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\] ARTICLE INFO ABSTRACT

N Keywords: In (Dzanic, J. Comp. Phys., 508:113010, 2024), a limiting approach for high-order discontin-
Discontinuous Galerkin uous Galerkin schemes was introduced which allowed for imposing constraints on the solution

a High-order continuously (i.e., everywhere within the element). While exact for linear constraint function-

Hyperbolic conservation laws als, this approach only imposed a sufficient (but not the minimum necessary) amount of limiting

Bounds-preserving for nonlinear constraint functionals. This short note shows how this limiting approach can be

Positivity-preserving extended to allow exactness for general nonlinear quasiconcave constraint functionals through a

Limiting nonlinear limiting procedure, reducing unnecessary numerical dissipation. Some examples are
shown for nonlinear pressure and entropy constraints in the compressible gas dynamics equa-
tions, where both analytic and iterative approaches are used.

1. Introduction

ath.NA] 19 A

The use of high-order discontinuous Galerkin (DG) schemes for simulating transport-dominated physics often
E requires additional numerical stabilization to ensure the discrete solution is structure-preserving (i.e., is well-behaved
— and satisfies physical constraints). One such way of achieving this desirable behavior is applying some form of a
posteriori limiting on the solution, where the high-order DG approximation is blended with a secondary, more robust
(but generally less accurate) approximation to yield a bounds-preserving (i.e., constraint-satisfying) solution. This
form of limiting has been widely used for simulating complex physical systems, particularly ones of predominantly
hyperbolic nature, where numerical solutions must abide by known physical constraints (e.g., positivity of density
and pressure in gas dynamics). However, a potential drawback of these limiting methods is that they are typically
performed at discrete nodal locations for the DG solution, which only ensures that the given constraints are satisfied at
- those points. While adequate for many problems, the use of discretely bounds-preserving limiting may not be robust
enough for applications where the DG solution must be evaluated at arbitrary locations (e.g., coupled meshes/solvers,
remapping in arbitrary Lagrangian-Eulerian methods, adaptive mesh refinement, etc.). In such scenarios, the limited
solution may still violate the constraints at these arbitrary points, causing the failure of the numerical scheme.

A potential remedy for this problem was introduced in Dzanic [1] through a limiting approach that ensures the
limited solution is continuously bounds-preserving (i.e., across the entire solution polynomial). The approach relied
on a novel functional for computing the limiting factor for the “squeeze” limiter of Zhang and Shu [2], such that if the
minimum of this limiting functional within an element was found (via a spatial optimization algorithm), the limited
solution was guaranteed to be continuously bounds-preserving for any arbitrary quasiconcave constraint functional.
The underlying mathematical basis of this approach was a linearization of the constraint functionals being enforced on
the solution. For linear constraints (e.g., maximum principle on scalar solutions, positivity of density in gas dynamics,
etc.), the computed limiting factor was “exact” (i.e., it was the minimum necessary amount of limiting). However,
for nonlinear constraint functionals, the linearization could only ensure that the computed limiting factor was suffi-
cient, such that a smaller limiting factor (i.e., less numerical dissipation) could still yield a solution which satisfied
the constraints continuously. Therefore, the limiting approach was suboptimal for nonlinear constraints commonly en-
countered in hyperbolic systems of equations as it was not applying only the minimum amount of limiting necessary.

The purpose of this short note is to show how this limiting functional can be further modified such that the computed
limiting factor is exact for arbitrary nonlinear quasiconcave functionals, reducing unnecessary numerical dissipation.
While this proposed modification can be applied to general hyperbolic conservation laws, we focus specifically on
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the compressible Euler equations which admit higher-order and nonlinear constraints for pressure and entropy. Some
examples are shown for the new approach, where both analytic and iterative approaches can be applied.

2. Preliminaries

In this section, some preliminaries are presented for the proposed modification, which briefly summarize the lim-
iting approach introduced in Dzanic [1].

