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The 229Th nucleus has a unique transition at only 8 eV which could be used for a novel nuclear
clock. We investigate theoretically the prospects of driving this transition with vortex light beams
carrying orbital angular momentum. Numerical results are presented for two experimental configu-
rations which are promising for the design of the planned nuclear clock: a trapped ion setup and a
large ensemble of nuclei doped into CaF2 crystals which are transparent in the frequency range of
the nuclear transition. We discuss the feasibility of the vortex beam nuclear excitation and compare
the excitation features with the case of plane wave beams.

I. INTRODUCTION

Twisted light or optical vortex beams refer to light
beams with engineered wave fronts that carry orbital an-
gular momentum along their direction of propagation [1].
These beams are qualitatively different from plane waves,
being characterized by a helical wave front, and spatial
inhomogeneous intensity patterns and momentum dis-
tributions [2–4]. Their unique properties have rendered
them a trending topic in the past decade, in particular in
atomic physics, where vortex beams are a versatile tool to
study photo-absorption in atomic shell transitions. For
example, these beams can be used to address and sepa-
rate quantum transitions with multipolarities higher than
electric dipole [5, 6], to generate rich polarization pat-
terns in microscopic/macroscopic samples [7–12], or to
suppress the unwanted light shift in atomic clock transi-
tions [13–15]. A few works have gone further to address
theoretically the interaction of vortex beams of higher
frequency with nuclei, for instance the manipulation of
giant dipole resonances [16], the excitation of multipolar
nuclear transitions [17], Delta baryon photo-production
[18] and deuteron photo-disintegration [19].

In this work we investigate theoretically the prospects
of using vortex beams to drive the 8 eV nuclear clock
transition in 229Th. This is a unique nuclear transition
accessible by vacuum ultraviolet (VUV) light which ren-
ders possible a nuclear frequency standard [20] or a first
nuclear laser [21, 22]. The nuclear clock is a compelling
alternative to atomic clocks, potentially with superior ac-
curacy and insensitive to some of the shifts which affect
atomic transitions [23]. As frequency standard based on a
nuclear transition, it would also have a significant impact
on other fields, for instance the improvement of satellite
navigation [24], the detection of dark matter [23, 25, 26]
or investigating temporal variations of fundamental con-
stants [25, 27].

The 8 eV nuclear transition in 229Th is a magnetic
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dipole (M1) and electric quadrupole (E2) multipole mix-
ture, for which beams with orbital angular momentum
might be advantageous. Until very recently, the 8 eV
isomeric (i.e., metastable) state could only be accessed
indirectly, e.g. via α-decay of 233U [28–31], x-ray exci-
tation of the next nuclear excited state at 29 keV [32]
or β-decay of 229Ac [33]. The first direct VUV laser ex-
citation of the 229Th isomer was reported just recently
[34], using plane wave beams. Vortex beams can be gen-
erated in optical transmission from regular plane wave
beams [35], and this technology is scalable to the VUV
frequency range. It is therefore timely to address sce-
narios in which the nuclear clock transition is driven by
twisted light beams.

Our study follows the two approaches pursued at the
moment to build a nuclear clock [36]. The first approach
involves a single-ion nuclear clock in an ion trap [20, 37].
This setup is particularly clean and promises great ac-
curacy; however, its realization is technically demanding
because of the very low excitation probability per sin-
gle nucleus. The second approach involves a solid-state
nuclear clock using Th-doped VUV transparent crystals
[38–42]. Here, a large number of doped nuclei (N ≈ 1014

to 1016) can be simultaneously interrogated, leading to a
superior signal to noise ratio and thus a higher stability.
The crystal approach leads to nuclear level shifts, split-
tings and broadenings due to the interactions with the
intrinsic electric and magnetic fields of the host crystals
[41]. The interaction of the nuclear quadrupole moments
with the electric field gradient generated by the crystal
lattice leads to the emergence of a nuclear quadrupole
splitting on the order 100MHz.

Our theoretical approach commences with the calcu-
lation of the twisted light interaction matrix element,
which we derive for Bessel beams using semi-classical the-
ory and express in terms of the nuclear reduced transition
probabilities B(M1) and B(E2) and the intensity of the
driving field. We then present and discuss nuclear ex-
citation probabilities obtained with the density matrix
formalism for single Th ions for both on-axis and off-axis
geometry. Compared to plane wave excitation, the inter-
action with vortex beams leads to a qualitatively differ-
ent excitation pattern in space. We note here that as it
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has been shown for atomic systems, the total excitation
achieved by vortex beams averaging over the impact pa-
rameter is not higher than with plane wave beams [7, 8].

For the second nuclear clock approach, we present our
results for vortex beams interacting with an ensemble of
nuclei doped in a VUV-transparent crystal. We focus
on the quadrupole splitting level scheme of 229Th doped
in a large band gap crystal CaF2 and calculate the nu-
clear excitation probability induced by a circular polar-
ized twisted light beam and a superposition of two such
beams with opposite helicity. The occupation of the nu-
clear quadrupole levels is represented using an analytical
solution of the multilevel Bloch equations. We consider
the cubic symmetry of the crystal and the average over
the three possible quantization axes entering the solution
of the multilevel Bloch equations. Our simulations show
that the vortex excitation in a macroscopic sample can
have different features for single quantization axes, but
taken into account all crystal orientations, the overall re-
sult turns out to be similar to plane wave excitation.

The paper is structured as follows. A short introduc-
tion to twisted light and the corresponding derivation
of the nuclear interaction matrix element is presented in
Sec. II. Then, our numerical results for the two nuclear
clock approaches are presented and discussed in Sec. III.
The paper concludes with a brief discussion in Sec. IV.

II. THEORETICAL BACKGROUND

This section introduces the theoretical background for
the interaction between twisted light and nuclei. Though
developed independently, our approach resembles the
theory work in Ref. [17]. Throughout this paper, we con-
sider Bessel modes in order to describe the twisted light
field. While Bessel-Gauss and Laguerre-Gauss modes are
also often used in the literature, Bessel modes are most
convenient to be treated analytically and numerically and
theoretical predictions have proven so far to match exper-
imental observations quite well [6, 18]. For this reason,
the section starts with a short introduction to twisted
light based on Bessel modes. For a more detailed review
on twisted light, we refer to Refs. [2, 3]. We then proceed
to address the underlying nuclear interaction matrix ele-
ment derived in the semiclassical theory, i.e., treating the
light field classically, and the nucleus quantum mechani-
cally.

