and Shintani lifts, and compare
them to their analogues in the framework of rigid cocycles.

1.2.1. The Shimura lift. Let k be an even integer. Given a half-integral weight modular
form g ∈ Sk+1/2(Γ0(4)), Shimura ([Shim]) constructed an integral weight form SH(g) ∈
S2k(SL2(Z)). The latter can be obtained by pairing g with a theta kernel function
Ωk via the Petersson inner product. More precisely, Ωk is a function of two variables
z, τ ∈ H, given by

(3) Ωk(z, q) :=
∑

D>0

Dk−1/2fk,D(z)q
D,

where q := e2πiτ and fk,D ∈ S2k(SL2(Z)) are the so-called “Zagier forms” defined in [Za].
The series Ωk is a half-integral weight modular form with coefficients in S2k(SL2(Z)),
meaning that Ωk ∈ Sk+1/2(Γ0(4))⊗S2k(SL2(Z)). In simpler terms, the series Ωk belongs
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to Sk+1/2(Γ0(4)) as a function of τ . Then, up to a multiplicative constant,

(4) SH(g) = 〈g,Ωk〉Pet =

∫

Γ0(4)\H

g(τ)Ωk(−z, τ)vk−3/2dudv, τ = u+ iv.

In order to compare SH with its rigid analytic analogue, it will be useful to give a
different expression for (4). Let {gj}j=1,...,N be an orthonormal basis for Sk+1/2(Γ0(4)),

and let g =
∑N

j=1 αjgj and Ωk =
∑N

j=1 gj ⊗ fj with αj ∈ C and fj ∈ S2k(SL2(Z)). Then
we can write

(5) SH(g) = 〈g,Ωk〉Pet =

N∑

j=1

αjfj.

In [Neg], an analogueRSH of SH was defined in the setting of rigid cocycles. More pre-

cisely, let k be odd now, thenRSH : S
(Q̄)
k+1/2(Γ(4p

2)) → MSΓ(A2k), where S
(Q̄)
k+1/2(Γ(4p

2))

are the modular forms of weight k + 1/2 and level 4p2 whose Fourier coefficients are
in Q̄. The key ingredient for the construction of RSH is a theta kernel function, i.e.
a half-integral weight modular form with coefficients in rigid cocycles. To define this,
begin with the formal q-series

(6) Ω̂k(q) :=
∑

D>0

Dk−1/2Jk,Dq
D ∈ MSΓ(A2k)

[[
q
]]
,

where Jk,D ∈ MSΓ(A2k) are p-adic analogues of the Zagier forms (see Section 2 of [Neg]
for their explicit definition). Consider the natural map

Ψ : S
(Q̄)
k+1/2(Γ(4p

2))⊗Q̄ MSΓ(A2k) → MSΓ(A2k)
[[
q
]]
.

The main result of [Neg] is that

(7) Ω̂k ∈ Ψ
(
S
(Q̄)
k+1/2(Γ(4p

2))⊗Q̄ MSΓ(A2k)
)
.

For more details see Theorems 6.1, 6.2, 6.3 in loc. cit. The preimage under Ψ of the
series Ω̂k(q) will be denoted by Ω̂k(τ), where τ ∈ H. Let now {gj}j=1,...,M be a basis of

S
(Q̄)
k+1/2(Γ(4p

2)) and write

(8) Ω̂k(τ) =
M∑

j=1

gj(τ)⊗mj

with mj ∈ MSΓ(A2k). Now let g :=
∑M

j=1 αjgj ∈ S
(Q̄)
k+1/2(Γ(4p

2)) with αj ∈ Q̄. Then in

light of (5) it is natural to define

(9) RSH(g) :=

M∑

j=1

αjmj ∈ MSΓ(A2k).

Comparing (3) and (6) as well as (5) and (9), we see that in our analogy rigid analytic
cocycles play the role of modular forms.

1.2.2. The Shintani lift. In [Shn] Shintani constructed a map going from integral weight
modular forms to half-integral weight forms. We are now going recall the classical
Shintani lift for level p forms and compare it with our main result.
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Let χ be the Dirichlet character modulo 4p defined as

(10) χ(d) :=
((−1)kp

d

)
, d ∈ (Z/4pZ)×.

