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ABSTRACT

The practical utility of agent-basedmodels in decision-making relies

on their capacity to accurately replicate populations while seam-

lessly integrating real-world data streams. Yet, the incorporation

of such data poses significant challenges due to privacy concerns.

To address this issue, we introduce a paradigm for private agent-

based modeling wherein the simulation, calibration, and analysis

of agent-based models can be achieved without centralizing the

agents’ attributes or interactions. The key insight is to leverage

techniques from secure multi-party computation to design proto-

cols for decentralized computation in agent-based models. This

ensures the confidentiality of the simulated agents without com-

promising on simulation accuracy. We showcase our protocols on

a case study with an epidemiological simulation comprising over

150,000 agents. We believe this is a critical step towards deploying

agent-based models to real-world applications.
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1 INTRODUCTION

Agent-based modeling (ABM) is a bottom-up simulation technique

wherein a system is modeled through the interaction of autonomous

decision-making entities referred to as agents, which may represent

individuals, companies, or other decision-making entities. Due to

their granular approach, ABMs are a promising tool for real-world

decision-making and policy design and constitute an active field

of research across economics [6, 12, 15, 34], biology [28, 44], and

epidemiology [7, 33, 37, 54]. The wider adoption of ABMs, however,
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is hindered by (1) the need for microdata to generate the underly-

ing agent population and (2) the often substantial computational

resources required to run, calibrate, and analyze an ABM. Recently,

there has been significant progress towards developing new design

patterns for ABMs, which exploit tensorization [17, 18] and differen-

tiability [4, 19] of simulators. This has alleviated the computational

burdens associated with ABM simulation [18], calibration [19, 52],

and analysis [51] by granting access to techniques such as GPU

computing and differentiable programming, allowing ABMs to scale

to million-size populations [11, 53].

Unfortunately, improvements in the computational efficiency

of ABMs is of little value if the quality of the underlying popula-

tion microdata is poor. Currently, prevalent approaches involve

the construction of synthetic populations designed to align with a

predefined set of summary statistics derived from real-world ob-

servations. For instance, in epidemiological ABMs, the population

is crafted to replicate summary statistics obtained from census

data [7, 13, 16, 46, 47]. However, it is essential to recognize that

the limited granularity of census data arises primarily from pri-

vacy considerations rather than the actual scarcity of available data.

As ABMs continue to scale towards one-to-one representations of

real-world systems, there remains a fundamental limitation in their

modeling potential as long as privacy guarantees are not in place.

Previous attempts to augment ABM data with additional informa-

tion, such as mobility or health data, have resulted in data leaks that

exposed agents’ personal information [1, 22, 36]. These incidents

underscore the need for a decentralized approach to ABM, where

each agent’s sensitive information is kept confidential throughout

the modeling process.

Motivated by this, we introduce a new paradigm for agent-based

simulation that ensures the confidentiality of each agent’s sensitive

information. Leveraging techniques drawn from secure multi-party

computation [40], we develop privacy-preserving protocols for the

simulation, calibration, and analysis of ABMs. These protocols offer

robust security guarantees to agents while preserving the ability of

ABMs to model complex systems effectively. Moreover, our method-

ology enables secure ABMs to take advantage of differentiable pro-

gramming, allowing them to be integrated into machine learning

pipelines, further boosting their modeling capabilities. We demon-

strate the capabilities of this new methodology by running a case

study in the city of Oxford, UK. We showcase how our approach

can provide the same level of insight and analysis as traditional

ABMs while guaranteeing the agents’ privacy.
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In summary, this work constitutes, to the best of our knowledge,

the first framework for privacy-preserving ABMs. The framework

supports their simulation, calibration, and analysis. We hope this

development will pave the way for the secure and practical uti-

lization of ABMs as valuable tools for policy-making in real-world

settings.

2 AGENT-BASED MODELS

In this section, we formalize the processes of simulation, calibration,

and analysis of ABMs. In doing so, we lay the foundations for the

introduction of privacy-preserving protocols in Section 4.

2.1 Simulation of ABMs

Consider an ABM with 𝑁 agents 𝐴 = {1, 2, . . . , 𝑁 }. We denote by

z𝑖 (𝑡) the state of agent 𝑖 at time 𝑡 , which encapsulates both fixed

and time-evolving properties of the simulation agents. For example,

z might represent the age and disease status of human agents in

epidemiological models, or the account balance of firms in a finan-

cial auction model. As the simulation proceeds, an agent 𝑖 updates

their state z𝑖 (𝑡) by interacting with their neighbors N𝑖 (𝑡) and the

environment E(𝑡). We assume that the interaction of agents with

their neighbors can be conceived as message passing on a graph

G = (𝑉 , 𝐸), where the vertices 𝑉 of the graph correspond to the

agents, edges 𝑒𝑖 𝑗 ∈ 𝐸 connect neighboring agents, and interactions

are represented as messages𝑀𝑖 𝑗 (𝑡) = 𝑀 (z𝑗 (𝑡), 𝑒𝑖 𝑗 (𝑡), 𝜽 , 𝑡), where
𝜽 are the ABM structural parameters. This is the case for a diverse

class of social and biological contagion models [23]. For example,

𝑀𝑖 𝑗 (𝑡) may represent the transmission of infection from agent 𝑗 to

agent 𝑖 , which may depend on the susceptibility of agent 𝑖 (z𝑖 ), the
infectivity of 𝑗 (z𝑗 ), the properties of the virus (𝜽 ), and the nature

of the interaction (𝑒𝑖 𝑗 ) [19, 33, 54]; or transmission of information

from agent 𝑖 to 𝑗 which depends on the opinion of agent 𝑖 (z𝑖 ), and
the assimilation and rejection thresholds of agent 𝑗 (z𝑗 ) [21, 21, 25].
Thus, at step 𝑡 , each agent updates its state as follows:

z𝑖 (𝑡 + 1) = 𝑓
©­«z𝑖 (𝑡),

⊕
𝑗∈N𝑖 (𝑡 )

𝑀𝑖 𝑗 (𝑡), 𝜽
ª®¬ , (1)

where ⊕ denotes an aggregation function over all received mes-

sages. The specific form of 𝑓 can be tailored to capture the unique

dynamics of the system under investigation. For instance, the diver-

sity of contagion models can be encapsulated by different functional

forms of 𝑓 [23].

