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NON-VANISHING OF GEODESIC PERIODS OF AUTOMORPHIC

FORMS

PETRU CONSTANTINESCU AND ASBJØRN CHRISTIAN NORDENTOFT

Abstract. We prove that one hundred percent of closed geodesic periods of a
Maaß form for the modular group are non-vanishing when ordered by length. We
present applications to the non-vanishing of central values of Rankin–Selberg L-
functions. Similar results for holomorphic forms for general Fuchsian groups of
the first kind with a cusp are also obtained, as well as results towards normal
distribution.

1. Introduction

The study of closed geodesics on the modular surface PSL2(Z)\H is a rich and
important subject, at the confluence of arithmetic, geometry, and dynamics [22],
[13]. In particular, the closed geodesics encode deep arithmetic information via

Waldspurger’s formula. More precisely, let K = Q(
√
D) be a real quadratic field

of discriminant D > 0. For each element A ∈ Cl+K in the (narrow) class group, we
can associate a closed geodesic CA ⊂ PSL2(Z)\H of length 2 log ǫD (see e.g [34]).
We know from the class number formula and a result of Siegel that |Cl+K | log ǫD =

D1/2+o(1). Let f be a Hecke–Maaß eigenform of weight 0 and level 1. Then we have
by Waldspurger’s formula due in its explicit form to Popa [31]:

(1.1) L(f ⊗ θχ, 1/2) =
c+f

D1/2

∣∣∣∣∣∣∣

∑

A∈Cl+K

χ(A)

∫

CA

f(z)
|dz|
y

∣∣∣∣∣∣∣

2

where χ ∈ Ĉl+K is a class group character, θχ is the associated theta series, L(f⊗θχ, s)
is the Rankin–Selberg L-function of f and θχ, and c

+
f > 0 is some constant depending

only on f .

The present paper is concerned with the study of the arithmetic statistics of the

geodesic periods
∫
CA
f(z) |dz|y and their generalization to general Fuchsian groups

and general automorphic forms. More precisely, our work was motivated by the
following question posed by Michel [5, p. 1377]:

Question 1.1 (Michel). Fix δ > 0 and a Hecke–Maaß form f for PSL2(Z). Let K
be a real quadratic field of discriminant D such that h(D) ≥ Dδ. For D large enough,
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does there always exist A ∈ Cl+K such that
∫
CA
f(z) |dz|y 6= 0? Equivalently, does there

exist a (narrow) class group character χ : Cl+K → C× such that L(f ⊗ θχ, 1/2) 6= 0?

Note that the equivalence between the two non-vanishing questions follows by Wald-
spurger’s formula (1.1) and character orthogonality. The motivation for this ques-
tion is the work of Michel–Venkatesh [23] in the imaginary quadratic analogue. In
this case the geodesic periods corresponds to evaluating the Maaß form at Heegner
points. Michel–Venkatesh combined subconvexity with equidistribtion of Heegner
points (as proved by Duke [10]) to obtain non-vanishing result for the corresponding
Rankin–Selberg L-functions. They also noticed that the corresponding argument us-
ing equidistribution of geodesics (also proved by Duke) falls short ultimately due
to the existence of fundamental units for real quadratic fields. For more details see
Section 2.

In this paper we introduce a new method which answers an average version of
Michel’s question in a strong sense. In particular, we show that, when ordered by
length, 100% of the geodesic periods are non-vanishing. More precisely, let

C(X) := {C ⊂ PSL2(Z)\H : ℓ(C ) ≤ X},
denote the set of primitive, closed geodesics on the modular curve with length

ℓ(C ) :=
∫
C
1 |dz|

y bounded by X. From the prime geodesic theorem, with the best

error term to date given by [37], we know

|C(X)| = Li(eX) +O
(
eX(25/36+ǫ)

)
=
eX

X
(1 + o(1)), when X → ∞.

Our first main result is the following quantitative bound for the vanishing set.

Theorem 1.2. Let f be a Maaß form for the modular group. Then
∣∣∣∣
{

C ∈ C(X) :

∫

C

f(z)
|dz|
y

= 0

}∣∣∣∣≪
eX

X5/4
.

Remark 1.3. We obtain a similar result for holomorphic forms of weight k ∈ 2Z, we
refer to Theorem 6.1 for the more general statement. We also bound the size of
geodesics with small or large geodesic period.

1.1. Result for general Fuchsian groups. More generally, given a Fuchsian
group of the the first kind Γ ≤ PSL2(R), we have an associated finite volume
hyperbolic 2-orbifold XΓ := Γ\H. Let f be a either a Maaß form, holomorphic
cusp form or a completed Eisenstein series E∗

a,k(z,
1
2 + it) for Γ and denote by

F : Γ\PSL2(R) → C the lift of f to the unit tangent bundle of XΓ. The primitive
oriented closed geodesics on XΓ are in one-to-one correspondence with primitive
hyperbolic conjugacy classes of Γ. Given an oriented closed geodesic C we can lift it
canonically to the unit tangent bundle (which we will denote by the same symbol).
We equip C with the unique A-invariant measure µC which projects to the line
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element |dz|
y on XΓ (here A denotes the diagonal subgroup of PSL2(R)). We refer to

Section 3 for more details. A key quantity of study are the geodesic periods

(1.2) Pf (C ) :=

∫

C

F (g)dµC (g).

A natural question is to fix a closed geodesic and ask how the sizes of the geodesic
periods behave as the Maaß form f is varying, see [36], [33], [4], [24] for results in
this direction. In this paper we are interested in obtaining strong lower bound for
the set of non-vanishing geodesic periods of a fixed automorphic form. To quantify
this, put for X ≥ 1:

(1.3) CΓ(X) := {C ⊂ Γ\H primitive closed geodesic : ℓ(C ) ≤ X} .
The first general result in this direction seems to be the work of Katok [19] who
proved that for a holomorphic form f on Γ (including the co-compact case) there
exists at least one non-vanishing geodesic period using Poincaré series techniques.
Zelditch [43, Thm. 0.4] used a variant of the Selberg trace formula to estimate
the first moment of the geodesic periods (averaged over CΓ(X)) which yields non-
vanishing when the Laplacian on XΓ admits an eigenfunction with eigenvalue 0 <
λ < 19

400 . In the case of weight 2 holomorphic forms, Petridis–Risager [29] used
spectral methods to prove that the geodesic periods for co-compact Γ when ordered
by geodesic length are normally distributed (and in particular 100% of them are
non-vanishing).

Our second main result is the following non-vanishing theorem in the presence of a
cusp.

Theorem 1.4. Let Γ ≤ PSL2(R) be a Fuchsian group of the first kind with a cusp.
Let f be an automorphic form for Γ such that either

• Γ = PSL2(Z) and f is a Maaß cusp form, or

• f is a holomorphic cusp form of weight k ∈ 2Z>0.

Then 100% of the geodesic periods of f are non-vanishing when ordered by length.
More precisely, for any function h : R≥0 → R≥0 such that h(x) → ∞ as x → ∞ it
holds that ∣∣∣

{
C ∈ CΓ(X) : h(X)−1 ≤ |Pf (C )| /

√
X ≤ h(X)

}∣∣∣
|CΓ(X)| → 1,(1.4)

as X → ∞.

We have a similar result for Eisenstein series for Γ = PSL2(Z).

Theorem 1.5. Let E∗
k(z) := E∗

k(z, 1/2) denote the completed Eisenstein series of
weight k for PSL2(Z) at the central point s = 1/2. For any function h : R≥0 → R≥0
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such that h(x) → ∞ as x→ ∞ it holds that∣∣∣
{

C ∈ CΓ(X) : h(X)−1 ≤
∣∣∣PE∗

k
(C )

∣∣∣ /(
√
X(logX)3/2) ≤ h(X)

}∣∣∣
|CΓ(X)| → 1,(1.5)

as X → ∞.

1.1.1. Applications to non-vanishing of Rankin–Selberg L-values. Restricting our
Theorem 1.4 to the case of Hecke congruence groups and using a result of Raulf
[32], we obtain the following non-vanishing theorem, which is an averaged version
of the results of Michel–Venkatesh [23].

Corollary 1.6. Let f be Hecke–Maaß form (holomorphic or non-holomorphic) of
weight k ∈ 2Z and level N ≥ 1 which is either holomorphic or of level 1. Then we
have that as X → ∞:

|{D ∈ D
+
fund : ǫD ≤ X,∃χ ∈ Ĉl+D s.t. L(1/2, f ⊗ θχ) 6= 0}|

|{D ∈ D
+
fund : ǫD ≤ X}| ≥ c+ o(1),

for some c > 0 (depending only on N). Here D
+
fund denotes the set of positive

fundamental discriminants and ǫD > 0 denotes the positive fundamental unit of
discriminant D.

Remark 1.7. An interesting feature of our methods is that equidistribution does
indeed play a key role exactly as in the arguments of Michel–Venkatesh: the proof
of Theorem 1.4 relies crucially on equidistribution of sparse subcollections of closed
geodesics, see Theorem 5.8.

Remark 1.8. We note that some “non-smallness” assumption is necessary in Ques-
tion 1.1. When the narrow class number of K = Q(

√
D) is one (which conjecturally

should happen infinitely often) and the Hecke–Maaß form is odd then we have for
the unique class group character χK of K that

L(f ⊗ θχK , 1/2) = L(f, 1/2)L(f ⊗ χD, 1/2) = 0,

where χD denotes the quadratic Dirichlet character associated to K by class field
theory.

1.2. Towards normal distribution. By Theorem 1.4 we see that the geodesic
periods associated to C are usually of size ℓ(C )1/2. A related phenomena has pre-
viously been observed in the context of vertical periods (e.g. modular symbols) of
automorphic forms [30] and the two phenomena are intimately related as we will
see.

