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Abstract

We investigate the geometry of holomorphic vector bundles E over a Rie-

mann surface C together with a section of EndE ⊗K1/2 where K1/2 is a spin

structure – a square root of the canonical bundle K. These parallel to some

extent the various features of usual Higgs bundles, such as spectral curve con-

structions, but some features are radically different. We make essential use

of the mod 2 index to distinguish two families of moduli spaces, and provide

examples in low genus.

1 Introduction

It is now over 35 years since Higgs fields were introduced in the study of vector bundles
on an algebraic curve C [10]. Given a vector bundle E a Higgs field (we can now call
this a “classical” Higgs field) is a holomorphic section of EndE ⊗K. In this article
we replace K by a choice of square root K1/2 – a spin structure or, in the standard
wording of algebraic geometry, a theta characteristic.

Why? On the one hand a recent physics-inspired paper [8] introduces Higgs fields
twisted with KR/2 which suggests further investigation (though perhaps the authors
had in mind R > 1, which makes their calculations for the equivariant Verlinde
formula more uniform), on the other it was part of the thesis [18] of my student Bill

∗Based on a talk given at a workshop on June 6th 2023 in Oxford for the FRG Collaborative

Research Program “Complex Lagrangians, integrable systems and quantization”.
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Oxbury, written at the same time as reference [10], and which I have had occasion
to refer to recently. He looked in detail at the case of genus 2 which reveals some of
the essential properties. But perhaps the best reason is that it gives a new window
onto a familiar subject – the moduli space M of stable bundles on C – and focuses
on some new features of it and its subspaces.

A key input is parity – or the application of the mod 2 index theorem of Atiyah
and Singer. Although the Riemann-Roch theorem gives no information about the
dimension of H0(C,EndE ⊗ K1/2) we do know whether it is odd or even, and this
depends on the choice of spin structure. When we consider the situation of E being
stable, this introduces two moduli spaces. For the odd case, the generic dimension
is 1 and it turns out that we need to study the line bundle K

1/2
M over M . In the

even case the generic dimension is zero and we only get a 2-dimensional space by
restricting to a hypersurface in M . In that case we have instead a rank 2 bundle V
over the divisor of a section of K

−1/2
M . These two spaces can be regarded as analogues

of the cotangent bundle of M which appears in the study of classical Higgs bundles.
By using a joint stability condition these spaces extend to larger moduli spaces which
have, by the consideration of spectral curves, proper maps to a vector space with
generic fibre an abelian variety.

An essential difference from the classical case is the appearance of singularities where
the dimension of H0(C,EndE ⊗ K1/2) jumps by an even number, even when E
is stable. We discuss some aspects of the jumping locus but clearly any further
investigations about the global moduli space of stable K1/2-twisted Higgs bundles
will have to take into account these singularities.

We begin in the next section by recalling the geometry of square roots K1/2, then
consider the odd and even cases of Higgs fields for stable bundles. In Section 5 we
look at examples in genus 2 and in the final section make some observations on the
jumping locus.

2 Spin structures

Let C be a smooth Riemann surface of genus g. A spin structure is defined by a
line bundle whose square is isomorphic to the canonical bundle K. We denote such a
bundle by K1/2. If U is a line bundle such that U2 is trivial then the tensor product
UK1/2 is another square root, and spin structures form an affine Z2-space of dimension
2g with group of translations H1(C,Z2).

A spin structure in arbitrary dimension describes a vector bundle V and the Dirac
operator /D defined on sections of V . In two dimensions it is (up to a factor

√
2)
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the Cauchy-Riemann operator ∂̄ : C∞(K1/2) → C∞(K1/2K̄) and so solutions to the
Dirac equation /Dψ = 0 consist of the space H0(C,K1/2) of holomorphic sections of
K1/2.

Given ψ1, ψ2 smooth sections ofK1/2, ψ1∂̄ψ2 is a section ofKK̄, the bundle of 2-forms,
and integrating and applying Stokes’ theorem we obtain

∫

C

ψ1∂̄ψ2 = −
∫

C

ψ2∂̄ψ1

so that ∂̄ is formally skew adjoint. Moreover, a metric in the conformal class is a
non-vanishing section h of KK̄ so that multiplication by h−1/2 identifies K1/2K̄ with
K̄1/2 and then ∂̄ takes sections of K1/2 to sections of its conjugate. The operator is
then skew-adjoint antilinear.

The Dirac operator in dimensions 8k+2 has this property and then the Atiyah-Singer
mod 2 index theorem [2] identifies the mod 2 dimension of the kernel with aKO-theory
characteristic number. In our case this tells us that the parity of dimH0(C,K1/2) is
well-defined regardless of the holomorphic structure on C. Furthermore, of the 22g

spin structures 2g−1(2g − 1) are odd, meaning the dimension of H0(C,K1/2) is odd.
These results are classically derived from the theory of theta-functions [6] but it is
convenient for us to place them in this wider context.

Spinors are somewhat mysterious objects but relate to more familiar ones by taking
tensor products – bilinear expressions of spinors are differential forms, a process that
physicists call “Fierzing”. In our case if s is a holomorphic section of K1/2 then s2

is a section of K with double zeros. If we consider the canonical map C → Pg−1 =
P(H0(C,K)∗) this means that s defines a hyperplane tangential at each point on the
image.

Thus, for genus g = 2 the six ramification points of the double cover C → P1 are the
2g−1(2g − 1) odd spin structures, for genus 3, a plane quartic has 28 = 2g−1(2g − 1)
bitangents as the odd ones and for a generic genus 4 curve expressed as the intersection
of a cubic and a quadric in P3 we have 120 = 2g−1(2g − 1) tritangent planes (these
last two numbers are famously associated to the root systems E7, E8).