During the simulation of an ABM, a central agent (the modeler)

collects a time-series of aggregate statistics over agent states, x𝑡 =
ℎ({z𝑖 (𝑡) | 𝑖 ∈ 𝐴}), which can be used to compare the output of the

model to ground-truth data. For instance, in epidemiological ABMs,

ℎ may correspond to counting the number of infected agents so

that {x𝑡 }𝑡 is a time series of daily infections.

As we can see, both Equation (1) and the collection of the sum-

mary statistics require agents to communicate their state to other

agents. In the following sections, we introduce a methodology that

enables these operations to take place while preserving the privacy

of individual agents.

2.2 Calibration of ABMs

Calibration refers to the process of tuning the set of structural

parameters 𝜽 so that ABM outputs x are compatible with given

observational data y. In epidemiological ABMs, for instance, this

entails determining values for parameters like the reproduction

number 𝑅0 and mortality rates to align with the observed daily

infection or mortality data.

It is important to recognize that due to the stochasticity of the

model and its partial observability, multiple sets of parameter val-

ues 𝜽 may be compatible with the observed data y. Consequently,
it becomes essential to have an accurate estimate of uncertainty

around the calibrated parameters. Likewise, it is also important

to be able to incorporate expert knowledge that may indicate a

preference for certain regions of the parameter space over others

into the calibration procedure. Both of these requirements can be

met by adopting a Bayesian framework, wherein parameter infer-

ence corresponds to determining the posterior distribution over the

parameters, 𝜋 (𝜽 | y) using Bayes’ theorem,

𝜋 (𝜽 | y) = 𝑝 (y | 𝜽 ) 𝜋 (𝜽 )
𝑝 (y) , (2)

where 𝜋 (𝜽 ) is the prior distribution, 𝑝 (y | 𝜽 ) is the likelihood

function and 𝑝 (y) is the marginal likelihood. For ABMs, the like-

lihood function is typically intractable; thus, we need to consider

likelihood-free calibration algorithms.

While many Bayesian calibration methods exist for ABM (see,

e.g., [24, 30, 49]), we focus on methods that exploit the differen-

tiability of the ABM. Differentiable ABMs [3, 19] are ABMs im-

plemented in frameworks that allow computing the gradient of

the ABM output respect to the structural parameters, ∇𝜽x, in an

efficient way using techniques like automatic differentiation [8].

Gradient-assisted calibration methods that take advantage of the

differentiability of the ABM have been shown to be more efficient,

scaling to larger parameter spaces than their gradient-free coun-

terparts [19, 53], without requiring the use of surrogate models. In

most applications, the ABM output x is an aggregate over agent

states through time, as is the case in epidemiology, where we are

typically interested in infection curves. The gradient can then be

computed as an aggregation

∇𝜽𝑥𝑡 =
⊕
𝑖∈𝐴

∇𝜽 (ℎ(z𝑖 (𝑡))). (3)

A suitable likelihood-free approach to conduct gradient-assisted

Bayesian calibration in ABMs is generalized variational inference

[39] (GVI). In GVI, we employ a variational approach to target the

generalized posterior,

𝜋𝑤 (𝜽 | y) ∝ 𝑒−𝑤 ·ℓ (y,𝜽 )𝜋 (𝜽 ), (4)

where ℓ (y, 𝜽 ) is a loss function capturing the compatibility between

the observed data y and the behaviour of the ABM at parameter

vector 𝜽 , and𝑤 > 0 is a hyperparameter. This posterior can then

be approximated by finding a distribution 𝑞 in some variational

family Q of distributions that minimises the Kullback-Liebler (KL)

divergence to the generalised posterior given in Equation (4),

𝑞∗ = argmin

𝝓
L(𝝓), (5)



where

L(𝝓) = E𝑞𝝓 [ℓ (x(𝜽 ), y)] +𝑤 KL(𝑞𝝓 | | 𝜋 (𝜽 )) . (6)

This optimization problem can be tackled by estimating the

gradient ∇𝝓L(𝝓) and using an appropriate optimization technique

such as stochastic gradient descent to minimize L(𝝓). Given the

differentiablity of the ABM, the gradient of the expected loss can be

computed through a pathwise Monte Carlo gradient estimator via

the reparameterization trick (see [43] for a comprehensive review),

∇𝝓E𝑞𝝓 [ℓ (x(𝜽 ), y)] ≈ 1

𝑁

𝑁∑︁
𝑖=1

∇𝝓ℓ (𝑥 (𝜽𝝓 (𝑢 (𝑖 ) ), y), (7)

where 𝑢 (𝑖 ) ∼ 𝑝 (𝑢) is a sample from the base density 𝑝 (𝑢) and
𝜽𝜙 (𝑢 ( 𝑗 ) ) is the transformed sample from the candidate posterior

𝑞𝜙 . Finally, the gradient of the loss can be related to Equation (3)

via the chain-rule,

∇𝝓ℓ (x(𝜽 , y)) = ∇𝝓𝜽𝝓 · ∇𝜽x. (8)

In practice, the variational family Q will be parameterized by a

deep neural network (i.e, a normalizing flow) that is trained using

the gradient in Equation (7).

