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Abstract
Generalization in audio deepfake detection presents a signifi-
cant challenge, with models trained on specific datasets often
struggling to detect deepfakes generated under varying con-
ditions and unknown algorithms. While collectively training
a model using diverse datasets can enhance its generalization
ability, it comes with high computational costs. To address this,
we propose a neural collapse-based sampling approach applied
to pre-trained models trained on distinct datasets to create a new
training database. Using ASVspoof 2019 dataset as a proof-
of-concept, we implement pre-trained models with Resnet and
ConvNext architectures. Our approach demonstrates compara-
ble generalization on unseen data while being computationally
efficient, requiring less training data. Evaluation is conducted
using the In-the-wild dataset.
Index Terms: Deepfake audio detection, Model generalization,
Neural Collapse.

1. Introduction
Deepfake audio detection involves classifying audio recordings
as either real (authentic/bonafide) or fake (counterfeit/spoof)
using deep learning techniques [1, 2, 3]. A key challenge in
this field is ensuring that models generalize well to unseen
data conditions. This generalization ability can be hindered by
within-class variability among fake audio samples, which are
generated using diverse methods such as text-to-speech (TTS)
[4], voice cloning [5], and voice conversion [6] technologies.
Additionally, training instability stemming from data imbal-
ance poses another obstacle. Typically, datasets used for train-
ing contain a large proportion of fake samples generated us-
ing various algorithms compared to real audio samples. This
data imbalance issue is prevalent in widely-used datasets like
ASVspoof 2019 [7], FoR [8], and Wavefake [9].

Efforts have been made to investigate the generalization of
audio deepfake detection models [10, 11, 12, 13]. The common
issue lies in the poor detection performance of a deepfake audio
detection model trained on one dataset when applied to another
dataset, as analyzed in [10]. An intuitive approach to improve
generalization involves training models on diverse datasets, as
explored in [11]. However, the data splitting and sampling ap-
proach proposed in this study is time-consuming and not au-
tonomous. Other techniques, such as robust feature represen-
tation using self-supervised learning [12], and robust feature
embedding with improved loss functions and frequency mask-
ing [13], have also been proposed to enhance generalization in
deepfake audio detection models.

In this study, we employ the neural collapse [14, 15] theory
as a data sampling method for training audio deepfake models.
Neural collapse characterizes certain properties observed in the

penultimate layer embedding of a deep neural classifier during
its final stages of supervised training. One such characteristic is
variability collapse, where within-class variability diminishes
as training progresses, leading to data samples of the same class
converging around their class mean in the penultimate embed-
ding. Another observed property in neural collapse theory is
the capability to assign an unseen data sample to its nearest
neighbor class during inference. This assignment is based on
the penultimate feature of the sample in relation to the class
means computed from the penultimate embeddings of training
samples. The neural collapse principles have been previously
applied in various domains, including transferability [16], gen-
eralization [17], and interpretability analysis [14] of deep clas-
sifiers.

In this study, we leverage the variability collapse property
of neural collapse to formulate a sampling approach for select-
ing representative data points from diverse datasets, thereby cre-
ating a new training database. This method exploits the dis-
criminative characteristics observed in the penultimate embed-
ding to identify confidently classified real and fake samples by
a pre-trained deepfake audio model. We demonstrate that deep-
fake audio models trained on this newly created database ex-
hibit promising generalization across unseen data. Additionally,
our approach is computationally efficient, requiring less training
data compared to existing methods such as the one proposed in
[11]. Another related approach involves using active learning to
identify prominent fake samples [18]. The subsequent sections
provide detailed explanations of the methodology (Section 2),
dataset and experimental details (Section 3), results and discus-
sion (Section 4), and conclusion (Section 5).

2. Methodology
The motivation behind this study is rooted in the straightforward
idea that integrating diverse datasets pertaining to the same task
during training can improve the generalization capability of a
deep learning model. In this study, we apply this concept to
the domain of audio deepfake detection. However, a significant
challenge in this field arises from the high within-class variabil-
ity in the fake audio class, primarily due to the use of various
algorithms to generate fake audio samples. For instance, in the
ASVspoof 2019 LA dataset [7], four TTS and two voice conver-
sion algorithms are employed to generate fake audio samples in
the training data, resulting in a dataset comprising 22, 800 fake
samples and only 2, 580 real samples. Similar diversity in al-
gorithms is observed in other audio deepfake detection datasets
such as FoR [8], Wavefake [9], and In-the-wild [19]. Conse-
quently, audio deepfake models trained on specific datasets ex-
hibit poor generalization across other datasets, as analyzed in
[19].