On the other hand, rather than a plane quartic, a hyperelliptic curve of genus 3,
defined by the equation y2 = (x − x1) . . . (x − x8) has holomorphic 1-forms with a
double zero defined by (ax+b)2dx/y, so in this case one of the 36 even spin structures
has a 2-dimensional space of sections. This jumping in dimension is a serious feature
which we shall encounter later.
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3 Higgs fields

Let E be a rank n holomorphic bundle over C. A “classical” Higgs field is a holomor-
phic section Φ of EndE ⊗ K. A spinor-valued Higgs field is a holomorphic section
Ψ of EndE ⊗ K1/2. It is convenient to remove the scalar component of a Higgs
field by restricting to the trace zero part End0E and accompanying this by fixing
the top exterior power ΛnE. In the classical case the Riemann-Roch theorem gives
dimH0(C,End0E⊗K) ≥ (n2−1)(g−1) asserting the existence of many Higgs fields,
but it gives no information for spinor-valued Higgs fields. On the other hand tr(ab)
is a non-degenerate symmetric form on End0E and

∫

C

tr(ψ1∂̄ψ2) = −
∫

C

tr(ψ2∂̄ψ1)

so that the ∂̄-operator ∂̄ : C∞(End0E ⊗K1/2) → C∞(End0E ⊗K1/2K̄) is antilinear
skew adjoint and the mod 2 index theorem again applies.

Proposition 1 Let E be a rank n holomorphic bundle over C of degree d, then if n
is odd dimH0(C,End0E⊗K1/2) is even and if n is even dimH0(C,End0E⊗K1/2) =
d+ dimH0(C,K1/2) mod 2.

Proof: Holomorphic structures on E can be viewed as ∂̄-operators ∂̄ : C∞(E) →
C∞(E ⊗ K̄) on the C∞ bundle E. These form an infinite dimensional affine space
modelled on Ω0,1(EndE) and the deformation invariance of the mod 2 index means
it is constant on this space. If E has degree d and rank n then the index is the same
as for E = On−1⊕L for a line bundle L of degree d where Ok denotes the trivial rank
k bundle. Then

End0E ∼= On−1(L)⊕On−1(L∗)⊕O(n−1)2 .

Now dimH0(C,L∗K1/2) = dimH1(C,LK1/2) by Serre duality and from Riemann-
Roch we have d = dimH0(C,LK1/2) − dimH1(C,LK1/2) = dimH0(C,LK1/2) +
dimH1(C,LK1/2) mod 2. Thus, modulo 2,

dimH0(C,End0E ⊗K1/2) = (n− 1)d+ (n− 1)2 dimH0(C,K1/2)

and the result follows. ✷

Given a holomorphic vector bundle E the only spinor-valued Higgs fields may be zero,
so we need a means of constructing non-zero examples. We can borrow the spectral
curve construction [3] from the classical case of K-valued Higgs fields. Recall that,
in that case, det(x − Φ) = xn + c1x

n−1 + · · · + cn defines a spectral curve S in the
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total space of π : K → C and x is the tautological section of π∗K. Conversely,
if S is smooth and L is a line bundle on S, its direct image π∗L defines a rank n
vector bundle E defined by H0(U,E) = H0(π−1(U), L) for every open set U ⊂ C.
Furthermore x : H0(π−1(U), L) → H0(π−1(U), Lπ∗K) defines a Higgs field. Clearly
we can replace K by K1/2 to get a construction of pairs (E,Ψ) where Ψ is a spinor-
valued Higgs field. As in the classical case, if we want to fix ΛnE then L must lie not
in the full Jacobian of S but in a translate of the Prym variety.

Now the coefficient ci is a holomorphic section of Ki/2 and if trΨ = 0, i > 1 and then
dimH0(C,Ki/2) = (i−1)(g−1) for i > 2 and of course dimH0(C,K) = g. The family
of curves then has dimension g+2(g−1)+ · · ·+(n−1)(g−1) = 1+(g−1)n(n−1)/2.

To compute the genus gS of S note that if X is the total space of K1/2 then KX
∼=

π∗K−1/2π∗K = π∗K1/2. The expression xn + c1x
n−1 + · · ·+ cn is a section of π∗Kn/2

on X and so KS
∼= KXπ

∗Kn/2 ∼= π∗K(n+1)/2. It follows that 2gS − 2 = degKS =
n(n + 1)(g − 1) and so the dimension of the Prym variety is given by gS − g =
n(n + 1)(g − 1)/2 + 1− g = (n(n+ 1)/2− 1)(g − 1).

Restricting to the smooth spectral curves we have a construction of pairs (E,Ψ)
consisting of a family of abelian varieties of dimension (n(n + 1)/2 − 1)(g − 1) over
an open set in a vector space of dimension 1 + (g − 1)n(n− 1)/2 and hence a family
of dimension (n(n + 1)/2− 1)(g − 1) + 1 + (g − 1)n(n− 1)/2 = 1 + (n2 − 1)(g − 1).

4 Stable bundles

A vector bundle E is stable if for any subbundle F ⊂ E, deg F/ rkF < degE/ rkE
and there is a good moduli space M for these which is a projective variety. The
only automorphisms of a stable bundle are scalars and so H0(C,End0E) = 0 and by
Riemann-Roch dimH1(C,End0E) = (n2 − 1)(g− 1) and this space is identified with
the tangent space ofM at the equivalence class [E] of E. The cotangent space is then
by Serre duality H0(C,End0E ⊗K). A generic line bundle on the spectral curve S
yields a stable bundle E but it is the pair (E,Ψ) which is constructed so we don’t
necessarily see E together with all its Higgs fields. Note, however, that the family
constructed in the previous section has dimension dimM + 1.

We remarked earlier that bilinear expressions in spinors give forms and in the current
context there is a natural one: for Ψ1,Ψ2 ∈ H0(C,End0E⊗K1/2) we form the bracket
[Ψ1,Ψ2] ∈ H0(C,End0E⊗K) and if E is stable this is a cotangent vector toM . This
has an interpretation:

Proposition 2 Suppose E is a stable bundle and α ∈ dimH1(C,End0E) a tangent
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direction of the moduli space at [E] along which Ψ1,Ψ2 ∈ H0(C,End0E ⊗K1/2) can
be extended to first order. Then the cotangent vector [Ψ1,Ψ2] annihilates α.

