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Abstract

Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks
to their biodegradability, biocompatibility, and impressive mechanical characteristics. However, their rapid
in-vivo degradation presents challenges, notably in upholding mechanical integrity over time. This study
investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes
of a lean Mg-Zn-Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods like X-ray
diffraction and optical, we swiftly examine microstructural changes post-thermal treatment. Employing
Pearson correlation coefficient analysis, we unveil the relationship between microstructural properties and
critical targets (properties): hardness and corrosion resistance. Additionally, leveraging the least absolute
shrinkage and selection operator (LASSO), we pinpoint the dominant microstructural factors among closely
correlated variables. Our findings underscore the significant role of grain size refinement in strengthening and
the predominance of the ternary Ca2Mg6Zn3 phase in corrosion behavior. This suggests that achieving an
optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration
of ternary phases. This thorough investigation furnishes valuable insights into the intricate interplay of
processing, structure, and properties in magnesium alloys, thereby advancing the development of superior
biodegradable implant materials.
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1. Introduction

Biodegradable magnesium alloys have emerged
as a cutting-edge focus of modern materials
science and biomedical engineering due to their
exceptional mechanical properties and innate
ability to degrade within the human body. These
attributes make them a compelling choice for
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medical implants. [1, 2] However, to fully harness
the potential of biodegradable magnesium alloys,
we must gain a comprehensive understanding of
how their microstructure changes with thermal
treatment and how these transformations affect
their mechanical and corrosion properties. [3–5]
In the context of biodegradable magnesium al-
loys, striking the right balance between corrosion
resistance and deformation resistance becomes
all the more critical. These alloys must endure
mechanical stresses in their intended applications
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while gradually degrading as new tissue forms.
Achieving this balance is a substantial challenge,
as pure magnesium is renowned for its excellent
biocompatibility but is susceptible to deformation
and rapid corrosion. One standard method to en-
hance the properties of magnesium is to introduce
alloying elements that stimulate the formation
of secondary phases. These secondary phases
substantially improve the material’s mechanical
strength, but often at the cost of reduced corrosion
resistance, a trade-off of particular relevance to
biodegradable magnesium alloys. [6–8] Given the
growing interest in developing magnesium alloys
for biomedical purposes, exemplified by the recent
FDA approval of the RemeOS screw [9], a deeper
understanding of the intricate interplay between
microstructural features and material properties is
of utmost importance.

The impact of microstructural features on
material properties is often quantified using sophis-
ticated characterization tools such as TEM, which
imposes not only substantial financial costs but
also consumes considerable time. In response to
these challenges, this study harnesses the power of
lab-based X-ray diffraction and optical microscopy
to rapidly characterize essential microstructural
parameters such as dislocation density, crystallo-
graphic texture, intermetallic phase fraction, and
grain size for a given Mg alloy.

One of the significant challenges in identifying
the impact of individual microstructural features
lies in their interdependence; they are not isolated
entities but rather highly correlated. [10, 11]
This can be illustrated by the example of Zener
particle-pinning [12], in which grain growth is
hindered by secondary phases located on grain
boundaries. While the restriction of grain growth
by the particles enhances hardness and strength,
the particles can also accelerate corrosion. Com-
prehending and untangling the individual effects of
these highly correlated features is difficult.

Recent advancements in machine learning al-
gorithms have guided a new era of exploration,
allowing for an in-depth analysis of individual
parameters and the identification of dominant
factors that significantly influence properties
of interest, as evidenced by numerous studies.
[15–17] However, most of these investigations have
either relied on computationally generated data

obtained through calculations or have drawn from
experimental data sets scattered across various
sources in the literature, lacking a direct one-to-one
comparison. Furthermore, many of these studies
have concentrated on the chemistry of alloys, with
limited attention given to the impact of processing
and microstructural features. Recognizing this
gap in the literature, our study aims to identify
the complex relationships between microstructure,
mechanical properties, and corrosion resistance as
the microstructure evolves in a dilute biodegrad-
able magnesium alloy, ZX10, as it is heat-treated
over a broad range of times at 450 °C. Our study
documents the evolution of microstructure, hard-
ness, and in-vitro corrosion rates and identifies the
dominant microstructural features during different
stages of the heat treatment through machine
learning, as displayed schematically in Figure 1.

To achieve this, we initiated a simple investiga-
tion on a dilute biodegradable magnesium alloy,
ZX10, heat-treated over a broad range of times at
450 °C. Our study documents the evolution of mi-
crostructure, hardness, and in-vitro corrosion rates
and identifies the dominant microstructural fea-
tures during different stages of the heat treatment
through machine learning, as displayed schemati-
cally in Figure 1.

2. Materials and methods

2.1. Thermomechanical Processing

The ZX10 quaternary alloy, consisting of high-
purity Mg and small concentrations of Zn (1 wt%),
Ca (0.3 wt%), and Mn (0.15 wt%), was synthesized
through a multi-step process. Initially, ingots
were created by melting the constituent elements,
followed by a homogenization. The ingots were
then conventionally extruded at 350°C, using an
extrusion ratio of 25:1, resulting in cylindrical rods
with a diameter of ≈ 12 mm. The extruded rods
underwent further processing using the continu-
ous Equal Channel Angular Pressing (cECAP)
method, where the extruded rods were subjected
to four passes in the Bc route at 300°C, followed by
an additional four passes in the Bc route at 200°C
through a square die of side 11 mm at an angle
of 120° generating an equivalent strain of 0.67 per
pass, as described in Davis et al.. [18] Samples
processed by cECAP are the starting material for
this study and are hereafter referred to as ‘ECAP’.
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Figure 1: Schematic illustrating the methodologies employed for understanding process-structure-property relationships, in-
cluding accelerated characterization via XRD and optical microscopy, expedited property assessment through hardness mea-
surements and 1-day immersion studies, and application of machine learning techniques such as Pearson Correlation Coefficient
(PCC) analyses [13] and LASSO [14] for comprehending structure-property correlations.

Prior to solution heat treatment, samples were
precision-cut into 11 by 11 by 1 mm3 sheets us-
ing wire electric discharge machining, and the heat-
affected regions were removed by polishing with
SiC P4000 sandpaper (sourced from Allied High-
Tech) and a final polishing step with 0.05 µ m Col-
loidal Silica Suspension to achieve a mirror-like fin-
ish. In addition, ThermoCalc, a CALPHAD-based
program, was utilized to calculate the phase dia-
gram of this alloy (as seen in Figure 2(a)). Based
on the predicted phase diagram, the ECAP sam-
ples were subjected to solution heat treatment in
an Argon gas environment within a Carbolite Gero
HTCR5/95 furnace at 450°C, where only the α-Mg
phase is stable. Heat treatments ranged from one
minute to a maximum of 128 hours, followed by
rapid quenching in water. Moving forward, each
sample is designated by the duration at 450°C. For
instance, a sample that undergoes a 2-minute solu-
tion heat treatment is referred to as “2 min” sam-
ple. A temperature versus time profile for the ini-
tial heating is plotted in Figure 2(b) and shows that
samples rise into the solutionizing region, where no
secondary phases are stable, within 10 seconds.

