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ABSTRACT

Sharp structural variations induce specific signatures on stellar pulsations that can be studied to infer localised information on the
stratification of the star. This information is key to improve our understanding of the physical processes that lead to the structural
variations and how to model them. Here we revisit and extend the analysis of the signature of different types of buoyancy glitches in
gravity-mode and mixed-mode pulsators presented in earlier works, including glitches with step-like, Gaussian-like, and Dirac-𝛿-like
shapes. In particular, we provide analytical expressions for the perturbations to the periods and show that these can be reliably used
in place of the expressions provided for the period spacings, with the advantage that the use of the new expressions does not require
modes with consecutive radial orders to be observed. Based on a comparison with two limit cases and on simulated data, we further
tested the accuracy of the expression for the Gaussian-like glitch signature whose derivation in an earlier work involved a significant
approximation. We find that the least reliable glitch parameter inferred from fitting that expression is the amplitude, which can be up
to a factor of two larger than the true amplitude, reaching this limit when the glitch is small. We further discuss the impact on the
glitch signature of considering a glitch in the inner and outer half of the g-mode cavity, emphasising the break of symmetry that takes
place in the case of mixed-mode pulsators.
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1. Introduction

Space-born experiments, such as the Convection, Rotation and
planetary Transits (CoRoT Baglin et al. 2006), Kepler (Borucki
et al. 2010; Gilliland et al. 2010), and the Transiting Exoplanet
Survey Satellite (TESS Ricker et al. 2015) have fuelled the field of
stellar structure and evolution by providing exquisite data sets on
stellar pulsations that are explored via asteroseismology (Aerts
et al. 2010; Cunha et al. 2007; Cunha 2018). One of the promising
methods employed to infer details of the internal structure and
dynamics of stars is based on the study of glitch signatures, that is,
the signatures left on the frequencies or periods of the oscillations
by regions of sharp structural variations. Here ‘sharp’ means that
the characteristic scale of the structural variation is comparable
to or smaller than the local wavelength of the waves to be studied
(see Cunha 2020, for a review).

The potential of studying signatures of acoustic glitches as-
sociated with the base of the convective envelope and the helium
ionisation zone has been recognised since the early days of he-
lioseismology (e.g. Hill & Rosenwald 1986; Thompson 1988;
Gough & Thompson 1988; Vorontsov 1988; Gough 1990). In
this context, numerous theoretical and observational studies have
been published focussing on the Sun (e.g. Basu et al. 1994;
Monteiro et al. 1994; Roxburgh & Vorontsov 1994; Christensen-
Dalsgaard et al. 1995; Basu 1997; Monteiro et al. 2000; Mon-
teiro & Thompson 2005; Houdek & Gough 2007; Roxburgh

2009; Christensen-Dalsgaard et al. 2011) and on other solar-like
pulsators, including main-sequence (e.g. Roxburgh & Vorontsov
2001; Ballot et al. 2004; Basu et al. 2004; Lebreton & Goupil
2012; Mazumdar et al. 2014; Verma et al. 2014, 2017, 2019;
Farnir et al. 2019; Deal et al. 2023) and red-giant stars (Miglio
et al. 2010; Broomhall et al. 2014; Corsaro et al. 2015; Dréau
et al. 2020; Saunders et al. 2023).

The potential of using acoustic modes to extract information
on sharp structural variations located in stellar cores has also been
discussed in the literature (e.g. Audard & Provost 1994; Rox-
burgh & Vorontsov 1999, 2001; Mazumdar et al. 2006; Cunha
& Metcalfe 2007; Cunha & Brandão 2011; Lindsay et al. 2023),
although the realisation of this potential proved more challeng-
ing, particularly for deep glitches such as those associated with
small convective cores. A more promising approach to detect the
seismic impact of these core structural variations is to look for
glitch signatures in the periods or frequencies of gravity (g) or
mixed modes, when these are available. The seismic signatures
of such buoyancy glitches and the mode trapping they induce
have also received the attention of numerous works, including
works focussing on white dwarfs (e.g. Winget et al. 1981, 1991;
Brassard et al. 1992; Benvenuto et al. 2002; Córsico et al. 2002),
intermediate and massive main-sequence stars (e.g. Miglio et al.
2008; Degroote et al. 2010; Kurtz et al. 2014; Van Reeth et al.
2015; Mombarg et al. 2022), subdwarf O and B (sdO, sdB) stars
(e.g. Charpinet et al. 2000, 2002; Rodríguez-López et al. 2010;
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Østensen et al. 2014; Baran et al. 2017; Ghasemi et al. 2017;
Uzundag et al. 2017), and red-giant stars (e.g. Mosser et al.
2015; Cunha et al. 2015, 2019; Jiang et al. 2022; Vrard et al.
2022). Recently, the theoretical problem has been addressed in a
more general angle by considering the eigenvalue condition built
up from a series of resonant cavities (?).

Different methodologies can be considered for extracting in-
formation contained in glitch signatures. A common approach is
to produce a set of stellar models by varying particular aspects
of the stellar physics in an attempt to reproduce the glitch signa-
ture. An alternative approach of greater relevance to the present
work is to develop an analytical description of the glitch signature
that enables the extraction of the glitch properties (e.g. location
and amplitude) directly from fitting the data, without having to
recur to specific stellar models. This ‘model-independent’ ap-
proach was considered in the context of main-sequence g-mode
pulsators by Miglio et al. (2008) under the assumption that the
impact of the glitch on the pulsation periods can be treated as
a small perturbation (i.e. using a variational approach), which
is often not the case. When the glitch impact on the pulsation
periods is not small, perturbations to the pulsation periods may
be derived instead by matching the wave solutions on each side
of the glitch. This approach was used by Cunha et al. (2015,
2019) to derive analytical expressions for the period spacings of
g-mode and mixed-mode pulsators in the presence of buoyancy
glitches with different shapes, namely, Dirac-𝛿-like, step-like,
and Gaussian-like glitches. Following the same approach, Hatta
(2023) has recently considered, in addition, the impact on the
period spacings of g-mode pulsators of a buoyancy glitch with a
ramp-like shape.

Period spacings can only be computed when modes of con-
secutive radial order are observed. However, often not all radial
orders in a sequence are detected (e.g. Østensen et al. 2014), while
enough information is still available to estimate the asymptotic
period spacing. In these cases, one would expect that fitting the
observed periods directly would be a good alternative, regardless
of them being consecutive or not. This also has the advantage
of avoiding approximations introduced in the analytical analysis
presented in earlier works when relating the perturbation in the
periods to the perturbations in the period spacings (cf. equation
34 in Christensen-Dalsgaard (2012)). With this in mind, in the
present work we revisit the step-like and Gaussian-like cases to
provide explicit analytical expressions for the period perturba-
tions that can be used when not all modes in a sequence of radial
orders are observed, but an estimate of the asymptotic period
spacing is still available.

Matching the wave solutions on each side of the glitch is
relatively straightforward when the glitch can be assumed to be
infinitely thin, for example when it is adequately modelled by a
Dirac-𝛿 function or a step function. However, the derivation be-
comes less accurate when the glitch has a non-negligible width.
Matching across the glitch in this case requires an analytical rep-
resentation of the eigenfunction inside the glitch, which, in turn,
cannot be derived asymptotically because the scale of variation
of the background there becomes comparable to the scale of the
wave. Therefore, in the present work, we also explain how we per-
formed additional tests to the expression provided earlier for the
Gaussian-like glitch (Cunha et al. 2019) to quantify the impact
of the assumptions that underlined its derivation.

We start by providing a general analytical expression for the
period perturbations of pure g modes in Section 2. We then
consider the case of a step-like glitch (Section 3), testing the per-
turbation to the periods against model data and verifying that the
perturbation to the periods in the limit of a small amplitude glitch

is identical to that derived with recourse to the variational princi-
ple, as expected. Next, we address the case of the Gaussian-like
glitch, discussing the limits of the proposed periods’ perturbation
when the glitch approaches the Dirac 𝛿 case and the case of a
small glitch, and setting the accuracy limits of the expression
based on artificial data produced to this effect. In Section 5 we
discuss other cases, including the case of a buoyancy glitch de-
scribed by a ramp function and the case of buoyancy glitches in
stars exhibiting mixed modes. Finally, in Section 6 we draw the
main conclusions from our work.