Proof: Let Ȧ ∈ Ω0,1(End0E) be a Dolbeault representative of the class α then a
first order deformation of Ψi is given by Ψ̇i satisfying ∂̄Ψ̇i + [Ȧ,Ψi] = 0. Then, using
trace for the Serre duality pairing,

[Ψ1,Ψ2](α) =

∫

C

tr(Ȧ[Ψ1,Ψ2]) = −
∫

C

tr(Ψ2[Ȧ,Ψ1]) + tr(Ψ1[Ψ2, Ȧ]).

Rewriting the right hand side using the equation for Ψ̇i gives
∫

C

tr(Ψ2∂̄Ψ̇1)− tr(Ψ1∂̄Ψ̇2) =

∫

C

∂̄ tr(Ψ2Ψ̇1 −Ψ1Ψ̇2) = 0

by Stokes’ theorem. ✷

At this point, rather than attempt to construct a moduli space of stable spinor-valued
Higgs bundles – pairs (E,Ψ) satisfying the stability criterion for Ψ-invariant subbun-
dles paralleling the K-twisted version [10] – we shall restrict ourselves to considering
the situation where E itself is stable, but still bearing in mind the spectral curve
construction. There are two cases, where dimH0(C,End0E ⊗K1/2) is odd or even.

4.1 The odd case

When dimH0(C,End0E ⊗ K1/2) is odd we expect the generic value to be one and
this provides a line bundle L over an open set in the stable bundle moduli space,
realizing dimM + 1 from the spectral curve construction.

This in fact holds, for if, in a neighbourhood of a point [E] in M , the bundles admit
two linearly independent Higgs fields then Ψ1,Ψ2 extend in all directions and so from
the proposition [Ψ1,Ψ2](α) = 0 for all α. This means [Ψ1,Ψ2] = 0. But for a smooth
spectral curve S, the generic case, the constructed Higgs field Ψ is regular at each
point and its bundle of centralizers in End0E is isomorphic to the bundle K−1/2 ⊕
K−1 ⊕ · · · ⊕K−(n−1)/2 corresponding to the powers Ψ,Ψ2, . . . So taking Ψ = Ψ1, if
[Ψ1,Ψ2] = 0 then Ψ2 is a holomorphic section of (K−1/2⊕K−1⊕· · ·⊕K−(n−1)/2)⊗K1/2

and since all terms except the first have negative degree, Ψ2 can only be a multiple
of Ψ1.

The expected codimension of the locus inM where the dimension jumps from 1 to 3 is
3 (indeed Proposition 2 tells us that the three cotangent vectors [Ψ1,Ψ2], [Ψ2,Ψ3], [Ψ3,Ψ1]
are conormal at the smooth points of the locus) and the line bundle L extends uniquely
to the whole of M . In fact we have
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Proposition 3 The line bundle of spinor-valued Higgs fields over the moduli space

M of stable bundles is isomorphic to K
1/2
M .

Proof: There is a universal bundle End0 U over M × C with projections p1, p2
onto the two factors. Then R0

p1(End0 U ⊗ p∗2K
1/2) is the line bundle L and by

Serre duality R1
p1(End0 U ⊗ p∗2K

1/2) ∼= L∗. The Grothendieck-Riemann-Roch the-

orem gives ch(L) − ch(L∗) = p1∗(ch(End0 U)p
∗
2(ch(K

1/2) td(C))) but for the second
factor ch(K1/2) td(C) = (1 + (g − 1)x)(1 + (1 − g)x) = 1 (x2 = 0 since it is the
top degree cohomology class of C) so, on the open set where the dimension is one,
ch(L)− ch(L∗) = p1∗(ch(End0 U)) and hence 2c1(L) = p1∗(ch2(End0 U)).

The cotangent bundle T ∗M is similarly given by R0
p1(End0 U ⊗ p∗2K) and in this case

H1(C,End0 U ⊗ K) = H0(C,End0 U)
∗ which vanishes for a stable bundle so that

R1
p1(End0 U ⊗ p∗2K) = 0. Then

ch(T ∗) = p1∗(ch(End0 U)p
∗
2(ch(K) td(C))) = p1∗(ch(End0 U)p

∗
2(1 + (g − 1)x))

and so c1(T
∗) = p1∗(ch2(End0 U)) since ch1(End0 U) = 0.

It follows from these two calculations that c1(L) = c1(T
∗)/2. But H2(M,Z) ∼= Z and

M is simply connected so we have an isomorphism of holomorphic bundles L ∼= K
1/2
M .

✷

If we construct a moduli space S of spinor-valued pairs (E,Ψ) using stability defined
by Ψ-invariant subbundles then we see a parallel here with the classical Higgs bundle
moduli space M which contains T ∗M as a dense open subspace. Here we have the
similar K

1/2
M ⊂ S.

One difference concerns the coefficients ci in the characteristic polynomial. In the
classical case a linear form on H0(C,Ki) defines a symmetric form on each cotangent
space so we obtain (2i − 1)(g − 1) holomorphic sections of SiT , the ith symmetric
power of the tangent bundle, and moreover these generate all of them. By contrast,
in the spinor-valued case we get a linear form on H0(C,Ki/2) yielding (i− 1)(g − 1)
sections of K−i

M , but this is far fewer than given by the Verlinde formula [20]. Of
course, putting together all choices of spin structure on C may generate more.

Another distinction is the fact that the line bundle is identified in Proposition 3 by
relying on Grothendieck-Riemann-Roch, and not intrinsically – Serre duality naturally
identifies the space of classical Higgs fields with the cotangent space of M .
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4.2 The even case

When dimH0(C,End0E ⊗ K1/2) is even the generic value on the moduli space of
stable bundles is zero. This follows from the argument above: if it is two or more and
extends in all directions then [Ψ1,Ψ2] = 0 which is a contradiction.

