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Atomic ensembles strongly interacting with light constitute rich quantum-optical many-body sys-
tems, with the potential for observing cooperative effects and dissipative nonequilibrium phase
transitions. We theoretically analyze the conditions under which a driven atomic ensemble in free
space, characterized by strong dipole-dipole interactions and large spatial extent, can undergo a
superradiant phase transition, also known as cooperative resonance fluorescence. In an atomic ar-
ray, stationary states that conserve the collective pseudospin exhibit completely cooperative decay
and undergo a second-order phase transition in the large atom number limit. In contrast, decay
mechanisms on longer timescales that fail to conserve pseudospin can lead to discontinuous first-
order phase transition at a critical finite atom number, disrupting cooperation despite sharing many
similar observable characteristics. A hallmark of the superradiant phase transition is an abrupt
shift from total light reflection off the atoms to rapidly increasing transmission, accompanied by
significant quantum fluctuations, as a function of light intensity.

I. INTRODUCTION

Recent years have seen a dramatic resurgence in in-
terest in collective optical interactions between atoms,
stimulated by enhanced experimental imaging capabil-
ities of cold atoms at high densities [1–10]. This has
renewed focus on foundational models of cooperative
phenomena, such as the Dicke model [11] for superra-
diance [12–25]. While the emission in Dicke superradi-
ance, with the intensity proportional to the square of the
atom numberN2, is essentially a classical effect of phased
dipoles, its extension to a driven case—cooperative res-
onance fluorescence (CRF)—reveals intricate quantum
behaviors and phase transition phenomena [26–33]. In
CRF, an idealized system of noninteracting two-level
atoms are confined to volume smaller than a cubed res-
onant wavelength, such that their identical response to
light can be represented by a collective pseudospin oper-
ator Ŝ± =

∑
j σ̂

±
j and Ŝz =

∑
j σ̂

z
j , with Ŝ± = Ŝx ± iŜy,

where σ̂+
j = |e⟩⟨g| is the raising spin operator for atom j.

This configuration conserves the total pseudospin ⟨Ŝ2⟩,
or the radius of the Bloch sphere, and decays through a
completely cooperative mechanism, which in less ideal-
ized scenarios is limited by short coherence times. The
CRF supports two nonequilibrium phases: At weak driv-
ing, fluorescence is classical from an induced collective
dipole that attenuates the incident field. At high inten-
sities, the system undergoes a second-order phase transi-
tion where, in the limit N → ∞, the excited level sharply
saturates, the mean dipole moment vanishes, and quan-
tum fluctuations increase significantly.

Inspired by a recent experimental report on the ob-
servation of the superradiant phase transition [34], tra-
ditionally referred to as CRF, in a dilute atom cloud
in free space, we develop a simple and tractable theo-
retical model to explore this phase transition within a
spatially extended atomic ensemble experiencing strong
dipole-dipole (DD) interactions in free space. We dis-

cover that, in a planar array of closely spaced atoms in a
superradiant mode with a broad resonance linewidth, the
system can conserve a macroscopic pseudospin on short
timescales, leading to complete cooperative decay and a
second-order phase transition. A hallmark of this phase
transition is an abrupt shift in the array’s properties from
a perfect mirror to rapidly increasing light transmission,
accompanied by enhanced quantum fluctuations. Both
the transition point and the scattered light intensity de-
pend on the self-interaction resonance linewidth leading
to different scaling with the atom number compared with
the idealized noninteracting system confined to volume
with dimensions much smaller than a wavelength. The
counterintuitive result that strong DD interactions en-
able CRF can be attributed to delocalized excitations
that, paradoxically, enhance the indistinguishability of
the atoms.

When the pseudospin is not conserved, the behavior
of single-atom observables at large atom numbers can
still, surprisingly, approximate the sharp functional de-
pendence typical of CRF. At high densities, the decay
mechanism that fails to conserve the pseudospin may in-
stead undergo a first-order phase transition at a criti-
cal atom number, indicative of optical bistability [35–41].
We demonstrate that sufficiently weak position fluctua-
tions do not prevent bistability, and how even stronger
fluctuations can still preserve other distinct character-
istics of single-atom observables. Independently to our
work, the CRF experiment [34] is theoretically analyzed
in Refs. [42, 43].

