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Abstract 

Connectedness measures the degree at which a time-series variable spills over volatility to other 

variables compared to the rate that it is receiving. The idea is based on the percentage of 

variance decomposition from one variable to the others, which is estimated by making use of 

a VAR model. Diebold and Yilmaz (2012, 2014) suggested estimating this simple and useful 

measure of percentage risk spillover impact. Their method is symmetric by nature, however. 

The current paper offers an alternative asymmetric approach for measuring the volatility 

spillover direction, which is based on estimating the asymmetric variance decompositions 

introduced by Hatemi-J (2011, 2014). This approach accounts explicitly for the asymmetric 

property in the estimations, which accords better with reality. An application is provided to 

capture the potential asymmetric volatility spillover impacts between the three largest financial 

markets in the world.  

 

Keywords: VAR Model, Variance Decompositions, Asymmetric Spillover, Contagion.    

JEL Classifications: G1, F3, C32. 

 

1. Introduction 

Investigating dynamic interaction between variables of interest is an important issue when time 

series variables are the focus of empirical research. Sims (1980) introduced impulse response 

functions and variance decompositions that are frequently used in applied research via the 

vector moving average version of the vector autoregressive (VAR) model. The initial approach 

for the identification of chocks was suggested by Sims to be Cholesky decomposition. This 

approach is, however, vulnerable to the way the variables enter the model. To remedy this issue 

Koop et. al., (1996) and Pesaran and Shin (2008) developed the generalized approach. A 

common deficiency of all previous approaches on measuring the effect of shock is the implicit 

assumption that the strength of a negative shock is the same as the strength of a positive one in 
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absolute terms. However, this assumption does not accord with reality in many case. For 

seminal theoretical foundations of asymmetric behavior by financial agents see Akerlof (1970), 

Spense (1973) and Stiglitz (1974). The main factor behind the asymmetric structures in finance 

is stated to be asymmetric information. However, we argue that reason for asymmetric behavior 

exists even in cases in which all actors have the same information. For example, investors’ 

response to a volatility shock might not be identical since they have heterogenous risk 

preferences. Some investors or financial institutions might be more risk tolerant and keep their 

investment positions as it is when a shock takes place in the market. While others may have 

lower level of risk acceptance rates and therefore change their investment positions as a 

cautiously rebalancing act to the occurring volatility shock. This means that there is a plausible 

need for measuring the impact of volatility independently conditional on if the change is 

positive or negative. In fact, if the asymmetric property is not considered when measuring the 

responses to a volatility shock, it implicitly means assuming homogeneous risk preferences for 

all financial actors in the market. This does not accord with reality naturally. Thus, Hatemi-J 

(2011, 2014) has introduced asymmetric impulse response functions and asymmetric variance 

decompositions for estimating the impact of a positive shock separately from the impact of a 

negative one. The main objective of the current paper is to extend the methodology of volatility 

connectedness pioneered by Diebold and Yilmaz (2012, 2014)1 through incorporating an 

asymmetric structure via the asymmetric generalized variance decompositions introduced by 

Hatemi-J (2011, 2014). This extension provides the possibility of clearly measuring the 

asymmetric proportion of the forecast error variation of one variable caused by positive or 

negative shocks evolving from other variables. This approach is expected to accord better with 

reality since it accounts for the asymmetric behavior of actors in financial markets, where its 

existence appears to be prevailing more as a rule than an exception.   

 

The rest of the paper is constructed as follows. The subsequent section presents asymmetric 

variance decompositions and thereby asymmetric measures of volatility spillover. Section 3 

offers a numerical application. Concluding statements are expressed at the end. 