2. Perturbation to the periods
Internal gravity waves propagate in regions that are convectively
stable with a phase speed that depends directly on the buoyancy
frequency 𝑁 . Asymptotically, at low degree (𝑙) and high radial
orders (𝑛) the periods of gravity eigenmodes (hereafter g modes)
are expected to be equally spaced with a period spacing given by
(Tassoul 1980)

Δ𝑃as =
2𝜋2

𝜔g
, (1)

where, 𝜔g is the buoyancy extent of the g-mode cavity given by

𝜔g =

∫ 𝑟2

𝑟1

𝐿𝑁

𝑟
d𝑟, (2)

𝐿 =
√︁
𝑙 (𝑙 + 1), 𝑟 is the distance from the stellar centre, and 𝑟1

and 𝑟2 are the inner and outer turning points, respectively, of the
g mode propagation cavity.

When a glitch is located inside the g-mode cavity, the phase of
the wave is perturbed, which in turn perturbs the eigenvalue con-
dition and shifts the periods from the constant spacing predicted
asymptotically. Under the Cowling approximation and using the
variable Ψ = (𝑟3/𝑔𝜌 𝑓 )1/2𝛿𝑝, where 𝛿𝑝 is the Lagrangian pres-
sure perturbation, 𝜌 is the density, 𝑔 is the gravitational accel-
eration, and 𝑓 is a function of frequency and of the equilibrium
structure [the f-mode discriminant defined by equation 35 of
Gough (2007)], the wave equation resulting from the linear, adia-
batic pulsation equations, for the case of a spherically symmetric
equilibrium can be written in the standard form as

Ψ′′ + 𝐾2Ψ = 0. (3)

Here a prime represents a differentiation with respect to 𝑟 and,
given our interest in pure g modes, we shall approximate the
radial wavenumber 𝐾 by

𝐾2 ≈ −𝐿
2

𝑟2

(
1 − 𝑁2

𝜔2

)
, (4)

with 𝜔 being the angular frequency of the mode.
Starting from equation (3) and following the asymptotic anal-

ysis by Gough (1993), Cunha et al. (2019) showed that the per-
turbed eigenvalue condition in the presence of a buoyancy glitch
takes the form,

sin

(∫ 𝑟2

𝑟1

𝐾d𝑟 + 𝜋
2
+Φ

)
= 0, (5)

where Φ is the frequency-dependent phase perturbation induced
by the glitch.

From equation (5), it follows that,∫ 𝑟2

𝑟1

𝐾 (𝜔)d𝑟 = 𝜋
(
𝑛 − 1

2

)
−Φ(𝜔), (6)
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where 𝑛 is an integer.
To derive the perturbation to the oscillation periods, with

regards to a reference model with a buoyancy frequency 𝑁0,
we start by noticing that in the reference model the eigenvalue
condition implies that,∫ 𝑟2

𝑟1

𝐾0 (𝜔0)d𝑟 = 𝜋
(
𝑛 − 1

2

)
, (7)

where 𝜔0 is the unperturbed eigenfrequency, and thus,∫ 𝑟2

𝑟1

𝐾 (𝜔)d𝑟 =
∫ 𝑟2

𝑟1

𝐾0 (𝜔0)d𝑟 −Φ (𝜔) . (8)

Except near the turning points, 𝐾 ≈ 𝐿𝑁/𝑟𝜔 and 𝐾0 ≈ 𝐿𝑁0/𝑟𝜔0.
Therefore one can write

∫ 𝑟2

𝑟1
𝐾 (𝜔)d𝑟 = (

∫ 𝑟2

𝑟1
𝐿𝑁/𝑟𝜔d𝑟 + 𝛼) and∫ 𝑟2

𝑟1
𝐾0 (𝜔0)d𝑟 = (

∫ 𝑟2

𝑟1
𝐿𝑁0/𝑟𝜔0d𝑟 + 𝛼) where 𝛼 = 𝛿 + 𝛿 is a

phase that incorporates the effect of the approximation of the
radial wavenumber near both turning points (𝛿 and 𝛿 being the
contributions from the outer and inner turning points, respec-
tively). Notice that we have taken the turning points and 𝛼 to
be the same in the perturbed and unperturbed models. This is
justified by the fact that the buoyancy frequency is unperturbed
near the turning points (or else, the perturbation would not be a
glitch, because there the wavenumber tends to zero and the glitch
condition would not be satisfied). Thus, the turning points and
𝛼 in the perturbed and unperturbed cases may differ only due to
the change in the eigenfrequency, which in all cases considered
is small (in relative terms), even when the local perturbations to
𝑁 inside the g-mode cavity are not.

Written in terms of the periods 𝑃 = 2𝜋/𝜔, it then follows from
equation (8) that the perturbation to the periods with regards to
the reference model is,

𝑃 = 𝑃0−𝑃0

(∫ 𝑟2

𝑟1

𝛿𝑁
d𝑟

𝑟

) (∫ 𝑟2

𝑟1

𝑁
d𝑟

𝑟

)−1
−

(∫ 𝑟2

𝑟1

𝐿𝑁

2𝜋

d𝑟

𝑟

)−1
Φ,

(9)

where we introduced the perturbation to the buoyancy frequency
with respect to a reference model, defined by 𝛿𝑁 = 𝑁−𝑁0. Notice
that this perturbation depends on the choice of reference model,
which can take different forms. An example of such a reference
model is given in Appendix A for the case of a step-like glitch.

From equation (9) one can identify two contributions to the
perturbed period 𝛿𝑃 = 𝑃 − 𝑃0: a smooth contribution expressed
by the second term on the right hand side (rhs) of the equation,
related to the change in the total integral of the buoyancy fre-
quency within the g-mode cavity, and the contribution from the
glitch-induced phase Φ.

Equation (9) can also be written in terms of the asymptotic
period spacing, Δ𝑃as, namely,

𝑃 = 𝑃0−𝑃0
Δ𝑃as

𝜋

(∫ 𝑟2

𝑟1

𝐿𝛿𝑁

2𝜋

d𝑟

𝑟

)
−Δ𝑃as

𝜋
Φ ≡ 𝑃s−

Δ𝑃as

𝜋
Φ, (10)

where we have introduced 𝑃s (on the rightmost side of the ex-
pression) representing the unperturbed periods (i.e. without the
glitch effect) of a hypothetical model in which the integral of
𝑁/𝑟 within the g-mode cavity is the same as in the glitch model.
Asymptotically, we can write 𝑃s = 𝑃s,min+ 𝑘Δ𝑃as, for a series of
natural numbers 𝑘 , where 𝑃s,min is the first of a series of equally
spaced unperturbed periods. Rewriting equation (10), we then
have,

𝑃 = 𝑃s,min + Δ𝑃as

(
𝑘 − Φ

𝜋

)
. (11)

Therefore, Φ/𝜋 is directly related to the deviation of the periods
from the exact asymptotic spacing and its impact is seen as a
modulation in a period échelle diagram.

As the reference model is not a priori univocally defined,
we shall consider the period perturbations with respect to 𝑃s

(𝛿𝑃s = 𝑃−𝑃s), rather than the 𝛿𝑃 defined above, unless otherwise
stated. It is worth noting that when the asymptotic period spacing
is the same in the glitch model and in the chosen reference model,
𝑃s and 𝑃0 are also the same.

Finally, as the asymptotic period spacing depends on the
mode degree, to fit modes of different degree simultaneously
it is useful to rewrite the expression above in terms of the 𝑙-
independent reduced period spacing ΔΠ = 𝐿Δ𝑃as. Defining the
reduced period Π = 𝐿𝑃 one then finds that

Π = Π0−Π0
ΔΠas

𝜋

(∫ 𝑟2

𝑟1

𝛿𝑁

2𝜋

d𝑟

𝑟

)
−ΔΠas

𝜋
Φ ≡ Πs−

ΔΠas

𝜋
Φ, (12)

with Πs = 𝐿𝑃s.
In what follows we shall consider the explicit form taken by

the glitch phase, Φ, for different representations of the glitch. To
that end, we define the buoyancy radius

�̃�𝑟
g =

∫ 𝑟

𝑟1

𝐿𝑁

𝑟
d𝑟 (13)

and the buoyancy depth

𝜔𝑟
g =

∫ 𝑟2

𝑟

𝐿𝑁

𝑟
d𝑟, (14)

and note that both these quantities are defined in terms of the
buoyancy frequency 𝑁 in the star or model under consideration
and not in terms of the buoyancy frequency 𝑁0 of the reference
model. This is of particular relevance in the case of finite-width
glitches, such as a glitch represented by a Gaussian function.
The location of glitches in the inner half of the g-mode cavity
(i.e. for which �̃�𝑟

g/𝜔g < 0.5) shall be expressed in terms of the
buoyancy radius while the location of glitches in the outer half
of the g-mode cavity shall be expressed in terms of the buoyancy
depth.