2.2. Characterization and Quantification of Mi-
crostructural Parameters

To characterize and quantify microstructural
features rapidly, we employed optical microscopy
and X-ray diffraction. We also leveraged SEM
imaging, SEM-EDS mapping, and SEM-EBSD
mapping to verify the consistency of the rapid
analyses. To examine the ECAPed and annealed
microstructures, samples were etched using a
5% Nital solution (composed of 5% Nitric Acid
and 95% methanol) following the ASTM E 407
standard. [19] Optical microscopy was performed
using a Leica DMi8 Inverted Microscope with
LASX software for grain size visualization. JEOL
IT700HR InTouchScopeTM SEM and Thermo
Scientific Helios 5 UC Focused Ion Dual Beam
were employed for imaging and EDS analysis, with
EDS data analysis conducted using APEX EDS
software. Grain sizes were measured using optical
micrographs, scanning electron micrographs, and a
MATLAB program, following the intercept method
specified in ASTM E112-13. [20]

The mirror-finish samples were subjected to
bulk ion beam milling using a Leica EM TIC 3X
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Figure 2: a) ZX10 Phase Diagram Predicted by ThermoCalc, b) Thermocouple readings of a sample at the start of the solution
heat treatment.

at 5kV and 3mA for 5-minutes before Electron
Backscattered Diffraction (EBSD) studies on
a Tescan MIRA 3 GM Field Emission SEM,
equipped with Oxford EBSD detector at voltage
of 20 kV. Textural and grain size analyses for
EBSD were carried out using AZteC Crystal
Software by Oxford. We also used AZteC Crystal
Software to obtain the Geometrically Necessary
Dislocation (GND) density, based on the Weighted
Burgers Vector Method developed by Wheeler et
al. [21] To mitigate the step size influence on
GND measurement and examine relative GND
density changes, a constant step size of 0.5 µm was
employed. The analysis focused on the dislocation
density of Burgers vectors with a magnitude of
1
2 [1120], and the GND density was assessed using
a 3× 3 pixel kernel size.

The SEM-EDS images were initially subjected
to thresholding by the Otsu method [22] to dis-
tinguish the precipitates from the matrix based
on contrast. The representative diameter of each
precipitate was then computed by averaging its
major and minor axes, which served as the basis
for calculating the precipitate size distribution and
area fraction.

X-ray diffraction (XRD) analysis was conducted
per the principle of Bragg’s law [23] using the

Malvern Panalytical Aeris powder X-ray diffrac-
tometer, operating at 40 kV and 7.5 mA. The
instrument was equipped with a Nickel Beta Filter
and a Cu X-ray source, and data collection was
performed using a step size of 0.0027°. To ensure
data quality, scans were repeated three times and
subsequently summed to enhance the signal-to-
noise ratio. Data processing, such as background
subtraction, removal of Kα2 peaks, peak identifica-
tion, and peak matching, was accomplished using
X’pert HighScore software.

The Convolutional Multiple Whole Fitting
(CMWP) program developed by Ribarik et al.
was employed to determine the average dislocation
density. The standard reference material (SRM
660, LaB6) from the National Institute of Stan-
dards and Technology was employed to obtain
the instrumental profile function. Due to very
minimal alloying content, the broadening of the
Mg peaks was assumed to arise mainly from the
strain contributions of the dislocations in the Mg
phase. The CWMP program has been detailed in
[24–27].
Peaks exceeding a minimum threshold of 0.01
counts after background subtraction were detected
and subjected to PseudoVoigt profile fitting using
X’Pert HighScore Software, as detailed in [28]. To
address the impact of texture on intensity, which
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can arise from preferential precipitation on specific
planes during annealing, multiple peaks with 2θ
values spanning the range of 20-60° were taken
into account.

We estimated the volume fraction for each con-
stituent phase by calculating the ratio of the inte-
grated area corresponding to an individual phase
to the sum of integrated areas for all phases as de-
scribed in [29] and as illustrated below:

Vf,a =
Aa

Aa +Ab +Ac +Ad
(1)

For texture characterization, we focused on the
prismatic [1010] and [1120] and basal [0002] planes.
The degree of texture was quantified using ratios of
the integrated peak areas for prismatic planes nor-
malized with respect to the basal plane, as follows:

V(1010)

V(0002)
=

A(1010)

A(0002)
,

V(1120)

V(0002)
=

A(1120)

A(0002)
(2)

2.3. Microhardness evaluation

Microhardness measurements were conducted
utilizing a 200 gf load on a LECO AMH55 Hardness
Tester. Vickers hardness values were derived from
the indentation size through the ’Cornerstone’ soft-
ware. Each hardness data point represents a total
of at least ten measurements. In accordance with
DIN-ISO 6507 guidelines [30], the micro-indents
were spaced at distances equal to six times the av-
erage indent width.

2.4. Bio-corrosion Evaluation

The square samples measuring 11 × 11 × 1mm3

were polished on all sides with P4000 SiC paper
prior to immersion in Earle’s Balanced Salt Solution
at 5% CO2 and a temperature of 37.1°C, simulat-
ing in-vivo conditions for 24 hours. Immersion bio-
corrosion tests were conducted with a sample sur-
face area to solution volume ratio of 0.2mL/mm

2

per ASTM G31-72 standard [31]. The testing took
place within a Heraeus Heracell CO2 150 incuba-
tor. Following the immersion tests, the corroded
samples were treated with a solution composed of
(200 gCrO3+10 gAgNO3+20 gBa(NO3)2 dissolved
in 1l of deionized water, following the guidelines set
forth by ASTM G1 [32] to remove corrosion prod-
ucts. Mass and pH measurements were acquired
before and after the corrosion testing utilizing a

weighing scale (Hanchen Electronic Analytical Bal-
ance, 0.1 mg, Digital Scale) and benchtop pH meter
(Accumet AB150, Thermo Fisher Scientific, MA,
USA). The pH level was maintained below 8. The
biocorrosion rate of each sample was calculated by
the weight loss measured in an immersion period of
24 hours according to the equation in [31]:

Corrosion Rate =
K ×W

A× T × ρ
mm/yr (3)

where K is a constant (8.76×104), W is the weight
loss in the unit of gram, A is the exposed sample
surface area in the unit of cm2, T is the time of
exposure in the unit of hours, and ρ is the sample
density in the unit of g/cm3. The calculated den-
sity of 1.77 ± 00.26, obtained using a helium gas
pycnometer (Micromeritics AccuPyc II 1340) and
a microbalance (Mettler Toledo Model XS3DU),
were employed to estimate corrosion rates. For this
study, we focused on corrosion over a single day,
given that corrosion rates are usually at their high-
est initially and tend to decrease over time.