 

 

 

 
1 For an alternative approach via the GARCH approach see Engle et. al., (1990). For a recent survey of the 

literature on stock market volatility see Dhingra et. al., (2024). Flores-Sosa et. al., (2022) provide a review of the 

literature on volatility in the foreign currency markets.  
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2. The Asymmetric Variance Decompositions 

To transform a variable that is integrated of order one with deterministic parts we follow the 

approach suggested by Hatemi-J (2014). Let us consider the following data generating process 

for a variable entitled 𝐺𝑡 that is intended for transforming: 

𝐺𝑡 = 𝑐 + 𝑑𝑡 + 𝐺𝑡−1 + 𝑣𝑡       (1) 

The parametric constants c and d can be estimated using the least squares approach. The time 

trend is signified by t for the sample period t=1, …, T. The term vt is the error process that is 

assumed to be an identical independently distributed (IDD) random variable. Recursively 

substituting yields the following solution:  

𝐺𝑡 = 𝑐𝑡 +
𝑡(𝑡 + 1)

2
𝑑 + 𝐺0 + ∑ 𝑣𝑟

𝑡

𝑟=1

                                                                       (2) 

G0 represents the initial value of the variable. The random variable 𝑣𝑖 is transformed into 

positive and negative elements by utilizing the definition: vr
+: = max(vr, 0) and 𝑣𝑟

−: =

𝑚𝑖𝑛(𝑣𝑟 , 0). Via these values, the following expression is obtained: 

𝐺𝑡 = 𝑐𝑡 +
𝑡(𝑡 + 1)

2
𝑑 + 𝐺0 + ∑ 𝑣𝑖

+ + ∑ 𝑣𝑖
− 

𝑡

𝑟=1

𝑡

𝑟=1

                                                       (3) 

Accordingly, the cumulative partial sums for Gt are outlined as the following: 

𝐺𝑡
+: =

𝑐𝑡 + [
𝑡(𝑡 + 1)

2 ] 𝑑 + 𝐺0

2
+ ∑ 𝑣𝑟

+

𝑡

𝑟=1

                                                                    (4) 

Plus 

𝐺𝑡
−: =

𝑐𝑡 + [
𝑡(𝑡 + 1)

2 ] 𝑑 + 𝐺0

2
+ ∑ 𝑣𝑟

−

𝑡

𝑟=1

                                                                      (5) 

This transformation fulfills the following necessary condition for a correct transformation: 

𝐺𝑡 = 𝐺𝑡
+ + 𝐺𝑡

−. Any other variable in the VAR model can transformed in a similar way. Note 

that a general solution is presented here. If the integrated variable does not have any 

deterministic trend, then b=0 per definition. If in addition to trend there is no drift, then a=0 

and b=0 should be imposed. For a systematic approach of selecting the deterministic trend parts 

see Hacker and Hatemi-J (2010). The data can be transformed by using the statistical software 

component produced by Hatemi-J and Mustafa (2016) in the Visual Basic for Applications 

(VBA), which compatible to the MS-Excel. This software presents a user graphical interface 

(GUI) that makes its use easy for all three options pertinent to the deterministic parts. 
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Because genuinely exogenous variables rarely exist, using the VAR model introduced by Sims 

(1980) is useful since it deals with all variables endogenously. This model can also be applied 

for measuring the dynamic interaction between variables asymmetrically according to Hatemi-

J (2011, 2012). For this purpose, a separate VAR model needs to be estimated for the negative 

or positive components of the underlying variables. For example, consider the case in which 

the focus is on the relationship negative components of m variables. In that case, the vector 

𝑍𝑡
− = (𝑍1𝑡

− , 𝑍2𝑡
− , … , 𝑍𝑚𝑡

− ) needs to be used for estimating the following VAR(p) model:  

𝑍𝑡
− = 𝐵0 + 𝐵1𝑍𝑡−1

− + ⋯ + 𝐵𝑝𝑍𝑡−𝑝
− + 𝑢𝑡

−     (6) 

Here B0 stands for an m×1 vector, Bs (s=1, …, p.) is an m×m matrix, and −
tu  is an m×1 vector 

of error terms. The optimal lag length, p, needs to be selected via minimization of an 

information criterion.2 For estimating the asymmetric variance decompositions, this VAR 

model needs to be presented in its moving average form as the following: 

