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Quantum entanglement at critical points is often marked by universal characteristics. Here, the
entanglement entropy is calculated at the quantum multicritical point of the random transverse-
field Ising model (RTIM). We use an efficient implementation of the strong disorder renormalization
group method in two and three dimensions for two types of disorder. For cubic subsystems we find
a universal logarithmic corner contribution to the area law b ln(ℓ) that is independent of the form
of disorder. Our results agree qualitatively with those at the quantum critical points of the RTIM,
but with new b prefactors due to having both geometric and quantum fluctuations at play. By
studying the vicinity of the multicritical point, we demonstrate that the corner contribution serves
as an “entanglement susceptibility”, a useful tool to locate the phase transition and to measure the
correlation length critical exponents.

I. INTRODUCTION

Quantum critical points (QCPs) occur in the ground
state of quantum systems by tuning a quantum control
parameter that governs quantum fluctuations. Quantum
multicritical points (QMCPs) emerge at the junction of
two or more quantum phase transitions, resulting in novel
universality classes [1]. While QCPs have been well char-
acterized theoretically, our understanding of QMCPs re-
mains much more limited. From an experimental per-
spective, QMCPs are expected to be less elusive to study
than QCPs [2–5], see for example the recent experimen-
tal work on the ferromagnetic QMCP in the disordered
compound Nb1−yF2+y [6]. On the theoretical side, our
recent study showed that the QMCP of the ferromagnetic
random transverse-field Ising model (RTIM) exhibits ul-
traslow, activated dynamic scaling [7], governed by an
infinite disorder fixed point (IDFP) [8, 9]. The dominant
role of disorder ensures that the applied strong disorder
renormalization group (SDRG) method [10, 11] is asymp-
totically exact [9, 12–15], meaning that the obtained nu-
merical results approach the exact results at large scales.

In this paper, our goal is to quantify the universal
aspects of quantum entanglement at the QMCP of the
RTIM. Our results contribute to a better understand-
ing of the universal properties of quantum many body-
systems in the vicinity of quantum phase-transitions [16–
19]. We consider the ground state of the system, |Ψ⟩, and
measure the entanglement between a subsystem, A and
the rest of the system, B, by the von Neumann entropy
of the reduced density matrix, ρA = TrB |Ψ⟩⟨Ψ | as

SA = −TrA (ρA log2 ρA) . (1)

Known as the ‘area law’ [18], S is generally expected to
scale with the area of the interface separating A and B
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FIG. 1. Phase diagram of the RTIM in two and higher
dimensions. The QMCP (purple) emerges at the junction
of the percolation transition at the bond dilution parameter
p = pc (blue line) and the generic disordered universality class
(red), when the h magnetic field is tuned to its critical value.
Deviations from the QMCP are governed by two correlation
length exponents, νθ and νp, corresponding to the two control
parameters.

in the ground state. At QCPs, however, there are of-
ten additional universal corrections, which can be domi-
nant in one-dimensional systems [20–22]. In higher di-
mensions it is much more challenging to study quan-
tum entanglement in interacting systems. At the QCP
of two-dimensional interacting systems there are addi-
tional logarithmic terms, which are expected to be uni-
versal, as demonstrated for multiple models, including
the transverse-field Ising model [25], the antiferromag-
netic Heisenberg model [26], and the quantum dimer
model [27].
Disordered systems have been also extensively stud-

ied, with the RTIM as a prominent example [29], as
at an IDFP disorder fluctuations dominate over quan-
tum fluctuations, simplifying the analytic and numerical
treatment [30–36]. In addition to critical exponents, the
SDRG method also offers an efficient way to calculate
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the entanglement properties [37]. While the area law is
again found to be valid in disordered magnets, the total
entanglement entropy is not universal and not extremal
at the critical point in higher dimensions. Yet, in the
RTIM there is a singular, logarithmic corner contribu-
tion to the entanglement entropy that is universal and
extremal at the critical point, as shown in d = 2, 3 and
4 [37].

In this paper, we show that the same kind of scenario
holds at the so far uncharted QMCP of the RTIM in two
and three dimensions. As our main result, we quantify
the logarithmic corner contribution to the entanglement
entropy of cubic subsystems with high precision and show
that it is universal, i.e., independent of the form of dis-
order. In addition, we show that just like at the QCP
of the RTIM [37], the corner contribution serves as an
“entanglement susceptibility”, determining the location
of the QMCP as well as the correlation length critical
exponents [47].