A. Bessel beams

A twisted light beam propagating in the z-direction
with well defined transverse momentum ζ = |k⊥|, longi-
tudinal momentum kz, total angular momentum (TAM)
projection mγ and helicity Λ is characterized by the fol-
lowing vector potential [43, 44]:

A(tw)(r) = A0

∫
ekΛe

ik·raζmγ
k⊥

dk⊥
2π

dαk

2π
(1)

FIG. 1: Twisted light beam in k-space. The superposition of
the wave vectors k form the surface of a cone with constant
opening angle θk = arctan (ζ/kz).

with

aζmγ
= (−i)

mγ eimγαk
2π

ζ
δ(k⊥ − ζ) (2)

being the Fourier amplitude. Here, A0 is the field ampli-
tude, k the wave vector, which is related to the energy of
the radiation via E = ℏω = ℏc |k|, ekΛ the polarization
vector pointing in the directions determined by {θk, αk}
and Λ = ±1 the helicity, respectively.
In this representation, the Bessel light illustrates a co-

herent superposition of circularly polarized plane waves
where the different k vectors span the surface of a
cone. This cone has a constant opening angle θk =
arctan (ζ/kz), the so-called pitch angle, illustrated in
Fig. 1.
The real space representation of the vector poten-

tial can be determined upon evaluating the integral in
Eq. (1). Thereby, in order to integrate over αk, one first
needs to expand the polarization vector according to [2]

ekΛ =
∑
ms

cms
e−imsαkηms

(3)

where the sum runs over all possible eigenvalues of the
spin angular momentum operator ms. Here, η±1 =
(1,±i, 0)/

√
2 and η0 = (0, 0, 1) are the eigenvectors of

the spin angular momentum operator. Moreover, the co-
efficients c explicitly read

c±1 =
1

2
(1± Λcos (θk)) , c0 =

Λ√
2
sin (θk). (4)

Rewriting the scalar product

k · r = k⊥ · r⊥ + kzz = ζr⊥ cos (αk − ϕr) + kzz (5)

and using the integral representation of the Bessel func-
tion [8, 43]∫ 2π

0

dαk

2π
einαk±iz cos (αk) = (±i)nJn(z) (6)

yields the real space vector potential [2, 43]

A(tw)(r) = A0e
ikzz

∑
ms

i−mscms
ηms

× Jmγ−ms
(ζr⊥)e

i(mγ−ms)ϕr .

(7)
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In the equations above, Jn is the Bessel function of
first kind and order n. The expression of the real space
vector potential shows that Bessel beams have a spatially
inhomogeneous intensity pattern in the transverse plane,
in contrast to plane waves [2]. Note that usually only
paraxial twisted light fields, i.e. θk << 1, are available
in experiments. As such the sum (7) is solely restricted to
a single leading term where ms = Λ holds. Furthermore,
in the paraxial regime the Bessel beam has a well defined
orbital angular momentum projection ml, i.e. the TAM
projection decouples to mγ = ml + Λ. This means that
the beam is not uniquely characterized by mγ but also
by certain values for the pair ml and Λ. Apart from
that, one can easily show that for θk = 0 and mγ =
Λ the twisted light vector potential recovers the vector
potential of a circularly polarized plane wave with an
insignificant phase factor i−Λ. However, for the sake of
generality, we will address also the case of non-paraxial
Bessel beams with larger θk values.

B. Nuclear interaction matrix element

As a starting point to derive the nuclear interaction
matrix element, we consider the semi-classical interac-
tion Hamiltonian for a nucleus in an electromagnetic field
given by [45]

HI = −1

c

∫
j(r) ·A(r)d3r. (8)

Here, c is the speed of light, j the nuclear current density
and A the vector potential of the impinging electromag-
netic field, so far treated as a plane wave.

In order to take the case of twisted-light-matter in-
teraction into account, we have to implement two mod-
ifications in Eq. (8). First, we replace the plane wave
vector potential by the twisted wave vector potential (1).
Second, a (two-dimensional) impact parameter b is intro-
duced via e−ik⊥b in order to specify the position of the
nucleus within the spatially inhomogeneous wave front.
Thereby, the impact parameter b = b(cos (ϕb), sin (ϕb), 0)
is defined with respect to the beam center at r⊥ = 0.
Introducing the expression in Eq. (1) in Eq. (8) and eval-
uating the integral over k⊥, the interaction Hamiltonian
can be written as

H(tw)
I = − (−i)

mγ A0

c

×
∫

j(r) · ekΛeikre−ik⊥beimγαk
dαk

2π
d3r.

(9)

Note that here the perpendicular component of k is now
fixed by the Dirac delta function in Eq. (2). We can fur-
ther evaluate Eq. (9) by expanding ekΛe

ikr into spherical
multipoles according to

ekΛe
ikr =

√
2π

∑
L,M

iL
√
2L+ 1DL

MΛ(αk, θk, 0)

×
(
AM

LM + iΛAE
LM

)
.

(10)

Here, DL
MΛ(αk, θk, 0) is the Wigner rotation matrix ac-

counting for the different quantization axes of the light
field and of the nucleus. This matrix can be expanded as
DL

MΛ(αk, θk, 0) = e−iMαkdLMΛ(θk) where dLMΛ(θk) is the

Wigner small d-function. Moreover, AM
LM is the mag-

netic amplitude of multipolarity L and projection M ,
and AE

LM the electric amplitude, respectively. Using the
integral representation of the Bessel function (6)∫ 2π

0

ei(mγ−M)αke−iζb cos (αk−ϕb)
dαk

2π

= (−i)mγ−Mei(mγ−M)ϕbJmγ−M (ζb) ,

(11)

the interaction Hamiltonian can be written as

H(tw)
I = −A0

√
2π

c

∑
L,M,µ

(iΛ)δµ,E iL(−i)2mγ−M

× eiϕb(mγ−M)
√
2L+ 1dLMΛ(θk)Jmγ−M (ζb)

×
∫

j(r) ·Aµ
LM d3r ,

(12)

where δµ,E is the Kronecker delta and µ ∈ {E ,M}.
Again, by setting θk = 0, the interaction Hamiltonian
recovers Eq. (8) as long as mγ = Λ. The integral in
Eq. (12) can then be evaluated with aid of [45, 46]∫

j(r) ·Aµ
LM d3r =

kLc

i(2L+ 1)!!

√
L+ 1

L
Qµ

LM (13)

where Qµ
LM denotes the multipole moment operator of

type µ. With that a general expression of the Hamil-
tonian describing the twisted light nucleus interaction is
found as

H(tw) = −
√
2πE

∑
L,M,µ

iL(−i)2mγ−M+1eiϕb(mγ−M)

× (iΛ)δµ,E

√
(2L+ 1)(L+ 1)

L

kL−1

(2L+ 1)!!

× dLMΛ(θk)Jmγ−M (ζb)Qµ
LM

(14)

where we used A0 = E/k with E being the amplitude of
the electric field. Then, the interaction matrix element
can then be simply evaluated as

M
(tw)
fi = ⟨Ieme|H(tw)

I |Igmg⟩

= −
√

4πI
cε0

∑
L,M,µ

iL(−i)2mγ−M+1eiϕb(mγ−M)

× (iΛ)δµ,E

√
(2L+ 1)(L+ 1)

L

kL−1

(2L+ 1)!!

