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Ab initio tight-binding Models for Mono- and Bilayer Hexagonal Boron Nitride (2-BN)
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We provide effective tight-binding models of monolayer and bilayer hexagonal boron nitride (A-BN) informed
by ab initio density functional theory calculations within the local density approximation using maximally
localized Wannier functions centered at the boron and nitrogen sites. An effective intra-layer tight-binding
model with up to four distant hopping neighbors captures the band energies near the K-point and M-point in the
Brillouin zone, including the indirect nature of the band gap for certain stackings. We then propose a two-center
interlayer tight-binding model that can be used for any stacking in bilayer #-BN based on the relative distance
between two atomic sites which can be used to model twisted #-BN structures.

I. INTRODUCTION

Using h-BN as a two-dimensional substrate for graphene
systems is prevalent in emerging electronic devices [1]. When
used as a substrate for graphene, the lattice mismatch and
relative misorientation between #-BN and graphene produce
moiré patterns that in turn affect its electronic properties [[2-
4]. Earlier investigations of single and bilayer A-BN sys-
tems proposed density functional theory (DFT) fitted mini-
mal tight-binding (TB) model [5], and continuum Hamilto-
nian model [6] that assumed band edges located at the K and
K'-points. A common shortcoming of the existing TB model
parametrizations is the mismatch of the 7-bands with respect
to the local density approximation (LDA) DFT results away
from the K-point. In this work, we propose TB models that
can reproduce the DFT band edges near the high symmetry
points in the first Brillouin zone(FBZ) with a small number
of hopping parameters that offer a good balance between sim-
plicity and accuracy.

The manuscript is organized as follows: In Section II, we
provide a brief summary of the ab initio calculations used in
the study. In Section III, we present several TB model approx-
imations to the first-principles-calculated band structures, and
we provide the hopping parameters necessary to construct ef-
fective models. Section IV discusses the interlayer distance-
dependent effective model for #-BN bilayers derived from the
parametrization method. In Section V, we present the two-
center TB model for bilayer #-BN, and in Section VI, discuss
the conclusions and the advantages of the recommended mod-
els. We close the paper with the acknowledgments in Section
VII.

II. AB INITIO CALCULATION DETAILS

We carried out our calculations through the first-principles
calculation package Quantum ESPRESSO [7][8] that uses a
basis of plane waves [9]] and then we use WANNIER90 [10]
to construct the Wannier functions. The Local-density approx-
imations (LDA) based on the Perdew-Zunger parametriza-
tion [11] were used in the DFT calculations. The TB model
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FIG. 1. (Color online) Top views of the hexagonal boron nitride
bilayers with standard stackings: a) AA, b) AB, c) BA, d) AA’, e)
AB’ and ) BA’. Here, the green and blue dots represent the boron
and nitrogen atoms, respectively. The side view of each stacking is
shown at the top of each sub-figure.

parameters were obtained from the DFT calculations, which
were performed using a 42 x 42 x 1 k-space sampling den-
sity.

Six different stackings are considered in h-BN bilayers
as shown in Fig. [I] which have different interlayer equilib-
rium distances following from their total energies as shown
in Fig. P} We note that AB- and BA-stackings are energeti-
cally degenerate, with their total energies matching to within
eight decimal places and are more stable compared to the
other stackings [12]], followed by the AA’-stacking that ben-
efit from the attractive electrostatic interaction between the
vertically alternating boron and nitrogen atoms [13| [14]. In
this work, we have built the 2-BN monolayer and bilayer
structures using the LDA-DFT optimized lattice constant a
= 2.48 A which is smaller than the experimental value of
2.504 A [13]. Since the most stable bilayer structure (AB or
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FIG. 2. (Color online) Total energies as a function of interlayer dis-
tance in BLBN with different stackings, calculated using DFT within
the LDA are shown here. This figure shows the relative stability
of theAAB(or BA)-stacking at an optimized interlayer distance of
3.261 A.

BA) is found to have within DFT an equilibrium value of in-
terlayer distance ¢ = 3.261 A (Fig. , we have assumed the
same c value for all the other stackings when we extract the
effective TB-model parameters. Notably, the AA’-stacking,
identified as the stable structure after the AB (or BA) stack-
ing, showed a total energy difference of 1.664 meV per unit
cell at the equilibrium value of c¢. In the following sections,
we compare the effective TB models proposed in our work
against DFT calculations.