2.1. Governing equations and constraints
The exemplar hyperbolic conservation law used for this work is the compressible Euler equations for gas dynamics
in d dimensions, written in conservation form as

Jux,t)+ V- -Fu) =0, )
where
p m”
u=|m| and Fu)=|m®v+ PI|. 2)
E (E + P)v"

Here, p is the density, m is the momentum, and E is the total energy. The symbol I denotes the identity matrix in
R9%4 v = m/p denotes the velocity, and P denotes the pressure, computed as

P=(=pe=0-1)(E=Zmm/p), 3)

where y = 1.4 is the specific heat ratio and e is the specific internal energy.

The solution of the Euler equations is endowed with a convex invariant set corresponding to the positivity of density
(p = 0), positivity of pressure/internal energy (P, pe > 0), and a minimum principle on the specific physical entropy
(6 > o,,), where o = Pp~7 [3]. This can be represented by the positivity of a set of constraint functionals as

gl (u) =p—- pmin’ gz(u) = P - Pmin’ and g}(u) =0 — O-mins (4)

where small tolerances (p ;. Pnin) are included for numerical stability purposes. This set of constraints is particularly
interesting as they each have a unique mathematical character, consisting of a linear density constraint, a quadratic
pressure/internal energy constraint, and a nonlinear entropy constraint. In many limiting approaches, the entropy
constraint is neglected and only positivity of density/pressure is enforced (e.g., positivity-preserving limiters).

2.2. Discontinuous Galerkin methods
The underlying numerical method for this approach is the discontinuous Galerkin scheme [4], where the solution
u(x) within each element of the mesh is represented by a set of n, basis functions as

u(x) = Z u;¢;(x) C V, (®)]
i=1

where ¢;(x) are the basis functions, u; are their associated coefficients, and V, is the piece-wise polynomial space
spanned by the basis functions. We consider a semi-discrete weak formulation of a hyperbolic conservation law in the

form of N
D {/ ou-w dV +/ Fu,ut,n)wdsS —/ F(u)-Vw dV} =0, (6)
k=1 Q 08y Q

where w(x) C V}, is a test function and F(u™, ut, n) is a numerical interface flux. Furthermore, we define the element-
wise mean for an arbitrary element €, as

ka u(x) dx
Jo, dx

which, under some relatively minor assumptions on the numerical scheme, generally preserves convex invariants of
hyperbolic systems, such that it may be used as secondary bounds-preserving approximation for a limiting approach
(see Zhang and Shu [2], Zhang and Shu [5], and derived works).

u=

, @)
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2.3. Continuously bounds-preserving limiting
The proposed limiting approach in Dzanic [1] relies on the a posteriori “squeeze” limiter of Zhang and Shu [2],
which linearly contracts the high-order DG solution towards the element-wise mean based on a limiting factor a as

i(x) = (1 — ux) + au = ux) + a (a - ux)). 8)
The goal of the proposed approach is to find a limiting factor such that
gli(x)) > 0V x, ©)

for any arbitrary quasiconcave constraint functional g(u). This approach differed from standard a posteriori limiting
methods for DG schemes in that it enforced constraints continuously instead of at discrete nodal locations (here, V x
is used to refer to all locations within the element). It was shown in Dzanic [1] that if one introduces the modified
limiting functional A(u) as

_ ) ht(w), ifg(m) >0,
h(w) = {h‘(u), else, (10)
where - W
rray =Y and )= S 1)
W M YT @ W (
then setting the limiting factor « as
a = max [0, —rr;in h(u)] , (12)

guarantees a limiting scheme that is continuously bounds-preserving.

In this approach, one can define “exactness” in the limiting as finding the minimum necessary value of @ such
that Eq. (9) is satisfied, which, for high-order solutions that initially violate the constraints, can be expressed as
Ir;in g(u(x)) = 0. However, for nonlinear quasiconcave constraint functionals, the linearization used in the defini-

tion of 4~ (u) can only ensure that the limiting is sufficient, i.e., min g(ti(x)) > 0.
X