2.5. Machine Learning-driven Analysis

We apply two machine learning techniques to un-
derstand the correlations between the microstruc-
tural features and to identify the most significant
microstructural features that affect the corrosion
rate and hardness. To obtain correlations between
the microstructural features, we compute the Pear-
son R correlation coefficients (PCC) [13] using the
following equation:

rxy =

∑n
i=1(xi − x̄)(zi − z̄)√∑n

i=1(xi − x̄)2
√∑n

i=1(zi − z̄)2
, (4)

where x and z represent two different microstruc-
tural features, xi and zi represent data observations
for the given microstructural feature, and x̄ and
z̄ represent the mean of the observations for x
and z. The PCC is computed pairwise for the mi-
crostructural features and is a statistical measure
of the linear correlation between two data sets.
A positive PCC value indicates that the values x
increases as the value of y increases, and a negative
PCC indicates that the value of x decreases as
the value of y increases. We also compute the
PCC between each microstructural feature and
the targets - hardness and corrosion rate. This
analysis provides an understanding of how each
microstructural feature impacts the strengthening
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and degradation of the Mg alloy.

Following the correlation analysis, we performed
feature selection using LASSO. [14] LASSO builds
a linear model based on the assumption that the
model coefficient vector (β) is sparse. This implies
that only some of the input variables are selected
to create the linear model. The following objective
function is solved by LASSO:

min
β∈Rp

{
1

N
∥y − xβ∥22 + λ∥β∥1

}
, (5)

where N is the number of data points, β is the coef-
ficient vector, x represents the microstructural fea-
tures data, y represents the targets, hardness, and
corrosion rate, and λ represents a tunable hyper-
parameter that controls the sparsity of our linear
model. In our implementation for this work, we
perform a grid search on the λ parameter and se-
lect the one that gives the highest accuracy model
based on leave-one-out-cross-validation (LOOCV).
We use the mean absolute error and R2 score as the
accuracy measure for cross-validation.

3. Results and Discussion

3.1. Variation in Hardness and Corrosion on Solu-
tion Heat Treatment

As depicted in Figure 3, the initial minute
of heat treatment produces minimal impact on
hardness; however, there was a sharp decrease (by
30%) after 2-minutes. The hardness then stabilized
for approximately 30-minutes before gradually
declining, resulting in a cumulative reduction of
50% by 128 hours. In contrast, the corrosion rate
experienced a rapid decline (40%) within the first
minute, stabilized for the subsequent 30-minutes,
and then gradually decreased until a total reduc-
tion of 4X was observed at 128 hours. Notably,
such substantial property changes occurring within
brief time intervals (1-2 minutes) are unusual.

It was intriguing to note the combination of high
strength and relatively favorable corrosion rates in
the 1 min sample. This observation suggests that
high-temperature annealing for shorter durations
can enhance the corrosion behavior of heavily de-
formed samples. These observations also under-
score the remarkable changes in material proper-
ties without alterations in chemistry, emphasizing
the critical role of processing on properties. The
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Figure 3: Evolution in hardness and corrosion rate with time
reveals the loss of strength and reduced corrosion rate over
time.

underlying mechanisms driving these transforma-
tions lie within the microstructure, underlining the
necessity for ongoing monitoring of microstructural
changes to attain optimal material properties.

3.2. Tracking material microstructure rapidly fol-
lowing heat treatment

After subjecting the samples to heat treatments
and quenching, we rapidly characterize four critical
microstructural features pertinent to hardness and
corrosion using X-ray diffraction (XRD) and opti-
cal microscopy (OM) methods, which offer advan-
tages in terms of minimal sample preparation, time
efficiency, and cost-effectiveness. These features in-
clude dislocation density, crystallographic texture,
precipitate volume, and grain size. [33, 34] While
the XRD-derived values provide averaged measure-
ments and may not capture local variations in dislo-
cation densities or increases in particle size beyond
200 nm, they serve as valuable tools for explaining
the observed fluctuations in mechanical and corro-
sion properties as depicted in Figure 3. XRD pat-
terns and optical microstructures of all the condi-
tions are plotted in Figures 4 and 6, respectively.

3.2.1. Variation in Dislocation Density

Based on CMWP analyses as demonstrated
in Figure 4(b), the ECAP sample has a high

6



Only Magnesium peaks visible in linear scale

a

b c

d e

Figure 4: Accelerated Microstructural characterization from XRD: a) XRD patterns revealing the Mg peaks (in linear
scale) and presence of precipitates (in logarithm scale) b) Dislocation density obtained from CMWP analyses revealing dislo-
cation annihilation and plateauing post-1-minute annealing; c) Variation in precipitate content obtained from XRD revealing
dissolution of precipitates; Texture ratios from XRD showing the variation of (d) (1010)/(0002) and (e) (1120)/(0002) over
time.
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dislocation density exceeding 3×1015 m−2 but
drops tenfold after just a one-minute exposure
to 450°C, indicative of significant dislocation
annihilation. This dramatic drop is supported
by EBSD measurements, as demonstrated by
the geometrically necessary dislocation (GND)
density in Figure 5(d). A noteworthy aspect is the
consistent log-normal distribution of GND density
within the heat-treated samples.

Previous studies [35–37] have predominantly ex-
amined variations in dislocation density over longer
time scales, typically spanning 20 minutes or more.
Given our study utilizes far shorter time durations,
we conducted in-situ temperature measurements
with thermocouples to ensure samples reach the
annealing temperature rapidly, as shown in Fig-
ure 2(b). Note that the samples reach the solu-
tionizing region within 10 seconds, so even a brief
one-minute annealing period provides sufficient ex-
posure to high temperatures for the annihilation of
dislocations.

3.2.2. Crystallographic Texture Evolution

In terms of crystallographic texture, we primar-
ily considered three planes for our study: the basal
(0002) plane and the prismatic (1010) and (1120)
planes, which have been identified as significant
influencers of corrosion behavior as per literature.
It is worth noting that prismatic planes corrode
18-20 times faster than basal planes. [34, 38] Thus,
texture ratios were calculated using integrated
areas from XRD scans as detailed in Section 2.2,
and both integrated area ratios (1010)/(0002) and
(1120)/(0002) show similar trends over time as seen
in Figure 4(d) and (e). The XRD intensity of the
(1010) plane remains relatively constant from the
first minute onwards, whereas the intensities of the
(1120) and (0002) planes fluctuate in response to
the heat treatment duration. The most pronounced
variations occur during the second minute, which
coincides with the onset of grain growth.

The EBSD pole figures reveal a similar trend
while offering intriguing additional insights. The
texture notably weakens from the ECAP to the 1-
minute sample. In the ECAP sample, the basal
plane texture tilts approximately 45° to the nor-
mal. Conversely, we observe a wider range of tex-
ture variation in the one-minute sample, spanning
from 25° to 65° to the normal. However, a signif-
icant texture strengthening occurs in the 2-minute

sample, with the basal pole aligning more closely to-
wards the center of the pole figure. As subsequent
sections will explain, the dissolution of precipitates
leads to an increase in grain size from 1-minute to
2-minutes, consequently altering the texture. By
the 128-hour mark, the basal texture, (0001), ex-
hibits a more dispersed pattern, aligning closer to
the 0− 45° range along the x-axis, as illustrated in
Figure 5(e).