III. TIGHT-BINDING MODELS

The m-bands of the monolayer #-BN (MBN) and bilayer
h-BN (BLBN) can be studied using a TB model based on the
overlap of p, orbitals between the adjacent boron and nitrogen
atoms. The Hamiltonian for the 7-bands in BLBN can be
represented by a k-dependent 4 X 4 size matrix:

Hwyn, (k) HCoup(k)>
H k)= ! 1)
pien (E) (Héoup(k) Hyen, (k) (
where Hwvign, (k) and Hwgn, (k) are 2 x 2 size Hamiltonian
matrices that describe the inter- and intra-sublattice hopping
processes within the top and bottom layers respectively. They
are given by:

- (3 28)

where i = 1,2 for the top and bottom layer indices. Here, By,
N are the atoms of the top layer, while B, N; are the atoms

Monolayer h-BN

F>G, model
Gu|taa BB Fn |1aB
Gp|0.1648 |—3.8678 |F;|—2.7547
G;]0.0542 [0.2228 |F,|—0.1329
G, [0.0566 [0.0429

F3G3 model
Gp|0.1648 |—3.8678 |F;|—2.7547
G1|0.0542 |0.2228 |F,|—0.2362
G,(0.0397 10.0329 |F5{0.2068
G3|—0.0337|—0.0200

F4G4 model
Gy|0.1648 | —3.8678|F||—2.7547
G1]0.0542 |0.2228 |F,|—0.2362
G,[0.0397 [0.0329 |F3|0.0539
G3|—0.0361|—0.0250 |F4|—0.0306
G4|0.0012 |0.0025

TABLE 1. The hopping parameters in eV units for MBN, used to
construct the F,G,, F3G3, and F4G4 models, are listed here. The
column labels F,, and G,, emphasize that they consist of the hopping
terms related to the f;, and g, structure factors, respectively, for the
n'" nearest neighbor.

of the bottom layer. The coupling between these two layers is
described by:

3)

Heoup(k) = (HBIBz (k) Hax, (k))

Hx,B, (k) HnN, (k)

The elements of this matrix correspond to the possible inter-
layer hopping processes between the atoms of the top and bot-
tom layers. Due to the triangular symmetry of 4-BN, the hop-
ping energies (¢) and structure factors (f, (k) and g,(k)) for
the intra-layer and inter-layer hopping processes can be de-
fined similarly to those in graphene [16l]. For both graphene
monolayer and bilayer systems, the full tight-binding (FTB)
model accurately reproduces the low-energy bands obtained
from first-principles LDA calculations [} [L6]. Similarly, for
MBN and BLBN systems, the FTB model provides a good
fit to the low-energy bands along the high symmetry points
in the FBZ, as shown in Fig. 3] and f] However, since the
FTB model considers all the hopping processes up to 15 near-
est neighbors, it is desirable to look for simpler models with
fewer parameters that can achieve a good compromise be-
tween accuracy and simplicity. To this end, we have devel-
oped simplified effective models with fewer parameters, such
as the single-structure factor (F1Gg) and double-structure fac-
tor (F2Gy) models, as explained in the references [5,|16]. We
have also extended these methods to higher structure factor
models, such as F3G3 and F4Gy, to improve the accuracy of
the TB bands near the M-point in the Brillouin zone.

The construction of simplified effective structure factor
models is based on the low-energy k - p model Hamiltonian
obtained by performing a Taylor expansion of the bands near
the K-point [5 [16]. In the k- p model Hamiltonian where
o and B indicate different sublattices, the diagonal elements
o = f3 represent the intra-sublattice processes



AA stacked BLBN

F>G, model
G |taa BB fan' |tpp Fn|taB tap
Gy |1.7666 |—2.1843]0.7270/0.2705 |F;|—2.7001|0.0265
G;/0.0053 {0.1923 |0.0498|—0.0185|F,|—0.1105|—0.0077
G,|0.0471 {0.0370 |0.0020|—0.0061

F3G3 model
Go|1.7666 |—2.1843]0.7270|0.2705 |F;|—2.7001|0.0265
G;/0.0053 {0.1923 |0.0498|—0.0185|F,|—0.2102{0.0082
G,10.0223 {0.0195 [0.0089|—0.0025|F3{0.1995 |—-0.0317