Let Γ be a Fuchsian group with a cusp at infinity of width one. Let f be a cusp
form for Γ of weight k ∈ 2Z. For [γ]∞ ∈ Γ∞\Γ/Γ∞, we can associate the vertical
line period integral:

[γ]∞ 7→
∫ ∞

γ∞
f(z)dz =: Lf (γ∞).
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If cγ denotes the lower-left entry of the matrix γ, note that cγ is invariant in [γ]∞
and put

TΓ(N) := {[γ]∞ ∈ Γ∞\Γ/Γ∞ : 0 < |cγ | ≤ N}

The distribution of {Lf (γ∞) : [γ]∞ ∈ TΓ(N)} has been extensively studied, it is
known in many cases to obey asymptotically a normal distribution with variance
c2f logN as N → ∞, see [2], [9], [30], [7], [25], [20].

In this paper, we introduce a method to “lift” the distribution of the vertical periods
to study the closed geodesic periods. In particular, this means that our methods rely
crucially on the existence of a cusp for Γ. We do this by investigating the relation
between the sets of double cosets Γ∞\Γ/Γ∞ and hyperbolic conjugacy classes of Γ
via the study of a particular graph. Recall that to each closed geodesic C on XΓ

corresponds a primitive hyperbolic conjugacy class {γ} of Γ such that the length
ℓ(C ) is up to a small error given by log | tr(γ)|. This means that

CΓ(logN) ≈ {{γ} ∈ Conj(Γ) : 2 < | tr(γ)| ≤ N, {γ} primitive},

with CΓ(X) defined as in equation (1.3). We consider the bipartite graph GN with
the two vertex sets given by TΓ(N) and CΓ(logN), and an edge between [γ]∞ ∈
TΓ(N) and {γ} ∈ CΓ(logN) if and only if [γ]∞ ∩ {γ} 6= ∅. We define a natural
discrete probability measure µGN on CΓ(logN) given by the push-forward of the
counting measure on TΓ(N) by the graph GN . This is defined in equation (4.1),
see Section 4 for more details. We show that the geodesic periods become normally
distributed when counted with this measure:

Theorem 1.9. Let f be either a Maaß cusp form or holomorphic cusp form for
Γ = PSL2(Z), or a holomorphic cusp form for a general Fuchsian group Γ of the
first kind with a cusp. Then there exists a constant cf > 0 such that for any rectangle
R ⊂ C, we have

lim
N→∞

µGN

({
{γ} ∈ CΓ(logN) :

Pf ({γ})
cf
√
logN

∈ R

})
=

1

2π

∫

x+iy∈R

e−
x2+y2

2 dxdy,

where Pf ({γ}) = Pf (C ) denotes the geodesic periods associated to closed geodesic
C corresponding to the conjugacy class {γ}.

In other words, geodesic periods are normally distributed if we count them with
weights inferred by the graph GN . We expect that the normal distribution should
hold without these additional weights, i.e. for the counting measure. Note that
Theorem 1.4 implies that most geodesic periods are distributed around the mean,
as one would expect from the normal distribution.
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Conjecture 1.10. Let f be a weight k Maaß form for a general Fuchsian group Γ.
Then for any rectangle R ⊂ C,

1

|CΓ(logN)|

∣∣∣∣
{
{γ} ∈ CΓ(logN) :

Pf ({γ})
cf
√
logN

∈ R

}∣∣∣∣

=
1

2π

∫

x+iy∈R

e−
x2+y2

2 dxdy +O

(
1√

logN

)
.

Remark 1.11. As alluded to above, in the case of weight 2 holomorphic forms for
a cocompact Γ a weaker version of this conjecture (without the explicit rate of
convergence) was proved by Petridis–Risager [28] by studying perturbations of the
Selberg trace formula. In forthcoming work, using a different method as in [7], the
authors are proving the full conjecture for weight 2 holomorphic forms for general
Γ.

Remark 1.12. Note that the rate of convergence in this conjecture implies the size of
the vanishing set is ≪ N

(logN)3/2
which improves upon Theorem 1.2 (with X = logN).

1.3. Idea of proof. As mentioned above, our main idea is to transfer the distribu-
tion (in particular, the non-vanishing) of vertical periods to geodesic periods. To
illustrate this it is useful to consider the case where f is a weight 2 holomorphic
cusp form. Then f(z)dz is a Γ-invariant 1-form. Hence the following period, known
as a modular symbols,

〈γ, f〉 :=
∫ γz

z
f(z)dz

does not depend on the base point z. Moreover, the map 〈·, f〉 : Γ → C is additive.
This implies that 〈γ, f〉 is invariant on both [γ]∞ and {γ} and so 〈γ, f〉 is constant
on connected components of the graphs GN defined above. So in this case there is a
straightforward connection between vertical line periods and geodesic periods.

For automorphic forms of general weight this is no longer true. We use instead a
key ingredient from [26], which allows us to find a relation between the vertical line
period and the geodesic period corresponding to an edge in the bipartite graph GN

defined above. We show that if f is a cusp form of weight k and γ ∈ Γ hyperbolic
with lower-left entry cγ , then

Pf ({γ}) = (−1)k/2+1Lf (γ∞) + +Of,ε

(
1 +

(
cγ

| tr(γ)|

)1/2+ε
)
,

and a similar statement holds for Eisenstein series, see Proposition 3.1.

In particular, we obtain that for 100% of edges, the vanishing of the geodesic period
implies that the vertical period is very small. In the cases where the normal distri-
bution of vertical periods is known, we have that almost all of the vertical periods
are large (of size

√
logN). This yields a conclusion if we can bound from above
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the degrees in GN of vertices in TΓ(N) and from below the degrees of vertices in
CΓ(logN).

One can easily obtain good estimates for degrees in TΓ(N) from the basic properties
of the graph (by counting matrices with fixed lower left entry and bounded trace).
Using a geometric argument, we show that the degree of a vertex in CΓ(logN) is
lower bounded by the length of the corresponding geodesics restricted to a sub-
domain of the fundamental domain for Γ\H. We show that there exists a region
B ⊂ Γ\H such that

(1.6) deg({γ}) ≫ l(C ∩ B).

Following an approach of Aka–Einsiedler [1] we combine effective mixing [42] with
an equidistribution theorem of Zelditch [43] to obtain an equidistribution theorem
for sparse subcollections of closed geodesics, see Theorem 5.8, thus obtaining lower
bounds for the right-hand side of (1.6) on average.

Remark 1.13. We obtain stronger non-vanishing results for the modular group Γ =
PSL2(Z), and the reason is twofold. Firstly, in this case, from [2] and [9], we know
precise rate of convergence towards the normal distribution of the set {Lf (γ∞) :
[γ]∞ ∈ TΓ(N)}, and hence we can deduce better upper bounds for the subset of
cosets with small vertical line period. Secondly, in the arithmetic setting, it is
possible to obtain equidistribution for a sparser subcollection, as in [1].

Remark 1.14. It is natural to ask what the more precise relationship is between
the measures µGN and the uniform distributions µN on CΓ(logN). The argument
sketched above gives the following: there exists a constant c = c(Γ) > 0 such that
for any ε > 0 and any sequence of subsets AN ⊂ CΓ(logN) satisfying µN (AN ) ≥ ε
it holds that µGN (AN ) ≥ cε2 for N large enough. It would be interesting to see
if one can prove the stronger statement that there exists 0 < c1 < c2 such that
c1ε ≤ µGN (AN ) ≤ c2ε for N large enough. This would require obtaining stronger
upper and lower bounds on the degrees in the graphs GN of the vertices in CΓ(logN).

1.4. Structure of paper. In Section 2 we briefly discuss the work of Michel-
Venkatesh for the imaginary quadratic case and why their methods fail in the real
quadratic case.
In Section 3 we introduce the background material, including the connection be-
tween vertical line integral and geodesic periods from [26].
In Section 4 we develop the required graph theory, including measures on graphs
and their lifts.
In Section 5 we look in more detail at the properties of the graph GN defined above.
We also prove here the sparse equidistribution results for geodesics, required to lower
bound degrees on this graph.
In Section 6 we complete the proofs of our main Theorems 1.2 and 1.4.
In Section 7 we obtain the application towards non-vanishing of central values of
Rankin-Selberg L-functions.
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2. Equidistirbution of Heegner points and non-vanishing of

Rankin–Selberg L-functions, following Michel–Venkatesh

In an elegant paper [23] Michel–Venkatesh introduced a new method for evaluating
the first moment of certain Rankin–Selberg L-functions associated to theta series of
class group characters of imaginary quadratic fields. They approach used equidistri-
bution of Heegner points combined with Waldspurger’s formula and the Plancherel
formula. This was combined with subconvexity to obtain quantitative non-vanishing
results. The methods has subsequently been extended to calculating more general
“wide moments” of L-functions by the second-named author [27], see also [6]. During
the problem session at the Oberwolfach workshop [5, p. 1377] Michel asked whether
one could extend this to real quadratic field under some “non-smallness” assumption
on the class number (see Question 1.1 above). The difficulty of this problems stems
from the infinite unit group which makes the original approach in [23] fall short as
we will now explain.

Let f be a weight 0 Hecke–Maaß form of level 1. For an imaginary quadratic field
K/Q of discriminant D < 0 we denote by ClK the class group and h(D) = #ClK
the class number. Given A ∈ ClK we denote by zA ∈ X0(1) := PSL2(Z)\H the

associated Heegner point (for a defintion see ). Let χ ∈ ĈlK be a class group char-
acter of K and denote by θχ the associated theta-series via automorphic induction.
Waldspurger’s formula due to Zhang [44], [45] in its explicit form is:

L(f ⊗ θχ, 1/2) =
cf

D1/2

∣∣∣∣∣∣
∑

A∈ClK

χ(A)f(zA)

∣∣∣∣∣∣

2

.

By Plancherel (i.e. character orthogonality) and Duke’s equidistribution theorem
for Heegner points [10] it follows that as D → −∞

(2.1)
1

h(D)

∑

χ∈ĈlK

L(f ⊗ θχ, 1/2) =
cf

D1/2

∑

A∈ClK

|f(zA)|2 =
cfh(D)

D1/2
(||f ||L2 + o(1)).

In particular, the left-hand side is non-vanishing for |D| sufficiently large. Further-
more, by applying the subconvexity bound for the Rankin–Selberg L-functions due
to Harcos–Michel [14] one obtains a non-vanishing proportion of ≫ Dδ for some
small δ > 0.