II. ATOM-LIGHT INTERACTIONS

We study N two-level atoms in a 2D square array
with lattice constant a and unit filling. Light mediates
strong DD interactions through multiple scattering. The
quantum-optical properties of such planar arrays have re-
cently been reviewed in Ref. [44]. We first analyze the
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atomic coherences ρ
(j)
ge = ⟨σ̂−

j ⟩ and the excited level pop-

ulations ρ
(j)
ee of atom j at rj employing the semiclassical

approximation where quantum fluctuations between dif-
ferent atoms [45] are ignored (the ground state popula-

tions are derived from ρ
(j)
gg = 1− ρ

(j)
ee ). The dynamics in

the rotating-wave approximation are then given by

ρ̇(j)ge =(i∆− γ) ρ(j)ge − i(2ρ(j)ee − 1)R(j)
eff , (1a)

ρ̇(j)ee =− 2γρ(j)ee + 2Im[(R(j)
eff )

∗ρ(j)ge ], (1b)

where γ = D2k3/(6πℏϵ0) is the single-atom resonance
linewidth, D the dipole matrix element, with the atomic
dipole d = Dêd, and k = 2π/λ the resonance wavenum-
ber. Effective Rabi frequencies [46],

R(j)
eff = R(j) + ξ

∑
ℓ ̸=j

G
(jℓ)
dd ρ(ℓ)ge , ξ =

D2

ℏϵ0
, (2)

drive atom j and include the contributions from the in-
cident field Rabi frequency R(j) = Dêd · E+(rj)/ℏ and
from the scattered fields from all the other atoms at rℓ
through the dipole radiation kernel G(r) [47]

Gνµ(r) =

[
∂

∂rν

∂

∂rµ
− δνµ∇2

]
eikr

4πr
− δνµδ(r) (3)

in G
(jℓ)
dd = ê∗d·G(rj−rℓ)êd. The positive frequency compo-

nent of the light amplitude E+(rj) and ρ
(j)
ge are expressed

as slowly varying amplitudes where the rapid oscillations
at the laser frequency have been factored out. The sec-
ond term in Eq. (2) can induce recurrent scattering and
strong DD interactions. Omitting this term results in the
standard optical Bloch equations. The semiclassical the-
ory of Eq. (1) for planar arrays was found in Ref. [45] to
agree well with the quantum solution, particularly when
exciting collective modes with broad superradiant reso-
nances, as we consider here. However, quantum effects
are crucial in the dynamics of phase transitions.

We now develop a simple model to describe the steady
states of Eqs. (1) and (2). Assuming phase-uniform
incoming light that is normally incident to the array,
we treat each atom as equally driven, with R(j) = R.
We disregard edge effects, an approximation that be-
comes accurate for large arrays. We concentrate on sta-
ble steady states with a uniform phase profile that di-
rectly couple to the incident light. Consequently, we set

ρ
(j)
ee = ρee and ρ

(j)
ge = ρge, resulting in uniform Reff =

R + ρgeξ
∑

ℓ ̸=j G
(jℓ)
dd = R + (Ω̃ + iγ̃)ρge, where Ω̃ and

γ̃ represent the real and imaginary components, respec-

tively, of the radiation kernel Ω̃ + iγ̃ = ξ
∑

ℓ ̸=j G
(jℓ)
dd [46].