× dLMΛ(θk)Jmγ−M (ζb) ⟨Ieme|Qµ
LM |Igmg⟩

(15)
where Ig/e denotes the angular momentum of the nuclear
ground/excited state and mg/e the respective projections

on the nuclear quantization axis. Here, E =
√

2I
cε0

was
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expressed in terms of the intensity I of the driving field
where ε0 denotes the vacuum permittivity.
By applying the Wigner-Eckhart theorem [47]

⟨Ieme|Qµ
LM |Igmg⟩ =

(−1)Ig−mg

√
2L+ 1

× ⟨IemeIg −mg|LM⟩ ⟨Ie||Qµ
LM ||Ig⟩

(16)

and using the expression of the reduced transition prob-
ability [46]

B(µL, Ig → Ie) =
1

2Ig + 1
|⟨Ie||Qµ

LM ||Ig⟩|2 (17)

the final form of the twisted nuclear interaction matrix
element reads

M
(tw)
fi = −

∑
L,µ

iL(−i)2mγ−∆m+1eiϕb(mγ−∆m)

× (iΛ)δµ,E

√
4πI
cε0

√
(L+ 1)(2Ig + 1)

L

× (−1)Ig−mg
kL−1

(2L+ 1)!!
Jmγ−∆m(ζb)dL∆mΛ(θk)

× ⟨IemeIg −mg|L∆m⟩
√
B(µL, Ig → Ie)

=
∑
L,µ

M
(tw)
fi,µL

(18)
where the sum over M was dropped due to the selection
rule ∆m = me − mg embodied by the Clebsch-Gordan
coefficient. From this, we can define our Rabi frequency
as

Ω
(tw)
fi =

∣∣∣M (tw)
fi

∣∣∣
ℏ

. (19)

In general, this matrix element describes the interac-
tion of a vortex beam with any nucleus located at position
b with respect to the beam center whose nuclear transi-
tions is described by the reduced transition probability

B(µL). We observe that for each multipole order M
(tw)
fi,µL,

the interaction matrix element factorizes as a product of
the standard plane wave matrix element, multiplied by
the Bessel function and the Wigner small d-function. The
latter induces selection rule modifications. A similar fac-
torization has been deduced also in Refs. [16, 17] and is
known also from the interaction of vortex beams with
atomic transitions, see, for instance, Ref. [6].

In the case of 229Th, the transition from the ground
to the excited state proceeds via the M1 channel with
a small E2 mixture. Consequently, we can restrict the
summation in Eq. (18) to these two multipole orders.
We calculate the square of the Rabi frequency defined in
Eq. (19) normalized to the Clebsch-Gordan coefficient of
the respective hyperfine transition and to the incoming
intensity corresponding to the field amplitude A0. The
results are presented in Fig. 2 for each multipole channel

−3 −2 −1 0 1 2 3
b[λ]

0.0

0.5

1.0

1.5

2.0

Ω̃
2 M

1

a)

−3 0 3
b[λ]

0

10

20

Ω̃
2 M

1
·1

03

∆m = −1∆m = 1

∆m = 0

∆m = −1

−3 −2 −1 0 1 2 3
b[λ]

0

1

2

3

4

Ω̃
2 E

2
·1

010

b)

∆m = 2

∆m = 1

∆m = 0

∆m = −1

∆m = −2

FIG. 2: Squared normalized Rabi frequency in units
of m2 s−2 W−1 as a function of impact parameter b (in
units of transition wavelength λ) for the a) M1 channel
and the b) E2 channel of the 229Th nuclear clock tran-
sition. The Rabi frequency is normalized according to

Ω̃2 =
∣∣∣Ω(tw)

fi,µL

∣∣∣2 /(|⟨IemeIg −mg|L∆m⟩|2 I). For a), we use

B(M1, Ig → Ie) = 0.017 W.u. derived with the experimental
values in Ref. [33], mγ = 1, Λ = 1 and θk = 45◦. For b), we
use B(E2, Ig → Ie) = 27.04 W.u. taken from the theoretical
predictions in Ref. [48], mγ = 2, Λ = 1 and θk = 45◦.

of the 229Th transition individually as a function of im-
pact parameter for different TAM projections mγ . The
corresponding input parameters used in the calculation
are listed in the figure caption.

The interaction with a twisted light beam leads to the
emergence of 2L+1 transition amplitudes which are po-
sition dependent. Due to the spatial modulation by the
Bessel function, certain transitions can be enhanced or
suppressed relative to each other. Of particular inter-
est is the impact parameter value b = 0. In this case,
the vortex beam’s TAM is completely transferred to the
internal degrees of freedom which leads to the selection
rule ∆m = mγ . For this reason it becomes possible to
address higher order multipole transitions and separate
them from lower order contributions. Concretely, for the
case of 229Th, it is possible to disentangle the M1 + E2
multipole mixing by transferring ∆m = 2 units of angu-
lar momentum. Then, the transition can only proceed
via the E2 channel although the respective radiative rate
is almost 10 orders of magnitude suppressed compared to
the M1 channel.
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FIG. 3: 229Thq+ ion placed at impact parameter b interacting
with a resonant vortex beam. a) Level scheme of 229Thq+ in
an external magnetic field. b) Effective level system modelling
the resonant driving.

III. NUMERICAL EXAMPLES

In this Section, we present numerical results for nuclear
photo-absorption in 229Th using twisted light. Two ex-
perimental configurations based on the two nuclear clock
approaches are considered. First, we investigate the in-
teraction of a single trapped ion with a vortex beam, tak-
ing into account both the nuclear hyperfine interaction
and Zeeman splitting for the ion level scheme. Thereby,
the temporal dynamics induced by resonant driving is
investigated for the impact parameter configurations on-
axis (b = 0) and off-axis (b ̸= 0) for different transitions in
the ion. Second, we investigate the interaction of twisted
light with a macroscopic sample in which the nuclei are
distributed homogeneously over the entire whole beam as
would be the case of a Th-doped VUV transparent crys-
tal. In particular, we consider the case of the 229Th:CaF2

crystal including nuclear quadrupole splitting induced by
the crystal fields. We calculate the distribution of the
magnetic sublevel population for a circularly polarized
Bessel beam and a superposition of two Bessel beams
with the same TAM mγ , but opposite helicities Λ.

A. Single nucleus

The scenario under investigation is illustrated in Fig. 3.
A single trapped 229Thq+ ion is placed at impact param-
eter b in a vortex beam with photon energy resonant to
one nuclear transition between the ground and excited
state manifolds. We consider an external magnetic field
applied in z-direction coinciding with the propagation di-
rection of the beam. In the semiclassical approach, the
center of mass motion is treated via the well-defined im-
pact parameter. As such, the coupling to rotational de-
grees of freedom is neglected, see [49] for a recent treat-

ment of this effect. The charge state q can in princi-
ple be arbitrarily chosen, albeit with some restrictions
related to nuclear decay channels that involve the elec-
tronic shell and can significantly shorten the nuclear ex-
cited state lifetime. Theoretical calculations have shown
that H-, Li- or B-like 229Th ions display a strong nuclear
hyperfine mixing which affects the lifetime of the nuclear
excited state [50]. We do not consider these effects here.
As indicated in panel a) of Fig. 3, the nuclear en-

ergy levels experience hyperfine splitting described by the
quantum number Fg/e. The emergence of this splitting is
related to the coupling of nuclear and electronic degrees
of freedom. Here, the quantum number Fg/e runs from∣∣J − Ig/e