II. MODEL AND METHODS

The Hamiltonian of the RTIM can be expressed as

H = −
∑
⟨ij⟩

Jijσ
x
i σ

x
j −

∑
i

hiσ
z
i , (2)

where the σx,z
i Pauli-matrices represent spins at sites i of

a d-dimensional cubic lattice. The spins interact through
the Jij nearest neighbor couplings, and are exposed to the
hi transverse fields. Both the couplings and the fields are
non-negative random numbers, drawn from some distri-
butions. To test the universality of the results we will use
two different types of disorder as in Refs. [7, 30, 36, 37].
For both types of disorder, the couplings are uniformly
distributed in the interval (0, 1]. The transverse fields
are either constant hi = h, ∀i (fixed-h disorder), or are
drawn independently from the interval (0, h] (box-h disor-
der). The choice of fixed-h disorder can be motivated by
experimental realizations of the model where the trans-
verse field is homogeneous, e.g. in LiHoxY1−xF4 [38].
Just like for the QCP, the QMCP of the RTIM is stud-

ied with the quantum control parameter given by the
logarithmic variable θ = ln(h) [30, 36, 37]. To arrive
at the QMCP, the bond percolation probability p must
be tuned to its critical value pc, as illustrated in Fig. 1.
For sufficiently small fields, we observe a quantum phase
transition dictated by the classical percolation transition
of the lattice [39, 40]. This percolation line ends at the
QMCP, where it meets the line of the generic QCP tran-
sition. Along the generic transition line the critical be-
havior falls in the same universality class as the undi-
luted (p = 0) system [30, 36, 37]. At the QMCP a new
universality class emerges, characterized by a new set of
critical exponents, due to the interplay of both geometric
and quantum fluctuations, see Ref. [7] and Table I.

The SDRG method offers a very efficient way to obtain
the ground state of the RTIM [30, 36] by iteratively cre-

ating an effective description of the ground state and low-
energy excitations. At each decimation step of the pro-
cess the largest local term in the Hamiltonian in Eq. (2)
is eliminated. There are two options: the largest term
could either be the strongest J coupling or the largest
h transverse field in the system. Second-order pertur-
bation theory then dictates the emergence of new, weak
couplings depending on the two options as follows. J-
decimation: when the largest term in the system is a
coupling, Jij , the two connected spins tend to be aligned
at low energies and can be merged into an effective spin
cluster of the joint moment, µ̃ = µi + µj . This effec-
tive spin is then placed in an effective transverse field,
h̃ = hihj/Jij . h-decimation: when the largest term in
the system is a transverse field, hi, the spin does not con-
tribute to the magnetic properties of the system at low
energies and can be eliminated. However, new weak ef-
fective couplings needs to be placed between each pair of
neighboring spins, j and k, J̃jk = JjiJik/hi. In the case
when a coupling is generated between a pair of spins that
are already interacting by another coupling, the maxi-
mum of the two J couplings is taken. This choice is
known as the maximum rule, which is known to be a
valid approximation at an IDFP where the distribution
of the couplings becomes extremely broad. Note that as
a result, in all cases, the new effective terms are smaller
than the eliminated terms. At each successive step of the
SDRG, another spin is eliminated as the energy scale is
continuously lowered, until all degrees of freedom have
been decimated out. In practice, the most efficient im-
plementation of the SDRG method works in a parallel
manner [30], relying on graph algorithms to obtain the
same results as the above mentioned conceptual picture,
but in nearly linear time as a function of the number of
spins. The ground state of the RTIM is then obtained
as a collection of independent ferromagnetic clusters of
various sizes – created at each h-decimation step. In each
cluster, all spins point in the same directions as all others,
known as a GHZ state 1√

2
(| ↑↑ . . . ↑⟩+ | ↓↓ . . . ↓⟩).

While the emerging clusters are generally fractal-like
disconnected objects [37, 42], each contributes equally to
the entanglement entropy of a subsystem, as long as it
is intersected by the subsystem in a way that there are
some site(s) inside and outside [41]. With the definition
in Eq. (1) each such intersected cluster contributes to
the amount of log2 2 = 1, turning the calculation of the
entanglement entropy into a cluster counting task.
Interestingly, the entanglement entropy depends sensi-

tively on the shape of the subsystem. As shown at the
percolation [46, 47] and generic [37] QCPs, subsystems
with sharp corners lead to universal corner contributions.
For example, a cubic subsystem in d = 3 is expected to
yield the critical result of

S(3)(ℓ) = a2ℓ
2 + a1ℓ+ S(3)

cr +O(1) (3)

in the limit of large system sizes 1/L → ∞ when the ℓ
linear size of the subsystem is proportional to the sys-

tem size. Here S(3)
cr = b(3) ln(ℓ) +O(1), and only the b(3)
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D=0 D=1 D=2

FIG. 2. Subsystem shapes used in the geometric method
in d = 3 [37]. Each subsystem spans the full L length in D
directions, with a size of ℓ = L/2 in the remaining directions.
With periodic boundary conditions, the corner contribution
is only present for the cubic subsystem, D = 0.