Given a binary quadratic form Q(x, y) := ax2 + bxy + cy2, we will adopt the notation
Q := [a, b, c]. The discriminant of Q will be denoted by D(Q). Let Fp be the set of
binary quadratic forms defined as

(11) Fp := {[a, b, c]| a, b, c ∈ Z; D(Q) > 0; p ∤ a, p|b, p|c}.
A matrix

(
α β
γ δ

)
∈ Γ acts on Q(x, y) by

(Q ⋆ γ)(x, y) := Q(δx− γy,−βx+ αy).

This action is compatible with the ⋆ action on polynomials defined in Section 1.1,
and in the present section the action on P2k−2 is the ⋆ one. Note that Γ0(p) preserves
Fp. The stabilizer ΓQ of Q in Γ is generated up to torsion by the automorph γQ of Q,
and γQ ∈ Γ0(p) if Q ∈ Fp (see [Shn]). We recall now the definition of the Shintani cycle
CQ associated to Q ∈ Fp, following [Shn].

Definition 1.6. Let ω be an arbitrary point in P1(Q). The Shintani cycle associated to
Q := [a, b, c] ∈ Fp is the oriented geodesic CQ := (rQ, sQ) in the upper half-plane, where

(rQ, sQ) =

{
(xQ, yQ) if D(Q) is a square,
(ω, γQ(ω)) otherwise,

with

(xQ, yQ) =





(
b+
√

DQ

2c
,
b−
√

DQ

2c

)
if c 6= 0,(

∞, a
b

)
if c = 0, b > 0,(

a
b
,∞

)
if c = 0, b < 0.

Theorem 1.1. (Shintani) Let f ∈ S2k(Γ0(p)) and let χ be as in (10). Let

Ik(f,Q) :=

∫

CQ

f(τ)Q(1,−τ)k−1dτ, with Q ∈ Fp.

Then
S(f) :=

∑

Q∈Fp/Γ0(p)

Ik(f,Q)q
D(Q)/p

is a cusp form in Sk+1/2(Γ0(4p), χ). Here q := e2πiτ with τ ∈ H. The map

S : S2k(Γ0(p)) → Sk+1/2(Γ0(4p), χ)

is C̄-linear and S(Tm(f)) = Tm2(S(f)) for any m coprime with p.

We will now state our main result. Although more precise than the one in the In-
troduction, the statement below is still paraphrasing certain points. A more rigorous
statement will be given in Theorem 3.1, after having introduced all the necessary no-
tation. Let 〈 , 〉 be the pairing on P2k−2 defined as

〈X iY 2k−2−i, XjY 2k−2−j〉 =
(
2k − 2

i

)−1

(−1)iδi,2k−2−j.
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Main Theorem. Let J ∈ MSΓ(A2k) be a suitable rigid cocycle and let χ be the
character defined in (10). Let

Îk(J,Q) := 〈µ̃J{rQ, sQ}(x, y), Qk−1(x, y)〉, with Q ∈ Fp.

Then
RS(J) := (2k − 2)!

∑

Q∈Fp/Γ0(p)

Îk(J,Q)q
D(Q)/p

is a cusp form in Sk+1/2(Γ0(4p), χ). Here q := e2πiτ with τ ∈ H. The assignment
J 7→ RS(J) is Hecke-equivariant away from p.

To see the similarity between Ik(f,Q) and Îk(J,Q), consider the period map

f 7→ p̃er(f) :=

∫ s

r

f(z)(zX + Y )2k−2dz,

which will be further described in the next Section.
Then Ik(f,Q) can be characterized as

(12) Ik(f,Q) = (2k − 2)!〈(p̃er(f){rQ, sQ})(x, y), Qk−1(x, y)〉.
See for example Section 4.3 of [Ste] for more details. Comparing (12) with Îk(J,Q) in
the Main Theorem, we see that the only difference between them is that in the rigid
analytic case the residues µ̃J of J take the place of the periods of modular forms. (The
factor (2k − 2)! is not important, as it simply arises because the pairing 〈 , 〉 that we
chose is slightly different from the one used by Shintani). This parallel between periods
of modular forms and residues of rigid cocycles already appeared in [Neg], where the
residues of the cocycles Jk,D of (3) were shown to be equal to the periods of certain
modular forms related to the Zagier forms fk,D of (6) (see Sections 4 and 5 of [Neg]).