3.2.3. Precipitate Evolution

In this alloy, three common types of precipitates
were observed: Ca2Mg6Zn3, Mg2Ca, and Mn,
as evidenced by both XRD (Figure 4(c)) and
SEM-EDS analyses (Figure 5(a-c)). This observa-
tion aligns with the predicted phase diagram by
ThermoCalc, illustrated in Figure 2(a). At 450°C,
all three phases are thermodynamically unstable,
and the stable phase is a solid solution. However,
solutionizing completely requires significant time.

While determining phase volume fraction using
integrated area measurements from XRD (Fig-
ure 4), the influence of texture on preferential
precipitation was deemed negligible. As expected,
the calculated volume fraction of all three phases
decreased with annealing time, as illustrated in
Figure 5(b).Within the initial minute of exposure
at 450°C, the overall precipitate fraction decreased
by approximately 30%. Subsequently, from 1-2
minutes, there was a decrease of around 6%,
followed by stepwise declines in the precipitate
fraction, each below 1%, until the 4th-hour mark,
when more pronounced decreases occur over time,
resulting in close to a 70% reduction in precipitate
content.

While XRD measurements do not provide
detailed insights into precipitate size and distribu-
tion, they facilitate the identification of precipitate
dissolution and differential dissolution rates among
precipitates, which are challenging to obtain
through optical microscopy or SEM. On the other
hand, SEM-EDS maps provided an understanding
of precipitate morphology within its resolution
limit and also confirmed the dissolution of precipi-
tates over time, corroborating our XRD analyses.
Image analysis of backscattered electron (BSE)
images also revealed that precipitate diameter
increased over time while area fraction decreased,
as seen in Figure 5(b) and Figure 5(c).
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Figure 5: Microstructural Evolution validation using SEM: a) SEM-EDS Maps revealing the presence of different pre-
cipitates; b) BSE images showing precipitate dissolution and coarsening over time; c) Variation in area fraction and mean
diameters of precipitates obtained from SEM showing precipitate dissolution and coarsening over time; d) Log-normal distri-
butions of GND Density revealing dislocation annihilation and plateauing post-1-minute annealing validating the trend from
XRD; g) EBSD Pole figures revealing the texture variation over time
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Upon closer examination of individual precipitate
variation over time, the initial drop in precipitate
content within the first minute is attributed
primarily to the ternary Ca2Mg6Zn3 phase, ex-
hibiting close to a 40% decrease. This substantial
reduction can be attributed to the high mobility
of Zn atoms in the Mg matrix, as calculated from
diffusion coefficient data obtained from [39]. Zn
atoms display a significantly higher interdiffusion
coefficient (9.24 µm2/s) at 450°C compared to Ca
atoms (0.19 µm2/s) and Mn (0.001 µm2/s), as
well as Mg’s self-diffusion coefficient (0.03 µm2/s).
The data also explains the slower dissolution of the
Mg2Ca phase and minimal change in the Mn phase.

The dissolution of precipitates within such short
time scales, as observed in the first minute, appears
to be an unexplored phenomenon in past litera-
ture. Most studies [40–44] typically focus on pre-
cipitate evolution starting at 30-minutes or longer.
However, this study underscores the importance
of monitoring microstructural features at smaller
time scales, particularly at elevated temperatures,
in part because short processing times are advanta-
geous to industry.

3.2.4. Grain Size Variation

Our investigation into grain size primarily relied
on optical microscopy (Figure 6(a)), complemented
by EBSD grain size measurements (Figure 6(b))
at specific time intervals to validate our findings.
Initially, the ECAP samples exhibited highly
refined grains, averaging approximately 800 nm in
size. Despite the observed dislocation annihilation,
a one-minute annealing process did not induce
significant changes in grain size. However, as the
heat treatment extended to 128 hours, the grain
size increased significantly by 60-fold, reaching
nearly 50 µm towards the end of the process.

Of particular note is the ten-fold increase in
grain size observed from the first minute to the
second minute, a phenomenon also evident in the
texture variations illustrated in Figure 5(e) and
5(i). Such substantial changes in microstructure
tend to be under-reported in the literature that
typically considers longer time periods. [45, 46]

To understand this rise in grain growth behav-
ior, we employed the well-established grain growth
model [11]:

dn + dno = kt, (6)

where k is the grain growth exponent, t is the
time, do is the initial grain size, and d is the grain
size at time, t. Fitting the model yields a grain
growth exponent, n ≈ 5.5, that is a substantial
deviation from the value proposed by Burke and
Turnbull (n = 2) [47] as seen in Figure 6(d). This
deviation points to the occurrence of abnormal
grain growth, a phenomenon characterized by the
sudden emergence of unusually large grains within
a matrix of uniformly sized grains. An analysis in
Supplementary Table SI 1 reveals the presence of
island grains, characterized by grains with double
the average grain size, a characteristic feature of
abnormal grain size. This phenomenon is not un-
common and has been well-documented in previous
studies in magnesium alloys. [11, 45, 48, 49] The
grain growth exponent observed in this study is
consistent with findings from these previous stud-
ies, where n typically falls within the range of 2 to 7.

This grain growth model assumes boundary cur-
vature drives growth, the absence of a drag force
on the boundary due to particles or solutes, and
isotropic grain boundary energies and mobilities.
Given this alloy contains second-phase particles,
we investigated grain size distributions over time,
which revealed deviations from self-similarity, a
hallmark of abnormal grain growth as described
by Humphreys [12] and seen in Figure 6(c). A
high value of n points to grain growth stagnation,
likely due to second-phase particles exerting a drag
force on the boundaries, effectively pinning the
microstructure. As illustrated in Supplementary
Figure SI 1, the normalized grain distribution
and the variation in the width of the normalized
distribution exhibit specific patterns. The nor-
malized grain size distributions remain log-normal
throughout, except in the 2 min sample as revealed
in Supplementary Table SI 2. Notably, the breadth
of the distribution does not change significantly
under any of the annealing conditions; instead, it
oscillates. This observation suggests that while
some grains began growing at a much faster rate
than others, broadening the distribution, the finer
grains rapidly caught up, preventing distributions
from becoming bimodal. [11, 48] This transient
nature of abnormal grain growth has been observed
in previous experiments and simulations. [12, 47,
50–52]

The most commonly cited explanation for abnor-
mal grain growth revolves around the coarsening of

10



a b

c d

e

Figure 6: Grain Size Analysis: a) Optical Microstructures revealing grain size coarsening over time; b) Inverse Pole Figures
of ECAP, 1 min, 2 min, and 128 hr samples confirming the rapid grain growth; c) Grain size distributions as a function of
condition revealing abnormal grain growth; d) The variation in the width of grain diameter over time, and the fit as per
Equation (6) denoting the abnormal grain growth; e) Variation in 3D grain radius as a function of time, with a fit per the
Zener model (Equation (7)) revealing the abnormal grain growth in the 2nd min and 5th min samples, beyond which the grain
growth is normal.

particles that effectively pin the grain boundaries,
as explained well in [11]. The classical approach to
understanding the impact of pinning particles on
grain growth is to employ the Zener model [53]:

Rc =
4r

3f
, (7)

where Rc is the limiting grain radius, r is the
radius of the pinning particles, and f is the volume
fraction of the particles. This equation, while based
on several simplifying assumptions like spherical
particles and grains and randomly distributed
particles with no preferential arrangement at grain
boundaries, has been applied here to provide a
semi-quantitative comparison between observed
and predicted grain sizes.