prefactor is universal [37], with the values summarized
in Table I. Outside the critical point, the finite corre-
lation length is expected to lead to a finite corner con-
tribution, as we will discuss later. Form this form it is
apparent that the corner contribution is relatively small
compared to the non-universal terms. Yet, it can be mea-
sured directly to high precision using the so called geo-
metric method [37, 47], at least in the case of periodic
boundary conditions applied here. The idea is to use ad-
ditional measurements that have a different shape, fully
spanning the system in D dimensions, incorporating a
different amount of each term seen for a cubic subsystem
due to a different amount of surface elements, like cor-
ners, edges and facets. In d = 3, in addition to cubes, we
also consider columns (D = 1, has edges, but no corners)
and slabs (D = 2, no edges and no corners), as illustrated
in Fig. 2. More generally, in d dimensions, we considered
d different geometries with D = 0, 1, . . . , d− 1 to obtain
the corner contribution [37] as

S(d)
cr =

d−1∑
D=0

(
−1

2

)D (
d

D

)
S(d)
D . (4)

Note that the geometric method cancels out all other
terms, not only on average over samples, but exactly in
each sample even at small sizes, where there are addi-
tional finite-size effects contributing to the asymptotic
terms. Hence, the geometric method often provides high-
precision results with relatively small finite-size effects.

III. RESULTS

The location of the QCPs and QMCP are known to
high precision, as listed in Table I. Here, we also list the
relevant critical and multicritical exponents, al of which
are known to be universal, i.e., randomness independent
[7]. The known b values of the corner contribution to the
entanglement entropy are also listed here for d = 2, 3 at
the percolation and generic QCPs. We study large sys-
tems up to a linear size of L = 2048 in d = 2 and L = 64
in d = 3. The number of realizations used in the numeri-
cal calculations at the QMCP is typically 100 000, apart
from the largest sizes, where we have at least 50 000 sam-
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FIG. 3. Corner contribution to the entanglement entropy of
cubic subsystems in the d = 2 (top) and d = 3 (bottom) mod-
els for fixed-h (+) and box-h (□) disorder realizations. Insets:
Extrapolation of the effective prefactors of the logarithm are
shown as calculated by two-point fits. As an indication of uni-
versality, the extrapolated values are disorder independent as
listed in Table I. The error of the datapoints is smaller than
the size of the symbols.

ples. The total computational effort exceeded 10 CPU
years.
We implemented the ‘geometric method’ to obtain the

corner contribution as well as the other prefactors ai in
Eq. (3). As expected, the area law is found to be valid at
the QMCP, with non-universal ai prefactors. In d = 2,
a1 = 0.237(1) for box-h disorder and a1 = 0.662(1) for
fixed-h disorder. In d = 3, a2 = 0.163(1) and a1 =
−0.11(1) for box-h disorder, with a2 = 0.546(1) and a1 =
−0.24(1) for fixed-h disorder.
At the QMCP, we see clear evidence of a logarithmic

corner contribution in both d = 2 and d = 3, as shown
in Fig. 3, with the insets indicating the two-point fits of
b(d) from consecutive sizes. As a clear sign of universal-
ity, the extrapolated b(d) values are found to be disorder
independent, and are listed in Table I. In both two and
three dimensions, the b(d) prefactors are between those
at the generic and percolation QCPs.
While the entanglement entropy is not extremal at

higher-dimensional QCPs or at the QMCP, the corner
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FIG. 4. Corner contribution to the entanglement entropy
in the vicinity of the QMCP for box-h disorder in d = 2.
Left: Varying θ at pc (brown in Fig. 1). Right: Varying
p at θc (green in Fig. 1). Bottom: Data collapse with the

estimated value of b(2) as well as the known values of the νθ
and νp critical exponents, listed in Table I. The error of the
datapoints is smaller than the size of the symbols.

contribution is only present at the phase transitions, sug-

gesting an extremal S(d)
cr as a function of either δθ = θ−θc

or δp = p− pc. For δ > 0 we arrive at the paramagnetic
Griffiths-phase, while p − pc < 0 leads to a ferromag-
netic Griffiths-phase. Note that along the p = pc critical
line for θ < θc, we asymptotically expect to see the per-
colation critical behavior as the Griffiths-phase is only
present for θ > θc in this case. In Ref. [7] it was found
that the vicinity of the QMCP is highly anisotropic, as
the ν correlation length critical exponent is different for
the two control parameters, as listed in Table I. We have
therefore also studied the behavior of the corner contri-
bution to the entanglement entropy outside the critical

point and measured S(d)
cr (L, δ) as a function of either δθ

or δp. In the upper panels of Fig. 4 S(d)
cr (L, δ) is presented

for box-h disorder in d = 2 for 104 samples, showing a
clear peak at the QMCP in both directions. Outside the
multicritical point, the corner contribution is limited by
the finite correlation length, ξ ∼ |δ|−ν , leading to the
substitution ℓ → ξ. Therefore, close to the multicriti-
cal point, in the Griffiths-phase, the corner contribution
satisfies the scaling relation