1.3. Eichler-Shimura isomorphism and cuspidal cocycles. We briefly recall some
facts about the Eichler-Shimura isomorphism and introduce some notation that will be
needed to prove our main result in Section 3. For a similar treatment of this topic and
for more details see Section 4 of [Ste].

Consider the involution on MSΓ0(p)(P2k−2) given by

(m|w∞){r, s} := (m{w∞r, w∞s})|w∞, with w∞ :=

(
−1 0
0 1

)
.

We will call even (resp. odd) elements of MSΓ0(p)(P2k−2) which are in the +1 (resp.

−1) eigenspace for w∞. Every modular symbol in MSΓ0(p)(P2k−2) can be written as a
sum of an even and an odd modular symbol, and we have

(13) MSΓ0(p)(P2k−2) = MSΓ0(p)(P2k−2)
+ ⊕MSΓ0(p)(P2k−2)

−.

Clearly the same definitions could be given using the ⋆ action.

We will denote by P(C)
2k−2 the homogeneous polynomials with coefficients in C and

degree 2k − 2, with the | action of Γ0(p). Recall the Eichler-Shimura isomorphism, in
particular the diagram
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S2k(Γ0(p))⊕ S2k(Γ0(p)) H1(Γ0(p),P(C)
2k−2)

MSΓ0(p)(P(C)
2k−2)

ES

per
β

Here ES is an isomorphism, β associates to a modular symbol µ the cocycle Φµ(γ) :=
µ{x0, γx0} for any x0 ∈ P1(Q), and per is given by

f 7→ per(f) :=

∫ s

r

f(z)(X − zY )2k−2dz.

Moreover per = per+ ⊕ per−, where per+ (resp. per−) denotes the map given by
taking even (resp. odd) periods of cusp forms. These maps land in the spaces of even

and odd modular symbols, which are the eigenvalues of w∞ acting on MSΓ0(p)(P(C)
2k−2).

By the Manin-Drinfeld principle there is a unique Hecke-equivariant section sβ of β

such that the diagram commutes and MSΓ0(p)(P(C)
2k−2) = Ker(β) ⊕ Im(sβ). We have

sβ = per ◦ ES−1.

If we consider P(C)
2k−2 with the ⋆ action instead, we get an analogue diagram

S2k(Γ0(p))⊕ S2k(Γ0(p)) H1(Γ0(p),P(C)
2k−2)

MSΓ0(p)(P(C)
2k−2)

ẼS

p̃er
β

Now the period map is given by

f 7→ p̃er(f) :=

∫ s

r

f(z)(zX + Y )2k−2dz.

The maps ẼS and s̃β are defined like in the previous case. To relate the objects in
[Neg] with the ones of [Shn] and [Ste], we will use the fact that p̃er(f) = α ◦ per(f) and
p̃er±(f) = α ◦ per±(f).

If J ∈ MSΓ(A2k)
(Q̄), then Res0(J) can be seen as an element of MSΓ0(p)(P(C)

2k−2), hence
the following definition makes sense.

Definition 1.7. A rigid analytic cocycle J ∈ MSΓ(A2k)
(Q̄) is called cuspidal if Res0(J) ∈

Im(sβ) or equivalently if R̃es0(J) ∈ Im(s̃β). The space of cuspidal cocycles will be de-
noted by MSΓ(A2k)

cusp.

Note that the cocycles Jk,D of [Neg] are cuspidal as Res0(Jk,D) = per−(f
(p)
k,D), for

certain cusp forms f
(p)
k,D ∈ S2k(Γ0(p)).

2. Hecke operators on rigid analytic cocycles

In this Section we will provide two different definitions of Hecke operators on rigid
analytic cocycles: the first one will be given using the map Res0 : MSΓ(A2k) →
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MSΓ0(p)(P2k−2) of [Neg], the second one will be more explicit. Proposition 2.2 will
show that the two definitions coincide.
Let {γj}j=0,...,p be the representatives given by SL2(Z) =

⊔p
j=0 γjΓ0(p) and let wp :=(

0 −1
p 0

)
.

Definition 2.1. The space MSΓ0(p)(P2k−2)
p-new is the subspace given by the modular

symbols ψ ∈ MSΓ0(p)(P2k−2) such that
p∑

j=0

ψ|γj = 0 and

p∑

j=0

ψ|(wpγ
−1
j ) = 0.

