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Extending the scope of the self-imaging phenomenon, traditionally associated with linear optics, to the domain of
magnonics, this study presents the experimental demonstration and numerical analysis of spin-wave (SW) self-imaging
in an in-plane magnetized yttrium iron garnet film. We explore this phenomenon using a setup in which a plane SW
passes through a diffraction grating, and the resulting interference pattern is detected using Brillouin light scattering.
We have varied the frequencies of the source dynamic magnetic field to discern the influence of the anisotropic dis-
persion relation and the caustic effect on the analyzed phenomenon. We found that at low frequencies and diffraction
fields, the caustics determine the interference pattern. However, at large distances from the grating, when the waves
of high diffraction order and number of slits contribute to the interference pattern, the self-imaging phenomenon and
Talbot-like patterns are formed. This methodological approach not only sheds light on the behavior of SW interference
under different conditions but also enhances our understanding of the SW self-imaging process in both isotropic and
anisotropic media.

Spin waves (SWs) represent coherent magnetization distur-
bances that propagate in magnetic materials as waveforms. In
ferromagnetic materials, SW dynamics are shaped by a blend
of strong isotropic exchange and anisotropic magnetostatic in-
teractions1,2. Particularly in thin films, the magnetostatic in-
teractions render SW properties highly sensitive to the orien-
tation of magnetization relative to the film plane, as well as
to the alignment of the propagation direction with the static
magnetization vector3–6. This interplay of factors makes the
study of SWs interesting, endowing them with distinct prop-
erties uncommon in other wave types, such as negative group
velocity, the formation of caustics7, and dynamic reconfigura-
bility control8.

The governing equations for SW propagation diverge from
those of electromagnetic and acoustic waves, thereby each
analogy, such as those found in SW graded index lenses9,10,
SW Luneburg lenses11, and SW Fourier optics12, necessi-
tates solving the Landau–Lifshitz equation. Notable and
related advances also include the numerical or experimen-
tal demonstration of phenomena such as self-focusing of
SWs13, SW diffraction on gratings14, and the formation of SW
beams15–17. Ferromagnetic films with a line of nanodots, anal-
ogous to those in this paper, have also been used to observe
the phenomenon known in literature as total non-reflection of
SWs18.

The self-imaging effect, often referred to as the Talbot ef-
fect, first observed in the 19th century for light19, and later
elucidated in Ref. [20], has recently experienced a renewed
research interest, as outlined in Ref. [21] and associated refer-
ences. When a plane wave passes through a system of period-
ically spaced obstacles, it interferes, creating a characteristic
diffraction pattern, reproducing the obstacles image at specific

distances from the input.
Its applications have been diverse, ranging from enhanc-

ing x-ray imaging22 to advancing lithographic patterning23–25,
and even extending to the realization of certain physical mod-
els and computing scenarios26–28. Beyond electromagnetic
waves, the Talbot effect has been demonstrated in diverse
mediums including plasmons29, fluid waves30,31, and exciton-
polaritons32. Theoretical explorations suggest that this effect
is also feasible for SWs33,34, with proposed logic scenarios in
the magnonic domain35.

In this paper, we take a step forward by experimentally and
numerically demonstrating the self-imaging effect resulting
from the diffraction of SWs on a one-dimensional antidot ar-
ray, with dimensions comparable to the SW wavelength, in a
yttrium iron garnet (YIG) film in the Damon-Eshabach (DE)
configuration. The simulations, performed at various frequen-
cies, different antidot periods, and two antidot shapes, i.e., cir-
cular and square, and juxtaposed with experimental analogs,
allow an understanding of the interference patterns in the tran-
sition of the caustic and self-imaging effects.

The samples measured were monocrystalline YIG, 4.5 µm
thick films (see Fig. 1) grown by liquid phase epitaxy on
transparent gadolinium gallium garnet substrates. A one-
dimensional array of antidots was chemically etched on the
surface of the films, functioning as a diffraction grating. In
the two systems analyzed, we make use of an 5-element array
of square antidots [50× 50 µm – scheme in Fig. 1(a)] with
period d = 100 µm, and an 10-element array of circular an-
tidots [diameter equal to 50 µm – scheme in Fig. 1(b)] with
period d = 150 µm. The samples were magnetized by the
external magnetic field Bext directed along the line of the anti-
dots (y-axis). We use 36 mT and 98 mT fields for the samples
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with square and circular antidots, respectively. Magnetostatic
SWs were excited using a 50 µm wide microstrip antenna de-
posited on a light-opaque dielectric substrate, below the YIG
film, and placed about 185 µm in front of the grating, with a
continuous-mode microwave generator (see Fig. 1).