3. Step-like glitch
Cunha et al. (2019) considered the case of a decreasing step-like
glitch in the inner half of the g-mode cavity, defined by

𝑁 =

{
𝑁in for 𝑟 < 𝑟★

𝑁out for 𝑟 > 𝑟★
, (15)

with 𝑁in > 𝑁out, thus with 𝑁 varying by the positive amount
Δ𝑁 = 𝑁in |𝑟→𝑟★−

− 𝑁out |𝑟→𝑟★+
at 𝑟 = 𝑟★ (not to be confused

with the perturbation with respect to the reference model, 𝛿𝑁).
According to the authors (and keeping their notation), the glitch-
induced phase for this case is given by,

Φst = arccot

−
2

𝐴st sin
(
2𝛽2

) − cot 𝛽2

 , (16)

where the subscript “st” is used to indicate a step-like glitch.
Here, 𝛽2 =

∫ 𝑟★

𝑟1
𝐾d𝑟 + 𝜋/4 ≈ �̃�★

g

2𝜋 𝑃 + 𝜋/4 + 𝛿, and the super-
script ★ indicates that the corresponding quantity is evaluated
at 𝑟 = 𝑟★. The glitch is thus characterised by the relative step
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amplitude 𝐴st = [𝑁in/𝑁out]𝑟★ − 1, and the buoyancy radius �̃�★
g

at the glitch location, with the expression including an additional
fudge parameter 𝛿 accounting for the approximation of the inte-
gral made near the inner turning point. While Cunha et al. (2019)
considered a model with a decreasing step-like glitch, the authors
did not make any assumption about the sign of Δ𝑁 when deriv-
ing equation (16). Therefore, this equation is also valid for an
increasing step-like glitch for which Δ𝑁 < 0.

It should be noted that the expression for Φst is degenerate
with respect to the transformation 𝐴st → 𝐴st and 𝛿 → 𝛿 − 𝜋/2,
where 𝐴st = [𝑁out/𝑁in]𝑟★ − 1. Given that 𝐴st and 𝐴st have
opposite signs and are not identical in absolute value, care must
be exerted in the interpretation of the retrieved amplitude. In the
case of a decreasing step-like glitch with a fixed jump in 𝑁 at the
discontinuity, the positive amplitude retrieved from the fitting
will be larger than the absolute value of the negative solution.
This is because the former should be interpreted as 𝐴st and the
latter should be interpreted as 𝐴st (the actual jump being the
same, but expressed differently). The situation is reversed for
an increasing step-like glitch. This difficulty can be avoided by
setting a prior to the amplitude when fitting the data. By imposing
that the amplitude must be positive the retrieved value is always
interpreted as 𝐴±

st = [𝑁+/𝑁−]𝑟★ − 1, where the subscripts + and
− indicate the largest and the smallest of the two values of 𝑁 at
the discontinuity.

Finally, while the expression above was derived for a glitch
located in the inner half of the g-mode cavity, by symmetry of
the mathematical problem considered, it is clear that the case
of a decreasing step-like glitch in the inner cavity corresponds
to the case of an increasing step-like glitch in the outer cavity,
and the case of an increasing step-like glitch in the inner cavity
corresponds to the case of a decreasing step-like glitch in the
outer cavity. Thus, to infer the properties of a glitch in the outer
g-mode cavity one can also use expression (16), making the
correspondence 𝛽2 → 𝛽2, where 𝛽2 =

∫ 𝑟2

𝑟★
𝐾d𝑟 + 𝜋/4 ≈ 𝜔★

g

2𝜋 𝑃 +
𝜋/4 + 𝛿. Notice, however, that the phases 𝛿 and 𝛿 depend on the
details of 𝐾 near the inner and outer turning points, respectively,
and are not necessarily the same. Hence, despite the symmetry of
the expression, the signatures of glitches located at equal values
of 𝜔★

g and �̃�★
g may differ.

3.1. Test on model data

Massive stars have convective cores that retreat as they evolve in
the main sequence. The retreating core leaves behind a gradient
in the hydrogen abundance that changes abruptly at the radius
where the mixing region was once at its maximum. This abrupt
change in the gradient of hydrogen abundance leads to a step-like
discontinuity in the buoyancy frequency that is located inside the
g-mode cavity, hence ideal to test our formulation (see, e.g. figure
1, left panels, of Cunha et al. 2019, for the chemical and buoyancy
profiles in a massive star). To test the expression for the periods
in the presence of a step-like glitch we, thus, fit equation (10)
expressed in terms of the unperturbed periods 𝑃s, to the periods
computed for a model of a main-sequence, 6 M⊙ star. In order to
compare with the results obtained by Cunha et al. (2019), we use
the model and adiabatic pulsation periods computed in their work
using the Aarhus STellar Evolution Code (ASTEC, Christensen-
Dalsgaard 2008b) and the Aarhus adiabatic oscillation package
(ADIPLS, Christensen-Dalsgaard 2008a), respectively.

The model data were fitted through a Markov Chain Monte
Carlo method (MCMC) using the emcee python package, where

the likelihood was assumed to be Gaussian, as stated in expression
(17), where 𝜎 represents the jitter parameter.

L =

(
1

√
2𝜋𝜎2

)𝑁
exp

[
−1

2

𝑁∑︁
𝑖

(
𝑃𝑖 − 𝑃ADIPLS,𝑖

𝜎

)2]
. (17)

As in previous works, we do not perturb the pulsation periods
prior to performing the fit. Instead, we use the model periods as
given and take 𝜎 as a free parameter. Hence, the adequacy of
the fit is reflected in the ratio of the inferred value of 𝜎, to a
characteristic value of the periods.

Prior to the MCMC, the likelihood was maximised using a
Nelder-Mead minimiser method on − log(L). The resulting pa-
rameter space position was used to set the MCMC walkers’ initial
position, adding to each a small (around 0.01% of each parame-
ter’s value) random dislocation, allowing a better exploration of
the parameter space near this region.

The construction of the fitted periods through equation (10)
involves the resolution of a transcendental equation in the peri-
ods. This was achieved using the bisection method, iteratively
for each period, with a margin of 10−8. The codomain of the
arc-cotangent in equation (16) must be carefully selected in or-
der to avoid discontinuities. For step function glitches the argu-
ment passes from +∞ to −∞, so the codomain was chosen to be
[−𝜋/2, 𝜋/2]. With the discontinuities avoided all together, the
determination of each period comes from finding the root of a
monotonous function, which is doable by setting the search re-
gion as [𝑃𝑖−1, 𝑃𝑖−1 + 2Δ𝑃𝑎𝑠]. The free parameters determined
from the fit are 𝑃s,min, corresponding to the first of the periods
𝑃s, the asymptotic period spacingΔ𝑃as, the jitter𝜎 and the glitch
parameters, namely, the amplitude 𝐴st, position �̃�★

𝑔 and phase 𝛿.
We generated Markov Chains with 50 walkers and 9000

iterations, with a burn-in of 1000 iterations. From these we
extracted the maximum probability parameters as well as the
probability distribution median parameters and their respective
68% confidence interval. The priors on the parameters were uni-
form within the intervals provided in Table B.1 and the respec-
tive marginalised distributions for the parameters are shown in
Fig. B.1.

Figure 1, left panel, shows the periods of the ASTEC main-
sequence model in the form of an échelle diagram, where the
model periods (red symbols) are plotted against the residuals
defined as follows:

res =
(
𝑃 − 𝑃s,min

)
mod Δ𝑃as;

if res > Δ𝑃as/2 then res = res − Δ𝑃as. (18)

The period perturbations 𝛿𝑃s = −Δ𝑃as

𝜋
Φst derived from fitting

equation (10) to the model periods, with the glitch phase defined
by (16), are also shown (black line). The parameters inferred
from the fit are given in Table 1. Comparison with the results
found by Cunha et al. (2019) from fitting the periods spacings
shows agreement within 1-𝜎 on the inferred glitch amplitude,
glitch position, and period spacings. The phases also show a
reasonable agreement (∼ 1.5-𝜎).

3.2. Limit of small glitch

In the case of a step-like glitch with amplitude much smaller than
1, the expression for the periods becomes,

𝑃 = 𝑃0 − 𝑃0
Δ𝑃as

𝜋

(∫ 𝑟2

𝑟1

𝐿𝛿𝑁

2𝜋

d𝑟

𝑟

)
+ Δ𝑃as

2𝜋
𝐴st sin

(
2𝛽2

)
, (19)
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Table 1. Parameters derived from the fit of the analytical expression for the step-like glitch [equations (10) and (16)] to the periods derived
from ADIPLS for the main-sequence model. The values shown correspond to the median of the distributions and the 68% confidence intervals.
For comparison, the values of the glitch parameters and asymptotic period spacing inferred by fitting the period spacings, as well as the glitch
parameters estimated directly from the ASTEC buoyancy frequency profile are also shown.