3. Proposed modifications

The primary motivation of this work is to introduce a modification to the definition of A~ (u) such that exactness
can also be ensured for nonlinear functionals, reducing unnecessary numerical dissipation in the limiting procedure.
Exactness for the limiting factor can be represented as finding the minimum necessary value of @ such that constraints
are satisfied, i.e.,

argmin g ((1 — aou(x) + aﬁ) >0Vx,
a>0

which is equivalent to finding the spatial maximum of the necessary limiting factor at every point in the element, i.e.,
max [0,a*(x)], where g ((1-a*X)u(x)+a*®)u)=0.
X

To this end, we propose achieving this by replacing the linearized formulation of 2~ (u) is Eq. (10), denoted by hz(u),
with a better (nonlinear) approximation of the necessary limiting factor, denoted by A7, (), which mimics the above
condition as

Ry @x) = —a*(x) : g@x)) = g ((1 - a*®))ux) + a*(®)u) =0 (13)

It can then be trivially shown following the proof in Dzanic [1] that setting the limiting factor as Eq. (12) using this
modified formulation ensures min g(ti(x)) = O if the high-order solution is bounds-violating and g(li(x)) = g(u)
X

if the high-order solution is bounds-preserving, achieving exactness for arbitrary nonlinear constraint functionals.
Furthermore, it also ensures C” continuity in A(u) as hy, ()= At (u) when g(u) = 0.

However, this formulation requires solving an intersection problem for the zero contour of the constraint functional.
For linear constraints, it can be seen that this reduces to the linearized formulation, i.e., hz_v L(u) = hz(u). For quadratic
constraints such as pressure, this higher-order limiting approach also admits an analytic solution, where a* can be
computed as the (positive) root of the quadratic equation

A((x*)2+Ba* +C=0,
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with the coefficients taking on the values

P

min

y—1

A=ApAE—%Am'Am, B:EAp+pAE—m-Am—Apmeml, C:pE—%m-m—p
for positive pressure constraints, where Au = u — u. Similar closed-form expressions can be used for higher-order
constraints (e.g., cubic) which admit analytic solutions to the intersection problem in Eq. (13).

If one also wants to ensure exactness for nonlinear constraints such as entropy which do not have an analytic solution
to the intersection problem, it can be straightforwardly solved using simple iterative root-bracketing approaches such
as the bisection or Illinois method, which is similar to discrete limiting approaches with entropy-based constraints [6].
The quasiconcavity of the constraint functionals ensures that this root-bracketing problem is well-behaved, i.e., the is
solution is bounded by 0 < a* < 1 and is unique. Furthermore, one can apply a stricter upper bound for the initial
bracket by using the linearized formulation in Eq. (11), further reducing the computational cost.

4. Results

The modified functional was implemented within the same numerical framework as in Dzanic [1], using identical
parameters and optimization approaches (for more information, the reader is referred to Section 3 of Dzanic [1]). The
intersection problem for entropy constraints was solved using 5 iterations of the Illinois method. Minimum density
and pressure values were set as i, = Prn = 10711

To highlight the improvements of the proposed modification, we consider first a pathological example of limiting a
static discontinuity within one element, where a discontinuity is placed in the center of the element with the left/right
states set as
. [1,1,2P]" . ifx <05,

= (14)

,u, P
Lo (3.3, 117 else.

A Oth-order polynomial DG approximation was initialized by interpolating the solution on the Gauss—Lobatto nodes
spaced along the domain Q = [0, 1], and constraints were enforced for positivity of density/pressure as well as a
minimum entropy principle. An arbitrary minimum entropy value was set as o,,;, = 0.1. These conditions yield
various properties for the unlimited solution to showcase the behavior of the new approach, with a continuously bounds-
preserving density field, a discretely (but not continuously) bounds-preserving pressure field, and a discretely bounds-
violating entropy field.

05 1 —— Unlimited solution
: --- Linear limiting
—— Nonlinear limiting
—1.0 : : : : { . : | } ;
0.0 0.2 0.4 0.6 0.8 1.0 . . 0.4 0.6 0.8
X x
(a) Pressure (b) Entropy

Figure 1: Comparison of the linear and nonlinear limiting approaches for pressure (left) and entropy (right) constraints for
a static discontinuity problem computed with a P, approximation. Pressure limiting computed using analytic formulation,
entropy limiting computed using iterative formulation. Dotted line represents zero contour for the constraint functional.