∣∣ ≤ Fg/e ≤ J + Ig/e where J is the angular mo-
mentum quantum number of the electronic shell and Ig/e
the angular momentum quantum number of the nuclear
ground/excited state. In order to specify the quantiza-
tion axis of the system, an external weak magnetic field
is applied. This leads to a further splitting of the energy
levels Fe/g where each level splits into 2Fe/g +1 Zeeman
sublevels running from −Fe/g ≤ me/g ≤ Fe/g. We will
consider resonant driving with a twisted light field for
different Zeeman ∆m = me −mg transitions.
The multilevel system is effectively modelled as a

three level system described by the density matrix ρ =∑
e,g,g̃ ρij where the diagonal elements correspond to the

level populations and the off-diagonal elements to the
coherences, respectively. Here, the resonant driving oc-
curs between a fixed ground |g⟩ and excited |e⟩ state. We
model the relaxation processes proceeding via a quasi de-
generate ground state |g̃⟩ which accounts for the nuclear
excited state population decaying to a variety of other
magnetic or hyperfine substates.
The dynamics of the system are governed by the Mas-

ter equation [51]

ρ̇ =
1

iℏ
[H, ρ] + L[ρ] (20)

where H is the Hamiltonian describing the light-matter
interaction and L[ρ] the Lindblad operator accounting
for relaxation processes, respectively. The concrete form
of the Hamiltonian (on resonance) is given by

H = −ℏ
(
Ω(tw)

eg |e⟩ ⟨g|+ h.c.
)

(21)

where Ω
(tw)
eg is the twisted light Rabi frequency driving

the transition |g⟩ → |e⟩ whose general expression is given
in Eq. (19). For a proper description of the system in-
cluding hyperfine splitting, the Rabi frequency must be
modified by replacing the Clebsch-Gordan coefficient in
Eq. (18) with [52]

⟨IemeIg −mg|L∆m⟩ →
√
2Fe + 1

√
2Fg + 1

× ⟨FemeFg −mg|L∆m⟩
{
Ig L Ie
Fe J Fg

}
,

(22)

where {...} denotes the Wigner-6J symbol. Note that
this transformation only holds if the electronic shell re-
mains in its state J during the radiative coupling.
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Moreover, the Lindblad operator reads

L[ρ] = Γρee (|g̃⟩ ⟨g̃| − |e⟩ ⟨e|)

−
(
Γ + Γℓ

2

)
(ρeg |e⟩ ⟨g|+ h.c.) ,

(23)

where we have neglected relaxation between sublevels
of the same manifold and relaxation of the coherences
involving |g̃⟩, since these are not affected by resonant
driving. The total relaxation rate Γ is thereby given by
Γ = Γγ+Γel with Γγ the radiative decay rate and Γel the
nuclear decay rate via energy transfer to the electronic
shell, respectively. The nucleus can transfer its excita-
tion energy to the electronic shell via internal conversion
or electronic bridge (EB) processes. Internal conversion
refers to the process in which the nuclear excited state de-
cays by transferring its energy to an shell electron which
is then expelled into the continuum. Since the second ion-
ization potential of Th lies at 12 eV, this channel should
be energetically forbidden already for the first ionized
state 229Th+. In turn, EB describes the energy transfer
between nucleus and electronic shell without a change
in the ionic charge and with an accompanying photon
emission to account for the energy mismatch of available
electronic and nuclear states [53, 54].

Moreover, Γℓ in Eq. (23) denotes the laser bandwidth
which leads to a faster dissipation of the coherences. For
the radiative decay rate we take Γγ = 3.14 × 10−4 s−1

[33], while the value Γel depends on the ion species under
investigation. Upon solving Eq. (20) numerically with
the initial condition ρgg(0) = 1, we can determine the
temporal dynamics of the nuclear excited state popula-
tion as a function of impact parameter. For all upcom-
ing calculations, we consider a vortex beam with TAM
projection mγ = 2 and Λ = 1 interacting with a well
localized 229Thq+ target for different opening angles.

1. On-axis (b = 0)

For zero impact parameter, the selection rule ∆m =
mγ comes into play. Thus, by choosing ∆m = 2, only
the E2 channel can be driven on-axis, such that the two
multipolarities of the nuclear clock transition can be com-
pletely spatially separated. For the isomeric transition in
229Th, the radiative rate for the E2 channel is almost 10
orders of magnitude suppressed compared to theM1 one.
This means that while in principle one could drive pure
E2 Rabi oscillations, this requires either a very large Rabi
frequency or a moderate Rabi frequency and extremely
long interrogation times. In both cases, ion loss from
the trap due to multi-photon ionization or chemical re-
actions with background gases may occur. Moreover, a
long interrogation time is limited by the relaxation of
the excited state population. A way to reduce unwanted
ionization is to choose a higher ion charge state for this
case, for instance 229Th35+, discussed in the context of
electron beam ion trap generation via electron-atom colli-
sions in Ref. [55]. We consider in the following this charge
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FIG. 4: Calculated excited state population as a function
of irradiation time for the resonant E2 driving considering
a single 229Th35+ ion in the center of a vortex beam with
mγ = 2 and Λ = +1 for different laser bandwidths. The pitch
angles of the beams are a) θk = 1◦, b) θk = 5◦, c) θk = 10◦

and d) θk = 60◦.

state with the electron shell in its J = 15/2 ground state.
Based on the analysis in Ref. [55] and the lack of elec-
tronic states with energies matching the nuclear transi-
tion energy, we neglect the spontaneous EB decay rate
in the calculation and set Γel = 0.

For nuclear excitation, we envisage the
|Fg = 5mg = 5⟩ → |Fe = 7me = 7⟩ transition, since the
corresponding product of Clebsch-Gordan coefficient
and Wigner 6-J symbol in Eq. (22) is largest. Although
the transition is per se of E2 multipolarity, due to the
selection rule ∆F = 2, resonant driving is optimized
with the choice of ∆m = 2. We note that for the on-axis
case (b = 0), regardless of the choice of ∆F , only the E2
transition will be driven once we choose mγ = 2.

In Fig. 4 we present our numerical results for reso-
nant excitation considering different opening angles and
laser bandwidths. We choose a fixed set of ground and
excited nuclear states and consider a fictitious laser in-
tensity value of I = 15Wcm−2. The excited state pop-
ulation as a function of the irradiation time for small θk
angles, also known as the paraxial regime, is presented in
Fig. 4a). For a perfectly coherent cw laser (Γℓ = 0 ·Hz),
the excitation probability reaches a maximum of only
≈ 27% and drops down back to zero completing a Rabi
cycle in a few hours of interrogation time. The situation
is similar for a laser with a bandwidth of the order of the
radiative decay rate (Γℓ = Γγ) with the main difference
that the amplitude is slightly suppressed. For a more
realistic Γℓ = 2π ·Hz corresponding to the bandwidth of
a mode of narrowband frequency comb with high repe-
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tition rate [52, 56], no excitation via the E2 channel is
achieved.