The interaction of SWs with the line of antidots was visu-
alized using a Brillouin light scattering (BLS) spectrometer
with a spatial resolution of 30 µm. Measurements are made in
the reflection configuration due to the opaque substrate used
to mount the microwave antenna. A laser beam with a wave-
length of 532 nm was scanned over the area around the line
of antidots and the interference area behind the grating with
20 µm step and the BLS intensity was recorded at each point.
This technique provides a 2D colour map of the amplitude of
the magnetostatic SWs scattered on the line of antidots [see
Fig. 3(b,c) and Fig. 5(a)].

Simulations were carried out using MuMax3, a GPU-
accelerated micromagnetic simulation software36. The im-
plemented simulation system (100×100×4.5 µm3) was dis-
cretized with 512 × 512 × 10 computational cells, giving a
size of about 195.3× 195.3× 450.0 nm3 each. The cell size
clearly exceeds the length of the exchange interaction for YIG
films due to computational limitations. However, according
to the dispersion relation graphs (see Supplementary Mate-
rials, Fig. S1), the discrepancies are insignificant for small
wavevectors, justifying the use of numerical methods for this
research.

To replicate the SWs excited by the microstrip in the ex-
periment, in micromagnetic simulations we employ the dy-
namic magnetic field h(x, t), homogeneous in the area of
width w = 50 µm along the x-axis (extended along the y direc-
tion and across the film thickness) and placed at x0 = 185 µm
before the grating. The microwave field is expressed as:

h(x, t) = [h0,0,h0]sin(2π f t), (1)

where h0 is the amplitude of the dynamic magnetic field (h0 =
0.0014 Bext).

The distribution of the SW intensity within the magnetic
material is determined by averaging the magnetization com-
ponent mz over the thickness of the material (along the z-axis)
and integrating its squared value over time t. The SW intensity
I is then quantified by the equation:

I =
∫
⟨mz(t)⟩2

z dt. (2)

This method effectively captures the spatial intensity distribu-
tion of SWs in the material, allowing for direct comparison
with BLS measurement results.

In the simulations we use geometries shown in Fig. 1, with
dimensions matching those of our experiment. In all cases,
we implemented absorbing boundary conditions along the x-
axis (at the end of a system). These are characterized by an
exponential increase in the damping factor α , approaching a
maximum value of 1 at the edges. Additionally, to better vi-
sualize the diffraction patterns formed behind the grating, pe-
riodic boundary conditions (PBC) along the y-axis were used
in most simulations (indicated if not). It enabled the imita-
tion of an infinitely wide film and an array of antidots, ex-
tending a given SW diffraction field to longer distances. The
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FIG. 1. Schematic representations of two YIG-samples and BLS
measurement configuration used in the research, with the major di-
mensions marked. Image (a) shows the system with a diffraction
grating made of square-shaped antidots, while (b) shows one made
of circular antidots. In all experimental measurements and finite-
width simulations, the square and circular antidot arrays contain 5
and 10 elements, respectively.

YIG is characterized by the following magnetic parameters:
saturation magnetization Ms = 139 kA/m, exchange constant
Aex = 4 pJ/m, |γ|= 176 GHz·rad/T and reduced Gilbert damp-
ing α = 1×10−7.

Previous investigations of the self-imaging of SWs, man-
ifesting the Talbot effect33,34, have extensively utilized the
out-of-plane magnetic field configuration, i.e., forward vol-
ume SWs. In this orientation, the isofrequency lines tend to
be circular due to the symmetry of the applied field with re-
spect to the film plane, leading to the isotropic propagation
characteristics of SWs. This isotropic nature facilitates the
formation of distinct interference patterns, critical for achiev-
ing the clear SW Talbot effect, also in relatively thick YIG
films, considered in this paper (see Fig. S2 in Supplementary
Materials). However, the out-of-plane magnetic field config-
uration has several disadvantages when applied to thin mag-
netic films. A primary limitation is the need for high magnetic
field values or strong out-of-plane anisotropy to saturate the
magnetization. They impose practical limitations on the gen-
eration and control of large magnetic fields in experiments,
and thus in potential applications where compact and efficient
magnetic field generation is critical. These challenges under-
score the importance of exploring alternative configurations,
such as the in-plane magnetic field orientation.