𝑍𝑡
− = ∑ 𝐶𝑖

∞
𝑖=0 + ∑ 𝐾𝑖

∞
𝑖=0 𝑢𝑡−𝑖

− ,              for t =  1, ⋯ , T.   (7) 

The required m×m parameter matrixes (Ki) can be found recursively via 

𝐾𝑖 = 𝐵1𝐾𝑖−1 + 𝐵2𝐾𝑖−2 + ⋯ + 𝐵𝑘𝐾𝑖−𝑝,     for 𝑖 =  1,  2, ⋯ ,    (8) 

with 𝐾0 = 𝐼𝑚 and 𝐾𝑖 = 0, ∀𝑖 < 0, and 𝐶𝑖 = 𝐾𝑖𝐵0.  

 

The asymmetric generalized forecast error variance decomposition of a standard error shock in 

the jth equation of the VAR at time t on 𝑍𝑡+𝑛
− , expressed by ( )nAVDij , is estimated as the 

following: 

 

𝐴𝑉𝐷𝑖𝑗(𝑛) =
𝜎𝑖𝑖

−1 ∑ (𝑒𝑖
′𝐾𝑙𝛤𝑒𝑗)

2𝑛
𝑙=0

∑ 𝑒𝑖
′𝐾𝑙𝛤𝐾𝑙

′𝑒𝑖
𝑛
𝑙=0

,                                                                      (9) 

 

For 𝑖𝑗 =  1, 2, … , 𝑚.  The denotation  represents the estimated variance-covariance matrix of 

the VAR model, that is (𝛤 = {𝜎𝑖𝑗 , 𝑖, 𝑗 = 1, 2, … , 𝑚. }), and ej is a m×1 choice vector with its jth 

element equal to one and zero for the rest of the elements. 

A normalization is required to make the sum of the estimated variance decompositions equal 

to one, which can be achieved by the following: 

 
2 The information criterion suggested by Hatemi-J (2003, 2008), is used for this purpose. See also Mustafa and 

Hatemi-J (2022). Note that since the variables are integrated of the first order, an additional unrestricted lag needs 

to be added to the VAR model in order to account for the impact of the unit root according to Toda and Yamamoto 

(1995). A potential alternative is to make use of the vector error correction transformation of the VAR model if 

the variables are cointegrated.  
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  𝐴𝑉𝐷̌𝑖𝑗(𝑛) =
𝐴𝑉𝐷𝑖𝑗(𝑛)

∑ 𝐴𝑉𝐷𝑖𝑗(𝑛)𝑚
𝑗=1

                                                                               (10) 

 

  𝐴𝑉𝐷̌𝑖𝑗(𝑛) represents volatility spill-over from variable i on variable j for horizon length n. 

likewise, the net value of the volatility spill-over is the following: 

𝑁𝐴𝑉𝐷̌𝑖𝑗(𝑛) = 𝐴𝑉𝐷̌𝑖𝑗(𝑛) − 𝐴𝑉𝐷̌𝑗𝑖(𝑛)                                                 (11) 

The corresponding percentage aggregate values can be calculated as  

 

  𝐴𝑉𝐷̌𝑖∗(𝑛) = 100 ×

∑ 𝐴𝑉𝐷𝑖𝑗(𝑛)𝑚
𝑗=1

𝑖 ≠ 𝑗

𝑚
                                                 (12) 

 

𝐴𝑉𝐷̌∗𝑖(𝑛) = 100 ×

∑ 𝐴𝑉𝐷𝑗𝑖(𝑛)𝑚
𝑗=1

𝑖 ≠ 𝑗

𝑚
                                                      (13) 

 

Note that ∑ 𝐴𝑉𝐷𝑖𝑗(𝑛) = 𝑚𝑚
𝑖,𝑗=1 , which is the number of variables in the VAR model.  