In the absence of edge effects, the lattice is considered
translationally invariant, rendering the position of site j
arbitrary. The steady-state solutions of Eq. (1) now read

ρge = Reff
−∆+ iγ

∆2 + γ2 + 2|Reff |2
, (4a)

ρee =
|Reff |2

∆2 + γ2 + 2|Reff |2
. (4b)

Analogous uniform excitations were also observed exper-
imentally in the transmission of light through an atomic
planar array, conducted in the low light intensity (LLI)
limit in Ref. [8]. In practise, possessing a large array size
is not essential for the effectiveness of the approximation
Eq. (4); it suffices that the phase profiles are uniform. In
finite arrays, the coupling to phase-uniform modes can
be significantly enhanced by adjusting the width of a
Gaussian laser beam to match the lattice size [48]. A
detailed analysis of mode matching errors was carried
out in Ref. [49].
Using Eq. (4a) and the expression for Reff , we obtain

the relationship between R and Reff depending on the
cooperativity parameter C = (Ω̃ + iγ̃)/[2(∆ + iγ)] [46],

R = Reff +Reff
2C(∆2 + γ2)

∆2 + γ2 + 2|Reff |2
. (5)

Taking the absolute value of both sides of Eq. (5) yields
a cubic equation in |Reff |2, which may have one or two
dynamically stable solutions—indicating optical bistabil-
ity.

A. Low light intensity excitation eigenmodes

Even beyond the LLI regime, the collective atom be-
havior can be described by the properties of underlying
LLI collective radiative excitation eigenmodes. In the
LLI limit [50], Eq. (1) simplifies to Eq. (1a) with ρee = 0.
The resulting dynamics of coupled linear dipole oscilla-
tors are expressed as:

ρ̇(j)ge = i
∑
ℓ

(Hjℓ + δHjℓ)ρ
(ℓ)
ge + iR(j), (6)

where the matrix δHjℓ includes ∆ on the diagonal and

Hjℓ = iγδjℓ + ξG
(jℓ)
dd (1− δjℓ) (7)

provides the collective excitation eigenmodes [51, 52].
The eigenvalues δj + iυj yield the LLI collective line shift
δj and collective linewidth υj . For the uniform LLI eigen-
mode, the eigenvalue η satisfies [44] Hρge = ηρge, or

Hρge = (iγ + ξ
∑
ℓ ̸=j

G
(jℓ)
dd )ρge = [Ω̃ + i(γ + γ̃)]ρge, (8)

with the line shift Ω̃ and linewidth υ = γ + γ̃. Both
Ω̃ and γ̃ can be numerically calculated for finite arrays.
These parameters critically influence the behavior of the
effective field Reff in Eq. (5) through the cooperativity
parameter C.
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B. Collective ⟨Ŝ2⟩ breaking interactions

Next we solve Eq. (1) for varying atom numbers N
by solving the cubic equation for |Reff |2 derived from
Eq. (5). The dependence on N arises through the coop-
erativity parameter C, obtained by numerically calculat-
ing Ω̃(N) and γ̃(N) for different N . In Fig. 1, we show
sz = 2ρee − 1 and |Reff | for lattice spacings a/λ = 0.17
and 0.16, and examples of γ̃ as a function of N are dis-
played in Fig. 2(a). As N increases, sz develops a more
pronounced concave curve, reaching a sharp inflection
point near saturation—traits also characteristic of CRF.
Initially, for increasing intensities, the incident light is
dampened by the induced atomic polarization, resulting
in weak |Reff |, until reaching a threshold intensity where
|Reff | begins to increase rapidly. The sharpening of these
curve profiles results from the broadening linewidth γ+γ̃.
However, no phase transition occurs at a = 0.17λ. The
scenario changes at a = 0.16λ where, beyond a critical
atom number, |Reff | exhibits three solutions, indicating
optical bistability and representing a discontinuous first-
order phase transition. Two of the solutions are stable
and the one with a negative gradient unstable. Anal-
ogous to optical cavity bistability [36], the two stable
branches in Fig. 1 are referred to as cooperative (low sz)
and single-atom (high sz) solutions [41]. The bistability
is intrinsic, generated by DD interactions in free space
in the absence of a cavity. Theoretical studies suggest
that such interaction-mediated bistable behavior can be
generic in cold-atom systems with a variety of short- and
long-range interactions [53–55], and it has been experi-
mentally observed in Rydberg atoms in the microwave
regime [56]. Small lattice constants a/λ ≃ 0.08 and 0.17
at magic wavelengths that generate strong DD interac-
tions are achievable with Sr [57, 58] and Yb [59] atoms,
respectively.