2.3 Analysis of ABMs

One of the core strengths of ABMs is their granularity, which en-

ables ABM to address research questions that are beyond reach

for coarser methodologies. For instance, epidemiological ABMs

can help analyze the observed disparities of COVID-19 infections

among demographic groups [38, 42, 51], plan effective vaccination

rollout plans [59], or assess the role of latent transmission for a

certain network structure [41]. All these studies require exami-

nation of the distribution of state values of the agents and their

responsiveness to changes in the model’s structural parameters.

Specifically, we are interested in collecting a series of summary

statistics over the agent’s population, 𝝃𝑘 = ℎ𝑘 ({z𝑖 (𝑡) | 𝑖 ∈ 𝐴}), and
their sensitivity, ∇𝜽 𝝃𝑘 . For instance, in an epidemiological ABM,

we might investigate the distribution of infections among different

age groups and assess how these infections react to variations in the

reproduction number 𝑅0. Sensitivity analysis can be a challenging

task due to the high computational cost of running large ABMs

and the high dimensionality of the parameter space. As with the

calibration process, differentiable ABMs may help mitigate this

computational bottleneck [51].

3 CHARACTERIZING PRIVACY

First, we formalize a threat model to setup constraints for a privacy-

preserving solution. Then, we provide background on secure multi-

party computation and describe the GMW protocol which we use

to design algorithms for privacy-preserving simulation, calibration

and analysis of agent-based models.

3.1 Threat Model

We assume an honest-but-curious (a.k.a. semi-honest) attacker [32]

which aims to learn private information about participating agents

without altering the protocol. This private information is included

in an agent’s state z𝑗 (𝑡), interaction trace {N𝑖 (𝑡) | ∀𝑡}, and neigh-

borhood messages {𝑀𝑖 𝑗 (𝑡) | 𝑖 ∈ 𝐴, 𝑗 ∈ N (𝑖)}. For instance, in

epidemiological models, this can correspond to the health and de-

mographic traits and mobility patterns of individual agents. Such

an attacker can manifest itself as the coordinating server that wants

to surveil agents using the mobility trace or a (sub-group) of ad-

versarial agents, which may be incentivized to steal the personal

health information of agent cohorts. In the context of agent-based

modeling, this information can be leaked during message passing

over per-step neighborhoods (Equation (1)) and during the collec-

tion of summary statistics over the population. The goal of this

work is to alleviate such challenges and design a privacy-preserving

mechanism that can compute functions over agents’ states without

revealing private information.

3.2 Secure Multi-party Computation

Secure multi-party computation enables a set of agents to interact

and compute a joint function of their private inputs while revealing

nothing but the output [40]. MPC protocols are coordinated with a

server (MPC server) and are designed to protect against behavior of

adversarial participants. These participants, either an agent or the

server, aim to learn private information (of other entities) or cause

the computation result to be incorrect. The idea was first introduced

by Yao for the two-party case [58] and generalized to multiparty

settings by Goldreich, Micali and Wigderson (GMW) [27]. Among

other properties, GMW protocols guarantee (1) privacy: so that no

entity can learn anything more than its prescribed output and, (2)

correctness: so that agents receive the correct output. For instance, in
an epidemiological ABM, this would ensure both that the personal

disease status of agents is not leaked and that agents receive the

correct transmission probability as in a centralized simulation.

3.3 The GMW protocol

The GMW protocol uses additive secret sharing to communicate

(or aggregate) private inputs across the participant entities. The

key insight is to divide a secret input into multiple shares in such

a way that the secret can be reconstructed only when a sufficient

number of shares are combined together. The scheme supports

diverse aggregation queries such as secure addition or secure mul-

tiplication [9] of the secrets held by the participating agents. Here

we focus on the addition case and we assume that all participating

agents are required to compute the secret, usually denoted by 𝑡 = 𝑁 ,

but the same methodology can be extended to multiplication and

composite queries (see, e.g., [40]).

Consider𝑁 agents holding private values 𝑠𝑖 . Wewant to compute

the sum

∑
𝑖 𝑠𝑖 without any agent 𝑗 acquiring knowledge about

𝑠{𝑘≠𝑗 } . To setup the protocol, the agents agree on an integer 𝑛 >∑
𝑖 𝑠𝑖 defining the finite group Z𝑛 on which all computations will

be carried
1
. Each agent 𝑖 then samples 𝑁 − 1 random numbers,

𝑟𝑖 𝑗 ∼ U{0, 𝑛 − 1}, such that the input is divided into 𝑁 shares, 𝑠𝑖 𝑗
defined by

𝑠𝑖 =

𝑁∑︁
𝑗=1

𝑠ij (mod 𝑛) =
𝑁−1∑︁
𝑗=1

𝑟𝑖 𝑗 + ©­«𝑠𝑖 −
𝑁−1∑︁
𝑗=1

𝑟𝑖 𝑗
ª®¬ (mod 𝑛) . (9)

Each agent then sends each share of their secret to each correspond-

ing agent; agent 𝑖 sends 𝑠𝑖1 share to agent 1, 𝑠𝑖2 share to agent 2,

1
The choice to perform finite group arithmetics is so that no information about the

secret can be gained by holding < 𝑁 shares.



etc. Locally, each agent performs the sum

𝜎𝑘 =

𝑁∑︁
𝑖=1

𝑠𝑖𝑘 (mod 𝑛). (10)

Finally, all values 𝜎𝑘 are shared so that the reconstructed sum,

𝑆 =
∑
𝑘 𝜎𝑘 (mod 𝑛), can be computed, corresponding to the sum of

the agent inputs 𝑠𝑖 by construction. Typically, this reconstruction

may be conducted by a central MPC server or a trusted agent.