 

The directional volatility spill-over for variable i for horizon n, denoted by 𝐷̌𝑖∗(𝑛), that is 

received from all other variables is defined as 

 

𝐷̌𝑖∗(𝑛) = 100 ×

∑ 𝐴𝑉𝐷𝑖𝑗(𝑛)𝑚
𝑗=1

𝑖 ≠ 𝑗

∑ 𝐴𝑉𝐷𝑖𝑗(𝑛)𝑚
𝑗=1

                                                          (14) 

 

Likewise, the directional volatility spill-over from variable i, denoted by 𝐷̌𝑖∗(𝑛), that is 

transmitted to all other variables is expressed as  

 

𝐷̌∗𝑖(𝑛) = 100 ×

∑ 𝐴𝑉𝐷𝑗𝑖(𝑛)𝑚
𝑗=1

𝑖 ≠ 𝑗

∑ 𝐴𝑉𝐷𝑗𝑖(𝑛)𝑚
𝑗=1

                                                         (15) 

 

The design for the connectedness relationship is like the symmetric approach suggested by 

Diebold and Yilmaz (2012, 2014), which is presented in Table 1.  
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Table 1: The Design for the Relative Spillover of Volatility (Connectedness Table). 
 

Z1 Z2 ⋯ Zm Volatility From 

Others 

Z1 𝐴𝑉𝐷11(𝑛) 𝐴𝑉𝐷12(𝑛) ⋯ 𝐴𝑉𝐷1𝑚(𝑛) 

∑ 𝐴𝑉𝐷1𝑗(𝑛)
𝑚

𝑗=1
 

𝑗 ≠ 1 

Z2 𝐴𝑉𝐷31(𝑛) 𝐴𝑉𝐷22(𝑛) ⋯ 𝐴𝑉𝐷2𝑚(𝑛) 

∑ 𝐴𝑉𝐷2𝑗(𝑛)
𝑚

𝑗=1
 

𝑗 ≠ 2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

Zm 𝐴𝑉𝐷𝑚1(𝑛) 𝐴𝑉𝐷𝑚2(𝑛) ⋯ 𝐴𝑉𝐷𝑚𝑚(𝑛) 

∑ 𝐴𝑉𝐷𝑚𝑗(𝑛)
𝑚

𝑗=1
  

𝑗 ≠ 𝑚 

Volatility 

To Others 

∑ 𝐴𝑉𝐷𝑖1

𝑚

𝑖=1
(𝑛) 

𝑖 ≠ 1 

∑ 𝐴𝑉𝐷𝑖1

𝑚

𝑖=1
(𝑛) 

𝑖 ≠ 2 

⋯ 

∑ 𝐴𝑉𝐷𝑖1(𝑛)
𝑚

𝑖=1
 

𝑖 ≠ 𝑚 

1

𝑚
∑ 𝐴𝑉𝐷𝑖𝑗(𝑛)

𝑚

𝑖𝑗=1
 

𝑖 ≠ 𝑗 

The forecasting horizon is represented by n. 

 

Note that the following equation represents the total percentage of spillover, which is an index 

per definition.  

𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 =
100

𝑚
∑ 𝐴𝑉𝐷𝑖𝑗(𝑛)

𝑚

𝑖,𝑗=1
                                               (16) 

This is an asymmetric version of the spillover index that was introduced by Diebold and Yilmaz 

(2009), which ascertains the size of spillovers of volatility shocks through all variables to the 

entire forecast error variance. This index can be estimated dynamically to capture the potential 

time-variation in its value for any sample using the different windows. 

 

Following Diebold and Yilmaz (2012, 2014) the net value of spill-over volatility for variable i 

to all other variables in the model for the forecast horizon n is defined as the following:  

𝑁𝐷̌𝑖(𝑛) = 𝐷̌𝑖∗(𝑛) − 𝐷̌∗𝑖(𝑛)                                                                                   (17) 

A measure for net two-by-two between variables i and j in the VAR model can be estimated as 
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𝑁𝐷̌𝑖𝑗(𝑛) = [
  𝐴𝑉𝐷̌𝑖𝑗(𝑛)

∑ 𝐴𝑉𝐷̌𝑖𝑟(𝑛)𝑚
𝑟=1

−
  𝐴𝑉𝐷̌𝑗𝑖(𝑛)

∑ 𝐴𝑉𝐷̌𝑗𝑟(𝑛)𝑚
𝑟=1

] × 100                               (18) 

Thus, 𝑁𝐷̌𝑖𝑗(𝑛) is the distinction between gross volatility shocks conveyed from variable i to 

variable j and the reverse volatility transmission. By this measure it is possible to find out 

whether any variable is net receiver of volatility from any other variable or not and by how 

much. These values can also be presented via network graphical illustration.  