As the atom positions are encoded in the collective
linewidths γ + γ̃ and line shifts Ω̃, we examine the im-
pact of weak position fluctuations on the phase transition
by calculating the changes in γ+γ̃ and Ω̃ due to disorder.
We solve the coupled LLI equations for the eigensystem
H, randomly sampling atom positions around each lat-
tice site from Gaussian density distributions with a root-
mean-square width η [60]. By ensemble-averaging over
many stochastic realizations, we obtain the expectation
values of ⟨γ̃⟩ and ⟨Ω̃⟩. With sufficiently weak fluctua-
tions, the relevant mode largely retains its phase unifor-
mity. In deep optical lattice potentials, η can be related
to the lattice height in terms of lattice photon recoil ener-
gies s, with η/a = s−1/4/π [61]. Intriguingly, as demon-
strated in Fig. 2, while bistability persists under weak
fluctuations, stronger fluctuations may eliminate bista-
bility yet preserve the sharp features of the sz curve,
reminiscent of CRF.

Figure 1. The atom number N dependence of (a,b) the col-
lective atomic pseudospin component sz and (c,d) the effec-
tive Rabi frequency |Reff | driving each atom in the array as
a function of the Rabi frequency of the incident driving |R|
for lattice constants (a,c) a/λ = 0.17 and (b,d) 0.16. The
curves from top to bottom N = 4, 9, 16, 25, 36 reaching the
asymptotic large N value. (b,d) First-order phase transition
and optical bistability above a critical N are observable in the
last three curves; (a,c) no phase transition.

20 40 60 80
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30
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1 2 3 4 5
-1

-0.7

-0.3

0
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Figure 2. (a) The atom number N dependence of the col-
lective self-interaction linewidth γ̃. The curves from top to
bottom for the lattice constants: a/λ = 0.05, 0.08, 0.10, and
0.16. (b) The effect of position fluctuations of atoms on the
bistability phase transition in the large N limit for a = 0.16λ
shown in Fig. 1(b). The curves from top to bottom for the
atom density root-mean-square widths η/a at each site: 0.3,
0.2, 0.1, and 0. The phase transition is observable at η/a = 0
and 0.1.

C. Collective ⟨Ŝ2⟩ conserving interactions

As we analyze Eq. (1) for broad superradiant reso-
nances, where the linewidths satisfy υ ≫ γ, we can ne-
glect the terms proportional to γ for observation times
shorter than 1/γ. Consequently, we reformulate Eq. (1)
for uniform excitations using scaled collective pseudospin
expectation values sz = 2⟨Ŝz⟩/N = 2ρee − 1 and s− =

2⟨Ŝ−⟩/N = 2ρge:

ṡ− = i∆s− − isz[2R+ (Ω̃ + iγ̃)s−], (9a)

ṡz = iR(s+ − s−)− γ̃|s−|2, (9b)

where, without the loss generality, we have taken R to be
real. We discover that d

dt (s
2
z+ |s−|2) = 0, indicating that

the collective pseudospin s2 = s2z + s2x + s2y ≤ 1 is con-
served for the macroscopic spin S = N/2. Remarkably,
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this dynamic closely mirrors the idealized CRF observed
in entirely noninteracting atoms confined to a volume
smaller than a cubed resonant wavelength. Analyzing
the steady-state solutions where ṡ− = ṡz = 0 at the col-

lective resonance ∆ = szΩ̃, we derive from Eq. (9a) that
either sz = 0 or s− = iβ, where β = 2R/γ̃.