Our observations (Figure 6(e)) indicate that in
the ECAP and 1-minute samples, the observed
grain radius remains significantly below the calcu-
lated critical radius, hereafter referred to as the
Zener radius. There appear to be two distinct
regions of normal grain growth separated by a seg-
ment of abnormal grain growth (2 min and 5 min):

the first region encompasses ECAP and 1-minute,
and the second region starts from 15-minutes all
the way to 128 hours, aligning with the trend visi-
ble in the grain size distribution plot in Figure 6(d).

This unusual behavior in the 2-minute sample
is attributed to the significant dissolution of the
ternary phases in the first minute, which leads to
an approximately ten-fold increase in average grain
size. Since these ternary particles may be hetero-
geneous in size and distribution, pinning of grain
boundaries and grain growth may also be hetero-
geneous, resulting in a bimodal distribution as re-
vealed in Supplementary Table SI 2. However, by
5-minutes, many of these particles dissolve, con-
tributing to a nearly 8-fold rise in grain size from
2-5 minutes and log-normal distributions of grain
sizes. Subsequently, the grain growth stabilizes and
follows normal grain growth behavior. This study
reveals the highly correlated nature of microstruc-
tural features, wherein the presence of secondary
phases correlates with and appears to control grain
growth and texture evolution.
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Figure 7: Correlations between the microstructural features (a) with ECAP and (b) without ECAP sample.

3.3. Correlations between Microstructural Features

Figure 7 displays the Pearson R correlation
coefficients (PCC) [13] for the microstructural
features characterized in our study. The left ma-
trix in Figure 7(a) presents results obtained while
including the ECAP sample before any solution
treatment, while the right matrix Figure 7(b)
shows correlation coefficients after excluding data
for the ECAP sample.

Upon removing the ECAP sample point,
significant changes in correlations are evident,
particularly regarding the dislocation density, ρ.
This variation can be attributed to dislocation
annihilation occurring during the initial minute
of high-temperature annealing, as detailed in
Section 3.2.1 and Figure 4(b). The sudden ini-
tial drop in dislocation density results in the
identification of some unusual and unphysical
correlations, such as between dislocation density
and (112̄0/0002) texture ratio. Additionally, the
dislocation density exhibits small positive correla-
tions with precipitate volume fractions. This may
arise from the simultaneous occurrence of disloca-
tion annihilation and precipitate dissolution upon
annealing, leading to these unexpected correlations.

Our analysis in Figure 7(b) reveals a strong neg-
ative correlation between grain size (d) and precip-
itate volume fractions, consistent with Zener the-

ory (Equation (7)). Furthermore, grain size ex-
hibits a robust negative correlation with texture
for the (112̄0/0002) texture ratio, which could ex-
plain the observed trend of the texture becoming
more basal over time, as depicted in the pole fig-
ures in Figure 5(e). Moreover, we observe high cor-
relations among the three precipitate volume frac-
tions, which is unsurprising given their relation-
ship through the constraint that their sum equals 1.
This correlation likely arises from the simultaneous
dissolution of all these precipitates over time.

The correlations presented here offer valuable
insights into the interplay between various mi-
crostructural features in our alloy system, shed-
ding light on the complex relationships governing
its behavior. Taken together, the data underscores
the importance of accelerated characterization com-
bined with advanced statistical analysis in under-
standing such correlations.

3.4. Machine Learning-guided Structure Property
Correlations

3.4.1. Strengthening Mechanism

In this investigation, we utilize a machine
learning approach comprising Pearson correla-
tion coefficient [13] and LASSO regression [14]
analyses to understand the influence of individual
microstructural features on hardness. Recognizing
the limitations posed by a small dataset, we
address this challenge by integrating established
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physics-based models for strengthening into these
feature selection models. This integration involves
leveraging physics-based features, a strategy de-
tailed below.

In general, the common physical factors con-
tributing to the strengthening of a magnesium alloy
are solid solution strengthening (σSS), dislocation
strengthening (σdis), grain size strengthening (σgb),
and precipitation strengthening (σppt). Based on
previously known theory, we can estimate the total
strengthening in the alloys to be a sum of individual
strengthening mechanisms. [54]

σ = σSS + σDis + σGB + σppt,

= m
∑
i

Bi(Xi)
2/3 +MαGb

√
ρ+ kd−1/2 +∆τ.

(8)

In Equation 8, the first term represents the
contribution from solid solution strengthening
as explained by the Labusch model [55, 56], the
second term represents the contribution from dis-
locations that can be estimated by [54], the third
term represents grain boundary strengthening
based on the Hall-Petch relationship [57], and
the last term represents the contribution from
precipitates as estimated using the Orowan model.
[54] The individual fits of each of these models are
listed in the Appendix A.6.

For solution-strengthening, Xi denotes the
atomic fraction of solute i, and Bi represents the
potency factor corresponding to solute element i.
Assuming all the solute atoms (0.4 at.% of Zn
and 0.2 at.% of Ca) are in solution, the maxi-
mum solution-hardening is estimated to be only 10
MPa / 3.3 HV (calculated from [58]). We neglect
the contribution of Mn due to its minimal content
(< 0.07 at.%). Since this maximum hardening is
barely 1% of the measured hardness, we consider
solid solution-strengthening to be negligible and do
not consider it for the analyses. In Equation 8,
the parameter α = 0.2 captures dislocation inter-
actions within the basal slip system, G signifies the
shear modulus of the Mg matrix (approximately
16.6GPa), ρ encapsulates dislocation density, b rep-
resents the Burgers vector (roughly 0.32 nm), M is
the Taylor factor (≈ 4.5 in Mg alloys [59]), d signi-
fies the grain size, k is the Hall-Petch slope obtained

by fitting our data into the above model, and ∆τ
is the increment in the critical resolved shear stress
(CRSS) due to precipitates. [60] To quantify the
strengthening effect of precipitates, the increment
in the ∆τ , resulting from the necessity for dislo-
cations to bypass two distinct precipitates, is esti-
mated as follows:

∆τ =
Gb

2πλ∗
√
1− ν

ln
d∗pi

ro
. (9)

Here, λ∗ signifies the effective planar inter-particle
spacing on the slip plane, ν is the Poisson’s ratio
of the Mg matrix (≈ 0.3), d∗pi

denotes the mean
planar diameter of the particles on the slip plane
calculated from XRD using the Scherrer equation
and assuming that peak broadening is due to par-
ticle size effects. ro is the core radius of the dis-
locations, approximated to be the magnitude of b
(r0 = 0.32nm). [61] Given the Scherrer equation is
only valid for particle sizes less than 200 nm [62],
we limit our consideration to particles below this
threshold, which are the ones most responsible for
strengthening. Following the methodology outlined
by J.F. Nie [63], the mean inter-precipitate spacing
can be approximated based on the volume fraction
of the precipitates, f and mean diameter of the pre-
cipitates, d∗pi

as:

λ = (
0.779√

f
− 0.785)× d∗pi

. (10)

The precipitate size and spacing obtained through
this route are listed in the Table SI 3. We carried
out hardness (HV) to yield strength (σy) conver-
sions using the relationship where (σy ≈ 3.3×HV).
[64] Given the absence of existing models describing
the influence of texture on strength, we opted to
utilize the texture intensity ratios derived directly
from XRD.

Using the above relations, we first conducted a
correlation analysis using the Pearson R correlation
coefficients [13] between the microstructural fea-
tures and the hardness value as seen in Figure 8(a).
We observed that the inverse square root of the
mean grain size (1/

√
d) is strongly positively cor-

related with hardness, implying that the hardness
value increases with a decrease in the grain size,
consistent with Hall-Petch strengthening. [57]
Likewise, the descriptors for precipitates in both
ternary and binary phases exhibit a positive cor-
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Figure 8: Identification of dominant microstructural features for strengthening using (a) Pearson R correlation coefficients [13]
and (b) LASSO [14].

relation with hardness values, suggesting that the
presence of precipitates enhances alloy hardness,
as anticipated in precipitation strengthening. [40,
54] This correlation may also be due to precipi-
tates hindering grain growth rather than directly
resulting from precipitation strengthening.

However, the unusual, highly positive corre-
lation observed with (1120/0002) texture ratio
and its impact on hardness could stem from
its significant decrease over time. Similarly,
the very slight negative correlation seen with
(1010/0002) texture ratio might result from the
relatively constant intensity of (1120) plane during
annealing, coupled with changes primarily in
(0002) plane. Although both textures exhibit
correlations, these are indirect and do not directly
affect hardness, as indicated by LASSO descriptors
below and previous literature. Instead, it’s the
precipitates influencing grain growth that effec-
tively impact texture as elaborated in Section 3.2.2.

As correlations do not imply causation, we con-
ducted LASSO regression to further understand the
importance and dominance of microstructural fea-
tures. LASSO, a method known for its ability
to simplify models by eliminating less impactful
variables, provided a refined understanding of the
most significant features affecting hardness. Our
LASSO model estimated the contribution and dom-

inance of each feature using physics-informed and
microstructure-based models, as seen below:

HV = λ[A(1/
√
d) +B

√
ρ+

∑
i

Ci(
1

λ∗ ln[d0]) + ...

... +D
(1010)

(0002)
+ E

(1120)

(0002)
], (11)

where A, B, Ci, D, and E are fitting constants in
LASSO that give the feature importance value.
The LASSO regression fit has an accuracy of
93.14%, and the fit was obtained by optimizing
over the λ parameter using “leave-one-out”-cross-
validation (LOOCV).

In Figure 8(b), our analysis underscores the pre-
dominant influence of grain size on the mechanical
properties of the materials studied, aligning with
established literature on the dominance of grain
size strengthening in Magnesium alloys. [65–67]
This phenomenon arises from the hindrance of
dislocation and twinning motion by grain bound-
aries, which enhances the yield strength within
the Mg matrix. The Hall-Petch slope (k), ranging
from 90 to 300 MPa µm1/2, surpasses that of Al
alloys or Steel by a factor of 2-5, highlighting the
significance of grain size in strengthening. [57, 67]

While both ternary and binary precipitates
contribute to material strengthening, our analysis
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suggests that the ternary phase plays a relatively
more substantial role in accordance with experi-
mental observations. This could result from the
higher volume fraction of the ternary phase over
the binary phase. Despite their positive correlation
with hardness, the impact of precipitates on
strengthening, as inferred from LASSO analysis,
appears comparatively modest. This observation
aligns with the limited effectiveness of precipitates
in strengthening via the Orowan mechanism [40],
likely due to their susceptibility to cutting by dis-
locations. [67, 68] Additionally, in the context of a
dilute alloy system, the effectiveness of precipitates
in strengthening is further compromised. The ten-
dency for coarsening and dissolution of precipitates
over time leads to diminished strengthening effects,
as confirmed by LASSO analysis. The relative
influence of precipitates on strength is largely
dictated by their volume fraction, with the ternary
phase exhibiting the highest importance, followed
by binary precipitates, and then the Mn phase with
its extremely low volume fraction. However, it is
worth noting that precipitates indirectly contribute
to strengthening by impeding grain growth during
solution treatment, thereby enhancing strength
through the Hall-Petch mechanism. This explains
the discrepancy between the high correlation
observed through Pearson R Correlation and the
relatively lower importance assigned by LASSO
analysis.

In contrast, dislocation strengthening does not
feature prominently in our analysis despite its high
correlation with hardness. This discrepancy arises
from the significant drop in dislocation density dur-
ing the initial phase of high-temperature solution
treatment, followed by stabilization at relatively
constant levels. However, lower temperature
annealing regimes may reveal a more pronounced
impact of dislocations on hardness, as indicated by
PCC analysis. [54]

When considering other microstructural features,
the contribution of texture to strengthening ap-
pears negligible, likely due to its minimal influence
on hardness. This observation is consistent with
prior research highlighting the limited effect of tex-
ture on material hardness. [69, 70]

3.4.2. Corrosion Mechanism

Corrosion rates in Mg alloys, much like strength-
ening, are influenced by various microstructural

factors, including grain size, secondary phases,
texture, and dislocation. However, there remains a
gap in theoretical models linking these microstruc-
tural features to corrosion rates. Only a few studies
have attempted to establish such correlations [71,
72].

In line with methodologies used for understand-
ing strengthening mechanisms, we employ Pearson
correlation analysis [13] and LASSO regression
techniques [14] to assess the influence of individual
microstructural features on corrosion rate. To
mitigate the limitations posed by a relatively small
dataset, we integrate established physics-based
models for strengthening into the feature selection
process of both Pearson correlation coefficient
(PCC) and LASSO regression models, as elabo-
rated below.