One straightforward approach to addressing the generaliza-
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tion issue is to collectively use diverse audio deepfake datasets
and train a large model. While this method can enhance general-
ization across unseen data distributions, it may increase the vari-
ability collapse within the fake class, given the diverse nature of
different deepfake algorithms and the varying numbers of fake
samples associated with each of them. Additionally, managing
such a large training database is computationally intensive and
requires meticulous data preprocessing and splitting steps, as
demonstrated in [11]. To mitigate these challenges, we propose
a neural collapse-inspired data sampling approach in this study.
This method involves sampling confidently classified real and
fake samples from a deepfake dataset based on the geometric
representations of the penultimate embedding of a pre-trained
deepfake classifier. Representative real and fake samples are se-
lected using a distance-based scoring function relative to class
means.

The methodology employed in this study can be summa-
rized as follows. Initially, we train deepfake audio models on
individual datasets. Subsequently, we utilize the pre-trained
model to identify correctly predicted real and fake audio sam-
ples within the entire training database, termed as audio sam-
ples of interest, which are then considered for the sampling pro-
cess. For each pre-trained model, we apply neural collapse prin-
ciples. This involves extracting the penultimate embedding fea-
ture for all audio samples of interest and computing class means
associated with each class using Equation 1,

µk =
1

n

n∑
i=1

fk,i (1)

where n represents the total number of samples in class k, fk,i
denotes the penultimate feature embedding, and µk is the mean
of penultimate embeddings for the kth class. Following this, we
visualize the geometric distribution of the penultimate embed-
ding of the audio samples of interest alongside the class mean
using t-SNE [20]. For each sample in the audio samples of in-
terest belonging to a class, we compute the distance between
the sample and the class mean. The sampling approach for each
class is based on selecting nearest neighbor samples relative to
the class mean. Further details of this sampling approach are
outlined in Algorithm 1.

This paper presents a proof-of-concept experiment of the
proposed methodology using the ASVspoof 2019 LA dataset.
Section 4 outlines a generic version of the proposed method for
future research.

Algorithm 1 Neural collapse based sampling approach

Inputs:
{

xk,i
}n

i=1
is the set of audio samples of interest be-

longing to class k, fk,i is the penultimate embedding of
xk,i.

Outputs: sampled set of real audio samples
{

xk,i
}m

i=1
; m < n

1: µk = 1
n

∑n
i=1 fk,i

2: dk,i = ||fk,i − µk||
3: sort([dk,i])
4:

{
xk,i

}m

i=1
= {xk,i where dk,i ≤ threshold}

3. Datasets and Experimental Details
3.1. Datasets

We utilize the ASVspoof 2019 logical access (LA) [7], FoR [8],
and Wavefake [9] datasets for training audio deepfake models,

reserving the In-the-wild [19] dataset exclusively for evaluation
purposes. The ASVspoof LA training dataset contains 2, 580
real samples, based on the VCTK corpus [21], and 22, 800 fake
samples generated from four TTS and two voice conversion al-
gorithms. The ASVspoof LA evaluation data consists of 7, 355
real and 63, 882 fake samples, generated by seven TTS and six
voice conversion spoofing algorithms. The FoR dataset includes
111, 000 real and 87, 000 fake audio samples, sourced from
the Arctic [22], LJSpeech [23], and VoxForge datasets for real
samples, and generated by seven TTS algorithms for fake sam-
ples. In the Wavefake dataset, we focus solely on real and fake
data points from the LJSpeech dataset, totaling approximately
91, 700 fake samples produced by seven TTS algorithms. The
In-the-wild dataset comprises 37.9 hours of audio, with 17.2
hours of fake and 20.7 hours of real data, sourced from publicly
available video and audio files. The fake clips in this dataset are
created by segmenting 219 publicly available video and audio
files with adversarial perturbations.

3.2. Experimental Details

3.2.1. Pre-trained Models

We initially utilize the ASVspoof 2019 LA dataset [7] to de-
velop audio deepfake models, employing ResNet (with 18
residual blocks) [2] and ConvNext [24] architectures. These
models undergo evaluation using the ASVspoof 2019 LA eval-
uation subset and the In-the-wild dataset to highlight the gen-
eralization challenges in audio deepfake detection. This exper-
iment is termed as Experiment 1. Subsequently, we train a tiny
ResNet-based model (with 9 residual blocks) using a subset of
real and fake samples from the ASVspoof 2019 LA training
database, generated using the sampling method outlined in Sec-
tion 2. This model is then assessed using the ASVspoof 2019
LA evaluation dataset and the In-the-wild dataset. By adjust-
ing the threshold value of the distance-based score function,
we control the quantity of samples in each class, conducting
experiments with varying sampling rates for both the real and
fake classes. The entire experiment is termed as Experiment 2.
These experiments provide insights into the impact of sampling
quantity on model training and generalization.