Considering the ∂̄-operator on a family of vector bundles F in general, one de-
fines the Quillen determinant bundle (ΛtopH0(C, F ))∗(ΛtopH1(C, F )) and if the in-
dex dimH0(C, F ) − dimH1(C, F ) = 0 there is a canonical determinant section
which is either zero or vanishes on a divisor where H0(C, F ) 6= 0. In our case of
F = End0E ⊗ K1/2 where ∂̄ is skew-adjoint, H1(C, F ) ∼= H0(C, F )∗ and the de-
terminant is the square of a section of a line bundle, the Pfaffian section. This is
the analogue of the fact that the determinant of a skew-symmetric matrix A in even
dimensions is the square of a polynomial in A.

But the calculation in the proof of Proposition 3 shows that the determinant bundle
is L−2 = K−1

M so the Pfaffian is a section of K
−1/2
M and vanishes on a hypersurface P .

For [E] ∈ P we have generically a 2-dimensional space of sections of End0E ⊗K1/2

and hence a rank 2 vector bundle V . If Ψ1,Ψ2 ∈ H0(C,End0E ⊗ K1/2) we have
Ψ1 ∧Ψ2 spanning Λ2V[E] and then [Ψ1,Ψ2] gives from Proposition 2 an isomorphism
from Λ2V[E] to the conormal space. But P is the zero locus of a section of the Pfaffian

line bundle, hence we have Λ2V ∼= K
1/2
M on P .

Remark: Another viewpoint on the vector bundle V is provided by taking a class
α ∈ H1(C,O) and the natural map

α : H0(C,End0E ⊗K1/2) → H1(C,End0E ⊗K1/2). (1)

defining a homomorphism from V to V ∗. As V has rank 2, we can also write V ∗ =
V ⊗ Λ2V ∗ and given that Λ2V ∼= K

1/2
M , and α is symmetric, this may be seen as a

section of End0 V ⊗ K
−1/2
M on P , or since KPK

1/2
M

∼= KM , a K∗
P -twisted Higgs field

φ ∈ H0(P,End0 V ⊗K∗
P ).

It follows that the vector bundle V can be obtained (under generic conditions) as the
direct image of a line bundle U on the spectral cover defined by z2 − detφ = 0. This
is a hypersurface X in the total space of π : K∗

P → P , a double cover of P ramified
over a divisor of π∗(K∗

P ) and so KXπ
∗(K∗

P )
∼= π∗(K∗

P ) and X is a Calabi-Yau variety
(which is almost always singular).

Let τ be the involution on X and p : X → P the projection. Then just as in the
curve case, the eigenvectors of p∗φ are interchanged by τ and coincide where detφ = 0.
Then Uτ ∗U ∼= p∗K

−1/2
M .
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4.3 Links with classical Higgs fields

Here are two cases where spinor-valued Higgs fields link up with the classical case.

1. If E has rank n = 2m suppose the spectral curve S is invariant by the involution
x 7→ −x then it has equation x2m + a2x

2m−2 + · · · + a2m = 0 where a2i ∈
H0(C,Km). Then the quotient, obtained by setting y = x2, lies in the total
space of K and becomes a spectral curve S̄ for a classical Higgs field defined
by ym + a2y

m−1 + · · · + a2m = 0. Let L be the line bundle on S̄ for this
Higgs bundle then its pull-back is invariant by the involution and the action
at the fixed points is the identity. This is an example of the so-called Cayley
correspondence but with K replaced by K1/2. For K-twisted Higgs fields [19]
[5], this defines the spectral curve for a Higgs bundle which corresponds to a
flat U(n, n)-connection.

2. Take a fixed s ∈ H0(C,K1/2) then taking the product with s transforms
H0(C,End0E ⊗ K1/2) to H0(C,End0E ⊗ K) so we get an embedding of the
spinor-valued moduli space in the classical one. All such Higgs fields vanish at
the zeros of s and hence this image lies in the critical locus of the integrable
system [11]. These are the points in the moduli space of Higgs bundles where
the derivative of the map h : M → B is not of maximal rank.

5 Examples in genus 2, rank 2

5.1 Spectral curves

We consider the genus 2 curve C defined by y2 = (x − x1)(x − x2) . . . (x − x6) and
denote by ai ∈ C the fixed point of the hyperelliptic involution σ lying over xi ∈ P1.
So the odd spin structures are K1/2 ∼= O(ai). The spectral curve S for a spinor-valued
Higgs field is given by z2 − c = 0 in the total space of K1/2 where c ∈ H0(C,K).

The hyperelliptic involution on C acts in different ways on the 2-dimensional space
H0(C,K3/2), depending on whether the spin structure is odd or even. In the odd case,
if s ∈ H0(C,K1/2) vanishes at a1 then each section of K3/2 is of the form sa where a
is a section of K and the action is by a scalar ±1. In the even case, H0(S,K3/2) is
spanned by sections s1, s2 with divisors a1+a2+a3 and a4+a5+a6 respectively. Note
that there are

(

6
3

)

/2 = 10 = 2g−1(2g +1) ways of choosing these pairs of triples. Here

the ± eigenspaces are spanned by these two distinguished sections. Since H0(C,K3/2)

9



can be identified with the cotangent space of the Prym variety the two actions give
different structures to the Prym varieties.

For the odd case the situation is described in the article [11] and the Prym variety
corresponding to the differential c = (x−a)dx/y is isomorphic to the Jacobian of the
genus 2 curve y2 = (x− a)(x− x2) . . . (x− x6).

In the even case the Prym variety is a product of elliptic curves: in the equation
z2−c = 0 for S, z is a section of π∗(K1/2) and π∗s1 is a section of π∗(K3/2). Then y1 =
zs1 satisfies y

2
1 = (x−a)(x−x1)(x−x2)(x−x3) defining a map S → E1 to an elliptic

curve. Similarly y2 = zs2 maps to E2 given by y22 = (x− a)(x− x4)(x− x5)(x− x6).
Pulling back line bundles from the product of the two curves gives the 2-dimensional
Prym variety.