Grain size (d) is one of the most critical mi-
crostructural features influencing corrosion rate.
Given that grain boundaries harbor more lattice
defects and dislocations compared to the interiors
of grains, grain boundaries are expected to corrode
faster when exposed to corrosive environments.
As a result, grain boundaries are considered to
accelerate the corrosion rate. However, the rela-
tionship between grain size and the corrosion rate
is complex, with conflicting reports suggesting that
larger or smaller grain sizes may either decrease or
elevate the corrosion rates. [3, 34, 73–75]

Here we utilize the Hall-Petch type model that
Ralston and Birbilis proposed to explain the rela-
tionship between corrosion rate and grain size [71]:

CR = A+
B√
d
. (12)

where the constant A depends on the specific envi-
ronmental conditions, and B represents a material
constant that varies with composition. The fit of
the Ralston-Birbilis model is listed in Supplemen-
tary Figure SI 6. A modified version of the Ralston-
Birbilis model was proposed by Bahmani et al. [75],
where the grain size effect is limited to the matrix
phase by the matrix fraction, fMg.

CR = A+B × fMg√
d
. (13)

Lastly, Bahmani et al. [75] combined the effects of
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the grain size and precipitate effects on corrosion
into the following model:

CR = A+B × fMg√
D

+ C ×
∑
i

fi|∆Ei|. (14)

where fi represents the volume fraction of the
intermetallic phase obtained from XRD, and ∆Ei

signifies the volta-potential difference between the
intermetallic and Mg matrix. The fit of the Bah-
mani precipitate model is listed in Supplementary
Figure SI 7.

As per the galvanic series, Mg ranks among
the most anodic structural metals, whereas most
secondary phases, with the exception of Mg2Ca,
exhibit cathodic characteristics, rendering Mg
more prone to corrosion. [76] The corrosion
rate attributed to micro-galvanic cells due to the
presence of intermetallic phases can be effectively
modeled by considering the voltaic potential
difference (obtained from [72]), the kinetics of the
reaction, and the volume fraction of the phase,
which represents the available sites for corrosion.
The third term in Equation (14) establishes the
correlation between corrosion and the presence of
precipitates. Remarkably, fitting the precipitate
model to the corrosion rate data yields an R2 value
of 0.87 as shown in Supplementary Figures SI 6
and SI 7.

It has been known that dislocation density
and crystallographic texture can also impact
corrosion rates significantly. [38, 75] According
to the literature [75, 77], excess dislocations often
accelerate the nucleation and expansion of pitting
and the generation of corrosion products. Texture
also significantly affects the corrosion behavior
of Mg alloys as the work function is different on
different crystallographic planes. [34] However,
no physical or numerical models exist to describe
their contributions, thus facilitating the need to
correlate them to corrosion rates directly.

To enable this analysis, we first conducted
correlation analyses, as shown in Figure 9(a), to
understand the correlation between microstruc-
tural features and corrosion rate, combining the
physical relationships outlined above. In this
data set, we observed positive correlations for
dislocation density and precipitate fraction (with
ternary being the most correlated), consistent

with the literature that dislocation density and
precipitates increase the corrosion rates. Ad-
ditionally, (1120/0002) texture ratio showed a
positive correlation, in line with literature [38]
suggesting that prismatic planes corrode faster,
while (1010/0002) texture ratio exhibited a small
negative correlation. However, this slight negative
correlation might be attributed to the relatively
constant intensity of (1010) plane during annealing,
coupled with changes primarily occurring in the
(0002) plane. The inverse square root of grain size
also showed a positive correlation, suggesting that
grain size refinement increases corrosion. However,
it’s essential to note that a high correlation does
not necessarily equate to influencing corrosion
behavior.

To truly distinguish between these microstruc-
ture features and gain insights into the dominant
microstructure, we conducted LASSO fitting, as
outlined below:

CR = λ[A(1/
√
d) +Bρ+ C ×

∑
i

fi|∆E|+ ...

... +D
(1010)

(0002)
+ E

(1120)

(0002)
], (15)

where A, B, C, D, and E are fitting constants in
LASSO that give the feature importance value.
The LASSO regression fit has an accuracy of
81.16%, and the fit was obtained by optimizing
over the λ parameter using LOOCV; see Sec-
tion 2.5.

The literature presents an interesting and some-
what contradictory perspective on the relationship
between grain size and corrosion rate. Bahmani
et al. [34, 72] suggest that an increase in grain
size may reduce corrosion rate due to factors such
as decreased lattice strain, dislocation density,
and surface potential. Conversely, a decrease in
grain size may lead to a lower corrosion rate due
to the formation of a more uniform and coherent
passivation layer, increased barrier effects at grain
boundaries against crystallographic pitting, and
enhancement of basal plane intensity. Despite
a positive correlation observed with 1/

√
d in

Pearson R correlation analysis, LASSO regression
(Figure 9(b)) indicates that grain size may not
have a significant impact on corrosion rate for this
Mg alloy and under these processing conditions.
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Figure 9: Identification of dominant microstructural features influencing corrosion using (a) Pearson R correlation coeffi-
cients [13] and (b) LASSO [14].

The LASSO analysis, mirroring PCC analyses,
reveals that corrosion rates are predominantly
influenced by the ternary Ca2Mg6Zn3 phase. The
potential difference between the intermetallic
phase and the matrix drives electrons from the
anode to the cathode, forming galvanic cells. In
this electrochemical process, the anodic second
phase degrades upon contact with the nobler
matrix in a galvanic cell, while the matrix degrades
when the second phase is nobler than the matrix.
Specifically, Ca2Mg6Zn3 acts as a cathode, and the
Mg matrix serves as an anode at their interface,
enabling the formation of a micro galvanic cell and
thereby increasing the corrosion rate. [4, 5, 78]

Mg2Ca exhibits a positive correlation with
corrosion and contributes to corrosion despite
being more anodic than Mg [78]. Kim et al. [79]
demonstrated that the formation of a galvanic
cell between the Mg anode and Mg2Ca cathode
accelerated the hydrogen evolution rate, thereby
increasing corrosion. However, their impact is
relatively minor due to their lower volume fraction
and potential differences compared to the ternary
phase.

Despite its positive correlation, the Mn phase
appears to play no significant role in corrosion
behavior. While the potential difference [72]

indicates that the Mn phase also acts as a cathode,
forming a galvanic couple and leading to increased
corrosion rates as seen in PCC analyses, its
extremely low content in these alloys renders it of
minimal impact, as reflected in the LASSO analysis.

Generally, dislocations act as anodic sites
relative to the matrix [75], leading to a strong
positive correlation between dislocation density
and corrosion rate. This effect becomes most
pronounced in highly deformed samples and can
even persist following low-temperature thermal
treatments in which dislocations can be fairly
stable. For the high-temperature anneals per-
formed here, the LASSO analysis indicates that
dislocation density has little influence, likely due
to the rapid annihilation of dislocations within
the first minute of annealing. Further research
incorporating a range of dislocation densities is
necessary to comprehensively grasp their impact
on the corrosion behavior of this Mg alloy.