Additionally, we conduct a parallel experiment by ran-
domly sampling a fixed number of real and fake samples from
each of the ASVspoof 2019 LA, FoR [8], and Wavefake [9]
datasets to create a new training database. This process is car-
ried out without utilizing pre-trained models or the sampling
method proposed in Section 2. To ensure the absence of du-
plicate data, especially considering that the LJSpeech corpus
serves as the source of real samples in both the FoR and Wave-
fake datasets, we take care in database creation. We explore
various sampling rates, including 1000, 3000, and 5000 sam-
ples from both the real and fake classes for each dataset. For
each sampling rate and its corresponding newly created train-
ing database, we train an audio deepfake model using the tiny
ResNet architecture with 9 residual blocks and evaluate its per-
formance on a subset of the collective database (eval data in
Table 2) and the In-the-wild dataset. This experiment termed as
Experiment 3, conducted without the need for pre-trained audio
deepfake models and with random sampling, aims to analyze
the scope of the proposed methodology. Evaluation using the
In-the-wild dataset provides insights into the generalization ca-
pabilities of each model across unseen data distributions.



Table 1: Evaluation performance of the Resnet and ConvNext
model using ASVspoof 2019 evaluation dataset and In-the-wild
dataset.

Resnet ConvNext

ASV eval
EER-ROC 0.08 0.11

mAP 0.99 0.99

In the wild
EER-ROC 0.57 0.47

mAP 0.32 0.41

3.2.2. Training and Evaluation

During model training, we employ audio samples with a dura-
tion of 3 seconds. To ensure uniform input lengths, we apply
trimming and padding techniques to adjust long and short au-
dio samples in the datasets, resulting in 3-second audio sam-
ples. Mel-spectrogram features are utilized for training all our
models, employing a feature representation of 80 log mel-bands
spectrograms. These features are extracted using a short-term
Fourier transform (STFT) with a fast Fourier transform (FFT)
window of 512, a hop length of 160, and a sample rate of 16
kHz.

In the Resnet and ConvNext-based models, the activation of
convolutional layers undergoes batch normalization and is sub-
jected to regularization with a dropout probability of 0.3. The
weights of the convolutional layers are initialized using a Glorot
uniform distribution [25]. Each model undergoes training for
100 epochs, utilizing a binary cross-entropy loss function, and
the Adam optimizer with a learning rate set at 0.001. To prevent
overfitting, early stopping is employed, terminating training af-
ter 10 epochs based on the validation loss score.

Our primary evaluation metric is the equal error rate (EER),
calculated based on the area under the receiver operating char-
acteristic curve (ROC-AUC), which we denote as EER-ROC.
This computation method slightly differs from the EER com-
putation based on the detection error tradeoff (DET) curve, as
utilized in the ASVspoof challenge [26]. Additionally, we uti-
lize mean average precision (mAP) as our secondary evaluation
metric. Lower scores in the EER-based metric indicate better
model performance, while higher mAP scores signify improved
performance. The values for mAP fall within the range of 0 to
1.

4. Results and Discussion
The results of Experiment 1 are presented in Table 1. Both the
Resnet-based and ConvNext-based models demonstrate good
performance on the ASVspoof 2019 evaluation data in terms of
EER-ROC and mAP. However, the performance of these mod-
els on the In-the-wild dataset is poor. For instance, with the
Resnet-based model, the EER-ROC is 0.57 and mAP is 0.32.
This outcome highlights the generalization issue in audio deep-
fake models; when trained on a specific dataset, they often fail
to generalize across unseen datasets that were not part of the
training process.

In Experiment 2, we initially examined the penultimate fea-
ture embeddings corresponding to both real and fake audio sam-
ples across the ASVspoof 2019 LA training database using the
pre-trained Resnet model, as depicted in Figure 1. We empir-
ically applied different sampling rates separately for the real
and fake classes based on Algorithm 1. The optimal result was

Table 2: Evaluation performance of the tiny Resnet model using
combined evaluation dataset and In-the-wild dataset.

No. of samples per

class per dataset
1000 3000 5000

eval data
EER-ROC 0.39 0.44 0.44

mAP 0.60 0.56 0.56

In the wild
EER-ROC 0.49 0.54 0.52

mAP 0.37 0.26 0.32

achieved by utilizing the entire real data and only 50% of the
fake data from the ASVspoof 2019 LA training database. The
tiny Resnet model, trained on this new training subset, achieved
an EER-ROC of 0.54 on the In-the-wild dataset and an EER-
ROC of 0.10 on the ASVspoof 2019 LA evaluation dataset.
Additionally, in terms of mAP, the model achieved 0.48 on the
In-the-wild dataset and 0.99 on the ASVspoof 2019 LA evalu-
ation dataset. The outcomes obtained from the ASVspoof 2019
LA dataset show the potential of our proposed approach. By
sampling from large, unbalanced datasets to construct a new
training database and subsequently re-training the model, we
can improve its generalization capability while minimizing the
amount of training data needed.