5.2 Λ2E odd degree

The moduli space M of stable bundles of fixed determinant Λ2E of odd degree is
isomorphic to the intersection of two quadrics in P5 [15].

5.2.1 Odd K1/2

Here from Proposition 5.2.2 the generic dimension of H0(C,End0E ⊗ K1/2) is zero
and we are concerned with a vector bundle V over the Pfaffian divisor P ⊂ M . For
the intersection of two quadrics, K

1/2
M = O(−1) for the embedding M ⊂ P5 so P , a

divisor of K
−1/2
M , is a hyperplane section of M and hence the del Pezzo surface given

by the intersection of two quadrics in P4.

Proposition 4 The vector bundle V → P is isomorphic to the cotangent bundle

T ∗P .

Proof:

Since K1/2 is odd it has a section s vanishing at a1, say, and following the approach
in Section 4.3, Ψ 7→ sΨ ∈ H0(C,End0E ⊗ K) embeds V in T ∗M . Its image is an
open set in the critical locus[11] and in general this is a symplectic submanifold.

However, we can be more explicit, making use here of the results of a recent paper [4]
which provides a concrete expression for symmetric tensors, sections of S2T , on the in-
tersection of quadrics in any dimension. These, remarkably, define integrable systems
on the cotangent bundle, generalizing the Higgs bundle case of three dimensions.
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If the quadrics are
∑n

i=1 z
2
i = 0,

∑n
i=1 µiz

2
i = 0 then the space of symmetric tensors

is spanned by the n cases:

si =
∑

j 6=i

(zi∂j − zj∂i)
2

µi − µj

(2)

Here zi∂j − zj∂i is a vector field on the first, standard, quadric, not tangential to the
second but the particular quadratic combination in the formula is well defined as a
symmetric tensor on the intersection M of the two.

The embedding Ψ 7→ sΨ of V in T ∗M gives a 2-dimensional space of classical Higgs
fields which vanish at a1. Then the quadratic form tr(Φ1Φ2)(x1) defines a symmetric
form with a 2-dimensional degeneracy subspace. But setting z1 = 0 in equation 2 for
i = 1 we obtain

s1 =
∑

j 6=1

z2j ∂
2
1

µ1 − µj

which is clearly of rank 1. Moreover the interior product of this symmetric tensor
with a cotangent vector to z1 = 0 is zero, so the degeneracy subspace is isomorphic to
the cotangent space of the divisor of the section z1 of O(1) ∼= K

−1/2
M , the Pfaffian locus

P . The surface P is therefore the 2-dimensional intersection of quadrics
∑n

i=2 z
2
i =

0,
∑n

i=2 µiz
2
i = 0 and V is its cotangent bundle. ✷

5.2.2 Even K1/2

Suppose now the rank 2 bundle has odd degree, then from Proposition 5.2.2, we
have a non-zero element in H0(C,End0 V ⊗K1/2) if K1/2 is one of the 10 even spin

structures. Generically we have a moduli space which is the total space of K
1/2
M , and

in the case of the intersection of two quadrics this is O(−1). There is a description
[12] of this one-dimensional space of Higgs fields in terms of the quotient of M by
the action of H1(C,Z2) by E 7→ E ⊗ U for a line bundle U with U2 trivial. This
transformation leaves any Higgs field in H0(C,End0E⊗K1/2) unchanged and so is a
natural setting for their study. On the other hand the quotient space has singularities
where E ∼= E ⊗ U . We begin with a description of this quotient.

The intersection of two quadrics
∑6

i=1 z
2
i = 0,

∑6
i=1 µiz

2
i = 0 has an obvious action

of Z5
2 by zi 7→ ±zi and [15] this is the action of H1(C,Z2) ∼= Z4

2 together with the
hyperelliptic involution σ. Setting wi = z2i gives a map to P3 but separating E from
σ∗E is a double covering branched over the six planes xi = 0 and this is the quotient
space.

This description was initially found by Atiyah [1] from a different point of view. Each
vector bundle has in general 4 maximal subbundles and a choice of one means that the
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endomorphism bundle is the same for E given as an extension O → E → L where L
has degree 1. The extension class in the 2-dimensional space H1(C,L∗) is determined
by the section s ∈ H0(C,LK) which it annihilates by Serre duality, and the divisor of s
is p+q+r. The other three subbundles give (p, σ(q), σ(r)), (σ(p), q, σ(r)), (σ(p), σ(q), r).
Then the image of p, q, r ∈ C under the double cover C → P1 gives a map from the
quotient ofM to the symmetric product S3P1 which is P3. Put differently, this is the
projective space of the vector space of polynomials p(x) of degree 3 and the double
covering is branched over the six hyperplanes p(xi) = 0.

To construct the Higgs field we map the curve C to P1 × P1 using the 2-dimensional
space of sections of K on the first factor and of K3/2 on the second. As we noted, for
an even spin structure the hyperelliptic involution acts non-trivially on the second
factor. This embeds C in P1 × P1 which can be identified as a quadric in P3, and
gives the degree 5 embedding of C → P3 by sections of K5/2. Then the statement is:

Proposition 5 Represent the bundle E as above as an extension O → E
π→ L defined

by the divisor p + q + r where p, q, r ∈ C ⊂ P3 are not collinear. The plane through

σ(p), σ(q), σ(r) meets C in two further points, the divisor of a section c of LK1/2.

Then there is a unique Higgs field Ψ ∈ H0(C,End0E ⊗K1/2) such that πΨ(1) = c.

The proof [12] is a simple Dolbeault argument.