𝑃s,min Δ𝑃as (s) 𝐴st �̃�★
g (10−6 rad/s) 𝛿 reference

Periods’ fit 50315+176−174 8485+12−12 4.71+0.90−0.72 348.0+2.8−2.8 0.713+0.076−0.073 this work

Period Spacings’ fit 8472+50−50 4.74+0.44−0.39 351.61+0.73−0.72 0.602+0.019−0.019 Cunha et al. (2019)

Estimated – – 5.3 349 – Cunha et al. (2019)
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Fig. 1. Period échelle diagrams representing the pulsations in the ASTEC
models (red asteriscs) and the respective best fits derived from equa-
tion (10) (black lines). Left panel: main-sequence model and glitch phase
given in equation (16). Right panel: RGB model and glitch phase given
in equation (22). The vertical dashed-dotted black line marks res=0.

In this small glitch limit 𝐴st = [𝑁in/𝑁out]𝑟★ − 1 ≈
− ([𝑁out/𝑁in]𝑟★ − 1) ≈ [Δ𝑁/𝑁0]𝑟★ .

Under these conditions, the expression for the period per-
turbation can also be derived by making use of the variational
principle (e.g. Gough 1993). The derivation is presented in Ap-
pendix A1, where our choice of reference model was made such
that the smooth contribution to the period perturbation (second
term on the rhs of equation (19)) varies with (𝛿𝑁/𝑁)2, becoming
negligible for small enough perturbations. Comparison of equa-
tions (A.12) and (19), confirms that the two derivations provide
the same result in this limit, as expected.

4. Gaussian-like glitch
In the case of the Gaussian-like glitch, Cunha et al. (2019) mod-
elled the glitch in 𝑁 , taking

Δ𝑁

𝑁0
≈ 𝐴G√

2𝜋Δg

exp

(
−
(𝜔𝑟

g − 𝜔★
g )2

2Δ2
g

)
. (20)

1 This limit was also considered in Miglio et al. (2008). However,
the authors were only concerned with the periodic component of the
perturbation and the phase of the periodic component they present differs
from the one derived here by 𝜋/2.

Given the inherent difficulty in modelling the eigenfunction
through the perturbation (cf. discussion in Section 1), it is im-
portant to recall that the analysis was performed under the rough
assumption that inside the glitch the eigenfunction has the form

Ψ ∝ 𝐾−1/2
0 sin

(∫
𝐾d𝑟 + 𝜋

4

)
, (21)

and that an ad hoc adjustment was made to the exponential func-
tion defining the decay of the glitch signature, so as to recover
the decay found when using the variational principle to treat
the small glitch limit. The glitch-induced phase proposed by the
authors under the above conditions is given by

ΦG = arccot

[
1

𝐴Gf
Δg

𝜔 sin2 𝛽2
− cot 𝛽2

]
, (22)

where, 𝑓 Δg

𝜔 = 𝜔−1exp(−2Δ2
𝑔𝜔

−2).

4.1. Tests on model data

To test the expression for the periods in the presence of a
Gaussian-like glitch and compare with the fits to the period
spacings performed by Cunha et al. (2019), we follow again
their example and fit equation (10) to the pure g-mode periods
computed by the authors for a 1 M⊙ red giant branch (RGB)
model. The model was computed with the evolution code ASTEC
(Christensen-Dalsgaard 2008b) and the pure g-mode pulsations
were computed by artificially disregarding the p-mode cavity with
the ASTER code (see Cunha et al. 2015, 2019, for details). Here,
the glitch (illustrated in their figure 1, right panel) results from
the strong chemical gradient that is built at the first dredged-up
and that crosses the g-mode cavity during the luminosity bump.

The same procedure as the one described in section 3.1 was
used. For a Gaussian-like glitch there is an additional free pa-
rameter, as we must fit as well the width Δg. The argument of the
arc-cotangent for Gaussian glitches crosses 0, instead of jumping
from +∞ to −∞. Thus the codomain was chosen to be [0,𝜋] to
avoid a discontinuity in this region.

The stellar model used to test the Gaussian-like glitch signa-
ture has a denser period spectra than the main-sequence model
used to test the step-like glitch signature. As a consequence, the
data set to be fitted was larger in the Gaussian-like glitch case
and not as many iterations were needed. We ran the MCMC for
4000 iterations with a burn-in of 1000, since the distributions
took longer to converge to their stationary state. As before, 50
walkers were used to explore the parameter space. The priors
on the parameters were uniform within the intervals provided in
Table B.1 and the respective marginalised distributions for the
parameters are shown in Fig. B.2.

The right panel of figure 1 shows the pure g-mode periods of
the ASTEC RGB model in the form of and échelle diagram, where
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the model periods (red symbols) are plotted against the residuals
computed as in Section 3.1. The period perturbations derived
from the fit of equations (10) and (22) to the model periods are
also shown (black line). Unlike in the case of the step-like glitch,
here the perturbation is generally negative (in the case of the fit it
is always negative and in the case of the model data it takes small
positive values with a maximum of ∼ 3 × 10−5 h only at very
few points). The reason is that ΦG includes a smooth, frequency-
dependent component [more easily identified in the expression
for the small glitch limit given in equation (28)] that contributes
negatively to the period perturbation 𝛿𝑃s.

The parameters inferred from the fit are given in Table 2.
Comparison with the results found by Cunha et al. (2019) from
fitting the period spacings shows agreement within 1-𝜎 on the
inferred glitch amplitude, glitch width, and period spacings. The
phases and glitch positions also show a reasonable agreement
(∼ 2-𝜎). Nevertheless, in this case a large difference is seen when
comparing the glitch properties inferred from the fittings of the
analytical expression and from the model buoyancy frequency
(with the amplitude from the fit being more than 1.5 times larger
than that derived from the buoyancy frequency). This discrep-
ancy, also found by Cunha et al. (2019) when fitting the period
spacings, will be discussed further in subsection 4.4.

4.2. Dirac 𝛿 limit

To verify that the phase for the Gaussian-like glitch reproduces the
expected form in the limit of a Dirac 𝛿, we consider equation (22)
in that limit and compare with the phase derived by Cunha et al.
(2015). Recalling that

lim
Δ𝑔→0+

1
√
2𝜋Δg

exp

(
−
(𝜔𝑟

g − 𝜔★
g )2

2Δ2
g

)
= 𝛿(𝜔𝑟

g − 𝜔★
g ), (23)

we find that the glitch-induced phase tends to

ΦG,lim = arccot

[
1

𝐴G𝜔
−1 sin2 𝛽2

− cot 𝛽2

]
, (24)

in the limit when the glitch tends to a Dirac 𝛿 in the variable 𝜔𝑟
g.

In Cunha et al. (2015), the authors defined the glitch in 𝑁2 (𝑟)
as,

Δ𝑁2

𝑁2
0

≈ 𝐴𝛿(𝑟 − 𝑟★). (25)

By integrating the wave equation (3) once across the glitch, the
authors found the discontinuity in the radial derivative of the
eigenfunction to be given by (see their equation 11)[
Ψ′

out − Ψ′
in

]
𝑟★

= − lim
Δ𝑟→0

∫ 𝑟★+Δ𝑟

𝑟★−Δ𝑟
Δ𝐾2Ψd𝑟 =

− lim
Δ𝑟→0

∫ 𝑟★+Δ𝑟

𝑟★−Δ𝑟
𝐾2
0 𝐴𝛿

(
𝑟 − 𝑟★

)
Ψd𝑟. (26)

Considering the same discontinuity in the case of the Gaussian-
like glitch (Cunha et al. 2019, see their Appendix A1) and taking
the Dirac 𝛿 limit, one has, in terms of the variable 𝜔𝑟

𝑔,[
Ψ′

out − Ψ′
in

]
𝑟★

= − lim
Δ𝜔𝑟

𝑔→0

∫ 𝜔★
𝑔+Δ𝜔𝑟

𝑔

𝜔★
𝑔−Δ𝜔𝑟

𝑔

𝜔−1Δ𝐾Ψd𝜔𝑟
𝑔 =

− lim
Δ𝜔𝑟

𝑔→0

∫ 𝜔★
𝑔+Δ𝜔𝑟

𝑔

𝜔★
𝑔−Δ𝜔𝑟

𝑔

𝜔−1𝐾0𝐴𝐺𝛿(𝜔𝑟
𝑔 − 𝜔𝑟★

𝑔 )Ψd𝜔𝑟
𝑔, (27)

where we have used (23) to convert from the Gaussian per-
turbation to the corresponding Dirac 𝛿 limit. We thus find
𝐴𝐺 = (𝐿𝑁★

0 /𝑟★)𝐴 in the Dirac 𝛿 limit. Substituting in equa-
tion (24), we confirm that the Gaussian glitch-induced phase is
the same as that derived by Cunha et al. (2015) (cf. their equation
16) in the Dirac 𝛿 limit.