Avoiding the high magnetic field requirements associated
with the forward volume SW configuration is a key feature
of the DE configuration. However, this naturally leads to
anisotropic SW propagation due to the asymmetry introduced
by the in-plane magnetic field37. This anisotropy results in hy-
perbolic isofrequency contours at small wavenumbers (Fig. 2),
offering directional control over SW propagation38. When
studying the dynamics of SWs in ferromagnetic films with a
thickness of 4.5 µm in an in-plane magnetic field configura-
tion, the interplay between the magnetic field magnitude, SWs
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frequency, and diffraction grating period together is of pri-
mary importance on the interference pattern, that determines
the appearance of caustic waves or the Talbot effect.
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FIG. 2. Diagram of the SW dispersion relation for an external mag-
netic field of (a) Bext = 36 mT and (b) Bext = 98 mT applied in-plane
of the YIG film and along the y direction. The highlighted isofre-
quency lines correspond to the values used in the study and are ob-
tained from that analytical model of Ref.37 with free boundary con-
ditions.

At lower magnetic field values and SW frequencies, the sys-
tem with hyperbolic isofrequency lines predominantly forms
caustic beams post-interaction with a narrow slot39,40. When a
plane SW passes through a diffraction grating, its wavefront is
modulated, resulting in a discrete spectrum of wavevectors41.
As these diffracted waves propagate through the magnetic
medium, their paths are influenced by the strong anisotropic
dispersion relation (Fig. 2). It causes the SWs to focus along
certain trajectories, leading to the convergence of the waves at
specific focal points or lines42,43. This convergence is the fun-
damental mechanism behind the formation of caustic beams,
where the wave intensity is significantly amplified.

A theoretical model for caustic beam formation is usually
based on analysis of the function f (k) and the angle φ , repre-
senting the orientation of the group velocity vgr relative to the
external magnetic field Bext

40,44,45:

φ = arctan(vgr,y/vgr,x) =−arctan(dkx/dky). (3)

At each point, the SW group velocity is indicated by the
normal to the isofrequency curve. Caustic rays are formed
when the direction of the group velocity, defined by the an-
gle φ , remains constant for SWs with different wavevectors
k. This specific condition for caustic beam emergence is
mathematically expressed as dφ

dkx
= 0, which ensures that SWs

with different wavevectors maintain a uniform group veloc-
ity direction, resulting in wave convergence. When a plane
wave passes through a periodic structure, such as the one-
dimensional antidot array in our study, it acquires a distinct
transverse wavevector component ky quantized as multiples
of 2π/d. Depending on the change in angle φ for the sur-
face wavefront and its intensity for a discrete set of ky, one
of the aforementioned patterns – caustic rays, diffractive self-
imaging effect, or a combination of them – is obtained.

Fig. 3(a) shows the amplitude-frequency characteristic of
the sample with square antidots at Bext = 36 mT. In the ex-
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FIG. 3. Experimental and simulation results for a diffraction grating
composed of square antidots [Fig. 1(a)] at a magnetic field Bext =
36 mT. Panel (a) shows the amplitude-frequency characteristic of the
excited SWs in the interference region. Panels (b) and (c) show the
dynamic magnetization pattern obtained from BLS measurements,
while panels (d) and (e) display the SW intensity distribution [see
Eq. (2)] calculated by MuMax3 for f = 2.51 GHz and f = 2.54 GHz,
respectively. The arrows indicate the distances to the nearest caustic
beam intersections.

periment, which is well reproduced in the simulations, fre-
quencies in the range of 2.5 GHz to 2.6 GHz exhibit the most
efficient excitation. In addition, these frequencies are slightly
higher than the ferromagnetic resonance frequencies, which
can be attributed to the selectivity of the antenna in exciting
SWs with non-zero wavevectors.