Lemma 2.1. The map Res0 gives an isomorphism Res0 : MSΓ(A2k) → MSΓ0(p)(P2k−2)
p-new.

Proof. Recall from (2) that Res0 = eve0 ◦ Res. As Res is the inverse of the Schneider-

Teitelbaum lift ST , it must be injective. Moreover, eve0(c) belongs to MSΓ0(p)(P2k−2)
p-new

because of the harmonicity properties of c. Indeed, the conditions in Definition 2.1 can
be rewritten as sums of c evaluated at all the edges leaving the standard vertex v0 of T .
So the only thing left to prove is that eve0 is surjective on MSΓ0(p)(P2k−2)

p-new. Any edge

e of T can be written as e = γe0 for some γ ∈ Γ. Then, given c0 ∈ MSΓ0(p)(P2k−2)
p-new,

we can define
c{r, s}(e) := c0{γr, γs}|γ.

Using the fact that c0 satisfies the formulas in Definition 2.1 one can show that c ∈
MSΓ(Char(P2k−2)). It is easy to check that eve0(c) = c0. �

Recall that there is an action of Hecke operators on MSΓ0(p)(P2k−2), induced by
the Hecke action on S2k(Γ0(p)) via the Eichler-Shimura isomorphism ES. For J ∈
MSΓ(A2k) and any positive integerm with (m, p) = 1 we can now define Hecke operators
Tm as

(14) Tm(J) := Res−1
0 (Tm(Res0(J))).

Similarly, let

(15) Up(J) := Res−1
0 (Up(Res0(J))).

Alternatively, we can give more concrete definitions as follows. Let l be a prime different
from p. Define the sets of matrices

(16) Γl :=
{(

1 a
0 l

)
, a = 0, ..., l − 1

}
∪
{(

l 0
0 1

)}
.

Any γ =

(
a b
c d

)
∈ Γl acts on f ∈ A2k−2 by

(f |γ)(z) := det(γ)k−1(cz + d)2−2kf(γz),

and on h ∈ P2k−2 by

(f |γ)(z) := det(γ)1−k(cX + dY )2k−2h(aX + bY, cX + dY ).
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These induce actions of γ on MSΓ(A2k), MSΓ(Char(P2k−2)) and MSΓ0(p)(P2k−2).
Then, we can define

(17) Tl(J) := lk−1
∑

γ∈Γl

J |γ.

Note that the Tl’s defined in (17) preserve the space MSΓ(A2k), by the same argument
used to show that Hecke operators preserve the space of modular forms. To define the
operator Up, consider the involution on MSΓ(A2k) defined by

(J |wp){r, s} := (J{wpr, wps})|wp, with wp :=

(
0 −1
p 0

)
,

where J ∈ MSΓ(A2k). Then let

(18) Up(J) := −J |wp.

In order to prove that the definitions given in (14), (15) and (17), (18) coincide, we
need some notation. As wp is an involution, we can write

MSΓ(A2k) = MSΓ(A2k)
p,+ ⊕MSΓ(A2k)

p,−,

where MSΓ(A2k)
p,+ (resp. MSΓ(A2k)

p,−) is the eigenspace on which wp acts with eigen-
value +1 (resp. −1). The two subspaces that we just defined are called the spaces of
p-even and p-odd rigid analytic cocycles. Similarly, as MSΓ(A2k) ∼= MSΓ(Char(P2k−2)),
we can define MSΓ(Char(P2k−2))

p,+ and MSΓ(Char(P2k−2))
p,−.

For any c ∈ Char(P2k−2) and for any edge e of the Bruhat-Tits tree, recall from
Section 1.1 that eve is the evaluation map at e, i.e. eve(c) := c(e).
Finally, given the sign ǫ = + (resp. ǫ = −), let

MSΓ0(p)(P2k−2)
Up=ǫ

be the subspace of MSΓ0(p)(P2k−2) on which Up acts as multiplication by +1 (resp. −1).

Proposition 2.1. The map eve0 induces Hecke-equivariant inclusions

eve0 : MSΓ(Char(P2k−2))
p,ǫ →֒ MSΓ0(p)(P2k−2)

Up=−ǫ.