Now let K be a real quadratic field of discriminant D > 0 with narrow class group
Cl+K . In this setting we can associate to an ideal class A ∈ Cl+K a primitive oriented
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closed geodesics CA on X0(1), which are analogues to the association of Heegner
points above. Let f be a weight zero Hecke–Maaß form of level 1. Similarly to
the imaginary case, by employing the formula (1.1) due to Popa [31, Thm. 1] and
orthogonality of characters we obtain:

(2.2)
1

h(D)

∑

χ∈ĈlK

L(f ⊗ θχ, 1/2) =
c+f

D1/2

∑

A∈ClK

∣∣∣∣
∫

CA

f(z) |dz|
Im z

∣∣∣∣
2

.

We see however that equidistribution of the geodesics does not imply non-vanishing
of the right-hand side due to the fact that the square is on the “outside” of the
integral (over the closed geodesics). To fix this, one has to allow for non-trivial
infinity type and consider the Arakelov class group of K:

ClAra
K := K×A×

Q\A×
K/Ô

×
K

∼= Cl+K × R>0/ǫ
Z
K ,

where ǫK > 1 is the positive fundamental unit of K. Given a character χ ∈ ĈlAra
K ,

the infinity type is parameterized by a number λχ ∈ 1
log ǫK

Z. As explained in [3, Sec.

4.2] using equation (4.7) in loc. cit. one has:

1

h(D)

∑

χ∈ĈlAra
K

L(f ⊗ θχ, 1/2)ψf (λχ) =
c+f

D1/2

∑

A∈Cl+K

∫

CA

|f(z)|2 |dz|
Im z ,

where ψf (λχ) denotes some weight function satisfying, by [3, (4.8)], the following
bound:

ψf (λχ) ≪ e−c0|λχ|/|λf |,

for some absolute constant c0 ≥ 0. Notice that the equidistribution theorem of Duke
yields that indeed the left-hand side is non-zero for D large enough. Thus we obtain
non-vanishing Rankin-Selberg L-functions with χ an Arakelov class group character
and by the decay property of ψf (λχ) we can ensure that |λχ| ≪ (logD)2, say. Notice

that this is a family of characters of size D1/2+o(1) exactly as in the imaginary
quadratic case. In other words, the question of Michel amounts to whether one can
ensure that the infinity type is trivial.

Remark 2.1. In [23], similar results are obtained for holomorphic forms of weight 2
using the Jacquet–Langlands correspondence and Waldspurger’s formula for definite
quaternion algebras due to Gross in this case.

Remark 2.2. Templier extended the approach of Michel–Venkatesh to derivatives
[39] using the Gross–Zagier formula. Later Templier [38] and Templier–Tsimerman
[40] evaluated the left-hand side of (2.1) using tools from analytic number theory
(approximate functional equation and (non-split) shifted convolution sums). See also
[17]. It would be interesting to see whether a variation of these analytic methods
can be made to work in the real quadratic case.
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3. Background

3.1. Fuchsian groups. Let Γ < PSL2(R) be a Fuchsian group of the first kind and
consider the associated quotient surface

XΓ := Γ\H.

It is a general fact that there is a ono-to-one correspondence between primitive
closed geodesics on XΓ and primitive conjugacy classes of hyperbolic elements. We
denote by Cγ the geodesic corresponding to the conjugacy class {γ}.

Each hyperbolic γ ∈ Γ is conjugate in PSL2(R) with some

(
t 0
0 t−1

)
with t > 1. The

norm of γ is N(γ) = t2, the trace is tr(γ) = t+ t−1 and the length of corresponding
geodesic is

ℓ(Cγ) :=

∫

Cγ

1
|dz|
y

= logN(γ) = 2 log t.

The unit tangent bundle of XΓ is naturally described as a symmetric space:

T1(XΓ) ≃ Γ\PSL2(R),

recalling that H ≃ PSL2(R)/PSO2. The unit tangent bundle T
1(XΓ) admits a right

action of PSL2(R) given by Γx.g = Γxg. The action of

at :=

(
et/2 0

0 e−t/2

)
, t ∈ R

corresponds to the geodesic flow on T1(XΓ).

Consider the diagonal subgroup

A := {at : t ∈ R} ≤ PSL2(R).

Let C ⊂ XΓ be an oriented closed geodesic and consider its lift to the unit tangent
bundle. By a slight abuse of notation, we denote the lift by the same symbol
C ⊂ T1(XΓ). This yields a one-to-one correspondence between oriented closed
geodesic on XΓ and closed and compact A-orbits in T1(XΓ).

We denote by µC the unique A-invariant measure on C which descends to the line

element ds = |dz|
Im z when C is projected to XΓ. Let F : Γ\PSL2(R) → C integrable

with respect to µC . Then we have explicitly

∫

C

F (g)dµC (g) =

∫ ℓ(C )

0
F (xat)dt, for some x ∈ C .

We refer to [12, Chapter 9] for more details about the geodesic flow on quotient
surfaces.
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3.1.1. Spectral theory of automorphic forms. We will now recall some standard facts
about the spectral theory of automorphic forms, we refer to [11, Sec. 4] for further
background. Let f : H → C be an automorphic form of weight k for Γ, that is a
smooth function such that

f(γz) = jγ(z)
kf(z), for all γ ∈ Γ,

where jγ(z) =
cz+d
|cz+d| with γ =

(
a b
c d

)
. We equip the space of weight k automorphic

forms with the Peterson innerproduct

〈f, g〉 =
∫

XΓ

f(z)g(z)
dxdy

y2
.

If f is L2-integrable with respect to the Petersson innerproduct and an eigenfunction
of the weight k Laplacian

∆k = −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
,

then we say that f is a Maaß form of weight k. Finally, if f is rapidly decaying at
the cusps of Γ we say that f is a Maaß cusp form of weight k. If a Maaß form of
weight k is not cuspidal nor constant we call it a residual Maaß form of weight k. We
will refer to Maaß forms of weight 0 simply as Maaß forms. Note that if g ∈ Sk(Γ)

is a weight k holomorphic cusp form for Γ then z 7→ yk/2g(z) defines a Maaß cusp
form of weight k with eigenvalue k

2 (1− k
2 ). We will refer to these automorphic forms

simply as holomorphic cusp forms.

We will also consider certain non-square integrable automorphic forms, namely the
Eisenstein series. We may assume that Γ has a cusp at ∞ of width one. Then we
define the completed Eisenstein series of weight k (at ∞):

E∗
k(z, s) := π−sζ(2s)Γ(s + k/2)

∑

γ∈Γ∞\Γ
jγ(z)

−k Im(γz)s, Re s > 1,

and elsewhere by meromorphic continuation. We will be interested in the (com-
pleted) Eisenstein series with spectral parameter Re s = 1/2 (which is exactly what
shows up in the spectral theorem) and simply refer to an Eisenstein series of weight
k as an automorphic form of the type E∗

k(z,
1
2 + it) where t ∈ R.

Let f be either a Maaß form or an Eisenstein series of weight k for Γ. Denote by F
the lift of f to to T1(XΓ), given by

F (g) := jg(i)
−kf(gi).

Then the geodesic period associated to f and C is given by

(3.1) Pf (C ) :=

∫

C

F (g)dµC (g).

If the closed geodesic C corresponds to the hyperbolic conjugacy class {γ}, we may
write Pf ({γ}) = Pf (C ).
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3.2. From geodesic to vertical periods. We are now ready to state the main
connection between vertical line integrals ins geodesic periods as was proved in [26,
Prop. 4.2] in a slightly different form. The argument directly yields the following
and we just indicate the changes needed.

Proposition 3.1. Let f : H → C be a cuspidal Maaß form of weight k for Γ. Let
γ ∈ Γ be a hyperbolic matrix with lower left entry cγ > 0, and let C ⊂ Γ\PSL2(R)
be the oriented closed geodesic corresponding to the Γ-conjugacy class of γ.

Then we have for ε > 0 that

Pf (C ) = (−1)k/2+1

∫ ∞

0
f (γ∞+ iy)

dy

y
+Of,ε

(
1 +

(
cγ

| tr(γ)|

)1/2+ε
)
.(3.2)

Similarly for f either an Eisenstein series or a residual Maaß form of weight k with
Laplace eigenvalue 1/4 + t2, we have

Pf (C ) =(−1)k/2+1

∫ ∞

0
(f (γ∞+ iy)− f∞ (y))

dy

y
(3.3)

+Afc
−1/2−it
γ

1 + (−1)k/2

1/2 + it
+Bfc

−1/2+it
γ

1 + (−1)k/2

1/2 − it

+Of,ε

((
cγ

| tr(γ)|

)1/2+ε

+

(
cγ

| tr(γ)|

)−1/2−ε
)
,

where f∞(y) = Afy
1/2−it +Bfy

1/2+it denotes the constant Fourier coefficient at ∞.

Proof sketch. The formula in [26, Prop 4.2] gives a relation in the case Γ = Γ0(N)
between the geodesic periods of an automorphic form f and additive twist L-series
of f , which are certain linear combinations of vertical line integrals of f . On the
one hand, we need to argue that the formulas (3.2) and (3.3) correspond exactly to
the ones in [26, Prop 4.2] by rewriting the additive twists as line integrals. Secondly,
we want a similar formula for general Γ. To obtain this, notice that the arguments
in [26, Sec. 4] carry over to general Fuchsian groups of the first kind with a cusp at
infinity of width one. The only difference being that the dependence on the spectral
data of f might change, see Remark 4.1 in loc. cit.. Now the the claimed result
follows by inserted equations (4.31) and (4.32) of loc. cit. into equation (4.27) of
loc. cit. and doing the change of variables z 7→ γz in the line integral in (4.32). �

3.3. Normal distribution of vertical periods. A key input in our proofs are
normal distribution of vertical periods of automorphic forms as explored by many
authors. These results were all motivated by the conjectures of Mazur–Rubin–Stein
[21] originally formulated for weight 2 holomorphic forms (corresponding to mod-
ular symbols). These conjectures were motivated by connections to automorphic
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L-functions: Let f be an automorphic form for Γ, then for γ ∈ Γ and Re s > 1 we
have

∫ ∞

0
(f(γ∞+ iy)− f∞(y))ys

dy

y
= γ(s)

∑

n∈Z
af (n)e(nγ∞)n−s(3.4)

=: γ(s)L(f, γ∞, s),(3.5)

where af (n) denotes the Fourier coefficients of f (properly normalized) and γ(s) is a
certain special function. We refer to the Dirichlet series L(f, γ∞, s) as the additive
twist L-series of f , which satisfies analytic continuation by the above formula sat-
isfying a functional equation relating L(f, γ∞, s) and L(f, γ−1∞, 1− s) (for details
we refer to [9, Sec. 5]). In the case where Γ = Γ0(N) and f is a Hecke eigenform,
the additive twist L-series with denomitor q are dual to the twisted L-functions
L(f, χ, s) =

∑
n≥1 λf (n)χ(n)n

−s where χ is a Dirichlet character modulo q via the
Birch–Stevens formula.