In Fig. 3, we see the results of both the experimental stud-
ies (b,c) and micromagnetic simulations (d,e) of plane wave
propagation through a diffraction grating with square antidots
[scheme shown in Fig. 1(a)]. The choice of frequencies in the
simulations slightly shifted from those of the experiment (by
10 MHz each) is determined by the best fit of the rhombic pat-
tern to that of the experiment. In addition, the goal was also to
show the difference in the distance at which the caustic beams
intersect for two different, excited SW frequencies from the
region of high excitation [marked with arrows in Fig. 3(d,e)].
For example, in Fig. 3(a) we see that at 2.55 GHz the exper-
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FIG. 4. Reciprocal space maps of the simulated SW intensity dis-
tribution after passing the grating for the two cases analyzed: (a)
the 100 µm period square grating and (b) the 150 µm period circular
grating. The graphs illustrate the group velocity vectors for selected
peaks and their slope φ (see Eq. 3) with respect to the SW propa-
gation direction. Interpolated iso-frequency contours are shown as
green dashed lines.

imental intensity is high, but in the simulations, it is already
quenched, hence the need for a slight offset. The chosen SW
frequencies ( f = 2.51 GHz and f = 2.54 GHz) fit for the high
transmission range at Bext = 36 mT [Fig. 3(a)], and allow us
to observe the caustic, non-diffractive propagation of the beam
after passing through the obstacles.

As seen in Fig. 2(a), the isofrequency lines are nearly
straight. It is confirmed by a two-dimensional Fourier trans-
form of the SW signal performed over the simulation area be-
hind the grating shown in Fig. 4(a). It allows to extract of the
individual sets of wavevectors involved in the formation of
the diffraction images45. Each of the visible intensity peaks
corresponds to a packet of wavevectors with very similar an-
gles and group velocity vector values that can independently
produce a caustic effect. In the experiment and simulations,
Fig. 3, we see a blend of several such packets with varying
intensities, producing a complex combination of caustic and
interference effects. In the spectra from Fig. 4(a) at 2.53 GHz,
we see that the difference between the angles ∆φ for the group
velocity vectors vgr for the second and fourth diffraction spots
(range of most intensive high order diffraction) is only 2.7◦,
which explains the clear observation of the caustic effect for
this configuration. The discrepancy between them is closely
related to the difference in the diffraction angle of the passed
waves, and its value is a function of the excited plane wave’s
frequency (see also Fig. S3 in the Supplementary Material).

It is expected that at higher frequencies, as the caustic con-
ditions weaken, the system will begin to exhibit behavior simi-
lar to the Talbot effect. This will be the case if the group veloc-
ity direction angles differ for each excited wavevector, i.e., the
isofrequency curve becomes more parabolic than hyperbolic,
as shown in Fig. 2(b) and also in Fig. 4(b) for Bext = 98 mT at
f = 4.95 GHz (λ = 84.4 µm). For these parameters, the self-
imaging effect shall be more pronounced due to larger dif-
ferences in the group velocity angles than in the pure caustic
case, still being below the caustic angle φC = 69.3◦ (obtained
from the linearly interpolated dispersion relation from Fig. 2
for kx up to 3.5 rad/µm). For Bext = 36mT and a frequency of

2.53GHz this angle was only φC = 44.7◦. This combination
of factors allows us to observe periodic diffraction patterns
of SWs, and the Talbot-like effect. Experimentally, however,
these observations were only possible for the circular antidote
sample with 150 µm period. Therefore, in the following anal-
ysis, we present the experimental and simulation results for
this separation at Bext = 98mT and 4.95GHz.

As shown in Fig. 5, initially, after passing through the
diffraction grating, the SW beams still have a caustic nature.
However, as the distance from the grating increases, these
beams gradually form the interference pattern. This is due to
the increasing influence of larger wavevectors with distance
from the source, which no longer satisfies the causticity con-
dition described above [see Fig. 4(b)], where ∆φ = 11.4◦ be-
tween the spots of the second and fourth diffraction order.
Nevertheless, it is clear, especially from the micromagnetic
simulations (see Fig. S4 in the Supplementary Material) that
caustic beams and self-imaging coexist even at large distances
from the grating. The Talbot-like effect observed in the sim-
ulations [Fig. 5(b,c)] agrees well with the BLS measurements
shown in Fig. 5(a). Experimentally, the interference pattern is
limited to a triangular shape due to the finite number (10) of
circular antidots used in the sample. This limitation is repli-
cated in simulations [Fig. 5(b)] with 10 antidots and absorbing
boundaries at the edges.

Comparing the interference patterns obtained in micromag-
netic simulations for diffraction on circular and square anti-
dots for the same period, field, and frequency, we found that
the self-imaging patterns are very similar (see Fig. S5 in the
Supplementary Material). However, a more intense signal is
obtained for the circular antidots. This difference between the
shapes can be attributed to the difference in the demagneti-
zation fields near the antidots46. Furthermore, this may be an
additional reason for the difficulties in measuring self-imaging
patterns in the sample discussed earlier for higher frequencies.