We summarize the protocol in Algorithm 1, and we provide an

illustrating example below.

3.3.1 Additive secret sharing example. Consider 𝑁 = 3 agents —

Alice, Bob, and Carol — holding private values 𝑠𝐴 = 2, 𝑠𝐵 = 3, and

𝑠𝐶 = 5. They wish to compute the sum of these values without

disclosing their individual inputs. They agree on an integer 𝑛 = 11,

defining a finite groupZ𝑛 . First, the agents generate 3 shares each by
sampling 2 random numbers from Z𝑛 . For instance, Alice generates
random numbers 7 and 5, so that

𝑠𝐴 = 𝑠𝐴𝐴 + 𝑠𝐴𝐵 + 𝑠𝐴𝐶 = 7 + 5 + 1 (mod 11) = 2, (11)

and similarly for Bob and Carol with 𝑠𝐵 = 2 + 0 + 1 (mod 11), and
𝑠𝐶 = 3 + 1 + 1 (mod 11). Second, the agents communicate with

each other to keep one of the shares and send the other two to

the other two agents and perform the sum of the received shares.

For example, Alice receives 𝑠𝐵𝐴 from Bob and 𝑠𝐶𝐴 from Carol and

computes

𝜎𝐴 = 𝑠𝐴𝐴 + 𝑠𝐵𝐴 + 𝑠𝐶𝐴 = 7 + 2 + 3 (mod 11) = 1 (mod 11), (12)

and similarly for Bob and Carol with 𝜎𝐵 = 5 + 0 + 1 (mod 11) =
6 (mod 11) and 𝜎𝐶 = 1 + 1 + 1 (mod 11) = 3 (mod 11). Finally, the
secret can be reconstructed by doing 𝑆 = 𝜎𝐴+𝜎𝐵+𝜎𝐶 = 10 (mod 11)
as expected.

In the following section, we apply the GMW protocol to gen-

eralize the above insight to share information containing agent’s

private information to other agents or a central MPC server, provid-

ing protocols for the computation of agent updates (Equation (1)),

and gradients (Equation (3)) in a secure way, enabling privacy-

preserving simulation, calibration, and analysis of ABMs.

Algorithm 1: SecureSum

Data: Agents {1, . . . , 𝑁 } with secret inputs 𝑠1, . . . , 𝑠𝑛 ,

integer 𝑛 >
∑
𝑖 𝑠𝑖 .

Result: The sum of all shares 𝑆 = 𝑠1 + · · · + 𝑠𝑛 .
1 Splitting secret into shares and distributing:

2 Each party 𝑖 generates 𝑁 shares 𝑠𝑖1, . . . , 𝑠𝑖𝑁 ∈ Z𝑛 which

sum up to 𝑠𝑖 .

3 Each party 𝑖 distributes all their shares 𝑠𝑖1, . . . , 𝑠𝑖𝑁 ∈ Z𝑛 to

1, . . . , 𝑁 , including themselves.

4 Secure Computation (Addition):

5 To add the inputs securely, parties simply add their

respective shares 𝜎𝑖 = 𝑠1𝑖 + · · · 𝑠𝑁𝑖 mod 𝑛.

6 Reconstruction:

7 To reveal the final result of the computation, parties

collaborate by summing their shares:

8 𝑆 = (𝜎1 + 𝜎2 + · · · + 𝜎𝑛) mod 𝑛.

𝜽

ℎ (z1 )
∇𝜽ℎ (z1 )

ℎ (z2 )
∇𝜽ℎ (z2 )

ℎ (z3 )
∇𝜽ℎ (z3 )

ℎ (z4 )
∇𝜽ℎ (z4 )

SecureSum

𝑥𝑡 =
∑

𝑖 ℎ (z𝑖 )
∇𝜽𝑥𝑡 =

∑
𝑖 ∇𝜽ℎ(z𝑖 )

Figure 1: Diagram illustrating the SecureSimulation proto-

col for ABM parameters 𝜽 .

4 PRIVATE AGENT-BASED MODELS

With the MPC background introduced in the preceding section,

we formulate protocols to conduct the simulation, calibration, and

analysis of ABMs in a privacy-preserving way.

4.1 Secure Simulation

In order to update the state of an agent during a simulation, Equa-

tion (1) requires an aggregation over the agent’s neighbors, reveal-

ing their private information. As described in the previous section,

MPC is well-equipped to perform this kind of calculation without

revealing the individual parties’ data. Without loss of generality, we

present our protocols for the case where the aggregation function

⊕ is a summation Σ, so that we can make use of the SecureSum

protocol introduced in Algorithm 1. Furthermore, as long as the

agent’s update function 𝑓 is differentiable respect to the structural

parameters 𝜽 , which is indeed the case for many ABMs [19], each

agent can store ∇𝜽 𝑓 for use during the calibration step. With all this

in mind, we present in Algorithm 2, a privacy-preserving protocol

for updating agent states.