Remark: What if the points are collinear? Then LK1/2, which has degree 2 and a
two-dimensional space of sections must be isomorphic to K, or equivalently L ∼= K1/2

and p + q + r is a divisor of K3/2. In this case the extension is O → E → K1/2 and
there is a nilpotent Higgs field e 7→ π(e) ∈ ker π ⊗ K1/2. Conversely every bundle
with a nilpotent Higgs field is an extension of this form, describing a projective line
P(H1(C,K−1/2)) in the quotient space of M and 16 lines in M itself.

5.3 Λ2E trivial

The moduli space M of (semi)-stable bundles is in this case projective space P3 [14].
To each bundle E the line bundles L of degree 1 such that H0(C,E⊗L) 6= 0 describe
a curve in Pic1(C) which is the divisor of a section in the linear system 2Θ and hence
a point in P(H0(Pic1(C), 2Θ)) = P3. Strictly semistable bundles are represented by
their S-equivalence class, a direct sum U ⊕U∗ where degU = 0. In the moduli space
P3 this is a Kummer quartic surface, a quotient of Pic0(C).

If U is a line bundle with U2 trivial then E 7→ E ⊗ U again gives an action of
H1(C,Z2) on P3. A central extension by Z2 acts on the 4-dimensional vector space

12



H0(Pic1(C), 2Θ) and in a standard theta-function basis for these sections the action
is generated by double transpositions and double sign changes.

5.3.1 Odd K1/2

Take the spin structure K1/2 = O(a1), then H
0(C,End0E ⊗K1/2) 6= 0 from Propo-

sition 5.2.2 and we have pairs (E,Ψ) defined by points on the total space of the line

bundle K
1/2
M on M = P3. Since KM = O(−4), K

1/2
M = O(−2) and Ψ 7→ sΨ embeds

the total space of K
1/2
M as a distinguished subbundle O(−2) ⊂ T ∗P3.

We can identify it by using an explicit description of the integrable system [7], and
the procedure in the paper [12]. The cotangent bundle of P3 is expressed as a complex
symplectic quotient {(p, q) ∈ C4 ×C4 : q 6= 0,

∑4
i=1 piqi = 0}/C∗ where the action is

λ.(p, q) = (λ−1p, λq). So (q1, . . . , q4) are homogeneous coordinates on P3. Then the
map h : T ∗P3 → H0(C,K2) is

∑

i 6=j

rij(q, p)

(x− xi)(x− xj)
dx2 =

∑

i 6=j

∏

k 6=i,j

(x− xk)rij(q, p)
dx2

y2

where r12(q, p) = (q1p1 + q2p2 − q3p3 − q4p4)
2 and similar terms.

Then, as in Section 5.2.1, when Φ0 = Ψs, tr(ΦΦ0) vanishes at x1 for all Φ, so the
quadratic form tr(Φ1Φ2)(x1) is degenerate and O(−2) is the degeneracy subspace.
Now evaluating the expression above at x = x1 gives a linear combination of the terms
r1i. Each of these is a quadratic form ℓi ⊗ ℓi where ℓi(p1, p2, p3, p4) is a linear form.
But on examination one sees that ℓi(q2,−q1, q4,−q3) = 0 for each i, so the degeneracy

subspace, and hence the image of K
1/2
M in T ∗M , is (p1, p2, p3, p4) = (q2,−q1, q4,−q3).

5.3.2 Even K1/2

From Proposition 5.2.2 dimH0(C,End0E ⊗K1/2) is even and the stable part of the

moduli space is a rank 2 bundle V over a Pfaffian divisor of K
−1/2
M = O(2), namely a

quadric surface Q in P3. Here a choice of spectral curve gives a well-defined degree 4
map from the Prym variety, a product of two elliptic curves, to the quadric surface,
a product Q ∼= P1 × P1.

In this case, since K1/2 is even and has no sections, we cannot embed it into T ∗M and
so we need other methods to determine the bundle V . We know that Λ2V ∼= K

1/2
M

and hence c1(V ) = −c1(TM)/2.
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Although we can’t embed this vector bundle into T ∗M as in the odd degree case,
nevertheless we have:

Proposition 6 The vector bundle V → Q is isomorphic to the cotangent bundle

T ∗Q.

Proof: The argument is a roundabout one, using a recent classification of nef vector
bundles on a quadric surface [17]. We first show that V ∗ is nef, meaning the line
bundle H on the projective bundle P(V ), dual to the tautological line bundle, has
non-negative degree on any curve. If H is not nef, then c1(H)[D] < 0 for a curve D
which is in the base locus of the linear systems Hn for all n > 0.

The information we have about V is the quadratic map V → H0(C,K) which defines
a 2-dimensional space of sections of S2V ∗, or equivalently sections of H2 on P(V ).
These are parametrized by the dual of H0(C,K) and this is equivalent in genus 2 to
evaluation of tr Ψ2 at a point x ∈ P1. We consider the base locus of this pencil of
surfaces {Sx ⊂ P(V ) : x ∈ P1}, namely the intersection Sx ∩ Sy.

The surface Sx meets a fibre of P(V ) → Q in two, possibly coincident, points which are
the null directions of the quadratic form trΨ2(x) and so a point in the intersection of
Sx for all x is a nilpotent Higgs field. This expresses E as an extension L→ E → L∗,
with L the kernel of Ψ and Ψ given by a section of the degree 1 line bundle L2K1/2. So
L2K1/2 ∼= O(x) for some x ∈ C. This is a strictly semistable bundle, and represented
in the moduli space by a direct sum L⊕ L∗, and so the locus lies in the intersection
of the Kummer surface in P3 with Q. (Note that End0E ⊗K1/2 ∼= L2K1/2 ⊕K1/2 ⊕
L−2K1/2 ∼= O(x) ⊕K1/2 ⊕O(σ(x)) has a 2-dimensional space of sections since K1/2

is an even spin structure.)