In summary, this paper provides a numerical and experi-
mental analysis of SW self-imaging by a diffraction grating
in the in-plane magnetized thin YIG films, traversing the in-
tricate transition from caustic beam formation to the Talbot-
like effect, and demonstrating the nuanced interplay between
anisotropic SW dynamics, magnetic field configurations, and
diffraction grating geometries. We explore SW behavior at
static magnetic field values of 36 mT and 98 mT and, sequen-
tially, excited SW frequencies of (2.51 GHz) 2.53 GHz and
4.95 GHz, respectively.

At lower fields and frequencies, we observed the forma-
tion of caustic beams, a phenomenon emerging due to the
strong anisotropic nature of SW propagation in the DE con-
figuration. As we increase the magnetic field strength and SW
frequency, a transition to diffractive self-imaging patterns is
observed. This switch from caustic beams to the interference
self-imaging, not only exemplifies complex wave dynamics in
magnonic systems but also enhances our understanding of SW
diffraction mechanisms in ferromagnetic films.
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SUPPLEMENTARY MATERIAL

The supplementary material provides additional data, including numerical results of the dispersion relations and their
comparison with theoretical predictions. These data confirm the accuracy of the numerical approaches and discretization
methods used. In addition, it includes extended results from micromagnetic simulations of diffraction fields, specifically
illustrating the Talbot effect over various magnetic field configurations, diffraction grating constants, and nanodot geometries.

I. DISPERSION RELATION AND VALIDATION OF THE DISCRETIZATION IN MICROMAGNETIC SIMULATIONS

In Fig. S1 we show the dispersion relations of spin waves (SWs) for two different configurations and different values of the
magnetic field obtained in numerical simulations (MuMax3) and analytical model (based on Ref. [1]) for 4.5 µm thick YIG film.
Fig. S1(a) shows the dispersion for the forward volume (FV) configuration (magnetic field and the magnetization perpendicular to
the film plane), where discrepancies between the methods are minimal and mainly due to the coarse discretization along the film
thickness. The dispersions in Figs. S1(b,c) are for the Damon-Eshbach (DE) configuration (propagation direction perpendicular
to the in-plane magnetization and the external magnetic field) and two different values of the external magnetic field applied. The
plots also show nondispersive signals from thickness quantized SW modes, the so-called perpendicular standing SWs (PPSW).
Again, we obtained a very good fit to the theoretical model for small wavevectors, which are close to zero, for validating the
numerical approach used in the micromagnetic simulations.
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FIG. S1. The dispersion relations for SWs in two different magnetic configurations, and different external magnetic field values. (a) Dispersion
curve for the FV configuration with a magnetic field of 360 mT. (b) The dispersion in the DE configuration under an external field of 36 mT
and PPSW signal lines are visible. (c) DE and PPSW signals for an increased field of 100 mT, revealing a notable shift in the frequency values.
In all the panels, dashed lines represent the analytical calculations based on Ref. [1].

The process of calculating the SW dispersions using Mumax3 encompassed three main steps:

1. System Initialization: Prompting the system to relax into a stable ground state for selected configurations—either DE or
FV and external magnetic field.

2. SW excitation: The SWs were excited from the central part of the waveguide by applying the time- and space-dependent
dynamic magnetic field h, defined as: h(x, t) = [h0,h0,h0] · sinc(2πkcutx) · sinc(2π fcutt), where h0 = 0.015Hext. By using
this equation, we can apply broadband SW excitation within the frequency range f ∈ [0, fcut] and wavevectors along the
x-axis kx ∈ [−kcut,kcut].
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3. Data Analysis: The dispersion relations were extracted by applying a 2D Fast Fourier Transformation to the space- and
time-resolved magnetization data using Python with NumPy package. This analysis was further refined by evaluating the
SW width profiles via the mx component across the width of the waveguides using a single frequency excitation.

The dispersion relations from micromagnetic simulations and analytical calculations match precisely for the fundamental
mode, as indicated in Fig. S1. In the simulations with DE configuration, a low-frequency branch emerges due to quantization
effects within the significant thickness (4.5 µm) of the YIG sample, visible in Fig. S1(b,c). The theoretical curve was calculated
using the formula (22) from Ref. [2]. The results demonstrate the agreement between MuMax3 simulations and the analytical
dispersion relation based on Ref. [1]. The simulation cell size used is 195.3×195.3×450.0 nm3.