Algorithm 2: SecureAgentUpdate

Data: Agent 𝑖 with state z𝑖 (𝑡), Neighboring agent’s
messages {𝑀𝑖 𝑗 (𝑡) | 𝑗 ∈ N (𝑖)}, Integer 𝑛, State update
rule 𝑓 , ABM parameters 𝜽

Result: New state z𝑖 (𝑡 + 1)
1 Agent 𝑖 calls the SecureSum protocol with neighbors

{ 𝑗 | 𝑗 ∈ N (𝑖)} and integer 𝑛 to obtain the sum

𝑀𝑖 (𝑡) =
∑

𝑗∈N(𝑖 ) 𝑀𝑖 𝑗 (𝑡).
2 Agent 𝑖 updates its state z𝑖 (𝑡 + 1) = 𝑓 (z𝑖 (𝑡), 𝑀𝑖 (𝑡), 𝜽 ) and

stores the gradient ∇𝜽 𝑓 .

It is worth noting that, in contrast to general applications of the

GMW protocol, only the agent who starts the protocol receives the

result of the computation since there is no need for the neighboring

agents to have access to that information.

Next, we introduce the SecureSimulation protocol in Algo-

rithm 3, where, in addition to performing agent updates, we collect

a time series of aggregate statistics over the agent’s population and

its gradient with respect to the ABM structural parameters 𝜽 .

4.2 Secure Calibration

During the calibration of an ABM, the modeler (central MPC server)

requires the ability to evaluate the ABM at different values of 𝜽 , and,



Algorithm 3: SecureSimulation

Data:MPC server 𝐶 , Agents {1, . . . , 𝑁 } with states

{z1, . . . , z𝑁 }, ABM parameters 𝜽 , State update rule 𝑓 ,
Number of time-steps 𝑇

Result: Aggregate statistics x = 𝑥1, . . . , 𝑥𝑇 and gradients

∇𝜽x.
1 𝐶 generates a large enough prime number 𝑃 and the

requested statistics collecting function ℎ; and sends them

to all agents along ABM parameters 𝜽 .
2 for t = 1, . . . , T do

3 for i = 1, . . . , N do

4 Agent 𝑖 calls the SecureAgentUpdate protocol

(Algorithm 2) to compute z𝑖 (𝑡 + 1).
5 Agent 𝑖 gathers its information of interest

ℎ(z𝑖 (𝑡 + 1)) and gradient ∇𝜽ℎ(z𝑖 (𝑡 + 1)).
6 𝐶 calls the SecureSum protocol with all agents to collect

the aggregate statistics 𝑥𝑡 and their gradients ∇𝜽𝑥𝑡 .

7 𝐶 returns the accumulated x and ∇𝜽x.

in the case of gradient-assisted calibration, the gradient of the out-

puts with respect to 𝜽 . The retrieval of these quantities is enabled
by the SecureSimulation protocol and so classical calibration

algorithms [30, 49] can be seamlessly applied to conduct a privacy-

preserving calibration. Here, as outlined in Subsection 2.2, we focus

on conducting GVI with a deep neural network trained to approxi-

mate the generalized posterior. This neural network seats on the

central MPC server and it is trained using the collected gradients.

To this end, what remains to be detailed is the transition from the

gradient of aggregate statistics, ∇𝜽x, to the loss gradient required

for GVI (Equation (7)). This process is detailed in Algorithm 4.

4.3 Secure Analysis

As outlined in Subsection 2.3, we require a secure protocol to

retrieve summary statistics over the agent’s population, 𝝃𝑘 =

ℎ𝑘 ({z𝑖 (𝑡) | 𝑖 ∈ 𝐴}), and their sensitivity, ∇𝜽 𝝃𝑘 . We note that we

have already addressed this issue in the SecureSimulation proto-

col since retrieving the time-series x is a particular case of this more

general problem. In fact, we formulate a more general approach

wherein a summary statistic 𝝃 over the population states can be

obtained by aggregating over the entire population the outputs of

an indicator function 1Ω (z) acting on the agent’s state,

𝜉 =
⊕
𝑖∈𝐴

1Ω (z𝑖 ), (13)

where Ω denotes the set of characteristics we want to aggregate on,

and ⊕ denotes a kind of aggregation, usually a sum. For instance,

Ω may correspond to the property of being infected, in which case

taking ⊕ to be a sum would return the number of infected agents.

The algorithm is formally described in Algorithm 5, which holds

the same security guarantees as the one exposed in Subsection 4.1.

Likewise, sensitivity analysis can be performed securely using Al-

gorithm 6, where each agent computes the sensitivity of their state

change to the model parameters, and the central agent retrieves

the aggregation by employing the SecureSum protocol.

Algorithm 4: SecureCalibration

Data:MPC server 𝐶 , Agents {1, . . . , 𝑁 } with states

{z1, . . . , z𝑁 }, State update rule 𝑓 , Prior 𝜋 (𝜽 ),
Observed time-series y, Loss function ℓ (x, y),
Number of epochs 𝑁𝑒 , Number Monte-Carlo samples

𝑁 , Number of time-steps 𝑇 , Learning rate 𝜂

Result: Trained candidate posterior 𝑞∗

1 𝐶 initializes candidate posterior 𝑞𝝓 .

2 for 1, . . . , 𝑁𝑒 do

3 for 1, . . . , N do

4 𝐶 samples ABM parameters 𝜽 ∼ 𝑞𝝓 (𝜽 ).
5 𝐶 executes SecureSimulation protocol

(Algorithm 3) to obtain x and ∇𝜽x.
6 𝐶 uses the chain rule to compute

∇𝜽 ℓ (x(𝜽 , y)) = ∇xℓ (x, y) · ∇𝜽x

∇𝝓ℓ (x(𝜽 ), y) = ∇𝜽 ℓ (x(𝜽 ), y) · ∇𝝓𝜽

using the reparameterization trick (Equation (7)).