The following central limit theorem with effective rate of convergence has been
obtained by, respectively, the first named author [7] using perturbation theory and
by Sary Drappeau and the second named [9, Thm. 1.5] using dynamics of the Gauß
map (we notice that the effective rate of convergence is not explicitly stated in
loc. cit. but follows as in [2, p. 1412] using [9, Prop. 7.2] and the Berry–Esseen
inequality).

Theorem 3.2 (C., Drappeau–N.). Let f be a Maaß cusp form or holomorphic cusp
form for Γ = SL2(Z), or f a weight 2 holomorphic form for a Fuchsian group Γ of
the first kind with a cusp at ∞ of width one. Then for a rectangle R ⊂ C, we have

1

|XΓ(N)|

∣∣∣∣∣

{
[γ]∞ ∈ TΓ(N) :

∫∞
0 f(γ∞+ iy)dyy

Cf

√
logN

∈ R

}∣∣∣∣∣(3.6)

=
1

2π

∫

x+iy∈R

e−
x2+y2

2 dxdy +Of

(
1√

logN

)
,

where Cf > 0. The implied constant may depend on f but is independent of R.

For holomorphic forms of general weight k with respect to a general Fuchsian group
of the first kind with a cusp, the normal distribution has been obtained by the
second named author [25] using techniques from spectral theory. In this setting the
rate of convergence is not known. The normal distribution of vertical periods of the
completed Eisenstein series at s = 1/2 was achieved by Bettin–Drappeau [2, Thm.
2.1]. In this case an optimal rate of convergence is known of size 1

(log logQ)1−ǫ .

Theorem 3.3 (N., Bettin–Drappeau). Let f be either a holomorphic cusp form for
a Fuchsian group Γ of the first kind with a cusp or a weight k Eisenstein series
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E∗
k(z, 1/2) for PSL2(Z). Then for a rectangle R ⊂ C, we have

1

|XΓ(N)|

∣∣∣∣∣

{
[γ]∞ ∈ XΓ(N) :

∫∞
0 f(γ∞+ iy)dyy

Cf
√
logN(log logN)δf

∈ R

}∣∣∣∣∣(3.7)

=
1

2π

∫

x+iy∈R

e−
x2+y2

2 dxdy + o(1),(3.8)

where Cf > 0, δf = 0 for f cuspidal and δf = 3/2 for f Eisenstein. The implied
constant may depend on both f and R.

4. Measures on bipartite graphs

In this section we will introduce an abstract framework for transferring measures
from one component to another in a bipartite graph. We will in the next section
apply this to graphs constructed from double cosets and conjugacy classes.

Let (X,µ), (Y, ν) be discrete probability (measure) spaces, i.e. X,Y are finite sets
equipped with the σ-algebra consisting of all subsets and µ (resp. ν) are probability
measures on X (resp. Y ). We define a bipartite graph on X,Y as a subset of the
product

G ⊂ X × Y.

We define the neighbors of x ∈ X (resp. y ∈ Y ) as

e(x) := {y ∈ Y : (x, y) ∈ G} ⊂ Y, e(y) := {x ∈ X : (x, y) ∈ G} ⊂ X,

and for a subset A ⊂ X (resp. B ⊂ Y ) we denote

e(A) =
⋃

x∈A
e(x) ⊂ Y, (resp. e(B) =

⋃

y∈B
e(y) ⊂ X).

We define the degree of x (resp. y) as

deg(x) := #e(x), (resp. deg(y) := #e(y)).

We will denote by G(µ) the G-transform of µ which is the probability measure on
Y given by

(4.1) G(µ)({y}) :=
∑

x∈e(y)

µ(x)

deg(x)
, y ∈ Y,

and similarly we define the measure G(ν) on X. Note that for x ∈ e(y) we have
y ∈ e(x) and thus deg(x) ≥ 1.

For a set B ⊂ Y (resp. A ⊂ X), we denote

e−1(B) := {x ∈ X : e(x) ⊂ B}, (resp. e−1(A) := {y ∈ Y : e(y) ⊂ A}).
Note that by definition e−1(B) ⊆ e(B).

Lemma 4.1. For any subset B ⊂ Y we have that

µ(e−1(B)) ≤ G(µ)(B) ≤ µ(e(B)).
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Proof. We have by definition of G(µ):

G(µ)(B) =
∑

y∈B

∑

x∈e(y)

µ(x)

deg(x)
=

∑

x∈e(B)

µ(x)

deg(x)
·#(e(x) ∩B)

≤
∑

x∈e(B)

µ(x)

deg(x)
· deg(x) = µ(e(B)).

Similarly,

G(µ)(B) =
∑

x∈e(B)

µ(x)

deg(x)
·#(e(x) ∩B) ≥

∑

x∈e−1(B)

µ(x)

deg(x)
· deg(x) = µ(e−1(B)).

�

4.1. Lifting the distribution. Let (Gn)n≥1 be a sequence of bipartite graphs on
(Xn, Yn)n≥1. For each n ≥ 1 let Xn be equipped with a probability measure µn. In
addition, suppose we have fn : Xn → R such that (fn)

∗(µn) converges as n → ∞
to a distribution on R with density function F : R → R≥0. In other words, for and
a < b, we have

lim
n→∞

µn ({x ∈ Xn : fn(x) ∈ [a, b]}) =
∫ b

a
F (x)dx.

Moreover, suppose we know precise rate of convergence, i.e. there exists h : R>0 →
R>0 such that limx→∞ h(x) = 0 and

(4.2) sup
a<b

∣∣∣∣µn ({x ∈ Xn : fn(x) ∈ [a, b]}) −
∫ b

a
F (x)dx

∣∣∣∣ = O(h(n)).

We want to show that if we can define gn : Yn → R such that fn(x) and gn(y) are
“close” whenever x and y are connected by an edge in the bipartite graph Gn, then
we can obtain information about the distribution of (gn)

∗(Gn(µn)). In other words,
using the structure of the graph Gn, we can ”lift” the limit distribution of fn on Xn

to a limit distribution on Yn.

Lemma 4.2. Let (Gn)n≥1 be a sequence of bipartite graphs on (Xn, Yn)n≥1. For
each n ≥ 1 let µn be a probability measure on Xn and let fn : Xn → R be as above
such that (4.2) holds for a continuous density function F and some h : R>0 → R>0

such that limx→∞ h(x) = 0. Moreover, suppose there exists gn : Yn → R such that
whenever there is an edge between x ∈ Xn and y ∈ Yn in Gn, we have gn(y) =
fn(x) +O(E(n)), where E : R>0 → R>0 such that limx→∞E(x) = 0. Then we have

sup
a<b

∣∣∣∣Gn(µn)({y ∈ Yn : gn(x) ∈ [a, b]}) −
∫ b

a
F (x)dx

∣∣∣∣ = OF (h(n) + E(n)),

where the implied constant is independent of a < b.
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Proof. Fix a < b and let

Bn := {y ∈ Yn : gn(y) ∈ [a, b]}.
Using Lemma 4.1, we have that

µn(e
−1(Bn)) ≤ Gn(µ)(Bn) ≤ µn(e(Bn)).

Moreover, we have that

e(Bn) ⊆ {x ∈ Xn : fn(x) ∈ [a− E(n), b+ E(n)]}
and hence

Gn(µn)(Bn) ≤
∫ b+E(n)

a−E(n)
F (x)dx +O(h(n)) =

∫ b

a
F (x)dx +OF (h(n) + E(n)).

Here we used that F is a continuous density function, therefore indeed we have
∫ b+E(n)

b
F (x)dx = OF (E(n)).

Similarly, we have that

e−1(Bn) ⊇ {x ∈ Xn : fn(x) ∈ [a+ E(n), b− E(n)]}
and the conclusion follows. �

Corollary 4.3. In the same setting as above. Then for any function H : N → R>0

such that H(n) → ∞ as n→ ∞ it holds that

Gn(µn)
(
{y ∈ Yn : H(n)−1 ≤ |gn(x)| ≤ H(n)}

)
→ 1, n→ ∞

Proof. This follows since the density function F is assumed continuous. �

It is natural to ask a similar question about complex-valued functions fn : Xn → C
and gn : Yn → C. In this case, we can obtain similar result about distributions
(fn)

∗(µn) and (gn)
∗(G(µn)), but without uniformity.

Suppose we know that there exists a density function F : C → R≥0 such that for all
rectangles

R = R(w;R1, R2) := {z ∈ C : −R1 ≤ Re(z − w) ≤ R1,−R2 ≤ Im(z − w) ≤ R2},
we have that

(4.3) lim
n→∞

µn {x ∈ Xn : fn(x) ∈ R} =

∫

R

F (z)dz.

Lemma 4.4. Let fn : Xn → C such that (fn)
∗(µn) obeys asymptotically a distribu-

tion given by continuous density function F , that is (4.3) holds. Let gn : Yn → C
such that whenever x ∈ Xn and y ∈ Yn are connected by an edge in Gn, we have
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|fn(x) − gn(y)| ≤ E(n) for some E : R≥0 → R≥0 with limn→∞E(n) = 0. Then for
any rectangle R = R(w;R1, R2) ⊂ C, we have

(4.4) lim
n→∞

Gn(µn) ({y ∈ Xn : gn(y) ∈ R}) =
∫

R

F (z)dz.