4.3. Limit of small glitch

When Δ𝑁/𝑁0 ≪ 1 everywhere, 𝐴𝐺/𝜔 ≪ 1 (since Δ𝑔 <∼ 𝜔 for
a glitch to exist). In that case,

ΦG ∼ arctan
[
𝐴Gf

Δg

𝜔 sin2 𝛽2

]
∼ 1

2
𝐴Gf

Δg

𝜔 [1 − cos (2𝛽2)] ,
(28)

Defining the reference model as that with an otherwise equal
buoyancy frequency, without the Gaussian perturbation, we have
that 𝛿𝑁/𝑁0 = Δ𝑁/𝑁0. Accordingly, the period perturbations are
derived from equation (10) to be,

𝑃 = 𝑃0 − 𝑃0
Δ𝑃as

2𝜋2
𝐴𝐺 − Δ𝑃as

2𝜋
𝐴𝐺f

Δ𝑔

𝜔 [1 − cos (2𝛽2)] . (29)

Under this limit of a small perturbation to the buoyancy fre-
quency, the perturbation to the periods induced by a Gaussian-
like glitch can be derived with recourse to the variational princi-
ple. The derivation is presented in Appendix A with the period
perturbations given by equation (A.14). Comparison with equa-
tion (29) shows that the sinusoidal part of the glitch-induced
period perturbation is a factor of two smaller in the case derived
by matching the eigenfunctions through the approach followed by
Cunha et al. (2019). Moreover, the smooth component resulting
from this derivation has also an additional term compared to the
variational approach, which is generally not negligible. In prac-
tice, the difference in the smooth component will have no impact
when inferring the glitch properties by fitting the periods or pe-
riod spacings (at most, it will introduce small differences in the
inferred unperturbed periods that are of no physical interest since
they refer to a hypothetical unperturbed model). However, the
factor of two in the sinusoidal component will be translated into
a factor of two in the inferred amplitude of the glitch, which will
be two times larger when fitting the expression derived through
the approach followed by Cunha et al. (2019), compared with
fitting with the expression derived from the variational principle.
Changing ΦG such that the perturbation to the periods satisfies
that derived through the variational principle in the limit of a
small glitch is not an option because we verified that the expres-
sion for ΦG satisfies the correct limit when the glitch approaches
a Dirac 𝛿 and the inherent difficulty of fitting the eigenfunctions at
the perturbation disappears (Section 4.2). Instead, in Section 4.4
we explore the accuracy of the analytical expression forΦG in in-
termediate cases, simulating glitches of different amplitudes and
widths, and estimating the error incurred on the inferred glitch
parameters.

4.4. Tests to the accuracy of the Gaussian-like glitch
inferences

The results from Section 4.3 illustrate well the anticipated diffi-
culty in deriving an expression for the glitch-induced signature
that is valid across the parameter space that one would like to
explore, in the case of a Gaussian-like glitch. It is thus impor-
tant to test the accuracy of the proposed expression on control
data before using it to fit real data. To that end, we simulated
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Table 2. Parameters derived from the fit of the analytical expression for the Gaussian-like glitch [equations (10) and (22)] to the period spacing
derived from ASTER for the RGB model. The values shown correspond to the median of the distributions and the 68% confidence intervals.
For comparison, the values of the glitch parameters and asymptotic period spacing inferred by fitting the period spacings, as well as the glitch
parameters estimated directly from the ASTEC buoyancy frequency profile, are also shown.

𝑃s,min Δ𝑃as (s) 𝐴G (10−6 rad/s) 𝜔★
g (10−6 rad/s) Δg (10−6 rad/s) 𝛿 reference

Periods’ fit 14967.183+0.076−0.074 67.53443+0.00034−0.00035 589.1+4.4−4.3 1730.6+1.6−1.6 157.31+0.55−0.55 −0.7936+0.0069−0.0069 This work

Period spacings’ fit – 67.534+0.005−0.005 607+27−25 1747.3+7.6−7.7 158.5+3.4−3.4 −0.872+0.034−0.034 Cunha et al. (2019)

Estimated – – 380 1632 156 – Cunha et al. (2019)

Fig. 2. Buoyancy frequency for the original ASTEC model (dashed black
line), the glitchless reference model (dotted black line), and model 5,
built by adding to the glitchless reference model a glitch with properties
similar to that of the original ASTEC model.

a series of Gaussian-like glitches, starting from the buoyancy
frequency of our 1M⊙ red giant model. Specifically, we started
by building a glitchless reference model by either removing or
smoothing the features in 𝑁 that produce visible period spacing
variations on scales smaller than the frequency range analysed
(i.e. [25,67] 𝜇Hz). Two features were identified: (1) the glitch in𝑁
associated to the steep chemical gradient left by the first dredge-
up, which was removed by fitting a second order polynomial
across the glitch region; (2) a series of significant short-scale
variations in the second derivative of 𝑁 (of numerical origin)
taking place in the H-burning shell, which were suppressed by
applying a boxcar average to 𝑁 (with a width of ∼1/50 of the
shell) in the region of the H-burning shell. The buoyancy fre-
quency of the original ASTEC model (dashed black line) around
the glitch is compared with that of the glitchless reference (black
dotted line) in Fig. 2.

Next we artificially added one Gaussian glitch at a time to the
glitchless reference model, to generate a set of six models, each
with a single glitch. The parameters of the added glitches were
first defined based on the buoyancy depth of the reference model.
As𝑁 is modified by the addition of the glitch, we then recomputed
the buoyancy depth based on the new 𝑁 and fitted a Gaussian
function to the glitch to extract the true glitch parameters that are
to be compared with the values inferred from fitting the analytical
expression. The parameters of the six artificial glitches were
chosen to explore different regimes, namely: (1) three glitches
with similar widths and different amplitudes were simulated to
investigate the impact of increasing amplitude; (2) two glitches

Table 3. Properties of the simulated glitches used in Section 4.4.

Model ID 𝐴G (10−6 rad/s) 𝜔★
g (10−6 rad/s) Δg Comment

1 502.2 1570.1 15.5 Dirac-like
2 493.9 1603.7 43.6
3 1920.7 1752.7 154.8 Largest amplitude
4 837.6 1700.4 154.8
5 355.9 1658.1 147.1 Similar to original
6 43.0 1565.0 46.9 Small

with similar amplitude and different small widths were simulated
to verify the impact of approaching the Dirac 𝛿 limit; (3) one
glitch with a small amplitude was also simulated to test the results
when approaching the small glitch limit. This series of glitches
is illustrated in Fig. 3 and the respective properties are provided
in Table 3. We note that one of these (model 5) has properties
similar to those of the original ASTEC model and is shown in
red in Fig. 2 and all panels of Fig. 3, for comparison.

The pure g-mode periods of the simulated glitch models were
computed with the code ASTER and the respective period spac-
ings were fitted with the analytical expression proposed by Cunha
et al. (2019) (their equation 15) following the procedure described
in that paper. In the case of the smallest glitch (model 6) the fit
required adding a smooth component to the analytical expression
describing the period spacings, which we modelled as a linear
function, 𝑆m = 𝑎0 + 𝑎1𝜔, where 𝑎0 and 𝑎1 are constants. We
thus added the smooth component to the fit of the period spac-
ings of all simulated glitch models for consistency, although no
significant impact was found in any of the other cases.

The best fits to the period spacings for all six simulated glitch
models are shown in Fig. 4, with the residuals shown in the bottom
part of each panel. Comparison of the model period spacings
(in black) with the best fits (in red) shows that the analytical
expression proposed by Cunha et al. (2019) (their equation 15)
for the Gaussian-like glitch signature reproduces well the period
spacings computed with ASTER in all cases (with all deviations
smaller than 0.3%). Inspection of the blue curve in the bottom
panel also shows that for the smallest glitch (Model ID 6 in
Table 3) a smooth component needs to be added to the analytical
expression in order to achieve a good fit. With the addition of
the smooth component, the fit is indeed improved significantly,
as seen by the model shown in red in the same panel.

In the top panel of Fig. 4 we can also see how the signature of
the glitch changes as the glitch becomes narrow. The two glitch
models shown correspond to the buoyancy frequency profiles in
black seen in the top panel of Fig. 3. As we approach the Dirac 𝛿
limit we have seen that the glitch signature becomes independent
of the glitch width [cf. equation (24)]. This is reflected in the
results seen in the top panel of Fig. 4, as the glitch signatures for
the two cases are almost indistinguishable (there are two black
and two red lines plotted in this panel). Notice that the residuals
between the model data (in black) and the fits (in red) for the two
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cases, also shown in the bottom part of the top panel, are also
hardly distinguishable.