7 𝐶 accumulates gradient to estimate

∇𝝓E𝑞𝝓 [ℓ (x(𝜽 ), y)] ≈ 1

𝑁

𝑁∑︁
𝑖=1

∇𝝓ℓ (𝑥 (𝜃 ), 𝑦) .

8 𝐶 computes divergence KL(𝑞𝝓 | | 𝜋 (𝜽 )) and derivative

∇𝝓KL(𝑞𝝓 | | 𝜋 (𝜽 )).
9 𝐶 updates 𝝓 → 𝝓 − 𝜂∇𝝓L(𝝓), where

L(𝝓) = E𝑞𝝓 [ℓ (x(𝜽 ), y)] + KL(𝑞𝝓 | | 𝜋 (𝜽 )) .

10 𝐶 returns trained candidate posterior 𝑞∗.

Algorithm 5: SecureSummaryStatistic

Data:MPC server 𝐶 , Agents {1, . . . , 𝑁 } with states

{z1, . . . , z𝑁 }, Indicator function 1Ω (z).
Result: Aggregate quantity

⊕
𝑖∈𝐴 1Ω (z𝑖 ).

1 𝐶 generates prime number 𝑃 and sends them to all agents

alongside indicator function 1Ω (z).
2 Each agent 𝑖 computes result of 1Ω (z𝑖 ).
3 𝐶 executes SecureSum protocol to securely retrieve⊕𝑁

𝑖 1Ω (z𝑖 ).

5 CASE STUDY: PRIVACY-PRESERVING

EPIDEMIOLOGY

In this section, we illustrate how our methodology may be de-

ployed in practice by describing a decentralized privacy-preserving

agent-based SIR model, which supports simulation, calibration, and

analysis.

The model follows a standard parameterization where agents’

interactions are specified through a contact graph G, which in this

case is only locally defined by each agent having access to their

neighbors. Each agent has 3 possible states: 0 (Susceptible), 1 (In-

fected), and 2 (Recovered). We initialize the simulation by infecting

a fraction 𝐼0 of agents sampled uniformly from the population,

while the remaining agents are considered susceptible. Following

the notation introduced in Section 2, at each time-step, agent 𝑖



Algorithm 6: SecureSensitivityAnalysis

Data:MPC server 𝐶 , Agents {1, . . . , 𝑁 } with states

{z1, . . . , z𝑁 }, Indicator function 1Ω (z), State update
rule 𝑓

Result: Sensitivity ∇𝜽 𝜉 .

1 𝐶 generates prime number 𝑃 and sends them to all agents

alongside indicator function 1Ω (z).
2 Each agent 𝑖 executes SecureAgentUpdate with

parameters 𝜽 to obtain ∇𝜽 𝑓 (z𝑖 , 𝑀𝑖 , 𝜽 ) so that

∇𝜽 𝜉𝑖 = ∇𝜽 𝑓 (z𝑖 , 𝑀𝑖 , 𝜽 ) · 1Ω (z)
3 𝐶 executes SecureSum protocol to securely retrieve

∇𝜽 𝜉 =
⊕𝑁

𝑖 ∇𝜽 𝜉𝑖 .

updates its state following Equation (1) with

𝑀𝑖 𝑗 (𝑡) = 𝐼 𝑗 (𝑡) (14)

where 𝐼 𝑗 (𝑡) is the infected status of the neighbor (0 or 1), so that

𝑧𝑖 (𝑡 + 1) = 1{𝑧𝑖=0} · Bernoulli
(
𝑝
(𝑖 )
inf

(𝑡)
)
+

1{𝑧𝑖=1} ·
(
1 + Bernoulli

(
𝑝
(𝑖 )
rec

))
+

1{𝑧𝑖=2} · 2

(15)

with

𝑝
(𝑖 )
inf

(𝑡) = 1 − exp
©­«− 𝛽 𝑆𝑖Δ𝑡

𝑛𝑖

∑︁
𝑗∈N(𝑖 )

𝐼 𝑗 (𝑡)ª®¬ , (16)

whereN(𝑖) is the set of neighbors of agent 𝑖 , 𝑆𝑖 is the susceptibility
of agent 𝑖 , 𝑛𝑖 = #N(𝑖) is the total number of neighbors, Δ𝑡 is the
duration of the time-step, and 𝛽 is a structural parameter of the

ABM called the effective contact rate. Infected agents can recover

at each time step with recovery rate 𝛾 , so that

𝑝
(𝑖 )
rec

= 1 − exp (−𝛾Δ𝑡) . (17)

For the case of a complete graph, the model reduces to the standard

ODE-based SIR model with 𝑅0 = 𝛽/𝛾 as the basic reproduction

number. The model is run for 𝑛𝑡 time steps.

To ground the example on real data, we consider the contact

graph of the city of Oxford, extracted from the June ABM model

[7] to determine the neighborhood of each agent, N(𝑖). This con-
tact graph includes agents’ interactions in households, companies,

and schools, and it is based on English census data. The choice of

parameter values for the experiment is given in Table 1.

Parameter Value

𝛽 0.5 day−1

𝛾 0.1 day−1

𝐼0 0.01

Δ𝑡 1 day

𝑛𝑡 60

G Oxford

Table 1: Parameter values for the agent-based SIR model.