Proof. We proceed as in the proof of Lemma 4.2. Let

An := {y ∈ Yn : gn(y) ∈ R} .
Then

e(An) ⊆ {x ∈ Xn : fn(x) ∈ R(w;R1 + E(n), R2 +E(n))},
by the assumption on fn and gn. Similarly,

e(An) ⊇ {x ∈ Xn : fn(x) ∈ R(w;R1 − E(n), R2 −E(n))}.
Using Lemma 4.1, we have

µn({f−1
n (R(w;R1 − E(n), R2 −E(n))})

≤ Gn(µn)(An) ≤ µn({f−1
n (R(w;R1 + E(n), R2 + E(n))}).

Conclusion follows by letting n → ∞ since the density function F is assumed con-
tinuous. �

Remark 4.5. Using this approach, in the complex case we cannot obtain uniformity
in the error term, for all rectangles R ⊂ C. This boils down to the fact that the
error term is given by

∫

R(w;R1+E(n),R2+E(n))
F (z)dz −

∫

R(w;R1,R2)
F (z)

and the region R(w;R1+E(n), R2+E(n))\R(w;R1 , R2) has size ≈ 2(R1+R2)·E(n)
(as opposed to size E(n) in the one dimensional real case).

5. Bipartite graphs from double cosets and conjugacy classes

Let Γ ⊂ PSL2(R) be a discrete and cofinite subgroup with a cusp at infinity of width
1 (i.e. a non-cocompact Fuchsian group of the first kind). Let

Conj(Γ) := {{γ} : γ ∈ Γ}, {γ} := {σγσ−1 : σ ∈ Γ} ⊂ Γ,

be the set of (not necessarily primitive) conjugacy classes of Γ. Denote by Γ∞ =
{( 1 n

0 1 ) : n ∈ Z} the stabilizer of the cusp ∞. Let

Γ∞\Γ/Γ∞ := {[γ]∞ : γ ∈ Γ}, [γ]∞ := Γ∞γΓ∞ = {σ1γσ2 : σ1, σ2 ∈ Γ∞} ⊂ Γ,

be the set of double cosets with respect to the pair of cusps (∞,∞). We will apply
the general frame work developed in the previous section to the sets:

XN := {[γ]∞ ∈ Γ∞\Γ/Γ∞ : 0 < |cγ | ≤ N},(5.1)

YN := {{γ} ∈ Conj(Γ) : 2 < | tr(γ)| ≤ N},(5.2)
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for N ≥ 1. Note that by, respectively, [30, Eq. (3.6)] and the prime geodesic theorem
[16] we have

(5.3) |XN | ∼ C1N
2, |YN | ∼ C2

N2

logN , N → ∞

for certain constants C1, C2 > 0 depending on Γ. We denote Y ∗
N ⊂ YN the subset

of primitive conjugacy classes. Recall also that the non-primitive conjugacy classes
are negligible

(5.4) |YN \ Y ∗
N | ≪ N.

We define the bipartite graph

GN := {([γ]∞, {γ′}) ∈ XN × YN : [γ]∞ ∩ {γ′} 6= ∅}.

Given an element x = [γ]∞ ∈ XN we define

c(x) := |cγ |,

to be the absolute lower-left entry of a representative γ of the double coset (which we
note is independent of the choice of representative). Note that when Γ ⊂ PSL2(Z)
then c(x) = denom(γ∞) is the denominator of the rational number γ∞ ∈ Q.

For y = {γ} ∈ YN we define Cy ⊂ XΓ to be the oriented, closed geodesic correspond-
ing to the (hyperbolic) conjugacy class {γ} and put

ℓ(y) := ℓ(Cy).

We equip XN and YN with the probability measures µN and νN proportional to the
counting measures:

µN ({x}) = 1

|XN | , νN ({y}) = 1

|YN | .

Let f be a Maaß form, a holomorphic form or an Eisenstein series of weight k for Γ.
For x = [γ]∞ ∈ XN , denote

Lf (x) :=

∫ ∞

0
f(γ∞+ iy)

dy

y
.

For y ∈ YN , denote the associated geodesic period by

Pf (y) := Pf (Cy),

where Pf (Cy) is defined as in equation (3.1). We will use the tools developed in
Section 4 to transfer information about the distribution of the values {Lf (x) : x ∈
Xn} to those of {Pf (y) : y ∈ Yn}.
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5.1. Normal distribution. In this section we will “lift” the normal distribution
of the vertical periods Lf (x), x ∈ XN to the geodesic periods using the result of
Section 4.1. For this purpose it will be convenient to define

Y ′
N = {{γ} ∈ Conj(Γ) : N/2 ≤ | tr(γ)| ≤ N},

and work with the restricted graph

G′
N = {([γ]∞, {γ′}) ∈ XN × Y ′

N : [γ]∞ ∩ {γ′} 6= ∅}.
Working with this graph will allow us to control the size of error terms.

To simplify notation, we denote by µ′N : Y ′
N → R≥0 the G′

N -transform of the proba-
bility measure µN on XN proportional to the counting measure, that is

µ′N ({y}) := G′
N (µN )({y}) = 1

|XN |
∑

x∈e(y)

1

deg(x)
.

Corollary 5.1. Let f be a Maaß cusp form or a holomorphic cusp form for Γ =
PSL2(Z), or let f be a weight 2 holomorphic form for a general Fuchsian group Γ
of the first kind with a cusp at infinity of width one. Then for any a < b, we have

µ′N

({
y ∈ Y ′

N : Re

(
Pf (y)

Cf

√
logN

)
∈ [a, b]

})
=

1√
2π

∫ b

a
e−

x2

2 dx+O

(
1√

logN

)
.

Proof. Combine Proposition 3.1, Theorem 3.2, and Lemma 4.2 applied to the graph
G′

N and

fN (x) = Re

(
Lf (x)

Cf
√
logN

)
, gN (y) = (−1)k/2+1 Re

(
Pf (y)

Cf
√
logN

)
.

�

Corollary 5.2. Let f be a Maaß cusp form or holomorphic cusp form for Γ =
SL2(Z), or f a holomorphic cusp form for a general fuchsian group Γ with a cusp.
Then for any rectangle R ⊂ C, we have

lim
N→∞

µ′N

({
y ∈ Y ′

N :
Pf (y)

Cf

√
logN

∈ R

})
=

1

2π

∫

x+iy∈R

e−
x2+y2

2 dxdy.

Proof. Combine Proposition 3.1, Theorem 3.3, and Lemma 4.4 applied to the graph
G′

N and

fN (x) = Re

(
Lf (x)

Cf

√
logN

)
, gN (y) = (−1)k/2+1 Re

(
Pf (y)

Cf

√
logN

)
.

�

The last two corollaries show that if we count closed geodesics with “weights” in-
ferred by the graph G′

N , then we obtain normal distribution of the geodesics periods.
As mentioned in the introduction we believe that the normal distribution should hold
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for the counting measure on Y ′
N . For the rest of this paper, by studying properties

of this graph, we obtain results about the distribution of the geodesic periods with
respect to the counting measure νN , in particular with applications to the zero
set.

5.2. Controlling the degrees of the graphs GN . Recall the definitions (5.1)
and (5.2) of the discrete spaces (XN , µN ) and (YN , νN ) where N ≥ 1, defined from,
respectively, double cosets and conjugacy classes of a Fuchsian group Γ of the first
kind with a cusp at infinity of width one.

As mentioned in the introduction, the proof of Theorem 1.4 amounts to an upper
bound on the degrees deg(x) for x ∈ XN and a lower bound for the degrees deg(y)
for y ∈ YN (on average).

5.2.1. Degrees of vertices in XN . This first bound is easily controlled as follows.

Lemma 5.3. For x ∈ XN it holds that

deg(x) =
2N + 1

c(x)
+ E(x),

where |E(x)| ≤ 1 + ⌊ 5
c(x)⌋. In particular, for N ≥ 5 we have deg(x) ≥ 1 for all

x ∈ XN .

Proof. Let x ∈ XN and let γ ∈ Γ be such that x = [γ]∞ and c(x) = cγ > 0. Since
multiplication from the left by the matrix T±1 changes the trace by ±cγ , we may
arrange it so that −c(x)/2 ≤ aγ + dγ < c(x)/2. We note that for any k ∈ Z \ {0}
the conjugacy classes of γ and T kγ are different as the (signed) traces are different.
This implies that

deg(x) = #{k ∈ Z : 2 < |aγ + dγ + kc(x)| ≤ N}
(5.5)

= #{k ∈ Z : |aγ + dγ + kc(x)| ≤ N} −#{k ∈ Z : |aγ + dγ + kc(x)| ≤ 2}.(5.6)

This yields the wanted equality since

⌊2N+1
c(x) ⌋ ≤ #{k ∈ Z : |aγ + dγ + kc(x)| ≤ N} ≤ ⌈2N+1

c(x) ⌉,
and

#{k ∈ Z : |aγ + dγ + kc(x)| ≤ 2} ≤ ⌊ 5
c(x)⌋.

�

5.2.2. The degrees of vertices in YN . We will now give a geometric lower bound for
the degrees deg(y) with y ∈ YN . Let TΓ ≥ 1 be such that

B := {z ∈ H : −1/2 < Re z ≤ 1/2, TΓ ≤ Im z ≤ 2TΓ} ⊂ XΓ.

This exists by the thick-thin decomposition (see e.g. [41, Chap. 4.5]). We have the
following key geometric lower bound for the degrees of vertices in YN .
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Proposition 5.4. Let N ≥ 1 and let B be as above. Then there exists a constant
C = C(B) > 0 (independent of N) such that for any y ∈ Y ∗

N , we have

deg(y) ≥ C · ℓ(Cy ∩ B).

We start by recalling the following hyperbolic geometric fact.

Lemma 5.5. Let 0 < T ≤ r and let S denote the infinite geodesic connecting −r
and r. Then ℓ(S ∩ {Im z ≥ T}) = 2 log

(
r +

√
r2 − T 2

)
− 2 log T .