The driving becomes more efficient for larger pitch an-
gles. We consider the vicinity of the paraxial regime in
Figs. 4b)-c). Several Rabi cycles with a maximal excita-
tion probability of ≈ 70% to 84% can be passed within
a few hours time span for Γℓ = 0 · Hz and Γℓ = Γγ .
Compared to the paraxial regime results, this is due to
the larger Rabi frequency which results from the Wigner
small d-function

d221(θk) = 2 cos

(
θk
2

)3

sin

(
θk
2

)
(24)

in Eq. (18). The Wigner small d-function is increasing in
the angular interval [0◦, 60◦], such that a higher pitch an-
gle increases the driving efficiency. We therefore present
in Fig. 4d) the excitation probability for θk = 60◦. In this
case, several Rabi cycles can be passed for Γℓ = 0 · Hz
and Γℓ = Γγ already within one hour with excitation
probabilities approaching a maximum probability of ≈
95%. Only at this pitch angle can also a narrowband
frequency comb produce a non-negligible excitation prob-
ability, albeit only the small value of ≈ 5% reached after
approx. 2.5 hours.

Overall, pure Rabi oscillations of the E2 channel alone
seem to be very challenging experimentally. We note
that the nuclear reduced transition probability B(E2)
has not been determined experimentally so far. Thus,
the prospect of an experiment which would lead to its
measured value is appealing. However, practical consid-
erations show that unrealistically large intensities and
long interrogation times would be required. In addition,
one requires an accurate confinement of the particle at
zero impact parameter over a long period of time. Small
deviation from b = 0 might open the M1 channel which
would immediately dominate the excitation process due
to its much stronger nuclear reduced transition proba-
bility. We thus conclude that the on-axis case with its
challenges is of rather academic interest and turn to the
next case of off-axis driving, i.e., at non-zero impact pa-
rameter.

2. Off-axis (b ̸= 0)

Once off-axis, the special selection rule ∆m = mγ no
longer acts and we will have M1 + E2 multipole mixing.
Due to the much stronger M1 radiative channel, we will
neglect for this case the E2 multipole mixing. We there-
fore consider transitions with ∆m ∈ {−1, 0, 1}. The re-
quired laser intensities for achieving a reasonable fraction
of excited nuclei is less dramatic and the corresponding
interrogation time shorter. Therefore, one can envisage
also lower ionic charge states. In the following, we con-
sider 229Th3+ which is the most promising ion species for
a single ion nuclear clock [20, 37]. Similar to assumptions
made in the on-axis case, the electronic shell of 229Th3+

remains in its J = 5/2 ground state during the radiative

driving. We consider three M1 transitions between sub-
levels of the ground and excited nuclear levels of 229Th3+

with hyperfine splitting

|Fg = 5mg = ±5⟩ → |Fe = 4me = ±4⟩ ,
|Fg = 5mg = 0⟩ → |Fe = 4me = 0⟩ , (25)

where the former two were proposed as clock transitions
[37]. Since the electronic shell remains in its ground
state, the spontaneous EB decay is on the order of
Γeb ≈ O(10−5 s−1) [54], about one order of magnitude
smaller than the radiative decay rate. We therefore con-
sider Γ ≈ Γγ .
We calculate the excited state population ρee for nu-

clear transitions driven resonantly with a tuneable vor-
tex beam with parameters θk = 10◦, mγ = 2, Λ = 1
and I = 0.25Wcm−2. The population dynamics of the
excited state ρee as a function of position and time for
two laser band widths Γℓ = 0 ·Hz (cw) and Γℓ = 2π ·Hz
are presented in Fig. 5. The case of a completely co-
herent cw laser (Γℓ = 0 · Hz) is presented in the col-
ormaps in Figs. 5a) for ∆m = 1, b) for ∆m = 0 and c)
for ∆m = −1, respectively. The excited state popula-
tion is presented as a function of impact parameter and
time. Bright regions in the map display high excitation
probabilities while dark regions display low probabilities.
In Fig. 5a) we observe that strong driving of the M1
transition for ∆m = 1 occurs already at small impact
parameters, only slightly off-axis. Since the ion impact
parameter cannot be kept precisely fixed in the trap, this
result supports our conclusion of the previous subsection
that pure resonant E2 driving at b = 0 is rather unreal-
istic with current experimental capabilities.
Along the abscissa, the excited state population ex-

hibits Rabi oscillations resulting from resonant driv-
ing. Along the ordinate, ρee is modulated according to
J2
mγ−∆m(ζb). For a fixed time indicated by the verti-

cal dashed line, we present on the panels left of the col-
ormaps the corresponding projected impact-parameter
dependence of the excited state population. For a bet-
ter understanding of the displayed minima, we plot in
each projection also the corresponding Bessel function
squared (normalized to unity) to distinguish between the
zeros of J2

mγ−∆m(ζb) and Rabi oscillation minima due to

the chosen time point.
For a fixed impact parameter value (indicated by the

horizontal dashed line), we present projections in the
panels below the colormaps to show the excited state
population as a function of time. Since the Wigner small-
d functions entering the expression of the Rabi frequency
obey the relation

d111(θk) > d101(θk) > d1−11(θk) (26)

for the considered pitch angle θk = 10◦, the transition
|Fg = 5mg = −5⟩ → |Fe = 4me = −4⟩ with ∆m = 1 is
driven on the fastest timescale. We note that the or-
der of the Wigner functions in Eq. (26) is reversed if
we choose Λ = −1. Correspondingly, the timescales
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FIG. 5: Population dynamics as a function of impact parameter b (in units of the transition wave length λ) and time t
for three M1 transitions in a 229Th3+ ion. Here, mγ = 2, Λ = 1, θk = 10◦ and I = 0.5Wcm−2 for all calculations. a)
|Fg = 5mg = −5⟩ → |Fe = 4me = −4⟩ for ∆m = 1 and Γℓ = 0 · Hz. b) |Fg = 5mg = 0⟩ → |Fe = 4me = 0⟩ for ∆m = 0 and
Γℓ = 0 · Hz. c) |Fg = 5mg = 5⟩ → |Fe = 4me = 4⟩ for ∆m = −1 and Γℓ = 0 · Hz. d)-f) same as a)-c), with the difference
Γℓ = 2π ·Hz.

of the Rabi cycles for the three ∆m = 0,±1 cases is
also reversed for Λ = −1: for the same pitch angle, the
transition ∆m = −1 is fastest while ∆m = 1 is slow-
est. The times required for a Rabi cycle however follow
J2
mγ−∆m(ζb) and will therefore not have the same values

as for the case Λ = 1. We note that tuning the pitch
angle can also manipulate the duration of a Rabi cycle.
However, by means of varying θk also the vertical modu-
lation via J2

mγ−∆m(ζb) is influenced such that the zeros

of the Bessel function shift.
In case of Γℓ = 2π · Hz, the oscillation patterns of the

excited state population ρee become more washed out.
Although the vertical Bessel modulation in impact pa-
rameter is conserved, the temporal dynamics in terms
of Rabi oscillations differ. The smallest modifications
occur in the case of ∆m = 1, where the Rabi oscilla-
tions present a slightly decaying envelope. The dynamics
for ∆m = 0 and ∆m = −1 are mediated by incoherent
pumping resulting from a faster relaxation of the coher-

ences in Eq. (23). This leads to the suppression or even
absence of Rabi oscillations together with a reduced am-
plitude as it is shown in the projection of the colormaps.
However, coherent dynamics can be recovered by either
increasing the pitch angle or the intensity provided that
the condition Ω >> Γℓ/2 is fulfilled [52].