Likewise, we fitted the ASTER periods for the six simulated
models with equation (10), using the glitch phase defined by
equation (22), adding a second order smooth component to mimic
the impact of the first order smooth component added to the
analytical expression for the period spacings. Figure 5 shows the
ratios between the inferred and true glitch properties both for the
case of the fit to the period spacings and for case of the fit to the
periods.

Inspection of the inferred glitch parameters show that these
are not accurate, in the sense that the error bars associated with the
inferences are small compared to the distance to the true values of
the glitch properties. Thus, while the proposed analytical expres-
sions for the signature on the periods and period spacings of the
Gaussian-like glitch reproduce well the model data, they produce
systematic errors in the inferred glitch properties. This was to be
expected given the difficulties associated with the derivation of
the analytical expression in this case (cf. Section 4). Nevertheless,
the tests with artificial glitch models performed here allow us to
understand the extent of the systematic errors so that these can be
considered in applications to real data. According to the results,
the parameter that is most affected, namely the amplitude of the
glitch, can still be recovered within a factor of two for all cases
tested. In fact, we verify that the maximum error of a factor of two
occurs for the smallest amplitude glitch, as already anticipated
through the inspection of that limit in Section 4.3. On the other
hand, we see that the inferred amplitude becomes closer to the
true value when the glitch becomes narrower, as expected from
the Dirac 𝛿 limit discussed in Section 4.2. Regarding the glitch
width, the largest errors occur for the narrower glitch (model ID 1
in Table 3), where the glitch-induced signature becomes less sen-
sitive on this parameter. For this case we notice also a significant
difference in the width inferences made by fitting the periods and
the period spacings, and an increase in the error bars, compared
to those obtained for the other glitch models. Finally, we see that
the position of the glitch is determined within 10% of the true
value in all cases considered.

5. Mixed modes
For completeness, in this section we discuss the expression for the
frequency perturbations resulting from the impact of buoyancy
glitches on mixed modes. The perturbation to the mixed-mode
period spacings induced by a buoyancy glitch was first considered
for the case of a glitch represented by a Dirac-𝛿 function (Cunha
et al. 2015) and later for a Gaussian-like glitch (Cunha et al.
2019). Following on these works, Vrard et al. (2022) provided
an expression for the frequency perturbation of dipole modes,
namely,

𝜈 = 𝜈a,𝑛 +
Δ𝜈

𝜋
arctan

{
𝑞 tan

[
𝜋

(
1

𝜈Δ𝑃as
− 𝜖g

)
+Φ

]}
, (30)

where 𝜈a,𝑛 represents the frequency of the pure acoustic dipole
mode of (pressure) radial order 𝑛 that would exist in the absent
of mode coupling, Δ𝜈 is the large frequency separation, 𝑞 is the
coupling factor and 𝜖g is the gravity phase offset. This expression
assumes that the integral of 𝑁/𝑟 within the g-mode cavity is the
same in the glitch and glitchless (reference) models. The impact
of the glitch is incorporated in glitch phase Φ, as before.

Explicit forms for Φ were derived by Cunha et al. (2015)
and Cunha et al. (2019) for the Dirac-𝛿 and Gaussian-like glitch,
respectively. In both cases the authors assumed that the glitch was

located in the outer half of the g-mode cavity. However, from the
point of view of the solutions within the g-mode cavity, we can
think of this case as being similar to the one of pure g modes,
with the exception that the boundary conditions applied beyond
the two turning points are no longer the same, as a result of the
coupling outwardly from the cavity. In other words, the presence
of the p-mode cavity outwards from the g-mode cavity breaks
the symmetry of the problem with respect to the solution inside
the g-mode cavity. It is thus worth considering how the glitch
phase is modified when considering a glitch in the inner half of
the g-mode cavity. That analysis is presented in Appendix C.

In all cases the functional form ofΦ for mixed modes is found
to be unchanged with respect to that derived in the analysis for the
pure g modes, that is, it is given by equations (16), (22), and (24),
for the step-like, Gaussian-like, and Dirac-𝛿 glitch, respectively.
However, while the definition of 𝛽2, used in the case of a glitch
in the inner half of the g-mode cavity, remains the same as in the
pure g-mode case, the definition of 𝛽2 used in the case of a glitch
in the outer half of the g-mode cavity differs from that derived
in the pure g-mode case, as found in the previous works (Cunha
et al. 2015, 2019). In particular, when employing any of the
expressions for the phase Φ for mixed modes with a glitch in the
outer half of the g-mode cavity, one must make the substitution
𝛽2 → 𝛽2,𝜑 ≈ 𝜔★

g

2𝜋 𝑃 + 𝜋/4 + 𝛿 + 𝜑, where 𝜑 is the coupling phase
defined by

𝜑 ≈ arctan

[
𝑞

tan
[
𝜋

(
𝜈 − 𝜈a,𝑛

)
/Δ𝜈

] ] . (31)

As a result of the inclusion (exclusion) of 𝜑 in the arguments of
the sinusoidal functions entering the definition of Φ in the case
of glitches in the outer (inner) half of the g-mode cavity, different
glitch signatures on the frequencies of mixed modes are expected
depending on which case is considered. A thorough discussion
on this symmetry breaking will be presented in a separate work.

Finally, we emphasise also the non-additive nature of the ef-
fects of the glitch and coupling on the frequencies, as already
discussed in Cunha et al. (2019) (their section 2). This requires
that the two effects are considered simultaneously, by fitting with
expression (30). While streching of the periods can be performed
(Mosser et al. 2015; Ong & Gehan 2023), caution must be exerted
on the interpretation of the results from that streching, particu-
larly if the frequencies are observed only near the frequency of
maximum coupling.

Fits of expression (30) to Kepler data on a sample of helium
core-burning stars with a glitch located in the inner half of the g-
mode cavity have recently been presented by Vrard et al. (2022),
enabling the first characterisation of core glitches in these stars.

6. Conclusions
In this work we provided and tested on model data analytical
expressions for the perturbations induced by a glitch located in the
g-mode cavity of a star on pure g-mode periods and mixed-mode
frequencies. This complements the work published previously
on the period-spacings perturbations (Cunha et al. 2015, 2019)
and will be particularly useful when fitting data for which the
observed periods are not sequential in radial order (where the
computation of the period spacings is not accessible for all radial
orders, but an estimate of the asymptotic period spacing is still
available).

Using model data, we have also tested the accuracy of the ana-
lytical expression proposed for the seismic signature of Gaussian-
like glitches, where drastic approximations had to be made in the
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derivation due to the finite width of the glitch. We found that the
analytical expression for the periods and period-spacings pertur-
bations becomes insensitive to the glitch width when the glitch
approached the Dirac-𝛿 limit. In that case, the recovery of the
glitch width becomes less accurate. Nevertheless, for all cases
studied here, we found that the parameter that is most affect,
namely the glitch amplitude, can still be recovered from the fit-
ting within a factor of two.

Finally, comparing the glitch-induced phases for step-like and
Gaussian-like glitches, we see that glitch signatures have different
dependencies on period (see Fig. 1), according to their shapes.
This introduces an additional uncertainty in the interpretation of
the glitch amplitude (and width), particularly when the range of
observed periods does not cover a significant number of cycles
of the glitch signature. Therefore, we are forced to conclude that
the glitch position is generally the most robust of the inferred
glitch parameters, similar to what is found in studies of acoustic
glitches (e.g. Mazumdar et al. 2014).
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Fig. 3. Buoyancy frequency for the glitch-simulated models near the
glitch position. In all panels, the continuous red line shows the case of
model 5, corresponding to a glitch with properties similar to the original
ASTEC model. Additionally, the black lines are as follows. Top panel:
Models 1 (dotted line) and 2 (dashed line). Middle panel: Models 3
(dotted line) and 4 (dashed line). Bottom panel: Model 6.