Proof. The proof is similar to the one of Proposition 3.3 of [DV2].
For any edge e of the Bruhat-Tits tree, let U(e) ⊂ P1(Qp) be the p-adic ball attached

to e. Then the complement of U(e0) is

U(e0)
′ = Zp =

⊔

j=1,...,p

U(ej),

where

U(ej) := α−1
j Zp, with αj :=

(
1 j − 1
0 p

)
.

Let c ∈ MSΓ(Char(P2k−2))
p,ǫ. The harmonicity of c{r, s} implies that

(eve0(c)){r, s} = −
∑

j=1,...,p

(evej (c)){r, s}.
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From here we can proceed as [DV2], so the quantity above can be written as

−
∑

j=1,...,p

c{r, s}(ej) = −
∑

j=1,...,p

((c{r, s}|α−1
j )(e0))|αj = −ǫ

∑

j=1,...,p

(c{αjr, αjs}(e0))|αj.

The result follows from the definition of Up given in (18). �

Proposition 2.2. The definition of Tl (resp. Up) given in (14) (resp. (15)) coincides
with the one given in (17) (resp. (18)).

Proof. The Schneider-Teitelbaum lift ST and its inverse Res are GL2(Qp)-equivariant,
and the map eve0 is equivariant for the matrices γ ∈ Γl defined in (16) as those matrices
stabilize e0. This implies that the map Res0 = eve0 ◦ Res is Tl-equivariant for Tl
defined in (17), hence the definition in (14) agrees with the one in (17). Proposition
2.1 implies that Res0 is also equivariant for the operator Up as defined in (18), so the
result follows. �

3. Construction of the Shintani map for rigid cocycles

In this Section we will construct a map RS : MSΓ(A2k)
cusp → Sk+1/2(Γ0(4p), χ),

where χ was defined in (10).
We can finally give a rigorous statement of the main theorem.

Theorem 3.1. Let J ∈ MSΓ(A2k)
cusp be a cuspidal cocycle and let χ be the character

defined in (10). Let

Îk(J,Q) := 〈µ̃J{rQ, sQ}(x, y), Qk−1(x, y)〉, with Q ∈ Fp.

Then
RS(J) := (2k − 2)!

∑

Q∈Fp/Γ0(p)

Îk(J,Q)q
D(Q)/p

is a cusp form in Sk+1/2(Γ0(4p), χ). Here q := e2πiτ with τ ∈ H. The map

RS : MSΓ(A2k)
cusp → Sk+1/2(Γ0(4p), χ)

is Q̄-linear and
RS(Tm(J)) = Tm2(RS(J))

for any m coprime with p.

To prove Theorem 3.1 we will need the following result.

Lemma 3.1. The quantity Îk(J,Q) is well defined and depends only on the Γ0(p)-orbit
of Q.

Proof. We will start by proving that Îk(J,Q) does not depend on the choice of the point
ω ∈ P1(Q) that we used to define it. Let ω′ ∈ P1(Q). Then using the properties of
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Γ0(p)-invariant modular symbols we get

µ̃J{ω, γQ(ω)} = µ̃J{ω′, γQ(ω
′)}+ µ̃J{γQ(ω′), γQ(ω)} − µ̃J{ω′, ω}

= µ̃J{ω′, γQ(ω
′)}+ µ̃J{ω′, ω} ⋆ γ−1

Q − µ̃J{ω′, ω}.
Now note that

〈(µ̃J{ω′, ω} ⋆ γ−1
Q )(x, y), Qk−1(x, y)〉 = 〈µ̃J{ω′, ω}(x, y), (Q ⋆ γQ)

k−1(x, y)〉
= 〈µ̃J{ω′, ω}(x, y), Qk−1(x, y)〉.

From this one can immediately conclude that Îk(J,Q) does not depend on ω or ω′.

We will now show that Îk(J,Q) = Îk(J,Q ⋆ γ) for any γ ∈ Γ0(p). At first note that

Îk(J,Q ⋆ γ) can be written as

〈µ̃J{rQ⋆γ, sQ⋆γ}, (Q ⋆ γ)k−1(x, y)〉 = 〈(µ̃J{rQ⋆γ, sQ⋆γ} ⋆ γ−1)(x, y), Qk−1(x, y)〉(19)

= 〈µ̃J{γ(rQ⋆γ), γ(sQ⋆γ)}(x, y), Qk−1(x, y)〉.(20)