S(d)
cr (L, δ)− b(d) lnL = f(δL1/ν), (5)

as illustrated by the data collapse in the lower panels of
Fig. 4. Here we have used the known d = 2 estimates for
the νp and νθ correlation length critical exponents, listed
in Table I. These results underline that the corner con-
tribution is not only universal, but provides a systematic
way to locate the multicritical points in higher dimen-
sional interacting quantum systems, as well as b and the
νθ and νp critical exponents. Let us emphasize again

that the behavior of the corner term is in stark contrast
to the full entanglement entropy, which is generally non-
universal and non-maximal at the critical point in higher
dimensions.

TABLE I. Critical and multicritical properties of the
RTIM: The universal b prefactors of the corner contribution
to the entanglement entropy at the QMCP are indicated in
bold. f stands for fixed-h disorder, while b indicates box-h
disorder. The results of this work are indicated in bold.

Percolation Generic QMCP
QCP [35, 45, 46] QCP [37] [7]

d = 2 pc or θc 0.5 bond −0.17034(2) f −0.481(1) f

0.592746 site 1.6784(1) b 0.783(1) b

νθ NA 1.24(2) 1.382(7)

νp 4/3 ∼ 1.333 NA 1.168(10)

b(2) − 5
√
3

36π
≈ −0.07657 −0.029(1) −0.0684(4)

d = 3 pc or θc 0.248812 bond −0.07627(2) f −0.5055(10) f

0.311608 site 2.5305(10) b 0.770(1) b

νθ NA 0.98(2) 1.123(10)

νp 0.8762(12) NA 0.86(1)

b(3) 1.72(3) 0.012(2) 0.155(10)

IV. DISCUSSION

We have studied the quantum entanglement properties
at the multicritical point (QMCP) of a paradigmatic in-
teracting quantum system (RTIM) in both two and three
dimensions. While the area law is found to be valid for
cubic subsystems, we have identified universal logarith-
mic corner contributions. The results at the QMCP are
found to be between that of the two participating crit-
ical lines—correspondign to the percolation and generic
QCPs—in both d = 2 and d = 3. This work contributes
to the emerging picture of how universal features of en-
tanglement manifest at higher dimensional QCPs and
QMCPs. For a single subsystem, geometric singularities,
like corners, play an essential role and lead to a universal
prefactor b, akin to a critical exponent, which is indepen-
dent from the usual set of exponents. In contrast to tra-
ditional critical exponents b aggregates higher-order cor-
relations [37], and is expected to showcase a non-trivial
dependence on the shape of the subsystem.
Measuring the shape-dependence of the entanglement

entropy at QCPs and at the QMCP is an interesting fu-
ture direction, also related to recently proposed models of
quantum communication [44]. For example, in d = 2 the
shape-dependence can be confronted with the results of
conformal invariance. Currently, the most complete re-
sults are available at the percolation QCP, where in two
dimensions the system is conformally invariant, enabling
a full analytic treatment supported by high-precision nu-
merical methods [45, 47]. Detailed shape-dependence of
cluster counts have been also obtained numerically for the
percolation QCP in three dimensions [43, 47]. In general,
especially in the lack of conformal invariance, the shape-
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dependence of the corner contributions is expected to be
universal but non-trivial, meaning that different subsys-
tem shapes might extract different information on the
entanglement patterns. As the simplest possibility, line
segments of length ℓ are of special interest [47]. Line seg-
ments are special cases of skeletal entanglement, where
the subsystem is a zero-measure volume of the full sys-
tem, offering additional universal results [48].

Another key question that arises is whether studying
multipartite entanglement can provide further insights
[49, 50]. As shown recently in the one-dimensional RTIM
[51], the multipartite entanglement structure [52] is quali-
tatively different in otherwise similar disordered quantum
chains [53]. The RTIM results also showed that in the
appropriate geometric scaling limit, multipartite entan-
glement measures are universal and provide deeper in-

formation than bipartite entanglement. On the contrary
to the entanglement entropy, where only the (leading or-
der of the) corner contribution is universal, in the case
of both the entanglement negativity and mutual infor-
mation, the entire multipartite measure was found to be
universal [51]. Extending these results to non-adjacent
subsystems in higher dimensional QCPs and QMCPs is
an exciting future direction. Our results can be also ex-
tended to the RTIM with long-range interactions [54–56],
motivated by materials like LiHoxY1−xF4 [38].
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network models from spin clusters, Commun. Phys., 6,
271 (2023).
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[53] F. Iglói and R. Juhász, Exact relationship between the
entanglement entropies of XY and quantum Ising chains,
Europhys. Lett. 81, 57003 (2008).
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