5.1 Private policy assessment with ABMs

We first consider the application of the SecureSimulation protocol

(Algorithm 3). Let us pose a situation where a policymaker wants

to study the efficacy of mask-wearing at different compliance levels

using agent-based simulation. We introduce a slight modification to

Equation (16) to incorporate a reduction in the infection probability

due to mask-wearing with certain compliance 𝛼 ,

𝑝
(𝑖 )
inf

(𝑡) = 1 − exp
©­«− 𝛽 𝑆𝑖Δ𝑡

𝑛𝑖

∑︁
𝑗∈N(𝑖 )

𝐼 𝑗 (𝑡) (1 − 𝑐 𝑗 )
ª®¬ , (18)

where 𝑐 𝑗 ∼ Bernoulli(𝛼), so that 𝛼𝑖 = 1 corresponds to full compli-

ance where there is no transmission. Note that we are assuming

complete protection against infection when wearing a mask. We

proceed to execute 3 simulations for 3 different values of 𝛼 . At each

simulation, 𝛼 is sent to the agents, where they locally compute their

own compliance to the measure. The SecureSimulation protocol is

then used to run the simulation and retrieve the aggregate statistic

of interest, x, which in this case is the number of infections over

time. The results are shown in Figure 2, where we observe that little

transmission occurs when compliance is above ⪆ 75%.
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Figure 2: Infection curves for different levels of compliance:

0% (blue), 25% (green), 50% (orange), 75% (red). The number

of infections has been normalized to the number of agents

𝑁 . These plots are generated without releasing the infection

status or compliance decision of any individual agent.

Thus, we observe that within our methodology, the policymaker

could still have access to the same level of insight as a traditional

ABM, all while protecting the individual agent’s privacy.

5.2 Private calibration of ABMs

Next, we pose a situation where we want to calibrate our ABM

with structural parameters 𝜽 = (𝛽,𝛾) to observed ground-truth

data. For simplicity, we present the calibration of the 𝛽 parameter

given an observed curve of infections (y), obtained by running the

ABM model with the baseline parameters in Table 1.

The first step is to compute the gradient ∇𝜽x, where x is the

number of daily infections and 𝜃 = 𝛽 . We note that this gradient

can be approximated by the gradient of the average number of new

infections with respect to 𝛽 ,

𝜕𝑥𝑡

𝜕𝛽
≈ 𝜕 E[Δ𝐼 (𝑡)]

𝜕𝛽
=

𝑁∑︁
𝑖=1

𝜒𝑖 (𝑡) exp(−𝜒𝑖 (𝑡)/𝛽), (19)
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Figure 3: Left: Probability density plot for the trained nor-

malizing flow (blue) against the prior distribution (orange).

Ground-truth value is marked as a dashed black line. Right:

Results from simulating 𝛽 samples from the trained flow

(blue) and prior (orange) compared to the ground-truth data

(black). The number of infections has been normalized to

the number of agents 𝑁 .

where

𝜒𝑖 (𝑡) = exp
©­«− 𝛽 𝑆𝑖Δ𝑡

𝑛𝑖

∑︁
𝑗∈N(𝑖 )

𝐼 𝑗 (𝑡)ª®¬ . (20)

A central agent can safely retrieve the gradient by performing the

SecureSum protocol across all agents as described in Algorithm 3

and Algorithm 4. We thus conduct GVI by considering Q to be a

masked-autoregressive normalizing flow [48] and assume the prior

is a normal distribution with 𝜇 = 0.7 and 𝜎 = 0.5. Figure 3 (left)

shows the trained normalizing flow, which correctly assigns high

probability mass to the ground-truth value. To further evaluate the

goodness of the fit, we plot simulated runs from ABM parameters

sampled from the trained flow in Figure 3 (right), where we compare

it to runs simulated from prior samples.

This experiment highlights how privacy-preservingABMs can be

integrated into differential and probabilistic programming pipelines.

This opens the door to integrating ABM insight into more complex

ML pipelines leveraging heterogeneous data streams to boost the

model’s insight capabilities.

5.3 Private demographic study with ABMs

In this section, we apply the SecureSummaryStatistic protocol to

analyze our calibrated ABM. In particular, we study the distribution

of infections by age, ethnicity, and geographical location (ZIP code).

This analysis may be relevant to, for instance, understanding the

causes of asymmetric distribution of infections among different

demographic groups [38, 42, 51].

For this exercise, we import a synthetic population of Oxford

from the June model, as we did for the contact graph, so that we

have access to a population with realistic age, sex, and ethnicity

distributions and geographical location. Note that the ethnicity

categorization follows the English census [29].

We can construct histograms that highlight the distribution of

infection among different ethnic groups by considering the relevant

indicator functions so that we can apply the SecureSummaryS-

tatistic protocol. For instance, for the case of age distribution, we

have

1Ω (z) = 1{ (𝑧age∈𝑎𝑘 )∧(𝑧inf=1) } (z), (21)

where 𝑧age and 𝑧
inf

are the age and infected status of the agent,

and 𝑎𝑘 are each of the histogram age bins. The number of counts

in the particular age bin 𝑎𝑘 can then be obtained upon executing

SecureSum over the entire population following Algorithm 5. Fig-

ure 4 shows the age and ethnicity histogram of infections for the

calibrated simulation obtained in Subsection 5.2, where the eth-

nicity histogram has been computed analogously to age one by

considering the indicator function

1Ω (z) = 1{ (𝑧
ethnicity

=𝑒𝑖 )∧(𝑧inf=1) } (z), (22)

for each ethnicity category 𝑒𝑖 . The results are in agreement with

the particular demographics of the city of Oxford, dominated by

students in the 20-30 age bin with a significant presence of non-

White groups.
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Figure 4: Age (left) and ethnicity (right) histogram of the

infected population. These statistics are computed without

leaking the infection or demographic properties of any agent.