We are going to treat separately the cases in which D(Q) is or is not a square. Let us
assume at first that D(Q) is not a square, i.e. {rQ⋆γ, sQ⋆γ} = {ω, γQ⋆γ(ω)} for some
ω ∈ P1(Q). The automorph of Q ⋆ γ is γQ⋆γ = γ−1γQγ, so the pair appearing in (20) is
{γ(rQ⋆γ), γ(sQ⋆γ)} = {γω, γQ(γω)}. This implies that the quantity in (20) is equal to

Îk(J,Q).
We will now consider the case in which D(Q) is a square. In this case the Shintani

cycle (rQ, sQ) is defined as (g(∞), g(0)) for g ∈ SL2(R) such that (Q⋆ g)(x, y) =
√
Dxy

(see [Shn],page 101). If g is such a matrix, then (Q ⋆ γ) ⋆ (γ−1g)(x, y) =
√
Dxy, hence

(rQ⋆γ, sQ⋆γ) = (γ−1g(∞), γ−1g(0)) = (γ−1rQ, γ
−1sQ). This fact, together with equations

(19), (20) implies that also in this case Îk(J,Q) = Îk(J,Q ⋆ γ). �

Expression (12) implies that we can write Ik(f,Q) = Ik(f,Q)
+ + Ik(f,Q)

−, where

Ik(f,Q)
± = (2k − 2)!〈(p̃er±(f){rQ, sQ})(x, y), Qk−1(x, y)〉.

We will now prove that the even part Ik(f,Q)
+ of Ik(f,Q) does not contribute to the

Shintani lift S(f).

Proposition 3.1. Let f ∈ S2k(Γ0(p)). Then
∑

Q∈Fp/Γ0(p)

Ik(f,Q)
+qD(Q)/p = 0,

and
S(f) =

∑

Q∈Fp/Γ0(p)

Ik(f,Q)
−qD(Q)/p.

Proof. Recall that w∞ = (−1 0
0 1 ) and let Q′ := Q|w∞ for Q ∈ Fp. Then

p̃er±(f) =
1

2

(
p̃er(f) ± p̃er(f)|w∞

)
,

and

Ik(f,Q)
± =

1

2

(
Ik(f,Q) ± (2k − 2)!〈(p̃er(f){−rQ,−sQ})(x, y), Q′k−1

(x, y)〉
)
.
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Using the definition of the Shintani cycle one can show that {−rQ,−sQ} = {sQ′, rQ′},
hence

Ik(f,Q)
± =

1

2

(
Ik(f,Q) ∓ Ik(f,Q

′)
)
.

So Ik(f,Q)
+ does not affect the sum giving S(f), as the contributions from Ik(f,Q)

and Ik(f,Q
′) cancel out. �

Now we can finally prove our main result.

Proof. (Proof of Theorem 3.1)
As the cocycle J is cuspidal, there are (g, f) ∈ S2k(Γ0(p)) ⊕ S2k(Γ0(p)) such that

µJ = per+(gJ) + per−(fJ), or equivalently µ̃J = p̃er+(gJ) + p̃er−(fJ). By Theorem 1.1
and Proposition 3.1 we have

RS(J) = S(fJ )
and the result follows. �

For J a cuspidal cocycle in MSΓ(A2k)
(Q̄), write µ̃J = µ̃+

J + µ̃−
J as a sum of an even

and an odd modular symbol. Then the proof above has the following consequences.

Corollary 3.1. Let

RS±(J) := (2k − 2)!
∑

Q∈Fp/Γ0(p)

〈µ̃±
J {rQ, sQ}(x, y), Q(x, y)k−1〉qD(Q)/p.

Then
RS(J) = RS−(J) and RS+(J) = 0.

Corollary 3.2. Let s̃β
− be the map given by composing s̃β ◦ R̃es0 with the projection on

the second component of S2k(Γ0(p))⊕ S2k(Γ0(p)). Then RS factors through S2k(Γ0(p))
via s̃β

−.

Example 3.1. We can apply our main theorem to the rigid cocycle Jk,D of equation

(6). It was shown in [Neg] that µJk,D = per−(f
(p)
k,D), where f

(p)
k,D ∈ S2k(Γ0(p)) is a

level p analogue of the Zagier form fk,D of equation (3) (see [Neg], Section 5). Hence

RS(Jk,D) = S(f (p)
k,D).
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