The off-axis setup can be used to probe different M1
transitions in 229Th3+ with a single tunable laser beam.
The selection rules for vortex beam excitation allows
driving of all three transitions; however, a narrow-band
tunable laser will selectively drive just the transition to
which its frequency is resonant. This can be interest-
ing for metrology applications, for instance comparing
clock transitions. The excitation strength can be tuned
with respect to the position of the nucleus in the wave
front according to the projection in Fig. 5 or by varying
the pitch angle. We note that in comparison with the
on-axis case discussed in the previous Subsection, this
scenario seems to be more feasible, since shorter interro-
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gation times and lower laser intensities are required. Ac-
cording to Refs. [23, 56, 57] a high repetition frequency
comb with comb mode bandwidth Γℓ = 2π · Hz and
I = O(1W cm−2) should be available in the near future.

The Bessel modes used here represent an idealization,
similar to the frequently used idealized plane wave pic-
ture. Modelling a real physical scenario requires the us-
age of Laguerre-Gaussian modes. However, close to the
beam center and in the paraxial approximation we ex-
pect Laguerre-Gauss and Bessel modes to predict a simi-
lar behaviour [15]. When considering Laguerre-Gaussian
beams, we expect a temporally finite modulation with
slightly modified spatial pattern of the excitation. This
is however beyond the scope of the present work.

B. Ensembles of nuclei

In the second part of this Section, we consider the in-
teraction of twisted light with a macroscopic 229Th tar-
get where the nuclei are distributed homogeneously over
the entire beam. Here, our model system is 229Th:CaF2.
The host crystal CaF2 is an ideal environment for doping
229Th. The band gap of ≈ 11 eV-12 eV [58–60] renders
the crystal transparent at the wavelength of the nuclear
clock transition. In addition, high doping densities up-
wards n ≈ 1017 cm−3 can be achieved [61]. As a conse-
quence, a larger number of nuclei can be interrogated at
the same time leading to an improved clock stability.

The underlying cubic lattice hosts 229Th in a charge
state 4+ leading to a suppression of the internal conver-
sion decay channel. Within the lattice, one of the calcium
ions is replaced by the thorium ion and two more fluo-
rine interstitial ions emerge for charge compensation. Ab
initio DFT studies predict several preferred doping con-
figurations [41], where two are of particular interest [62].
The fluorine ions are either in a 90◦ or 180◦ configuration
as illustrated in Fig. 6a). In contrast to the free ionic
system, thorium doped CaF2 experiences a quadrupole
splitting according to [63]

ĤE2 =
eQVzz

4I(2I − 1)

[
3Îz − Î +

η

2
(Î2+ + Î2−)

]
. (27)

Here, e denotes the electric charge, Q are the nuclear
quadrupole moments, Vzz is the dominant component of
the electric field gradient (EFG) at the thorium nucleus
and η = (Vxx − Vyy)/Vzz is the asymmetry parameter

of the EFG. The operators Î and Îz denote the angu-
lar momentum and angular momentum projection oper-
ators, while Î+/− are the raising/lowering operators. For
the sake of simplicity, we consider throughout this sec-
tion the case of the 180◦ configuration where η = 0. In
that case, the nuclear level scheme splits into (2Ig + 1)
ground and (2Ie + 1) excited states of different energies
as shown in Fig. 6b). Furthermore, for this configuration
the quantization axis is not determined by an external
magnetic field but instead by the orientation of the EFG
along the F−-229Th4+-F− bond.

FIG. 6: a)229Th:CaF2 crystal structure with preferred
charge compensation directions. Adapted from Ref. [62].
b)229Th:CaF2 crystal interacting with twisted light. The nu-
cleus experiences electric quadrupole hyperfine splitting due
to the coupling to the electronic surrounding. This leads to
the emergence of 6 ground states and 4 excited states. A
broadband pulse, much broader than the splitting of a hyper-
fine level Γℓ >> O(MHz), drives all 12 available M1 transi-
tions simultaneously.

For monitoring the excitation of the isomeric state
in the crystal without relying on fluorescence, ra-
diofrequency nuclear quadrupole resonance spectroscopy
(NQRS) of the excited state hyperfine splitting manifold
has been proposed [23]. To detect a NQRS signal, a cer-
tain population difference, i.e., a polarization, between
the involved levels needs to be implemented. NQRS can-
not discern between sublevels with the same absolute
value of the spin projection |me|. Thus, the polariza-
tion of excited state populations should occur between
ρex,1+ρex,4 and ρex,2+ρex,3. This seems extremely chal-
lenging thermally, so in the following we investigate how
the interaction with vortex beams can produce such a
polarization.

For our calculations, we assume that a weak, broad-
band vortex field with arbitrary TAM projection mγ in-
teracts with nuclei embedded in the host crystal. For
a macroscopic sample, the TAM projection mγ and the
spatially inhomogeneous wave front are not controlling
the driven transitions; only the pitch angle plays a role
[8]. We consider at first a fixed helicity value Λ. Towards
the end of the Section, we present also results for a super-
position or two circularly polarized beams with different
Λ values. All 12 M1 transitions, 4 of each allowed ∆m,
are driven at once. Again, the E2 channel of the nuclear
transition is neglected due to its much smaller radiative
coupling. In addition, in the crystal all dopant config-
urations are equally probable, leading to an equal dis-
tribution over the three possible EFG orientations along
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the 180◦ bonds. This is related to the underlying cubic
lattice structure as illustrated in Fig. 7. As such, the
system has in total three mutually perpendicular quan-
tization axes which are shared each by 1/3 of the total
nuclear population. We therefore investigate the excited
state population ρex,j in a system with multiple quanti-
zation axes.

The excited substate populations ρex,j are determined
via the multilevel Bloch equations in the low saturation
limit. In the first place, we calculate a general expression
for the matrix element involving an arbitrary orientation
of the quantization axis. Then, we solve the multilevel
Bloch equations. Taking into account all three quantiza-
tion axes, the occupation of a certain magnetic substate
can be written as

ρex,j =
ρq1ex,j + ρq2ex,j + ρq3ex,j

3
(28)

where the superscript corresponds to the different orien-
tations of the quantization axis (see Fig. 7).