Fig. 4. Period spacings from ASTER for the simulated Gaussian-like
glitches listed in Table 3 (black line and plus symbols) and respective
best analytical-model fits (dashed red line). The residuals (ASTER –
best fit) are also shown for each case. Top: models 1 and 2. Middle:
models 3, 4 and 5. Bottom: model 6. The fits in red included a linear
smooth component. The dashed blue line in the bottom panel shows the
fit without the inclusion of a smooth component. For all other models
the fits with and without the inclusion of the smooth component would
be indistinguishable in these figures.
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Fig. 5. Ratios between the inferred and true glitch parameters. Buoyancy radius (left), glitch width (middle), glitch amplitude (right). A comparison
is shown of the values inferred from the fits to the period spacings (black) and to the periods (red). Note that the symbols have been displaced
horizontally for a better visualisation. The horizontal dashed-dotted black line represents a ratio equal to 1.
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Appendix A: Variational principle
Our starting point is the wave equation A1 of Appendix
A of Cunha et al. (2019) written in terms of the variable
Ψ = (𝑟3/𝑔𝜌 𝑓 )1/2𝛿𝑝 (cf. section 2). The equation resulting from
the linear, adiabatic pulsation equations for the case of a spheri-
cally symmetric equilibrium under the Cowling approximation,
is then

Ψ′′ + 𝐾2Ψ = 0, (A.1)

where a prime represents a differentiation with respect to 𝑟 and
we shall approximate the radial wavenumber𝐾 as in equation (4),
given our interest in pure g modes.

Multiplying equation (A.1) by the complex conjugate Ψ†,
integrating once by parts between the turning points 𝑟1 and 𝑟2
and rearranging, we find the following integral equation for the
periods:

𝑃2 =

∫ 𝑟2

𝑟1
(Ψ′)2d𝑟 +

∫ 𝑟2

𝑟1

𝐿2

𝑟2
Ψ2d𝑟 −

[
Ψ′Ψ†]𝑟2

𝑟1∫ 𝑟2

𝑟1

𝐿2𝑁2

4𝜋2𝑟2
Ψ2d𝑟

≡ 𝐹

𝐼
. (A.2)

Next we consider a small localised perturbation to a reference
model characterised by 𝑁0, such that no change is induced to the
turning points. Small perturbations to the periods induced by the
change to the reference model are given by

𝛿𝑃2 ≈ 𝛿𝐹 − 𝑃2𝛿𝐼

𝐼0
. (A.3)

To first order, the perturbation of the eigenfunctions do not con-
tribute to the perturbation of the periods. Thus 𝛿𝐹 = 0 and we
find

𝛿𝑃 ≈ −𝑃
2

𝛿𝐼

𝐼0
= −𝑃

2

∫ 𝑟2

𝑟1

𝐿2 𝛿𝑁2

4𝜋2𝑟2
Ψ2

0d𝑟∫ 𝑟2

𝑟1

𝐿2𝑁2
0

4𝜋2𝑟2
Ψ2

0d𝑟
, (A.4)

where Ψ0 is the solution in the reference model and is asymptot-
ically given by Gough (1993),

Ψ0 ∼ Ψ̃0𝐾
−1/2
0 sin

(∫ 𝑟

𝑟1

𝐾0d𝑟 +
𝜋

4

)
, (A.5)

and Ψ̃0 is a constant. The integral in the denominator of equa-
tion (A.4) can be readily calculated. Taking 𝐾0 ≈ 𝐿𝑁0/𝑟𝜔 in the
amplitude of the eigenfuntion Ψ0, we find

𝐼0 ≈ 𝜔

4𝜋2
Ψ̃2

0

∫ �̃�g,0

0

sin2
(
�̃�𝑟

g,0

𝜔
+ 𝜋
4
+ 𝛿

)
d�̃�𝑟

g,0 ≈ 𝜔

8𝜋2
Ψ̃2

0𝜔g,0.

(A.6)

Appendix A.1: Small step-like glitch

To proceed with the calculation of 𝛿𝑃 we need first to define the
reference model and the glitch shape. Here we consider the case
of a decreasing step-like glitch in the inner half of the g-mode
cavity and define the reference model such that to first order in
𝛿𝑁/𝑁0 there is no smooth contribution to the period perturba-
tions. Specifically, we define a linearly varying 𝑁0 around the
glitch given by

𝑁0 = 𝑁in + Δ𝑁

Δ𝜔g

(
�̃�a

g − �̃�r
g

)
, (A.7)

Fig. A.1. Schematic view of the buoyancy frequency in the reference
model around the glitch (𝑁0, in red) in comparison to that in the model
with the glitch (𝑁 , in black). Quantities are shown in arbitrary units.

whereΔ𝜔g = �̃�b
g−�̃�a

g andΔ𝑁 = 𝑁in−𝑁out. Here, �̃�a
g and �̃�b

g are
equidistant from �̃�★

g and we assume the transition of 𝑁0 to 𝑁in

and 𝑁out on each side of �̃�★
g occurs on a scale much greater than

the local characteristic scale of the wave, ensuring thatΔ𝜔g ≫ 𝜔.
Also, any variations of 𝑁 within the interval Δ𝜔g in addition to
the jump at �̃�★

g are ignored, by comparison with the variation at
the glitch. A schematic view of 𝑁0 is shown in Fig. A.1. While
this is clearly a simplified reference model, in particular because
its first derivative is discontinuous at the points �̃�a

g and �̃�b
g where

it merges into 𝑁 , it suffices our purpose, as the dominant feature
in the perturbation 𝛿𝑁 defined from this reference model is still
the glitch in 𝑁 . It is clear from symmetry, that in this case∫ �̃�g

0

𝛿𝑁d�̃�𝑟
g,0 =

∫ 𝑟2

𝑟1

𝐿𝑁0𝛿𝑁
d𝑟

𝑟
= 0. (A.8)

Noting that 𝑁0 varies by a maximum of O (Δ𝑁) about 𝑁★
0 within

the interval where 𝛿𝑁 differs from zero, we find that the smooth
component in equation (19) scales with (𝛿𝑁/𝑁)2, as per our
choice of the reference model.

With the reference model defined as above one then finds

𝛿𝑁

𝑁0
≈ −Δ𝑁★

𝑁★
0

[
H

(
�̃�𝑟

g − �̃�𝑟★

g

)
+
�̃�𝑎

g − �̃�𝑟
g

Δ𝜔g

]
, (A.9)

in the region where 𝛿𝑁 is non-zero, where H is the Heaviside
function.

Finally, with 𝛿𝑁 in hand, we can calculate the integral on the
numerator of equation (A.4) and the respective 𝛿𝑃. Specifically,

𝛿𝐼 =
𝜔

2𝜋2
Ψ̃2

0

∫ �̃�b
g,0

�̃�a
g,0

𝛿𝑁

𝑁0
sin2

(
�̃�𝑟

g,0

𝜔
+ 𝜋
4
+ 𝛿

)
d�̃�𝑟

g,0. (A.10)

Integrating once by parts and noting that d/d𝜔𝑟
g = d/d𝜔𝑟

g,0 (1 +
O(𝛿𝑁/𝑁0)) and Δ𝜔g = Δ𝜔g,0 (1 + O(𝛿𝑁/𝑁0)), we find

𝛿𝐼 ≈ − 𝜔
2

8𝜋2
Ψ̃2

0

[
Δ𝑁

𝑁0

]
𝑟★

[
1 − 𝜔

Δ𝜔g
sin

(
Δ𝜔g

𝜔

)]
sin

(
2𝛽2

)
.

(A.11)
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Recalling that Δ𝜔g ≫ 𝜔 and that 𝜔g = 2𝜋2/Δ𝑃as, we then find,
to first order in 𝛿𝑁/𝑁0, that

𝛿𝑃 ≈ Δ𝑃as

2𝜋

[
Δ𝑁

𝑁0

]
𝑟★

sin
(
2𝛽2

)
, (A.12)

which is equivalent to equation (19) for the case of a zero smooth
contribution, as expected.

Appendix A.2: Small Gaussian-like glitch

In the case of a Gaussian-like glitch, the reference model is
defined by the buoyancy frequency in the absence of the Gaussian
perturbation. Thus, the perturbation relative to that reference is
simply

𝛿𝑁

𝑁0
=
Δ𝑁

𝑁0
≈ 𝐴G√

2𝜋Δg

exp

(
−
(𝜔𝑟

g − 𝜔★
g )2

2Δ2
g

)
. (A.13)

Substituting in equation (A.10) and combining with equa-
tion (A.6), one finds, from equation( A.4),

𝛿𝑃 ≈ −𝑃0
Δ𝑃as

2𝜋2
𝐴𝐺 + Δ𝑃as

𝜋
𝐴𝐺f

Δ𝑔

𝜔 cos (2𝛽2) , (A.14)

where we neglected the difference between 𝜔g,0 and 𝜔g in the
definition of 𝛽2, as this difference is ∼ O(𝛿𝑁/𝑁0).

Appendix B: Marginalised distributions
Here we provide the priors (Table B.1) and marginalised distri-
butions for the fits of equation (10) to the model data, considering
the step-like glitch (Fig. B.1) and Gaussian-like glitch (Fig. B.2).