Figure 1: Visualization of the penultimate embedding for real
and fake classes in the ASVspoof 2019 training database.

The outcomes of Experiment 3 are depicted in Table 2. No-
tably, the model trained with 1000 samples per class per dataset
exhibits the most favorable overall performance. Specifically,
this model achieves an EER-ROC value of 0.49 on the In-the-
wild dataset. These results further highlight the potential of our
proposed approach.

We propose a modified version of the sampling algorithm
(Algorithm 1) to specifically sample fake data points as part of
our future endeavors. Given the within-class variability issue in
the fake class, a variability collapse-based sampling approach,
similar to that defined in Algorithm 1, may not be an appropri-
ate sampling method. Hence, we suggest an alternative method
involving k-means clustering [27, 28] on the set of fake samples
within the audio samples of interest. The number of clusters can
be determined based on the number of algorithms used to gener-
ate fake audio samples in the dataset, with the maximum num-
ber of clusters set equal to the number of different algorithms
associated with the fake class. Various scenarios may arise,



such as overlapping clusters due to similarities between algo-
rithms within the fake class. To address this, it is vital to iden-
tify the optimal clustering condition by adjusting the number
of clusters, aiming to minimize cluster overlap. Subsequently,
nearest neighbor sampling can be applied to the samples within
each cluster with respect to its cluster center. This approach
enables the sampling of a unique set of fake samples associ-
ated with each cluster of the fake class, thereby facilitating the
elimination of confusing data samples. Further details of this
modified sampling approach for the fake class are outlined in
Algorithm 2.

In instances where the optimal condition is not observed,
two different scenarios are anticipated. Firstly, if we encounter
highly overlapping clusters (in the optimal condition) even after
the iterative k-means approach, we can select the set of sample
data points that adhere to the sampling rule individually and
collectively across the two clusters. The sampling approach,
as described in Algorithm 1, is then applied to the remaining
non-overlapping clusters. The same procedure can be followed
when dealing with situations where more than two clusters ex-
hibit significant overlap. In the worst-case scenario, wherein all
clusters overlap during the iterative k-means steps, regardless
of the number of clusters, we can sample fake data points that
meet the sampling rule individually and collectively across all
clusters at the best optimal condition.

Algorithm 2 Sampling approach for the fake class

Inputs:
{

xf,i
}p

i=1
is the set of fake audio samples of interest,

ff,i is the penultimate embedding of xf,i.
Outputs: sampled set of fake audio samples

{
xf,i

}q

i=1
; q < p

1: Sf < −new set to store sampled fake data points
2: apply k-means clustering on

{
ff,i

}p

i=1
3: for each cluster c do
4: µc = 1

r

∑r
i=1 ff,i; c ∗ r = p

5: dc,i = ||ff,i − µc||
6: sort([dc,i])
7: Sf

c = {xf,i where dc,i ≤ threshold}
8: Sf.append(Sf

c)
9: end for

10: return Sf

The validation of this modified sampling approach is a fu-
ture work. Utilizing this method, it is possible to sample rep-
resentative data points from multiple datasets for both the real
and fake classes separately. Subsequently, we can merge these
sampled data points to construct a new training database for
training an audio deepfake model. A schematic representation
of the complete process involved in our proposed methodology
is depicted in Figure 2.

5. Conclusion
In conclusion, this work addresses the critical challenge of gen-
eralization in audio deepfake detection models across datasets.
Initially, we demonstrate this issue by training audio deepfake
models using the ASVspoof 2019 LA dataset and evaluating
them on the In-the-wild dataset. Leveraging a neural collapse-
based sampling methodology applied to pre-trained models
trained on diverse datasets, we propose a methodology to en-
hance model generalization while reducing the computational
burden associated with training on large datasets. Through a
series of experiments, we validate the effectiveness of our ap-

Training

New training
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Dataset 1

Dataset 2

Dataset 3

Sampling

k-means

k-means

k-means
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Dataset 2

Dataset 3

Pre-trained Models

Figure 2: A schematic representation of our proposed methodol-
ogy. Red data points represent the fake class, green data points
represent the real class, and blue data points represent the class
means.

proach using the ASVspoof 2019 LA dataset, showcasing com-
parable performance on unseen data distributions, particularly
evident in our tiny Resnet-based model. Our exploration of ran-
dom sampling techniques also shows the potential of our pro-
posed methodology. Future work involves refining our sam-
pling algorithms, especially tailored for fake data points, to fur-
ther optimize model training and generalization.
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