Similar estimations need to be made for the positive components. That is, equations (6)-(18) 

need to be estimated using the vector 𝑍𝑡
+ = (𝑍1𝑡

+ , 𝑍2𝑡
+ , … , 𝑍𝑚𝑡

+ ).  

 

3. An Application 

We apply the suggested method to capture the dynamics of the spillover effects for both 

positive and negative shocks for the three largest financial markets worldwide—namely the 

US, Euro area and the Chinese markets. Natural logarithmic values were used to account for 

continuously compounded impacts. The sample covers January 1999 until December 2023. 

The source of the data is FRED database, which is provided by the Federal Reserve Bank of 

St. Louis. Each variable was transformed into positive and negative components using 

equations (3) and (4). The VBA software component produced by Hatemi-J and Mustafa 

(2016) is used for transforming the data.3 The transformed data is employed to estimate the 

asymmetric volatility spillover impacts through an Add-in software component in EViews 

created by Luvsannyam D. (2018), which is available online.   

 

The estimation results are produced by a VAR(2) in each case and are presented in Tables (2) 

and (3) using the same design that is presented in Table 1. When comparing the results, it 

becomes evident that the spillover impact is higher for a negative shock compared to a positive 

one. Thus, it is important to allow for asymmetry when measuring the volatility spillover 

impacts across these three financial markets. The Euro area market contributes mostly (i.e., 

65.6%) to the spillover impact for rising prices. The US influences mostly (i.e., 61.4%) the 

spillover impact pertaining to falling prices. The Chinese market has smaller contributions to 

the other markets and reacts less to these markets regardless of if the prices are rising or falling. 

However, this impact is higher for a price decrease compared to a price increase. The Chinese 

 
3 An alternative software component for transforming the data is the one produced by Hatemi-J (2016b) in the 

programming language Octave.  



8 
 

market receives 0.1% of volatility from others, and it contributes by 3.9% to the volatility to 

other markets in case of a positive chock. The corresponding values for a negative volatility 

shock are 15.4% of volatility spillover to other markets and 35.7% receipt of volatility from 

these markets.  

 

Table 2: Spillover (Connectedness) Table for Positive Shocks 

 China Euro US From Others 

China 99.9 0 0.1 0.1 

Euro 0.6 97.9 1.4 2.1 

US 3.3 65.6 31.2 68.8 

Contribution to 

others 
3.9 65.6 1.5 71 

Contribution 

including own 
103.8 163.5 32.7 23.70% 

 

Table 3: Spillover (Connectedness) Table for Negative Shocks 

 China Euro US From Others 

China 64.3 18.5 17.3 35.7 

Euro 5.3 50.6 44.1 49.4 

US 10 38.4 51.6 48.4 

Contribution to 

others 
15.4 56.9 61.4 133.6 

Contribution 

including own 
79.6 107.4 112.9 44.50% 

 

The volatility spillover index value for the three markets is 44.5% for the negative shock while 

it is 23.7% for the positive shock using equation (16). These volatility spillover index values 

are also calculated for 200-month windows when n=10, which are presented in Figures (1) and 

(2). These figures show once again that the asymmetric impact is important to consider since 

the time path of this volatility spillover index is significantly different for a positive shock 

compared to a negative one. For positive shocks the index value is relatively stable around 30% 
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except for the pandemic period during 2019-2020 that is slightly higher. However, the index 

value has a clear upward time trend starting at around 37% and reaching around 48% for a 

negative shock. These asymmetric volatility linkage results have important implications for 

investors and financial instructions with different positions in the underlying investment 

depending on whether a long or a short position is undertaken. The results could also be used 

by policy makers to design appropriate strategies for damping potential external shocks 

especially when the markets are falling to avoid or reduce the resulting contagion effects.     