The bundles L, L∗ define the same vector bundle E, so the unordered pair (x, σ(x)) ∈
P1 = C/σ defines the Higgs field. Choosing L, L∗ from L2 ∼= K−1/2(x) gives a 16-fold
covering of P1 branched over the six points xi, where the inverse image is 8 points,
so by Riemann-Hurwitz this gives a smooth genus 9 curve in the intersection of the
Kummer surface with Q. But this intersection is a curve in the linear system (4, 4) on
Q = P1 ×P1 and the genus of a smooth member is (4− 1)2 = 9 so the intersection is
a connected smooth curve. In all cases we have two null vectors so the inverse image
in each surface Sx is a curve D which is an unramified double cover and hence has
Euler characteristic 2(2− 2× 9) = −32. So D is the base locus of the pencil.

A smooth divisor S of a section ofH2 hasKS
∼= KP(V )H

2 andKP(V )
∼= p∗(Λ2V ∗)H−2p∗(KQ).

But Λ2V ∼= KQ so KS is trivial. Then the self-intersection of D in S is D2 =
2c1(H)[D] = 32. This is positive hence the bundle H is nef.

Now Ohno [17] shows that, given the first Chern class c1 = O(2, 2) (our case for V ∗),
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the rank 2 vector bundles on P1 × P1 which are nef are:

O(1, 1)⊕O(1, 1) O(2, 2)⊕O O(2, 0)⊕O(0, 2)

and the last one is the tangent bundle. They are distinguished by the value of the
second Chern class c2. But we have the relation h2 + c1(V )h + c2(V ) = 0 where
h = c1(H) and so h3[P(V )] = (c1(V )

2 − c2(V ))[Q]. But (2h)3[P(V )] = D2 = 32. So
4 = h3[P(V )] = 8− c2(V ) and c2(V ) = 4 which is the cotangent bundle. ✷

6 Jumping loci

We have already seen the dimension of H0(C,End0E ⊗ K1/2) jump from 0 to 2 on
a hypersurface, but this is just the first of the jumps in dimension as we vary in
the moduli space of stable bundles, or more generally in any moduli space of stable
spinor-valued Higgs bundles. Such jumping occurs for dimH0(C,End0E⊗K) in the
classical Higgs bundle moduli space but this is frequently compensated for by the
corresponding jump in dimH0(C,End0E), tangential to the gauge transformations
which give equivalence.

In general, these jumps can be detected topologically, in our case by treating the
∂̄-operator as being part of a family of Fredholm operators. The space of Fredholm
operators on a Hilbert space has different components corresponding to the index and
in [13] Koschorke identified finite codimensional subspaces defined by the condition
dim ker ≥ n and identified the cohomology class of these. Pulling back to a finite-
dimensional family gives a cohomology class which generically is represented by the
subspace of operators for which the null-space has dimension ≥ n – a jumping locus.
For a compact family parametrized by M the kernel and cokernel are represented by
virtual vector bundles V, U over M and the cohomology class is given by a universal
formula in the characteristic classes appearing in ch(V )− ch(U).

Our 2-dimensional Dirac operator is skew adjoint and antilinear or, using the metric,
is formally a skew-symmetric Fredholm operator from a space to its dual. Koschorke’s
approach can be adapted to this situation where the finite-dimensional model is of a
skew-symmetric homomorphism A from a vector bundle V to its dual V ∗. There are
two cases where rkV is odd and dimkerA ≥ 1 always and the other case rkV even.
These correspond to the mod 2 index being 1 or 0 respectively.

In the even case the jump from generic zero to ≥ 1 is clear: A : V → V ∗ where V
has rank 2m is a section α of Λ2V ∗ and is degenerate if αm ∈ Λ2mV ∗ vanishes. The
cohomology class is c1(V

∗). This is half the Chern class of the usual determinant line
bundle, and we have encountered this already. In general, the jump is represented [9]
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by classes in ci(V
∗)

c1

∣

∣

∣

∣

c2 c3
1 c1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c3 c4 c5
c1 c2 c3
0 1 c1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c4 c5 c6 c7
c2 c3 c4 c5
1 c1 c2 c3
0 0 1 c1

∣

∣

∣

∣

∣

∣

∣

∣

· · ·

in codimension 1, 3, 6, 10, ... the expected dimension of the linear combinations [Ψi,Ψj] ∈
H0(C,End0E ⊗K) which give conormal vectors.

Remark:

1. Note that although these are polynomials in the Chern classes of V ∗, the inter-
pretation means they are also defined in terms of ch(V )− ch(V ∗): the odd de-
gree components of ch(V ∗). The first three cases are: ch1, ch

3
1/3−2ch3, ch

6
1/45−

2ch3
1ch3/3− 4ch2

3 + 24ch1ch5.

2. In the case of genus 2 and Λ2E trivial and an odd spin structure the jump
occurs in codimension 2 rather than the expected 3: when E = L ⊕ L∗ then
End0E ⊗ K1/2 = L2K1/2 ⊕ K1/2 ⊕ L−2K1/2 so if L2K1/2 ∼= O(x) then we
get a 3-dimensional space. This is nevertheless on the semistable locus which
exceptionally is a smooth part of the moduli space.

We want to apply these formulas to the case where M is the moduli space of stable
bundles of rank 2, odd degree and fixed determinant – a smooth compact manifold
of complex dimension 3g − 3. We already calculated

ch(V )− ch(V ∗) = π∗(ch(End0 U)ch(K
1/2) td(C)) = π∗(ch(End0 U)).

The rational cohomology is generated [16] by classes α ∈ H2(M,Z), ψi ∈ H3(M,Z)
where 1 ≤ i ≤ 2g and β ∈ H4(M,Z) where the second Chern class of the universal
bundle End0 U over M × C is expressed in Künneth components as

c2(End0(U)) = 2αf − β + 4

2g
∑

i=1

ψiei. (3)

Here f is the fundamental class of C, and ei form a symplectic basis for H1(C,Z)
with eiei+g = −f . We calculate ch(End0(U)) from (3) and then

π∗ch(End0(U)) = −2α
sinh

√
β√

β
+ 2γ

cosh
√
β

β
− 2γ

sinh
√
β

β3/2
(4)
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where γ = 2
∑g

1 ψiψi+g. Since ch1(T ) = 2α, ch2(T ) = (g−1)β, 3ch3(T ) = αβ−4γ[16],
this can also be expressed in terms of Chern classes of the tangent bundle.