Finally, a similar analysis can be done at the geographical level,

where infections can be collected by ZIP code sector by executing

the SecureSummaryStatistic protocol with 1Ω (z) = 1{𝑧
ZIPcode

=𝑟𝑖 }
for each ZIP code sector 𝑟𝑖 . In Figure 5, we show the obtained

distribution of infections across the city of Oxford.
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Figure 5: Geographical distribution of infections by ZIP code

sector within the city of Oxford. These statistics are com-

puted without leaking the infection status or geo-location of

any individual agent.



Summarising, we have illustrated how a detailed analysis of

agent properties can be performed in a privacy-preserving way by

following Subsection 4.3.

6 RELATEDWORK

Before concluding, we survey recent work on data-driven ABMs,

with a particular focus on recent advances that aim to deploy ABMs

to real-world populations with millions of agents. We also highlight

the privacy challenges that arise from extending such ABMs.

6.1 Data-driven Agent-based Modeling

The push to create highly realistic ABMs has led to a growing

demand for more granular heterogeneous data to construct the

synthetic populations that underlie these models. This demand is

particularly evident in fields such as epidemiology (e.g., [7, 18, 37])

and economics (e.g., [15, 50]), where the population is constructed

from census data, using techniques such as iterative proportional

fitting [20, 55] and deep generative modelling [13]. Furthermore,

the integration of dynamic data streams, including sources like Safe-

Graph mobility data, CDC genomic data, and Facebook survey data,

into the ABM calibration process has become essential for generat-

ing real-time insights. In addressing this need, the combination of

differentiable ABMs and deep neural networks (DNN) stands out as

an effective approach to seamlessly incorporate heterogeneous data

sources during the calibration process [19]. Extending beyond the

current resolution of ABM populations requires the development

of new methodologies that safeguard the privacy of stakeholders,

which is the objective of this work.

6.2 Data Privacy for Modeling

Recent improvements in ABM scalability have been matched by an

increased risk to individual privacy [5], which has already mani-

fested in the form of data leaks [1, 22, 36]. Statistical privacy meth-

ods such as K-anonymity and differential privacy have been em-

ployed [10, 57] to protect individual information on an aggregate

level. Such methods have been used to release US census data

[14] whilst protecting individual information at an aggregate level.

Similar methods were also employed by Google and SafeGraph in

the release of mobility trace data [2]. Although statistical hiding

methods are good at hiding identifiable information in aggregate

statistics, they have limited capability of achieving privacy when

applied at the level of individuals. This creates a difficulty in sim-

ulating population networks, as state propagation relies on both

accumulating individual agents’ states, whilst evaluating policy

interventions relies on access to mobility data for each agent. As

a result, statistical hiding methods provide poor privacy-utility

trade-offs in the context of ABM.

In contrast, cryptographic protocols have been used to provide

strong privacy guarantees at the level of individuals. Recently, MPC

has been explored for secure federated learning [45] and training

of distributed graph neural networks [56]. These are constrained

by high computation and communication cost of executing oper-

ations on deep neural networks, implementation complexity of

secure aggregation, and intractability of secure backpropagation

through non-linear mechanisms like graph attention. This requires

hybrid approaches that leverage MPC with trusted execution en-

vironments for training DNNs [35]. In contrast, the simplicity of

mechanistic models, like ABMs, allows leveraging MPC in fully

decentralized scenarios. RIPPLE[31] introduces a Private Informa-

tion Retrieval (PIR) based method to collect aggregate statistics on

contact-tracing systems while preserving user privacy. [26] uses en-

crypted personal information, adding a layer of anonymity between

the simulator and the agents. However, there is no mechanism for

privacy-preserving calibration and interventions on ABMs [5]. To

our knowledge, our work constitutes the first protocol that enables

simulation, calibration, and analysis of ABMs while preserving

agent privacy at every step.

7 DISCUSSION AND CONCLUSION

In this paper, we introduced a paradigm that enables the simulation,

calibration, and analysis of agent-based simulations on real-world

data, while safeguarding the privacy of the involved agents. Our

approach leverages MPC techniques to develop robust privacy-

preserving protocols, without compromising the accuracy of the

ABM output. We demonstrated the efficacy of our paradigm by

presenting a case study in the city of Oxford, where we evalu-

ated mask-wearing policies, performed gradient-assisted calibra-

tion to ground-truth data, and analyzed simulation outcomes using

a privacy-preserving ABM.

The presented concept model can be further developed by ex-

tending the MPC protocols in multiple ways, including

(1) Generalizing to higher-order networks to capture more com-

plex contagion models. This could help understand the in-

fluence of group dynamics on social behavior.

(2) Addressing practical engineering challenges, such as mini-

mizing communication overheads, supporting asynchronous

message passing, and leveraging distributed computing to

accelerate computation.

(3) Combining MPC with federated learning. While MPC en-

abled simulating with individual agents, federated learning

can help incorporate siloed institutional agents. For example,

this would help privately integrate CDC genomic data or

FED insurance claims into epidemiological and economics

models.

In the long term, private ABMs can be deployed through mobile

devices, enabling passive and secure monitoring of actions and in-

teractions within large populations. This would enable conducting

digital experiments on the real-time behavior of complex systems

with actual populations while ensuring robust security measures.
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