Proof. Applying the matrix
(
(2r)−1/2 −(r/2)1/2

(2r)−1/2 (r/2)1/2

)
∈ PSL2(R),

takes S to the vertical geodesic from 0 to ∞. The two points in S ∩ {Im z = T}
are taken to, respectively z0 = i T 2

r−
√
r2−T 2

and z1 = i T 2

r+
√
r2−T 2

. Now the first result

follows since Möbius transformations preserve the geodesic length and
∫ z1

z0

|dz|
y

= log
(
r +

√
r2 − T 2

)
−log

(
r −

√
r2 − T 2

)
= 2 log

(
r +

√
r2 − T 2

)
−2 log T,

as wanted. �

Corollary 5.6. Let T > 0 and r > 0 and let S denote the infinite geodesic connec-
tion −r and r. Then it holds that

ℓ(S ∩ {T ≤ Im z ≤ 2T}) ≤ 2 log
(
2 +

√
3
)
.

Proof. If r < T then clearly the intersection is empty. Assume that T ≤ r < 2T
then by the above lemma we get that

ℓ(S ∩ {Im z ≥ T}) = 2 log
(
r +

√
r2 − T 2

)
− log T ≤ 2(2 +

√
3).

Assume finally that r > 2T . Then we have by the above that

ℓ(S∩{Im z ≥ T}) = 2 log
(
r +

√
r2 − T 2

)
−2 log T−2 log

(
r +

√
r2 − 4T 2

)
+2 log 2T,

which has r-derivative equal to
√
r2 − 4T 2 −

√
r2 − T 2

√
r2 − 4T 2

√
r2 − T 2

.

Thus it is a decreasing function for r ≥ 2T and at r = 2T we recover the same value
as in the previous case. �

Proof of Proposition 5.4. For γ ∈ Γ hyperbolic and primitive, denote by Sγ the axis
of γ, i.e. the infinite geodesic half-circle with end-points in R given by

a− d±
√

(a+ d)2 − 4

2c
.
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For γ, γ′ ∈ Γ primitive and hyperbolic one has Sγ = δSγ′ ⇐⇒ γ′ = δγ±1δ−1. Also,
note that

(5.7) ℓ(Γ∞Sγ ∩ B) = ℓ(Sγ ∩ Γ∞B) = ℓ(Sγ ∩ {TΓ ≤ Im z ≤ 2TΓ}) ≪Γ 1,

where we used Corollary 5.6. Put in words, this means that the length of all trans-
lations of Sγ intersected with B is bounded above by a constant.

Now fix a primitive closed geodesic C and consider its projection onXΓ. We consider
the geodesic arcs of C that intersect B. We have that

C ∩ B =
⋃

γ∈y(C )

(Sγ ∩ B),

where y(C ) ∈ Conj(Γ) denotes the primitive conjugacy class associated to the closed
geodesic C . Note that if Sγ ∩ B 6= ∅, then clearly the radius of axis of γ satisfies
rγ ≥ TΓ ≥ 1. By the explicit formula:

rγ =

√
tr(γ)2 − 4

2cγ
,

we conclude that cγ ≤ | tr(γ)|. This shows that if {γ} ∈ Y ∗
N and Sγ ∩B 6= ∅ then we

have [γ]∞ ∈ XN , and thus e = ([γ]∞, {γ}) is an edge of GN . Now if γ′ ∈ Γ satisfies
γ′ ∈ {γ} and γ′ ∈ [γ]∞ then we have

tr(γ) = tr
(
γ′
)

and γ = Tmγ′T n,

for some m,n ∈ Z. Observe that we have tr(Tmγ′T n) = tr(γ′) + (m− n)cγ′ where
cγ′ 6= 0 denotes the lower-left entry of γ′ (which is non-zero since γ′ is hyperbolic).
This means that m = n and thus the elements γ′ ∈ y(C ) contributing to the edge
e are exactly the conjugates by Γ∞ of γ. But from (5.7), we know that the total
contribution of these conjugates to the total length of C ∩ B is OΓ(1). This shows
indeed that ℓ(C ∩ B) ≪ deg({γ}) as wanted. �

5.2.3. Sparse equidistribution of closed geodesics. In this section we will prove a
sparse equidistribution result using a technique of Aka–Einsiedler [1] which combined
with Proposition 5.4 will allow us to control the degrees of YN .

For T ≥ 1 we denote by

(5.8) φT (g) :=
1

T

∫ T

0
φ(gat)dt, at =

(
et/2 0
0 e−t/2

)
,

the average of φ under the geodesic flow. Then we have the following control of this
action.

Lemma 5.7. Let φ : Γ\PSL2(R) → R≥0 be a compactly supported positive valued
function. Let F : Γ\PSL2(R) → C be an (L2-normalized) Maaß form or an Eisen-
stein series of weight k and spectral parameter tF . Then for each A ≥ 0 there exists
B > 0 such that it holds that

〈φT , F 〉 ≪φ,A (1 + k2 + |tf |)−AeBT T → ∞,
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where 〈·, ·〉 denotes the Petersson innerproduct on Γ\PSL2(R).

Proof. Consider the self-adjoint differential operator ∆′ := 1+∆+ ∂2

∂θ2
acting on (a

dense subspace of) L2(Γ\PSL2(R)). Then we have by self-adjointness that for any
n ≥ 0

〈φT , F 〉 = (1 + k2 + 1/4 + t2f )
−n〈φT , (∆′)nF 〉

≪n (1 + |k|+ |tf |)−2n||y1/2Γ (∆′)nφT || · ||y−1/2
Γ F ||,

where ||F ||2 = 〈F,F 〉 in terms of the Petersson inner product and yΓ : XΓ → R≥0

denotes the invariant height of Γ defined as in [18, (2.42)] (extended to a function
on Γ\PSL2(R) by PSO2(R)-invariance). Notice that the value of yΓ on the support

of φT is bounded by Oφ(e
T ) and so ||y1/2Γ (∆′)nφT || is bounded by eT/2 · S∞,2n(φT )

where S∞,2n denotes the Sobolev norm from [42, Sec. 2.9.2]. It follows by Lemma
2.2 in loc. cit. that we have

|S∞,2n(φT )| ≪n e
2nTS∞,2n(φ).

Finally, by standard sup norm bounds (this is proved in [18, Prop. 7.2] for weight
0 and a similar argument using a weight k automorphic kernel yields the general

result) we know that ||y−1/2
Γ F || is bounded polynomially in k and tF for any F as

above (including the case where F is an Eisenstein series due to the factor y
−1/2
Γ ).

This yields the wanted since we can pick n arbitrarily large. �

Theorem 5.8. Let Γ be a Fuchsian group of the first kind. Fix ǫ > 0. For each
N ≥ 1 let

IN ⊂ CΓ(N) = {C ⊂ XΓ : closed geodesics of length ≤ N}
be a subcollection of closed geodesics such that

∑

C∈IN
ℓ(C ) ≥ ǫ · ℓ(CΓ(N)) = ǫ ·

∑

C :ℓ(C )≤N

ℓ(C ).

Then the collections of closed geodesics IN equidistribute in the unit tangent bundle
of XΓ as N → ∞.

Proof. Let f : H → C be either a cuspidal or residual Maaß form or an Eisenstein
series of weight k automorphic form for Γ. An equidistribution theorem of Zelditch
[43, Thm 6.1] yields

(5.9)

∣∣∣∣∣∣
1

ℓ(CΓ(N))

∑

C∈CΓ(N)

Pf (C )

∣∣∣∣∣∣
≤ E1(tf , k)N

−δ,

where δ > 0 only depends on (the spectral gap of) Γ and E1 : C×Z → R≥0 is some
continuous (error-term) function depending on the spectral parameter tf and the
weight k of f . For the fact that the error-term depends continuously on the spectral
data of F see the discussion on page 85 in loc. cit.. Recall the definition (5.8) of
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the average φT . Following Aka–Einsiedler [1] we have by invariance of µC under the
geodesic flow that for any T ≥ 1 it holds that
∣∣∣∣∣∣

1

ℓ(IN )

∑

C∈IN

∫

C

φdµC

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
1

ℓ(IN )

∑

C∈IN

∫

C

φT dµC

∣∣∣∣∣∣

2

≤ 1

ℓ(IN )

∑

C∈IN

∫

C

|φT |2 dµC

≤ ǫ−1

ℓ(CΓ(N))

∑

C∈CΓ(N)

∫

C

|φT |2 dµC .

We want to show that we can pick T ≥ 1 (depending on N) such that the right-hand
side tends to zero as N → ∞. We start by spectraly expanding:

|φT |2 = 〈1, |φT |2〉+ ϕ0
T + ϕr

T + ϕc
T ,

where

ϕ0
T =

∑

k∈2Z

∑

F∈B0
k

〈|φT |2, F 〉F, ϕr
T =

∑

k∈2Z

∑

F∈Br
k

〈|φT |2, F 〉F,(5.10)

ϕc
T =

∑

k∈2Z

∑

a

1

4π

∫

R
〈|φT |2, Ea,k,it〉Ea,k,itdt(5.11)

denotes, respectively, the cuspidal, (non-constant) residual and continuous projec-
tions of |φT |2. Here B0

k and Br
k denotes an orthonormal basis of, respectively,

cuspidal Maaß forms and residual Maaß forms of weight k, and a runs over a full
set of inequivalent cusps of Γ and Ea,k,it denotes the corresponding Eisenstein series
of weight k [11, Eq. (4.44)]. By Lemma 5.7 (and Weyl’s law), we see that we can

truncate each of the expansions for |k| + |tF | ≤ eT
2
N , say, at the cost of an error

term O(e−T 2
N−100). By effective mixing as in [1, Prop. 4] we can bound the con-

stant contribution by 〈1, |φT |2〉 ≪φ
1
T . Finally, we apply Zelditch’s result (5.9) to

the remaining Maaß forms (i.e. those for which |k| + |tF | ≤ eT
2
), and we conclude

that ∑

C∈CΓ(N)

∫

C

|φT |2 dµC ≪φ ℓ(CΓ(N))

(
1

T
+ E2(T )N

−δ

)
,

for some continuous function E2 : R≥1 → R≥0 depending on φ. The result now
follows by picking

T = T (N) := max{t ≥ 1 : E2(t) ≤ N δ/ logN},
and observing that T (N) → ∞ as N → ∞ by the continuity of the error-term
E2. �

In the case of the modular group we have the following slight improvement by a
result of Aka–Einsiedler [1, Thm. 2].