The case s− = iβ: From Eq. (9b) and the conserva-

tion equation for s2, we derive sz = −
√
s2 − β2, where

the positive sign before the square root does not yield a
stable solution. This relationship holds for β2 ≤ s2 ≤ 1,
encompassing the weak field limit where the excited level
population vanishes (sz = −1). As the incident light am-
plitude increases, the coherence ρge rises linearly until it
reaches its maximum at |ρge| = |s|/2, corresponding to
the saturation point of the excited level at ρee = 1/2
(sz = 0). In this scenario, the increasing induced dipole
ρge attenuates incident driving, resulting in a weak ef-

fective Rabi frequency driving each atom Reff = iRΩ̃/γ̃.
Notably, at the single-atom resonance (∆ = 0) Reff = 0
exactly cancels out. For atomic arrays, the collective be-
havior can be observed in light transmission experiments,
analogous to Refs. [8, 10] (see Appendix A). At the collec-
tive resonance the array acts as a perfect mirror r ≃ −1,
for γ̃ ≫ γ [Eq. (A4)]. Intriguingly, this regime of perfect
reflection spans the entire range of ρee from zero to sat-
uration, significantly extending the LLI observations of
an atomic mirror [8].

The case sz = 0: From the conservation of s2 and
Eq. (9b), we derive s− = is2/β ±

√
s2 − s4/β2 for β2 ≥

s2. As β increases, while sz = 0 remains saturated, the
magnitude of |ρge| no longer escalates or offsets the in-
creasing incident light, resulting in rapid growth in Reff .
The power reflection |r|2 ≃ β−2 begins to decrease as R
rises. Correspondingly, the transmission |t|2 ≃ 1 − β−2

increases. Different factorizations can lead to different
mean-field solutions. Analogous to CRF, these solutions
are not stable [28]; rather, small perturbations result in
periodic oscillations around the stationary state.

We can formulate an approximate quantum master
equation for the density matrix ρ̂ by focusing only on
the coupling to the phase-uniform collective mode, anal-
ogously to the approach used in Eq. (9). Assuming the
collective resonance, the quantum analog of Eq. (9) reads

˙̂ρ = i
[
2RŜx, ρ̂

]
+

2γ̃

N

(
2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂− ρ̂Ŝ+Ŝ−

)
,

(10)
where the bracket denotes a commutator. The relation-
ship between Eqs. (10) and (9) is then the same as the
one between the quantum and semiclassical theories of
CRF of noninteracting atoms confined to volume with
dimensions much smaller than a wavelength [27–33]. The
single-atom linewidth γ of the CRF master equation is re-
placed in Eq. (10) by the scaled collective self-interaction
linewidth of the atom array 2γ̃/N . This modifies the de-
pendence of the transition point on the atom number
from N/2 to a slower-than-linear scaling with γ̃/γ [see
Fig. 2(a)]. Although the solutions to Eq. (10) have been

0 0.2 0.4 0.6 0.8
-1

-0.7

-0.3

0 (a)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6
(b)

Figure 3. Cooperative resonance fluorescence. (a) The col-
lective atomic spin sz and (b) power transmission coefficient
|t|2 for coherently scattered light through the atom array
display a second-order phase transition as a function of R
scaled by the collective self-interaction linewidth γ̃. In (a),
the curves from top to bottom: the semiclassical solution,
quantum solutions for N = 80, 50, and 25. The quantum so-
lutions asymptotically approach the semiclassical curve with
discontinuous derivative. In (b), the perfect reflection is main-
tained at intensities all the way to saturation point, after
which the perfect array reflection sharply transitions to rising
transmission. The quantum solutions (the lower solid curves)
asymptotically approach a curve distinct from the semiclas-
sical result (top curve). The quantum fluctuations derived
from ⟨s+s−⟩− |⟨s+⟩|2 are shown in the correspnding incoher-
ent transmission contribution (dashed line).

thoroughly explored (also for more recent results see,
e.g, Ref. [62]) we can directly relate them to the power
transmission coefficients |t|2 of coherently scattered light
through the atomic array (Appendix A). In Fig. 3, the
rescaled steady-state solutions of Eq. (10) for the spin
expectation values and transmission are shown for vary-
ing N alongside the mean-field solutions of Eq. (9). Both
cases converge at a critical transition point where the ex-
cited state saturates, and perfect array reflection sharply
transitions to increased transmission.
For ⟨sz⟩ in Fig. 3(a), the quantum solution smoothly