Similar to dislocations, literature [38] suggests
that texture exerts some influence on corrosion rate.
While there is a positive correlation, the LASSO
analysis indicates the impact is negligible for high-
temperature thermal processing of this Mg alloy.
The lack of influence can be partly attributed to
the absence of strong texture in this ECAP sample,
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even following high-temperature anneals. We argue
that a relatively random distribution of textures ef-
fectively nullifies its impact.

4. Conclusions

In this study, we used rapid characterization
techniques and machine learning analyses to
investigate the complex interplay between thermal
processing, microstructure, hardness, and corrosion
rates in an Mg alloy. Utilizing XRD and optical
microscopy, we swiftly characterized microstruc-
tural features with minimal sample preparation,
while hardness measurements and 1-day immersion
tests provided rapid insights into mechanical and
corrosion behavior, respectively.

While the anticipated trend of decreasing
hardness and corrosion rates with prolonged
high-temperature annealing was observed, in-
triguing deviations were noted at short annealing
times. Particularly, a 1-minute anneal at 450°C
yielded a favorable combination of high hardness
and relatively low corrosion rate. This brief
annealing significantly reduced dislocation density
and dissolved ternary precipitates. Extending
the annealing time to two minutes resulted in a
considerable increase in grain size accompanied by
texture variations. These distinct variations un-
derscore the importance of employing accelerated
characterization techniques to capture variations
across various annealing durations.

Despite the challenges posed by strong correla-
tions among microstructural features and limited
data, we successfully established correlations
between microstructural features, hardness, and
corrosion rates using machine learning-based
feature selection routes, such as LASSO regression,
as well as Pearson R Correlations in conjunction
with physics-based relationships.

Our analysis highlights the significant roles of
grain size refinement in strengthening and the con-
trol of corrosion rates by ternary phase fraction, as
revealed by LASSO. Importantly, our findings em-
phasize that achieving a fine grain size and reducing
the presence of ternary phases and dislocations can
yield an optimal combination of strength and cor-
rosion resistance. These insights not only enhance
our understanding of material behavior but also of-

fer valuable guidance for processing alloys tailored
to specific application requirements.
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Appendix A Supplementary Information

Appendix A.1 Grain Size Measurements

Condition Time (hr) Mean (µm) St.Dev Minimum (µm) Maximum µm)
ECAP 0 0.83 0.35 0.33 2.11
1 min 0.02 0.84 0.40 0.24 2.29
2 min 0.07 11.52 4.73 2.32 20.78
5 min 0.08 19.39 9.97 3.14 51.34
15 min 0.25 18.17 12.76 3.29 66.01
30 min 0.50 20.82 12.87 2.10 62.42
1 hr 1.00 21.27 12.37 4.89 62.20
4 hr 4.00 25.66 12.89 4.46 58.86
16 hr 16.00 27.61 17.88 6.34 99.99
64 hr 64.00 40.39 29.04 5.41 158.34
128 hr 128.00 49.40 23.42 11.03 137.49

Table SI 1: Grain Size Statistics

Appendix A.2 Normalized Grain Size Distributions

Figure SI 1: Normalized Grain Size Distributions

Appendix A.3 Goodness of Log-normal fit

We can see log-normal distributions throughout, except in the 2-minute scenario where χ2 < 0.05.
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Condition Time Breadth χ2

ECAP 0.00 1.85 0.12
1 min 0.02 2.26 0.89
2 min 0.03 2.19 0.02
5 min 0.08 2.53 0.21
15 min 0.25 3.10 0.48
30 min 0.50 3.39 0.19
1 hr 1.00 2.54 0.66
4 hr 4.00 2.58 0.26
16 hr 16.00 2.76 0.88
64 hr 64.00 3.38 0.83
128 hr 128.00 2.52 0.53

Table SI 2: Log-normal grain size distribution

Appendix A.4 Geometrically Necessary Dislocation Maps

The GND maps obtained from EBSD revealing

Figure SI 2: GND Distribution Maps

Appendix A.5 Precipitate Size and Spacing

Condition
Mean Precipitate Diameter (nm) Mean Particle Spacing (nm)
Ca2Mg6Zn3 Mg2Ca Mn Ca2Mg6Zn3 Mg2Ca Mn

ECAP 149.30 117.58 131.00 277.77 374.66 473.76
1 min 147.81 129.50 148.07 345.53 432.92 663.54
2 min 158.73 116.73 214.17 385.68 395.52 965.69
5 min 146.14 146.83 161.08 357.84 486.68 746.53
15 min 151.20 109.10 104.77 373.95 368.60 462.26
30 min 150.91 194.96 168.10 373.59 651.65 759.71
1 hr 137.44 132.64 153.98 293.44 363.97 518.52
4 hr 157.93 136.20 114.55 343.34 395.16 382.39
16 hr 131.87 180.60 171.67 298.72 531.36 606.25
64 hr 126.42 129.02 168.75 335.67 386.09 677.80
128 hr 175.17 172.12 130.17 501.92 647.61 523.19

Table SI 3: Precipitate Size and Spacing estimated through XRD
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Appendix A.6 Strengthening Mechanism Models

Appendix A.6.1. Hall Petch Model

The Hall Petch model (HV = kd−0.5) exhibited a superior fit of 89.4%, denoting a dominant influence of
grain boundaries on strengthening.
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Figure SI 3: Hall Petch Strengthening

Appendix A.6.2. Taylor Dislocation Model

The poor fit (R2 = 0.45) of the Taylor dislocation model (σdis = MαGb
√
ρ) represents the suppressed

roles of dislocation density in strengthening this material.
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Figure SI 4: Dislocation Strengthening
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Appendix A.6.3. Orowan Strengthening Model

The poor fits of the Orowan model upon strengthening from the ternary (R2 = 0.625), binary (R2 =
0.4715), and Mn (R2 = 0.34) denote the limited roles of precipitates in strengthening this material.
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Figure SI 5: Precipitate Strengthening by Orowan Mechanism

Appendix A.7 Corrosion Mechanism Models

Appendix A.7.1. Ralston-Birbilis Model

We fitted our grain sizes to corrosion using the Ralston-Birbilis model elaborated in Equation (12). We
found a poor fit of 46%, denoting the suppressed role of grain size in corrosion behavior.
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Figure SI 6: Ralston-Bibilis Grain Size Model - as a function of solution heat treatment

Appendix A.7.2. Bahmani Model

We fitted our precipitate contributions to corrosion using the Bahmani precipitate model, as shown below:

CR = A+ C × [fCa2Mg6Zn3 |∆ECa2Mg6Zn3 |+ fMg2Ca|∆EMg2Ca|+ fMn|∆EMn|] (A.1)

We observed a superior fit of 88%, denoting the dominance of the precipitates on the corrosion behavior.
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Figure SI 7: Bahmani Precipitate Model - as a function of solution heat treatment
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