As the density field was already continuously bounds-preserving, the limiter was first applied to the pressure field.
A comparison of the linearized formulation and the proposed nonlinear formulation is shown in Fig. 1. It can be seen
that the proposed nonlinear formulation drastically reduces the numerical dissipation in the scheme, with the limited
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solution significantly closer to the unlimited solution in comparison to the linearized formulation. Furthermore, it can
be seen that the new limiting approach is exact in the sense that the minimum pressure of the limited solution was on
the order of P,;,. Similar results could be seen for the entropy constraints, also shown in Fig. 1. Due to the stronger
nonlinearity of the constraint functional, the linearized approach showed even more unnecessary dissipation than with
the pressure constraint, whereas the proposed nonlinear approach was exact and showed a significant reduction in the
numerical dissipation.

A more quantitative evaluation of the proposed modification was performed with a near-vacuum isentropic Euler
vortex which possesses an analytic solution for comparison. The problem consists of a smooth vortex on a periodic
domain Q = [—10, 10]2, with the initial solution set as

1

Pr

z,fR ¥ = ¥)(x) 1 —[Ix — %12
= 1= —(x Xo)(X) ,  where ¢(x)=exp T .

#(1 SM(y SIMAGD) gy )2>

The parameters are set to R = 1.5, M = 0.4, and .S = 28.11711, which yield a near-vacuum state at the vortex peak
with a minimum density of p = 8-107 and minimum pressure of P = 2-10~!! = 2P_. . One flow-through of the
domain (¢ = 20) was computed using both a P, and P5 approximation using meshes of varying resolution with only
positivity-preserving constraints, after which the L*™ norm of the pressure error (computed at solution nodes) was
compared from the solutions obtained using the original linear limiting approach and the proposed nonlinear limiting
approach. The comparisons for both the P, and P5 approximations are shown in Table 1 and Table 2, respectively.
It can be seen that the proposed modification significantly reduces the overall error in the pressure field, with both
approximation orders showing decreases between 20 — 70% across the varying levels of mesh resolution. These results
highlight the reduced numerical dissipation that stems from the modified constraint functional proposed in this note.

NS =

Method N =20? N =30? N =40? N =50? N = 60? N =70%
Linear limiting 2.86x 1071 293x1072 1.61x102 7.17x107% 340x1073 2.34x1073
Nonlinear limiting  1.55x 107"  236x 1072 9.88x 107> 433x107 1.61x1073% 6.27x10™
Error reduction -45.9% -19.4% -38.5% -39.6% -52.8% -73.2%

Table 1:  Comparison of the L® norm of the pressure error using linear and nonlinear limiting for the near-vacuum
isentropic Euler vortex after one flow-through of the domain (¢ = 20) computed with a P, approximation.

Method N =20? N =30? N = 40? N =50? N = 60? N =70?
Linear limiting 1.15x 107! 2.02x1072 3.58%x103 3.89%x1073 197x1073 4.18x10™*
Nonlinear limiting  4.97x 1072 1.66x 1072 278x 1073 124x10% 536x10™* 243x10™
Error reduction -56.5% -21.4% -27.1% -70.1% -72.0% -37.7%

Table 2: Comparison of the L® norm of the pressure error using linear and nonlinear limiting for the near-vacuum
isentropic Euler vortex after one flow-through of the domain (¢ = 20) computed with a P5 approximation.

5. Concluding remarks

We proposed an improvement to the continuously bounds-preserving limiting approach presented in Dzanic [1],
which allows for the approach to achieve the exact amount of limiting necessary for arbitrary nonlinear quasiconcave
constraint functionals as opposed to just a sufficient amount. The modification relies on replacing the linearization in
limiting functional with an intersection/root-finding problem, which may be computed analytically for some constraints
and numerically for others. Some examples were shown for the compressible Euler equations, showing the reduced
numerical dissipation and increased accuracy of the proposed approach.
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