Theorem 5.9. Let Γ = PSL2(Z) be the modular group. For each N ≥ 1 let

IN ⊂ C(N) = {C ⊂ PSL2(Z)\H : closed geodesics of length ≤ N}
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be a subcollection of closed geodesics such that

∑

C∈IN
ℓ(C ) ≫ ℓ(C(N))

logN
.

Then the collections of closed geodesics IN equidistribute in the unit tangent bundle
of PSL2(Z)\H as N → ∞.

Proof. As explained in [34] the primitive closed geodesics on the modular curve
PSL2(Z)\H are parameterized by elements of class groups ClD of quadratic orders
of discriminant D. By a theorem of Aka–Einsiedler [1, Thm. 2] we know that

for a subcollection ID ⊂ ClD such that |ID| ≥ |ClD|
logD then the associated geodesics

equidistribute as D → ∞. Since the length of the geodesics associated to an element
of ClD is log ǫD and |ClD| log ǫD = D1/2+o(1) and ℓ(C(N)) = N2+o(1), we get the
wanted conclusion. �

Remark 5.10. It is likely that one can obtain a proof of the sparse equidistribution
in Theorem 5.9 for a general Fuchsian group of the first kind. By the method of
Aka–Einsiedler this reduces to proving a version of Zelditch’s theorem (5.9) with a
polynomial dependence on the spectral parameter of the Maaß form F . This should
follow by a detailed analysis of the hypergeometric functions appearing in Zelditch’s
trace formula, see [43, p. 85], as well as invoking a version of Sarnak’s bound for
triple periods [35] with a polynomial dependence of the spectral datum of the “fixed”
Maaß forms (as was carried out in a special case in [17, Appendix A]). We have not
pursued this.

6. Non-vanishing of geodesic periods

In this section we will prove non-vanishing results for geodesic periods using the
results in the previous sections. We will prove two versions: one where we obtain
strong quantitative bounds on the number of “very small” geodesic periods, and on
the other hand, we show that 100% of geodesic periods are not “too small”.

The following is a slight generalization of Theorem 1.2.

Theorem 6.1. Let f be a Maaß cusp form for the modular group Γ = PSL2(Z) and
let δ > 0. Then we have that

∣∣∣
{
y ∈ Y ∗

N : |Pf (y)| ≤ (logN)1/2−δ
}∣∣∣≪ N2

(logN)1+min(δ,1/4)
,

as N → ∞.

Proof. Put α = 1 +min(δ, 1/4) and

AN :=
{
y ∈ Y ∗

N : |Pf (y)| ≤ (logN)1/2−δ
}
.
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Clearly we may suppose that |AN | ≥ C N2

(logN)α , where C is a sufficiently large

constant.

Let

BN :=

{
y ∈ Y ∗

N : tr(y) ≤ N

(logN)1/3

}
.

Then by the prime geodesic theorem we have that

|BN | ≪
(

N

(logN)1/3

)2(
log

(
N

(logN)1/3

))−1

≪ N2

(logN)5/3
.

In particular, we see that by the assumption on the size of AN we have

|AN | ∼ |AN \BN |, N → ∞,

since 5/4 < 5/3. This implies that as N → ∞ we have

∑

y∈AN\BN

ℓ(Cy) ≫ logN
N2

(logN)α
≫ N2

(logN)1/4
(6.1)

by the definition of BN .

Let CN := e(AN \BN ) ⊂ XN be the set of neighbours of AN \BN . From Proposition
3.1, we see that for x ∈ CN

|Lf (x)| ≤ |Pf (y)|+O

(
1 +

(
N

N/(logN)1/3

)1/2+ǫ
)

≪ (logN)1/2−δ + (logN)1/4,

for 0 < ǫ < 1/100, say. In particular, there exists some constant C > 0 such

that x ∈ CN implies that |Lf (x)/(logN)1/2| ≤ C(logN)−(α−1). From the normal
distribution of the vertical periods as in Theorem 3.2, we have that

|CN |
|XN | ≤

∫

|z|≤C(logN)−(α−1)

e−|z|2/2

2π
dz +O

(
1√

logN

)
≪ (logN)−2(α−1),(6.2)

using that 2(α− 1) = 2min(1/4, δ) ≤ 1/2.

We now proceed to count the total number of edges out of both AN \ BN and CN

in two different ways. On the one hand, we have

∑

y∈AN\BN

deg y ≫
∑

y∈AN\BN

l(Cy ∩ B) ≫
∑

y∈AN\BN

l(Cy) ≫ |AN \BN | logN

where in the first inequality we applied Proposition 5.4 (recall the definition of B),
in the second we applied the equidistribution result Theorem 5.8 to the geodesics in
AN \BN (which applies by the lower bound (6.1)), and in the last we used that for
y ∈ AN \BN we have ℓ(Cy) ≫ logN (by the definition of BN ).

On the other hand, we can upper bound the degrees in CN as follows:
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∑

x∈CN
deg x =

∑

x∈CN :
cx≤ N

(logN)β

degx+
∑

x∈CN :
cx>

N

(logN)β

degx ≤
∑

x∈XN :
cx≤ N

(logN)β

deg x+ 2
∑

x∈CN
(logN)β

≪ N2

(logN)β
+ |CN |(logN)β

≪ N2

(logN)β
+

N2

(logN)2−2α−β
,

where in the second to last inequality we have applied Lemma 5.3 and the last
inequality follows from the upper bound (6.2) on the size of CN . Choosing β = α−1,
we obtain an upper bound of N2/(logN)α−1. Notice that since CN ⊂ XN consists
of all the neighbours of AN \BN , we have the trivial inequality

∑

x∈CN
degx ≥

∑

y∈AN\BN

deg y

Combining all of the above we arrive at

|AN | ≤ |AN\BN | ≪ 1

logN

∑

y∈AN\BN

deg y ≤ 1

logN

∑

x∈CN
deg x≪ N2

(logN)α−1+1
,

as wanted. �

Remarks 6.2. Using a similar argument as in the proof of Theorem 6.1, one can
show that the set of large geodesic periods is small. More precisely, for any δ > 0,
we have ∣∣∣

{
y ∈ Y ∗

N : |Pf (y)| ≥ (logN)1/2+δ
}∣∣∣≪δ

N2

(logN)2
.

We do not need to assume the Central Limit Theorem with error term. By using the
estimate for k-th moment, we have for any A > 0,

∣∣∣
{
x ∈ XN : |Lf (x)| ≥ (logN)1/2+δ

}∣∣∣≪δ,A
N2

(logN)A
.

We will now proceed to prove Theorems 1.4 and 1.5 from the introduction. The proof
is very similar to the preceding one with the only difference being that for periods
of Eisenstein series we will only have to control the contribution from x ∈ XN for
which c(x) is small.

Proof of Theorems 1.4 and 1.5. We may assume that h(N) ≤ log log logN . Put

A−
N =

{
y ∈ Y ∗

N : |Pf (y)| ≤ (logN)1/2(log logN)δf /h(N)
}
,

A+
N =

{
y ∈ Y ∗

N : |Pf (y)| ≥ (logN)1/2(log logN)δfh(N)
}
,

AN =A−
N ∪A+

N .
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We want to show that |AN | = o(N2/ logN) as N → ∞. Let ǫ > 0 and assume for
contradiction that |AN | ≥ ǫN2/ logN for infinitely many N . For such N put

BN = {y ∈ YN : tr(y) ≤ N/ log logN} .

Then by the prime geodesic theorem we have for N sufficiently large

|AN \BN | ≥ 1
2ǫN

2/ logN.

Let C±
N = e(A±

N \ BN ) and DN = {x ∈ XN : c(x) ≤ N/(logN)1/2}. Then by

Proposition 3.1 we have that for x ∈ C−
N \DN :

|Lf (x)| ≪ (logN)1/2(log logN)δf /h(N) + (logN)1/4+1/100 + (log logN)1/2+1/100

≪ (logN)1/2(log logN)δf /h(N),

and similarly for x ∈ C+
N \DN . Note that since h(N) → ∞, we have

P(|NC(σ, µ)| ≤ h(N)−1) + P(|NC(σ, µ)| ≥ h(N)) → 0, N → ∞,

where NC(σ, µ) denotes a complex normally distributed random variable with mean
µ and variance σ. Thus, with CN = C+

N∪C−
N , we conclude by the normal distribution

results in Theorems 3.2 and 3.3 that

|CN \DN |
|XN | → 0, N → ∞.

Let ψ : R>0 → R>0 be an increasing (and sufficiently slowly growing) function such
that ψ(N) → ∞ and |CN \DN |ψ(N) = o(N2) as N → ∞ . We proceed as above
and count the number of edges between CN \DN and AN \BN in two different ways.
First of all the total number of such edges is clearly upper bounded by

∑

x∈CN\DN

deg x =
∑

x∈CN\DN :

cx≤ N
ψ(N)

deg x+
∑

x∈CN\DN :

cx>
N

ψ(N)

deg x≪ N2

ψ(N)
+|CN\DN |ψ(N) = o(N2).

On the other hand, by the assumptions on the size of AN \BN Theorem 5.8 applies
and we conclude by equidistribution and the lower bound Proposition 5.4:

∑

y∈AN\BN

deg y ≫
∑

y∈AN\BN

ℓ(Cy ∩ B) ≫ |AN \BN | logN ≫ǫ N
2.

Recall that by definition CN is the set of neighbors of AN \ BN , so the number of
edges between AN \BN and CN \DN is lower bounded by

∑

y∈AN\BN

deg y −
∑

x∈DN
deg x ≥

∑

y∈AN\BN

deg y − 2
N2

(logN)1/2
≫ǫ N

2.