 

31.6

32.0

32.4

32.8

33.2

33.6

34.0

34.4

34.8

2015 2016 2017 2018 2019 2020 2021 2022 2023

Figure 1: Spillover (Connectedness) Index for the Positive Shock (200 month windows, 10 step horizons).
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Figure 2: Spillover (Connectedness) Index for the Negative Shock (200 month windows, 10 step horizons).

 

 

The symmetric volatility spillover impacts are also estimated and presented in Table 4 and 

Figure 3. These results show that the asymmetric impacts indeed prevail. For example, the 
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spillover index value for the symmetric case is 38.60%, which is a different amount compared 

to the values for the asymmetric cases since this value is 23.70% for a positive shock and it is 

44.50% for a negative shock.   

 

Table 4: Symmetric Spillover (Connectedness) Table. 

 China Euro US From Others 

China 75.5 13.2 11.3 24.5 

Euro 3.3 54.3 42.3 45.7 

US 6.8 38.9 54.3 45.7 

Contribution to 

others 
10.2 52 53.6 115.8 

Contribution 

including own 
85.7 106.4 107.9 38.60% 
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Figure 3: Symmetric Spillover (Connectedness) Index (200 month windows, 10 step horizons).

 

 

4. Concluding Remarks 

Volatility as a measure of financial risk is of fundamental importance for investors, financial 

institutions, and policy makers. Measuring the potential volatility spillover impacts is 

increasingly gaining attention and practical necessity in line with the increasing 

internationalization and consequently the enhanced connection between markets across the 

borders. The methodological contributions of Diebold and Yilmaz (2009, 2012, 2014) are 
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useful for this purpose, which is also demonstrated by the huge number of applications in 

empirical research.  

The Diebold and Yilmaz approach is symmetric per construction, however, since it does 

not account for the potential distinctive impact of a negative shock compared to a positive one. 

It is extensively agreed in the literature that asymmetric impacts prevail, especially in the 

financial markets. There are several reasons for this asymmetric structure. The most prominent 

reason for this issue is claimed to be asymmetric information. However, the asymmetric 

reaction to a change in the market can prevail even if the information is symmetric since 

investors have different preferences towards risk. Thus, it is reasonable to allow for potential 

asymmetric impacts when measures for volatility spillover impacts are estimated, which is the 

main objective of this paper. Hence, Diebold and Yilmaz (2009, 2012, 2014) methodology is 

extended by making it asymmetric. This paper demonstrates how a variable with potential 

stochastic and deterministic trend parts can be transformed into positive and negative 

components, which can be used for estimating the asymmetric volatility spillover impacts. The 

suggested approach makes it operational to estimate the volatility spillover impact with regard 

to both a negative shock and a positive one. The estimation results based on this approach is 

expected to accord better with reality. This distinction between a positive and negative chocks 

also has important practical implications. For example, the source of risk for an investor with 

a long position in the asset is decreasing prices and hence this investor is concerned about 

negative shocks. While the source of risk for an investor with a short position in the asset is 

increasing prices and thereby the concern is focused on positive shocks for such an investor. 

Likewise, the policy makers are mainly concerned about the negative shocks, especially during 

a financial crisis in order to hedge against the potential contagion effect as much as possible.    

An application is provided for estimating symmetric as well asymmetric spillover 

impacts between the three largest financial markets in the world—namely the US, the Euro 

area and China. The empirical results show the volatility spillover impacts between these 

markets is indeed asymmetric. The volatility spillover percentage is much higher for a negative 

shock compared to a positive one. The time variation for these values also indicates that the 

variation in the spillover index is higher for a negative shock versus a positive one. These 

results could be informative to investors, financial institutions and policy makers and thereby 

impact their decision making for the better.    
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