In order to account simultaneously for all three orien-
tations of the quantization axis, we need to set first our
laboratory frame. We choose the latter as depicted in
Fig. 7, with the z axis parallel to kz, i.e., to the prop-
agation direction of the twisted field. Additionally, we
require a rotation of the nuclear states according to [64]

|Igmg⟩n =
∑
m′

g

D
Ig
mg,m′

g
(α, β, γ) |Igm′

g⟩ℓ

= e−imgα
∑
m′

g

d
Ig
mg,m′

g
(β)e−im′

gγ |Igm′
g⟩ℓ

(29)

where α = β = γ = 0 corresponds to the case where kz
and the orientation of the EFG are parallel, see Eq. (18).
Here, the subscript n corresponds to the angular momen-
tum eigenstates in the nuclear reference frame and ℓ to
the light field reference frame, respectively. The transfor-
mation of the sets |Ieme⟩ works in a similar fashion. By
following the steps in Sec. II for L = 1 and µ = M with
the given state convention and applying some angular
momentum algebra, we arrive at

M
(tw)
fi = −

√
8πI
9cε0

√
2Ig + 1

√
B(M1, Ig → Ie)

× (−1)Ig−mg ⟨IemeIg −mg|1∆m⟩
∑
M

(−i)2mγ−M

× ei(mγ−M)ϕbJmγ−M (ζb)d1MΛ(θk)D
1
M∆m(α, β, γ).

(30)
The main difference to Eq. (18) is the additional sum
over M and as well as the additional Wigner function
D1

M∆m(α, β, γ). This is in correspondence with the re-
sults in [43] where a similar geometry was investigated
for atomic photo-absorption.

In case of a macroscopic sample in which the nuclei
are distributed homogeneously over the entire beam, the
matrix element modulus squared (related to the observ-
able) must be averaged over a disk of radius R in order

to determine the average rate of excitation. This is done
via ∣∣∣M̃ (tw)

fi

∣∣∣2 =
1

R2π

∫ ∣∣∣M (tw)
fi

∣∣∣2 d2b. (31)

By using the integral relations [7]

lim
R→∞

∫ R

0

J2
mγ−∆m(ζb)b db =

R

πζ
(32)

and ∫ 2π

0

ei(M
′−M)ϕb dϕb = 2πδM,M ′ (33)

we obtain for the averaged matrix element modulus
squared∣∣∣M̃ (tw)

fi

∣∣∣2 = |⟨IemeIg −mg|1∆m⟩|2 B(M1, Ig → Ie)

× 16I(2Ig + 1)

9cε0Rζ

∑
M

d1MΛ(θk)
2d1M∆m(β)2

(34)
which is independent of the impact parameter b as well
as the Euler angles α, γ and hence only sensitive to β
and θk.
The optical Bloch equations in the low saturation limit

are given by [52]

ρ̇ee = −i
∑
g

Ωeg (ρge − ρeg)− ρeeΓ (35)

for the excited state population and

ρ̇ge = −iΩeg (ρee − ρgg)− ρgeΓ̃ (36)

for the coherences. Here, Γ = Γγ , since spontaneous EB
decay is on the order of Γeb ≈ O(10−8 s−1) in 229Th:CaF2

[65, 66] and can be neglected. Once more we neglect re-
laxation between sublevels of the same manifold. In the
Bloch equation (36), Γ̃ ≈ Γℓ/2 corresponds to the de-
cay rate of the coherences which is dominated by the
large linewidth of the laser. A suitable laser source for
this procedure can be for instance the system described
in Ref. [67]. The large linewidth of the laser leads to
a fast dissipation of the coherences which in turn leads
to a rapidly evolving steady state. In this case, one
can set ρ̇ge = 0. In combination with the weak driv-
ing field, the ground state population remains basically
unaffected such that ρgg − ρee ≈ 1/(2Ig +1) holds for an
initial ground state quadrupole structure. The sum in
Eq. (35) thereby runs over all initial magnetic substates
from which the final state can be reached via a M1 tran-
sition, i.e. mg = me −∆m due to the fact that a vortex
beam has 2L + 1 amplitudes. Thus, we can replace Ωeg

by Ω
(tw)
eg .

With these assumptions, solving Eq. (35) with ρee(0) =
0 provides for the nuclear ensemble excitation in the
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wavefront

ρ(tw)
ee =

α(t)︷ ︸︸ ︷
2

ΓΓ̃

1− e−Γt

2Ig + 1

∑
g

(
Ω(tw)

eg

)2

=
α(t)

Rζ

16I(2Ig + 1)

9cε0ℏ2
B(M1, Ig → Ie)

×
∑

mg,M

|⟨IemeIg −mg|1∆m⟩|2 d1MΛ(θk)
2d1M∆m(β)2.

(37)
In the following, we will refer to the excited magnetic

substates as ρ
(tw)
ex,j instead of ρ

(tw)
ee as introduced in the

labels in Fig. 6.
Summing over all four excited substates we obtain

ρ(tw)
ex =

∑
j

ρ
(tw)
ex,j

=
α(t)

Rζ

16I(2Ig + 1)

9cε0ℏ2
B(M1, Ig → Ie) ,

(38)

where the Clebsch-Gordan coefficients and the Wigner
small-d functions vanish due to their unitarity. Then,
the fraction of an excited magnetic substate driven by a
circularly polarized vortex field is given in the low satu-
ration limit by

ρ
(tw)
ex,j

ρ
(tw)
ex

=∑
mg,M

|⟨IemeIg −mg|1∆m⟩|2 d1MΛ(θk)
2d1M∆m(β)2.

(39)

Apart from circularly polarized Bessel beams, it has
also been discussed in literature that different beam po-
larizations can be generated via superpositions of twisted
light beams [43, 68]. In the following we also consider the
superposition of two Bessel beams with the same TAM
projection mγ and opposite helicities Λ of the form

A(tw)
sup =

1√
2

(
A

(tw)
mγ ,Λ=+1 + eiφA

(tw)
mγ ,Λ=−1

)
(40)

where φ is an arbitrary phase. In the paraxial regime
and the special case mγ = 0, this superposition would
correspond to a radially polarized vortex field for φ = 0
and an azimuthally polarized vortex field for φ = π [43].

Following the aforementioned steps in the derivation of
the matrix element and sublevel population, the partial
excited states for such a superposition can be written as

ρ
(tw)
ex,j

ρ
(tw)
ex

=
1

2

∑
mg,M

|⟨IemeIg −mg|1∆m⟩|2

× d1M∆m(β)2
[
d1MΛ(θk)

2 + d1M−Λ(θk)
2

+ 2 cos (φ)d1M−Λ(θk)d
1
MΛ(θk)

]
.

(41)

Since both expressions (39) and (41) are independent
of α and γ, the contribution of the misaligned axes are
equal such that Eq. (28) simplifies to

ρex,j =
ρex,j(β = 0◦) + 2ρex,j(β = 90◦)

3
. (42)

In Fig. 8, the partial populations ρ
(tw)
ex,j /ρ

(tw)
ex as func-

tion of the pitch angle are presented for a circularly po-
larized Bessel beam and for the two-beam superpositions
following Eq. (41) with φ = 0 and φ = π. The scenar-
ios β = 0◦, β = 90◦ and their combination in Eq. (42)
are discussed. We choose the pitch angle range [0◦, 90◦].
In practice, the value θk = 90◦ is not feasible experi-
mentally, since this corresponds to a propagating wave
without a longitudinal component kz which is unphysi-
cal. Furthermore, most current experiments with twisted
light beams are in the paraxial regime such that an ex-
citation pattern significantly different from plane wave
excitation is challenging at the moment. Nevertheless,
according to Ref. [8], pitch angles in the range 20◦ to 60◦

seem to be experimentally feasible.
Figures 8a)-c) represent the results for a circularly po-

larized Bessel beam with Λ = +1, starting with a), which
corresponds to β = 0◦. At small opening angles the dis-
tribution hardly deviates from the plane wave result for
a circularly polarized beam. Here, the occupation proba-
bility is dominated by the underlying Clebsch-Gordan co-
efficient | ⟨IemeIg −mg|11⟩ |2 of the transition. With in-
creasing θk, a change in the sublevel distribution becomes
visible. The two magnetic substates ρex,1 and ρex,2 with
the largest occupation probability become less populated,
while the populations of ρex,3 and ρex,4 start to increase.
This is related to the fact that the Wigner functions in
Eq. (39) for ∆m = 0 and ∆m = −1 are increasing with
θk. This progression takes place until the occupation of
magnetic substates with the same projection quantum
number |me| becomes equal and approaches the value