This is contradiction. �
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7. Non-vanishing of central values of L-functions

Denote by Dfund the set of positive fundamental discriminants, that is

Dfund =

{
D > 0 :

D ≡ 1 (mod 4) and D square-free or
D = 4m, where m ≡ 2, 3 (mod 4) and m square-free

}
.

Let D ∈ Dfund and K = Q(
√
D) the associated real quadratic field. Let N be a

square-free integer coprime with D such that each prime divisor p of N splits in
K. Hence there exists an integer α such that D ≡ α2 (mod 4N). A quadratic form
Q = [a, b, c] is said to be Heegner of level N if N |a and b ≡ α (mod 2N). Denote by
QN,D the set of primitive quadratic forms Heegner of level N and discriminant D.
Then QN,D is stable under the action of Γ0(N) and we have isomorphisms

Γ0(N)\QN,D
∼−−→ SL2(Z)\Q1,D

and

Cl+D
∼−−→ Γ0(N)\QN,D ,

where Cl+D is the narrow class group of Q(
√
D). Therefore, for each A ∈ Cl+D, there

is an associated primitive geodesic CA in X0(N) := Γ0(N)\H of length log ǫ2D, we
refer to [8] and [31, Chapter 6] for precise details. We denote h(D) = |Cl+D| the
(narrow) class number.

For a fixed square-free N , we are interested in working with fundamental discrimi-
nants such that the above holds. A prime p splits in Q(

√
D) iff (p,D) = 1 and D

is quadratic residue modulo p. Therefore, from the Chinese Remainder Theorem,
there exists I ⊂ {1, 2, · · · , 4N − 1} such that

∀p|N, p = p1p2 in Q(
√
D) ⇐⇒ D mod 4N ∈ I.

We denote

D
N
fund := {D fundamental discriminant : D ≡ a (mod 4N), for some a ∈ I}

and

D
N
fund(X) := {D ∈ D

N
fund : ǫD ≤ X}.

From work of Hashimoto [15], we know there exists a constant a(N) such that

(7.1)
∑

D∈DN
fund(X)

h(D) = a(N)Li(X2) +ON,ǫ

(
X25/13+ǫ

)
.

Let f be a Hecke–Maaß newform of weight 2k ≥ 0 for Γ0(N). For D ∈ DN
fund and

K = Q(
√
D), we have the following version of Waldspurger formula, given by Popa

[31, Theorem 6.3.1]:

L(f ⊗ θχ, 1/2) =
c+f

D1/2

∣∣∣∣∣∣∣

∑

A∈Cl+D

χ(A)Pf (CA)

∣∣∣∣∣∣∣

2

,
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where θχ is the theta-series associated to the class group character χ ∈ Ĉl+D and

c+f > 0 is constant depending only on f . Note here that the geodesic periods [31,

(6.1.2)] in Popa’s formula do indeed match the geodesic periods Pf (CA) up to a
constant depending only on f as follows from the explicit formulas in [31, Sec. 6.1].
By applying Plancherel (orthogonality of characters) to the above, we obtain

(7.2)
1

h(D)

∑

χ∈̂Cl+D

L(f ⊗ θχ, 1/2) =
c+f

D1/2

∑

A∈Cl+D

|Pf (CA)|2 .

Using this together with our previous results, we obtain the following non-vanishing
result for central values of Rankin-Selberg L-functions.

Proposition 7.1. There exists an absolute constant c = c(N) > 0 such that, as
X → ∞,

(7.3)
#{D ∈ DN

fund(X) : ∃χ ∈ Ĉl+D s.t. L(1/2, f ⊗ θχ) 6= 0}
#DN

fund(X)
≥ c+ o(1).

Proof. Let Dfund(X) := {D ∈ Dfund : ǫD ≤ X}. We use the moments of h(D)
restricted to fundamental discriminants, as computed by Raulf [32]. More precisely,
we have that for each k ∈ N ∪ {0}, there exists a constant C(k) such that

∑

D∈Dfund(X)

h(D)k = C(k)

∫ X

2

(
t

log t

)k

dt+O
(
Xk+1−δk

)
,

for some δk > 0.

We denote

Dgood(X) :=
{
D ∈ D

N
fund(X) : ∃χ ∈ Ĉl+D with L(1/2, f ⊗ θχ) 6= 0

}
⊂ D

N
fund(X).

Note that if D ∈ DN
fund(X) \ Dgood(X), we see from (7.2) that Pf (CA) = 0 for all

A ∈ Cl+D. In particular,

⋃

D∈DN
fund(X)\Dgood(X)

⋃

A∈Cl+D

{CA} ⊆ {C ⊂ X0(N) : ℓ(C ) ≤ 2 logX,Pf (C ) = 0} .

Fix ǫ > 0. Using Theorem 1.4 and the prime geodesic theorem (5.3), we obtain that
for X sufficiently large

∑

D∈DN
fund(X)\Dgood(X)

h(D) ≤ ǫ
X2

logX
.
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Using Cauchy–Schwartz, and the fact that Dgood(X) ⊆ DN
fund(X) ⊆ Dfund(X), it

follows that for X sufficiently large

(C(2) + ǫ)
X3

(logX)2
≥

∑

D∈Dfund(X)

h(D)2 ≥
∑

D∈Dgood(X)

h(D)2

≥

(∑
D∈Dgood(X) h(D)

)2

|Dgood(X)| ≥
(a(N)− ǫ)2 X4

(logX)2

αX

This implies that for any ǫ > 0 we have for X sufficiently large that

|Dgood(X)| ≥ (a(N)− ǫ)2

C(2) + ǫ
.

This implies that the lower bound (7.3) holds with c = a(N)2

C(2) β where

β := lim inf
X→∞

X

|DN
fund(X)| > 0.

�

Remark 7.2. We could have applied Hölder inequality instead of Cauchy–Schwartz

and obtain α =
(
a(N)k

C(k)

)1/(k−1)
and obtain possibly a stronger result. However, none

of the constants C(k) have been computed besides k = 0, 1, and the upper bounds
of C(k) from [32] would indicate fast decay for α as k → ∞.
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central L-values over Hilbert class fields”. In: Forum Math. Sigma 4 (2016), Paper No.
e20, 26. doi: 10.1017/fms.2015.30. url: https://doi.org/10.1017/fms.2015.30.

https://doi.org/10.1017/etds.2014.68
https://doi.org/10.1017/etds.2014.68
https://doi.org/10.4171/JEMS/1324
https://doi.org/10.5802/jtnb.879
https://doi.org/10.4171/OWR/2020/26
https://doi.org/10.1017/fms.2015.30
https://doi.org/10.1017/fms.2015.30


32 REFERENCES

[7] Petru Constantinescu. “Distribution of modular symbols in H3”. In: Int. Math. Res.
Not. IMRN 7 (2022), pp. 5425–5465. issn: 1073-7928,1687-0247.doi: 10.1093/imrn/rnaa241.
url: https://doi.org/10.1093/imrn/rnaa241.

[8] Henri Darmon. “Heegner points, Heegner cycles, and congruences”. In: Elliptic curves
and related topics. Vol. 4. CRM Proc. Lecture Notes. Amer. Math. Soc., Providence,
RI, 1994, pp. 45–59. isbn: 0-8218-6994-9.doi: 10.1090/crmp/004/04. url: https://doi.org/10.1090/crmp/00

[9] Sary Drappeau and Asbjørn Christian Nordentoft. “Central values of additive twists
of Maaß forms L-functions”. In: arXiv e-prints, arXiv:2208.14346 (Aug. 2022). doi:
10.48550/arXiv.2208.14346. arXiv: 2208.14346 [math.NT].

[10] W. Duke. “Hyperbolic distribution problems and half-integral weight Maass forms”.
In: Invent. Math. 92.1 (1988), pp. 73–90. issn: 0020-9910,1432-1297.doi: 10.1007/BF01393993.
url: https://doi.org/10.1007/BF01393993.

[11] William Duke, John B. Friedlander, and Henryk Iwaniec. “The subconvexity problem
for Artin L-functions”. In: Invent. Math. 149.3 (2002), pp. 489–577. issn: 0020-9910.
doi: 10.1007/s002220200223. url: https://doi.org/10.1007/s002220200223.

[12] Manfred Einsiedler and Thomas Ward. Ergodic theory with a view towards number the-
ory. Vol. 259. Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London,
2011, pp. xviii+481. isbn: 978-0-85729-020-5.doi: 10.1007/978-0-85729-021-2. url:
https://doi.org/10.1007/978-0-85729-021-2.

[13] Manfred Einsiedler et al. “The distribution of closed geodesics on the modular surface,
and Duke’s theorem”. In: Enseign. Math. (2) 58.3-4 (2012), pp. 249–313. issn: 0013-
8584. doi: 10.4171/LEM/58-3-2. url: https://doi.org/10.4171/LEM/58-3-2.

[14] Gergely Harcos and Philippe Michel. “The subconvexity problem for Rankin-Selberg
L-functions and equidistribution of Heegner points. II”. In: Invent. Math. 163.3 (2006),
pp. 581–655. issn: 0020-9910.doi: 10.1007/s00222-005-0468-6. url: https://doi.org/10.1007/s00222-005

[15] Yasufumi Hashimoto. “Asymptotic formulas for class number sums of indefinite binary
quadratic forms on arithmetic progressions”. In: Int. J. Number Theory 9.1 (2013),
pp. 27–51. issn: 1793-0421,1793-7310.doi: 10.1142/S1793042112501230. url: https://doi.org/10.1142/S17

[16] Dennis A. Hejhal. The Selberg trace formula for PSL(2, R). Vol. 2. Vol. 1001. Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1983, pp. viii+806. isbn: 3-540-12323-
7. doi: 10.1007/BFb0061302. url: https://doi.org/10.1007/BFb0061302.

[17] Bingrong Huang and Stephen Lester. “Quantum variance for dihedral Maass forms”.
English. In: Trans. Am. Math. Soc. 376.1 (2023), pp. 643–695. issn: 0002-9947. doi:
10.1090/tran/8780.

[18] Henryk Iwaniec. Spectral methods of automorphic forms. Second. Vol. 53. Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI; Revista
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