approaches the mean-field solution as N → ∞, mark-
ing a clear second-order phase transition. However, the
quantum solution ⟨sx⟩ = 0 significantly differs from the
mean-field theory [32], with discrepancies also noted for
⟨sy⟩. These differences impact |t|2, shown in Fig. 3(b),
where the quantum solutions for increasing N asymp-
totically approach a curve distinct from the mean-field
predictions, indicating strongly enhanced quantum fluc-
tuations. The expression |⟨s+⟩|2 + ⟨sz⟩2 is no longer
conserved, unlike ⟨s+s−⟩+ ⟨s2z⟩ [32], as demonstrated in
Fig. 3(b) by the component of incoherently transmitted
light originating from ⟨s+s−⟩ − |⟨s+⟩|2 (Appendix A).
Fluctuations in light transmission are a strong signature
of significant quantum effects beyond the mean-field the-
ory.

D. Scattered intensity

We now examine how the scattered light intensity de-
pends on the atom number N . From the single-atom con-
tributions in Eqs. (4) we find that the coherent scattering
due to ρge is dominant at low intensities, whereas at high
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intensities, incoherent scattering from ρee becomes preva-
lent. The general expression for coherent scattering rate
of photons, integrated over a closed surface enclosing the
source, is given by (see Appendix A)

nc = 2γ
∑
j

⟨σ̂+
j ⟩⟨σ̂

−
j ⟩+ 2ξ

∑
jℓ(j ̸=ℓ)

Im[G
(jℓ)
dd ]⟨σ̂+

j ⟩⟨σ̂
−
ℓ ⟩.

(11)
For the phase-uniform mode we directly obtain

nc = 2N(γ + γ̃)|ρge|2, (12)

since ⟨σ̂±
j ⟩ can be taken outside the sum. More gener-

ally for the array, the correlations due to DD interac-
tions alter the typical scaling from N2 to Nγ̃/γ where
γ̃ initially increases with small N but quickly begins
to saturate. For instance, for the lower (cooperative)
branch of bistable solutions at weak incident driving
Reff ≃ R/(2C + 1) [41], and assuming γ̃ ≫ R, Ω̃, we
derive nc ≃ 2NR2/γ̃. Numerically, for different incident
fields and lattice constants, we typically find an intensity
scaling of ∝ N1+α where α is a small positive or nega-
tive number 0.1 ≲ |α| ≲ 0.4. An analogous formula ap-
plies for incoherent scattering, with the necessary adjust-
ments in the correlation functions (Appendix A). For the
upper (single-atom) branch of bistable solutions at high
intensities, the single-atom incoherent scattering domi-
nates as Reff ≃ R [41], resulting in the intensity being
proportional to N . In the case of CRF from Eq. (10),
the two-atom quantum correlations become significant,
with the asymptotic scaling of the scattered intensity
again ∝ Nγ̃/γ, diverging from the noninteracting result
∝ N2 [32, 33].

III. CONCLUDING REMARKS

We have demonstrated how DD interactions can lead
to pronounced behaviors of saturation and effective driv-
ing field curves, phase transitions, and significant quan-
tum fluctuations beyond the mean-field theory. Contrary
to the gradual change observed in the second-order phase
transition, where the sharp transition point is reached as
N → ∞, the discontinuous first-order transition occurs
at a finite critical N . A full quantum treatment would
also affect the first-order phase transition. It is generally
well understood that bistable behavior coincides with en-
hanced quantum fluctuations [39, 40, 46, 55, 63–67], re-
sulting in bimodal quantum distributions that represent
tunnelling between the two mean-field solutions.