II. TALBOT EFFECT IN A FORWARD VOLUME CONFIGURATION – SIMULATION RESULTS
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FIG. S2. The evolution of SW interference pattern after passing through a diffraction grating with a square antidote structure and a 100 µm
period. These micromagnetic simulations were made in an FV configuration at different frequencies (5.35, 5.6 and 6.2 GHz), and for Bext=
100 mT. Panel (a) shows SWs with a wavelength of 213 µm propagating unaffected by the obstacle, and (b) visualizes the generation of the
Talbot effect after the passage of 72.3 µm-long SWs through a diffraction grating. Panel (c) demonstrates the Talbot effect at a much shorter
wavelength of 20.9 µm, resulting in a more pronounced self-imaging effect. Periodic boundary conditions along the diffraction grating (y-axis)
were applied to each of these simulations.

Talbot effect in magnonics has been numerically demonstrated for the configuration with the isotropic dispersion relation, i.e.,
in the FV configuration for the thin ferromagnetic films [see Refs. 3,4]. In Fig. S2 we show the numerical results indicating
the possibility of observing the Talbot effect in 4.5 µm thick YIG film, a system considered in this paper, with a line of antidots
of square shape (50× 50 µm) and the period of 100 µm. We can see that the diffraction of SWs with wavelengths similar to
the grating period forms self-imaging patterns (Fig. S2(a, b)), which is the Talbot effect and it is more clear for shorter SWs as
shown in Fig. S2(c). In Fig. S2(c) we observe clear self-repeating patterns over a longer distance (the Talbot length zT = 956 µm)
than in Fig. S2(b) (zT = 276.7 µm) with the SW wavelengths 20.9 µm and 72.3 µm, respectively.
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FIG. S3. The SW interference pattern after passing through a diffraction grating with a square antidot structure and the 100 µm period. The
micromagnetic simulations were made in a DE configuration for frequencies 2.50, 2.52 and 2.54 GHz, and for Bext= 36 mT.

III. DAMON-ESHBACH CONFIGURATION

We show in Fig. S3 the extended progression of SWs following diffraction on square antidots in the in-plane magnetized YIG
film in DE configuration. The analysis is conducted over an enlarged spatial domain as compared to the figures in the main
text, allowing for a comprehensive observation of the SW pattern evolution. In Fig. S3 the micromagnetic simulation results for
SWs at 2.50, 2.52, and 2.54 GHz for Bext= 36 mT are shown. The predominant behavior of the SWs is characterized by the
caustic effect, as shown in Fig. S3(a). However, as the frequency increases (wavelength shortens), the angle of caustic beam
propagation increases, resulting in a decrease in the distance of crossing beams from neighboring slits along the propagation
axis, from 170 to 150 µm with the frequency change by 40 MHz, leading also to a more complex picture emerging, as shown in
Fig. S3(b,c). Furthermore, in Fig. S4 for circular antidots and 150 µm period, we demonstrate the diffraction of SWs at a higher
frequency (4.95 GHz) and a greater magnitude of the external magnetic field (Bext= 98 mT). This corresponds to exciting SWs
with different group velocity angles, resulting in even more intricate and periodically repeating patterns.

IV. INFLUENCE OF AN ANTIDOT SHAPE ON SELF-IMAGE

We changed the shape of the antidots to investigate their effect on the SW propagation in a YIG film and the formation of
the self-image pattern. We use the same parameters as in the simulation in Fig. S4 (lattice period 150 µm, frequency 4.95 GHz,
and Bext= 98 mT), and the obtained pattern with the circular antidots as a reference image. By changing the antidot shapes from
circles [Fig. S5(a)] to squares [Fig. S5(b)], we preserve the self-image pattern in diffraction with the same distance between
repeating images, i.e., 415 µm. However, the circular antidot grating provides better signal quality, resulting in the formation of
clearer patterns. This difference between shapes of antidots can be attributed to the difference in the demagnetizing field near
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FIG. S4. The SW interference pattern after passing through a diffraction grating with a circular antidot structure and a 150 µm period. These
micromagnetic simulations were made in a DE configuration for frequency 4.95 GHz, and for Bext= 98 mT.

the holes Ref. [5].
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FIG. S5. Panel (a) depicts a cut of the simulation from Fig. S4 featuring a circular lattice with a period of 150 µm. Panel (b) illustrates the
interference pattern formed by SWs passing through square antidots grating and the same period of 150 µm.
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