ρ
(tw)
ex,j

ρ
(tw)
ex

=
3

16
+

1

4
|⟨IemeIg −mg|10⟩|2 (43)

at θk = 90◦.
In Fig. 8b), we present our results once the quanti-

zation axis is rotated by 90◦. For small values of θk,
the occupation follows Eq. (43). With increasing pitch
angle, the distribution changes only slightly. The cor-
responding results accounting for all three quantization
axis via Eq. (28) are displayed in Fig. 8c). For small
opening angles, the occupation probability follows the
pattern visible in part a), however with a different mag-
nitude. One can observe that states with the same abso-
lute value |me| are symmetrically distributed around 1/4
corresponding to a homogeneous sublevel population dis-
tribution throughout the entire range of θk. Thus, in the
context of NQRS, the case of most interest would be the
small pitch angle range for β = 0◦ quantization, where
the relevant populations ρex,2+ρex,3 and ρex,1+ρex,4 dif-
fer by ≈ 0.1. However, it is not clear whether any means



12

FIG. 7: 229Th:CaF2 crystal structure with 180◦ fluoride interstitials. Here, all three possible orientations of the EFG and the
corresponding Euler angles with respect to the laboratory reference frame (left) are illustrated.

FIG. 8: Distribution of magnetic sublevel population as a function of pitch angle for different vortex beam polarizations and
crystal quantization axes. a)-c) correspond to a circularly polarized Bessel beam. a) β = 0, b) β = 90◦ and c) the sum (28).
d)-f) correspond to a beam superposition (40) with φ = 0 and g)-i) correspond to a beam superposition (40) with φ = π. The
quantization axes are column-wise the same as in a)-c).

to favor this particular quantization axis in the sample
preparation process could be developed.

Figures 8d)-f) show the results for a vortex beam su-
perposition with relative phase φ = 0. For all quantiza-
tion axes, the excitation probabilities are independent of
the pitch angle θk and are the same as plane wave excita-
tion. This is due to the unitarity relation of the Wigner

small-d functions. For β = 0◦ the excitation probability
illustrated in Fig. 8d) is given by

ρ
(tw)
ex,j

ρ
(tw)
ex

=
1

2

( ∣∣⟨IemejIg −mgj |11⟩
∣∣2

+ |⟨IemekIg −mgk |1− 1⟩|2
) (44)
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throughout the entire range of θk. For the β = 90◦ case
illustrated in Fig. 8e), the situation is similar, however
with the difference that the sublevel distribution follows
Eq. (43) throughout the entire range of θk. This is again
related to the unitarity relation of the Wigner function
for L = 1 and M ̸= 0 and additionally through the
misaligned quantization axis leading to an admixture of
∆m = 0 transitions. When including all three axes in
Fig. 8f), all magnetic substates are equally populated
over the entire range of θk. This could also be achieved
by a plane wave field with a linearly polarized beam [52].

Finally, Figs. 8g)-i) present the calculated excitation
probabilities for a superposition of vortex beams with
relative phase φ = π. For the case with β = 0 in Fig. 8g)
the excited state population is determined for small open-
ing angles by Eq. (44) while later on for θk = 90◦ it is
proportional to the remaining Clebsch-Gordan coefficient
| ⟨IemeIg −mg|10⟩ |2. Similarly, in Fig. 8h) the popula-
tion is proportional to the expression in Eq. (43) for small
angles, and follows Eq. (44) for large pitch angles. Taking
into account all three quantization axes the magnetic sub-
states are equally occupied throughout the entire range
of θk.

Summarizing, depending on the twisted light field
mode under consideration the polarization of a
229Th:CaF2 crystal can be slightly modified compared
to the plane wave case by varying the transverse mo-
mentum ζ of a broadband vortex beam. This effect is
most pronounced along a single quantization axis in the
sample, while taking into account all three intrinsic crys-
tal axes leads to a polarization pattern rather similar to
the plane wave result. The most interesting result is ob-
tained for a circularly polarized vortex beam. The largest
excited state polarization is achieved for small pitch an-
gles, thus closer to the plane wave result, however only
for the single-quantization axis aligned with the direction
of pulse propagation with β = 0◦; averaged over all three
quantization axis the polarization vanishes. We note that
it is unclear how the case of a single quantization axis
could be implemented in practice.

Our results for 229Th:CaF2 are limited to the 180◦ in-
terstitial fluorine ions configuration. The 90◦ one is more
complicated and could offer other possibilities for excited
state polarization. Also, other VUV-transparent crystals
with a more complicated structure than CaF2 might also
offer the possibility to work with a single quantization
axis and different quadrupole splitting level schemes.

IV. CONCLUSION & OUTLOOK

Nuclear photoabsorption in 229Th using twisted light
was investigated theoretically within a semiclassical ap-

proach, employing a classical description of the electro-
magnetic field. Two scenarios were investigated. First,
we focused on the temporal and spatial excitation dy-
namics of a single 229Th ion interacting with a resonant
vortex beam. Thereby, it was shown that driving of the
E2 transition can be optimized in the center of the vor-
tex beam, yet under at present rather challenging ex-
perimental parameters. Adjacent to the beam center,
the E2 channel becomes negligible and M1 transitions
dominate. We have presented numerical results for nu-
clear clock transitions between the hyperfine-split levels
of 229Th3+ driven by narrow-band vortex beams and dis-
cussed their spatial and temporal excitation patterns.

Second, we have studied the interaction of broad-band
twisted light with a macroscopic 229Th:CaF2 crystal.
Here all M1 transitions were addressed by the field at
once, and the excited state polarization of the crystal
was deduced taking into account all three orientations
of the quadrupole splitting quantization axis. We have
investigated the sublevel population as a function of the
beam pitch angle. Our results show that for practical
NQRS applications one would require a single aligned
EFG quantization axis, in the paraxial limit of small θk.
As the quantization axis plays an important role for the
excited state population, our study should be extended
to the second relevant EFG configuration in 229Th:CaF2

and perhaps also to different VUV-transparent crystals
which could offer completely different hyperfine split-
ting features, such as LiCAF and LiSAF. On a different
front, our results could be extended to Laguerre-Gaussian
modes to better predict experimentally available vortex
beams, and to take into account the coherent pulse prop-
agation through macroscopic samples. This will be the
subject of future work.
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