Historically, the CRF phase transition has been re-
garded as a highly idealized theoretical model, posing
significant experimental challenges. Ideally, every atom
should experience the same field exposure and no inter-
actions, any deviation from which could severely limit
the coherence time of the decay. These conclusions
also align with the recent theoretical studies parallel to
ours [42, 43]. Our interacting lattice scheme faces sim-
ilar challenges, although we discovered that strong DD

interactions in regular arrays can enhance the necessary
indistinguishability of the atoms through delocalization
of excitations. In practical experiments, the atoms in
the array should be prepared close to the steady states
of the CRF model, achievable by modulating field, atom,
or lattice parameters. For instance, the state s− = iβ,

sz = −
√
s2 − β2 could be prepared from another driven

pure steady state by adjusting the driving amplitude.
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Appendix A: Scattered intensity and transmission

In atomic arrays, collective behavior can be observed in
light transmission experiments [8, 10]. For large atomic
layers, coherent light transmission and reflection of a
plane wave demonstrate behavior similar to that in 1D
electrodynamics for light [68]. The amplitude of coher-
ently scattered light amplitude from a square array of
uniformly excited atoms propagates as a collimated wave.
In the limit of an infinite array, the scattered field, with
the density of dipoles D/a2 in a phase-uniform excitation,
almost perfectly emulates a plane wave [44]

ϵ0⟨Ê+
s (x)⟩ =

ikêdD
2a2

ρgee
ik|x|, (A1)

assuming the normal to the lattice aligns with the x-axis.
The resonance linewidth of the corresponding uniform
collective LLI eigenmode derives from the imaginary part
of the 1D dipole radiation kernel [44]

υ = γ + γ̃ = γ + ξ
∑
ℓ ̸=j

Im
[
G
(jℓ)
dd

]
=

ξ

2a2
lim
x→0

Im[ikeik|x|] =
3πγ

k2a2
. (A2)

Combining these two expressions yields the coherent
transmission and reflection amplitude coefficients:

t =

∫
x>0

êd · ⟨Ê+(x)⟩dΩ∫
x>0

êd · E+(r)dΩ
, r =

∫
x<0

êd · ⟨Ê+
s (x)⟩dΩ∫

x>0
êd · E+(r)dΩ

,

(A3)
where t = 1 + r due to the symmetry, and we obtain

r = i(γ + γ̃)
ρge
R

. (A4)

Here ρge can be evaluated from Eq. (4a).
We express the total scattered intensity as a photon

scattering rate over a surface S that completely encloses
the atoms. The rate is given by the integral of the scat-
tered intensity per photon energy

ns =
1

ℏω

∫
S

dSIs =
2ϵ0c

ℏω

∫
S

dS⟨Ê−
s (r) · Ê+

s (r)⟩. (A5)
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The general expression can be evaluated [44, 69]:

ns = 2γ
∑
j

⟨σ̂+
j σ̂

−
j ⟩+ 2ξ

∑
jℓ(j ̸=ℓ)

Im[G
(jℓ)
dd ]⟨σ̂+

j σ̂
−
ℓ ⟩. (A6)

The coherent scattering rate Eq. (11) is obtained by fac-
torizing all terms ⟨σ̂+

j σ̂
−
ℓ ⟩ → ⟨σ̂+

j ⟩⟨σ̂
−
ℓ ⟩. This is straight-

forward to calculate for the phase-uniform mode and
yields Eq. (12), since ⟨σ̂±

j ⟩ can be factored out of the sum.
The incoherently scattered light includes both single-
atom and many-atom contributions. Single-atom con-
tributions are derived from ⟨σ̂+

j σ̂
−
j ⟩ − ⟨σ̂+

j ⟩⟨σ̂
−
j ⟩. For the

phase-uniform state, these yield

n
(1)
inc = 2Nγ(ρee − |ρge|2). (A7)

On the other hand, the many-atom contributions are
given by

n
(2)
inc = 2N(γ + γ̃)

(
⟨σ̂+

j σ̂
−
ℓ ⟩ − ⟨σ̂+

j ⟩⟨σ̂
−
ℓ ⟩

)
, j ̸= ℓ. (A8)

The leading order N dependence in the front of the ex-
pression is now ∝ Nγ̃/γ [see Fig. 2(a)], instead of the
characteristic ∝ N or ∝ N2. For fixed atomic positions,
Eq. (A8) signifies many-atom quantum effects. How-
ever, if atomic positions fluctuate, the corresponding ex-
pression can also contain significant classical contribu-
tions [44, 45].
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