Appendix C: Glitch phase 𝚽 for mixed modes
Here we discuss how the glitch phaseΦ is modified when consid-
ering mixed modes instead of pure gravity modes. To establish
the eigenvalue condition in the presence of a glitch, Cunha et al.
(2015) and Cunha et al. (2019) started from equation (A.1), con-
sidering the asymptotic solutions on either side of the glitch.
When studying the impact on pure g modes (i.e. in the absence
of mode coupling), well inside the g-mode cavity, the solutions
inwards and outwards from the glitch location are, respectively,

Ψin ∼ Ψ̃in𝐾
−1/2
in sin

(∫ 𝑟

𝑟1

𝐾ind𝑟 +
𝜋

4

)
, (C.1)

Table B.1. Lower and upper limits of the uniform prior distributions
applied in the fit of equation (10) to model data, for the cases of a
step-like glitch (equation (16)) and Gaussian-like glitch (equation (22)).

Parameter Step-like Gaussian-like

𝑃s,min (s) 49000 14900
56000 15000

Δ𝑃as (s) 7000 65
10000 69

𝐴st or 𝐴G (10−6 rad/s) 1 300
15 800

𝜔★
g (10−6 rad/s) 300 1500

400 2000

Δg (10−6 rad/s) – 100
– 200

𝛿
-𝜋/2 -𝜋/2
𝜋/2 𝜋/2

jiter ≡ 𝜎 (s) 0 0
inf inf

and

Ψout ∼ Ψ̃out𝐾
−1/2
out sin

(∫ 𝑟2

𝑟

𝐾outd𝑟 +
𝜋

4

)
, (C.2)

where Ψ̃in and Ψ̃out are constants and 𝐾in and 𝐾out refer again
to 𝐾 computed inwards and outwards from the glitch location,
respectively.

In the case of mixed modes, the solution outwards from the
glitch position is modified due to mode coupling. That can be
accounted for by introducing a coupling phase 𝜑 in equation (C.2)
that accounts for the impact of the coupling. In that case (Cunha
et al. 2019),

Ψout ∼ Ψ̃out𝐾
−1/2
out sin

(∫ 𝑟2

𝑟

𝐾outd𝑟 +
𝜋

4
+ 𝜑

)
, (C.3)

where the frequency dependent coupling phase is given by

𝜑 = atan

[
𝑞

tan
[ (
𝜔 − 𝜔a,𝑛

)
/𝜔p

] ] , (C.4)

with

𝜔p =

(∫ 𝑟4

𝑟3

𝑐−1d𝑟

)−1
≈ 2Δ𝜈. (C.5)

Here, 𝑟3 and 𝑟4 are the turning points of the p-mode cavity and
𝑞 is the coupling coefficient (Unno et al. 1989; Takata 2016).
Also, 𝜔a,𝑛 is the angular frequency of what would be the pure
acoustic mode of (pressure) radial order 𝑛, in the absence of mode
coupling. Based on the asymptotic solutions and the conditions
obeyed by them across the glitch, the authors derived eigenvalue
conditions appropriate for each case under study.

To proceed, we consider the case of a decreasing step-like
buoyancy glitch as an example. It is straightforward to show that
the conclusions remain the same for other shapes of the buoyancy
glitch, by performing a similar analysis.

The eigenvalue condition derived by Cunha et al. (2019)
for a decreasing step-like buoyancy glitch dropping by 𝐴st =

𝑁in/𝑁out − 1 at 𝑟★in the absence of coupling is

sin

(∫ 𝑟2

𝑟1

𝐾d𝑟 + 𝜋
2

)
=

−𝐴st sin

(∫ 𝑟2

𝑟★
𝐾outd𝑟 +

𝜋

4

)
cos

(∫ 𝑟★

𝑟1

𝐾ind𝑟 +
𝜋

4

)
. (C.6)

Following the same analysis, but replacing equation (C.2) by
equation (C.3), it follows that the eigenvalue condition becomes

sin

(∫ 𝑟2

𝑟1

𝐾d𝑟 + 𝜋
2
+ 𝜑

)
=

−𝐴st sin

(∫ 𝑟2

𝑟★
𝐾outd𝑟 +

𝜋

4
+ 𝜑

)
cos

(∫ 𝑟★

𝑟1

𝐾ind𝑟 +
𝜋

4

)
. (C.7)

We now consider separately the cases of a glitch in the inner
half and the outer half of the g-mode cavity. For a glitch in the
inner half of the g-mode cavity one has∫ 𝑟2

𝑟★
𝐾outd𝑟+

𝜋

4
+𝜑 =

∫ 𝑟2

𝑟1

𝐾d𝑟+ 𝜋
2
+𝜑−

∫ 𝑟★

𝑟1

𝐾ind𝑟−
𝜋

4
, (C.8)

and substituting in Eq. (C.7) one finds

sin

(∫ 𝑟2

𝑟1

𝐾d𝑟 + 𝜋
2
+Φ + 𝜑

)
= 0, (C.9)
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Fig. B.1. Marginalised distributions for the parameters considered in the fit to model data of the expression for the step-like glitch (equation (10)
with Φ defined by equation (16)).

where Φ, and a new quantity, 𝐵, are defined by the following
system of equations,


𝐵 cosΦ = 1 + 𝐴st cos

2
(∫ 𝑟★

𝑟1
𝐾ind𝑟 + 𝜋

4

)
,

𝐵 sinΦ = − 1
2 𝐴 st cos

(
2
∫ 𝑟★

𝑟1
𝐾ind𝑟

)
.

(C.10)

By comparing with equation (16), we thus conclude that in the
case of a glitch located in the inner half of the g-mode cavity,
the glitch phase Φ entering the perturbation to the mixed-mode
frequencies is the same as that derived for the pure g modes.

For a glitch in the outer half of the g-mode cavity one has
instead∫ 𝑟★

𝑟1

𝐾ind𝑟+
𝜋

4
=

∫ 𝑟2

𝑟1

𝐾d𝑟+ 𝜋
2
+𝜑−

∫ 𝑟2

𝑟★
𝐾outd𝑟−

𝜋

4
−𝜑. (C.11)

Substituting in equation (C.7), we find again equation (C.9), but
with the glitch phase now defined by the system of equations
𝐵 cosΦ = 1 + 𝐴st sin

2
(∫ 𝑟2

𝑟★
𝐾outd𝑟 + 𝜋

4 + 𝜑
)
,

𝐵 sinΦ = 1
2 𝐴 st cos

(
2
∫ 𝑟2

𝑟★
𝐾outd𝑟 + 2𝜑

)
.

(C.12)
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Fig. B.2. Marginalised distributions for the parameters considered in the fit to model data of the expression for the Gaussian-like glitch (equation (10)
with Φ defined by equation (22)).

In this case the glitch phase can be written as,

Φ = arccot


2

𝐴st cos
(
2
∫ 𝑟2

𝑟★
𝐾outd𝑟 + 2𝜑

)
+ tan

(∫ 𝑟2

𝑟★
𝐾outd𝑟 +

𝜋

4
+ 𝜑

)]
. (C.13)

To see how the glitch phase is modified for the mixed modes in this
case, one can compare equation (C.13) to equation (16). Recalling
thatΔ𝑁 = 𝑁in−𝑁ou, we rewrite 𝐴st = 𝑁in/𝑁ou−1 = Δ𝑁/(𝑁in−
Δ𝑁). Using 𝐴st expressed in terms of Δ𝑁 in equation (C.13)
and noting that tan(𝜃) + cot(𝜃) = 1/(sin(𝜃) cos(𝜃)) for any 𝜃,

equation (C.13) can be rewritten as

Φ = arccot

−
2

𝐴st cos
(
2
∫ 𝑟2

𝑟★
𝐾outd𝑟 + 2𝜑

)
− cot

(∫ 𝑟2

𝑟★
𝐾outd𝑟 +

𝜋

4
+ 𝜑

)]
. (C.14)

Equation (C.14) has the same functional form as equation (16),
and we note that the appearance of 𝐴st instead of 𝐴st was antici-
pated given that by symmetry a decreasing step-like glitch in the
outer cavity should imprint the same signature on pure g modes
as an increasing step-like glitch in the inner g-mode cavity, with
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an associated positive amplitude defined by 𝐴st. Nevertheless,
there is a second important difference that we can identify when
comparing the two results. In the case of the mixed modes and a
glitch located in the outer half of the g-mode cavity, the arguments
of the sinusoidal functions change, incorporating, in addition, the
coupling phase, 𝜑. This means that the coupling between the two
cavities will impact the glitch phase when the glitch is located in
the outer half of the cavity. To recover the same expression for Φ
as in the pure g-mode case, one must now include the coupling
phase 𝜑 in the definition of 𝛽2.
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