We apply this to the moduli space M of Section 5.2, the intersection of two quadrics.

Proposition 7 Let M be the 3-dimensional moduli space of stable bundles E with

Λ2E fixed and odd degree on a curve C of genus 2, then

1. the jumping locus for H0(C,End0E⊗K1/2) where K1/2 is an even spin structure

consists of 8 points,

2. there are two orbits under the action of H1(C,Z2) on M and these are repre-

sented in the quotient by the two divisors a1+a2+a3, a4+a5+a6 of K
3/2 where

ai are the fixed points of the hyperelliptic involution.

Proof:

Represent End0E by an extension O → E
π→ L as in Section 5.2.2, then any Higgs

field Ψ defines c = πΨ(1) ∈ H0(C,LK1/2). But LK1/2 has degree 2 and so at most
a 2-dimensional space of sections. So if dimH0(C,End0 E ⊗ K1/2) = 3 there must
exist a nilpotent Higgs field which, as in Remark 5.2.2, means that L ∼= K1/2 and the
jumping locus is at most one-dimensional.

Now for x ∈ C, H0(C,End0E ⊗ K1/2) ∼= (End0E ⊗ K1/2)x by restriction since
K1/2(−x) has degree zero and by stability H0(C,End0E ⊗K1/2(−x)) = 0. This im-
plies that [Ψ1,Ψ2], [Ψ2,Ψ3], [Ψ3,Ψ1] are linearly independent conormal vectors hence
the locus is zero-dimensional.

In three dimensions we now use from equation 4 π∗ch(End0(U)) = −2α + (−αβ +
4γ)/3. The jumping locus then defines the cohomology class

(c1c2 − c3)(V
∗) =

1

3
(α3 − αβ + 4γ) =

1

3
(ch1(T )

3/8− 3ch3(T )).

For the intersection of two quadrics T ⊕O(2)⊕O(2) ∼= TP 5|M so ch(T ) = 6eh− 2e2h

and ch1(T ) = 2h, ch3(T ) = −8h3/3 where h ∈ H2(M,Z) is the hyperplane class.
Hence (c1c2− c3)(V

∗) = 2h3[M ] = 8 since the intersection of two quadrics has degree
4.

Then the action of H1(C,Z2) of order 16 on the 8 points in M implies the existence
for each point of an isomorphism α : E → E ⊗ U for some line bundle U with U2

trivial, and then πα(1) is a non-zero section of K1/2U , vanishing at a divisor ai of
an odd spin structure. The extension class in H1(C,K−1/2) then arises in the exact
sequence

· · · → H0(ai, U) → H1(C,K−1/2) → H1(C,U) → · · ·
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from a section of U on ai. Both are fixed by the hyperelliptic involution σ and
so the extension class is fixed by σ. Since H1(C,K−1/2) is 2-dimensional the pro-
jective spaces P(H1(C,K−1/2)),P(H0(C,K3/2)) are canonically isomorphic and the
non-trivial action of σ gives just two fixed points in the projective line P(H0(C,K3/2),
the sections with divisors a1 + a2 + a3, a4 + a5 + a6. ✷

Oxbury[18] gives a geometric argument for this result, and a description of the 16
inverse images in M of the line P(H0(C,K3/2)) ∼= P(H1(C,K−1/2)) in the quotient.
Each line has a distinguished pair of points which lie in the jumping locus but the
lines meet in fours at these points giving 8 = (2×16)/4 as calculated from the formula
above.
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[7] K. Gawȩdzki & P. Tran-Ngoc-Bich, Self-duality of the SL2 Hitchin integrable
system at genus 2, Commun.Math.Phys., 196, 641–670 (1998).

[8] S. Gukov, A. Sheshmani and S-T. Yau, 3-manifolds and Vafa–Witten theory,
arXiv:2207.05775.

[9] J.Harris and L.Tu, On symmetric and skew-symmetric determinantal varieties,
Topology, 23, 71–84 (1984).

18

http://arxiv.org/abs/2304.10919
http://arxiv.org/abs/2207.05775


[10] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London
Math. Soc., 55, 59–126 (1987).

[11] N. J. Hitchin, Critical loci for Higgs bundles, Commun. Math. Phys., 366, 841–
864 (2019).

[12] N. J. Hitchin, A note on coupled Dirac operators, SIGMA, 19, 003 (2023).

[13] U. Koschorke, Infinite dimensional K-theory and characteristic classes of Fred-
holm bundle maps, Proc. Symp. Pure Math. Amer. Math. Soc., 15, 95–133 (1970).

[14] M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact
Riemann surface, Ann. of Math. 89, 14–51 (1969).

[15] P. Newstead, Stable bundles of rank 2 and odd degree over a curve of genus 2,
Topology, 7, 205–215 (1968).

[16] P. Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic
curve, Trans. Amer. Math.Soc., 169, 337–345 (1972).

[17] M. Ohno, Nef vector bundles on a quadric surface with first Chern class (2, 2),
arXiv: 2311:02830.

[18] W. Oxbury, Stable bundles and branched coverings over Riemann surfaces,
D.Phil thesis, Oxford (1987).

[19] L. P. Schaposnik, Spectral Data for U(m,m)-Higgs Bundles, International Math-

ematics Research Notices, 11, 3486–3498 (2015).

[20] M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Inventiones
Math., 117 317–353 (1994).

19


	Introduction
	Spin structures
	Higgs fields
	Stable bundles
	The odd case
	The even case
	Links with classical Higgs fields

	Examples in genus 2, rank 2
	Spectral curves
	2E odd degree
	Odd K1/2
	Even K1/2

	 2E trivial
	Odd K1/2
	Even K1/2


	Jumping loci