G3|[—0.0497|—0.0351{0.01380.0072
F4G4 model

Go [1.7666 |—2.1843|0.7270|0.2705 |F;|—2.7001|0.0265
G;]0.0053 [0.1923 [0.0498|—0.0185|F,|—0.2102|0.0082
G,(0.0223 [0.0195 |[0.0089|—0.0025|F5|0.0797 |—0.0176

G3|—0.0483|—0.0373]0.0139|0.0070 |F4|—0.0240|0.0028
G4 |—0.0007{0.0011 [0.0000|0.0001

TABLE II. For AA-stacked BLBN, the hopping parameters in eV
units used to construct the F»G;, F3G3, and F4G4 models are listed
here. In the hopping processes of AA-stacking, tq4r = taa, tpp =
BB, tarp = tap, and tgar = tap by symmetry relations. The column
labels F, and G, emphasize that they consist of the hopping terms
related to the f, and g, structure factors, respectively, for the n'”
nearest neighbor.

Hop(kp +k) 2 Clygo + Cryprk’ (4)

while the off-diagonal elements o # B represent inter-
sublattice processes

Haﬁ (kp+k) ~ Caﬁlkeiiek + Caﬁzkzeizek. 5)

The zeroth and first-order expansion coefficients for intra-
sublattice and inter-sublattice processes, respectively, are de-
fined as:

apo = 10— 3t] + 615 — 315 — 61, + 615 + 616 — 617 (6)

3
Caﬁl = Q(*t1+2t2+t375t474t5 + Tt + 5t7 %
+2t3 — 419+ 11119)
in the same way as graphene [[16]. Here, t,(l/)(: g ) repre-

afn
sents the hopping energy of the n” nearest neighbor hopping
process from sublattice & to 3. The primes that are used both
for the expansion coefficients and the hopping terms indicate
that they involve expansions of g, structure factor terms. The
double structure factor model F,G, truncates the f, and g,
functions at » = 2. In this model, we use ab initio nearest
neighbor hopping terms and a corrected hopping term for the
most distant (n = 2) hopping process [J3} [16]]

taBZZCaﬁl/ﬂa‘Ftaﬁl/za g
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FIG. 3. (Color online) Accuracy of the FTB model and F;G4 model
in reproducing the ab initio w-bands along the given k-path is shown
in a) for MBN and in c¢) for AB(or BA) stacked BLBN. The merit of
the F4G4 model when compared to other fewer parameter effective
models near K-point and M-point is shown in b) for MBN and in d)
for AB(or BA) stacked BLBN.
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FIG. 4. (Color online) The nearest neighbor representation in the ef-
fective TB models is illustrated here. Inter-sublattice nearest neigh-
bors are depicted on the dashed grey circles, while intra-sublattice
nearest neighbors are shown on the pink circles, with the boron atom
at the origin. The nearest neighbor index n increases with the circle
radius.

For single-layer and bilayer graphene, the F»G; model
achieves accuracy near the K-point and away from it. This
model can capture both the trigonal distortion of the bands
near the K-point and the particle-hole symmetry breaking
throughout the Brillouin zone [16]. However, for MBN,



AB stacked BLBN

F>G, model
Gu |taa BB Tara gy Ipar Fn |1aB tap fanr gp tap
Go|1.6636 |—2.3393|1.7128 |—2.2591|0.3809 |F;|—2.6971|—2.7190|0.4841 |—0.0176|0.1209
G1/0.0235 {0.1903 [0.0108 [0.1910 |[—0.0617|F,|—0.1248|—0.1129|0.0457 |—0.0545|—0.1437
G,|0.0496 {0.0388 [0.0490 [0.0328 |[—0.0158

F3G3 model
Go|1.6636 |—2.3393|1.7128 |—2.2591|0.3809 |F;|—2.6971|—2.7190|0.4841 |—0.0176|0.1209
G1/0.0235 {0.1903 [0.0108 [0.1910 |[—0.0617|F,|—0.2207|—0.2044|0.0743 |—0.0472|—0.1387
G,/0.0274 {0.0212 [0.0257 [0.0148 [—0.0245|F5(0.1917 |0.1829 |—0.0573|—0.0146|—0.0099
G;|0.0274 ]0.0212 |0.0257 |0.0148 |—0.0159
G3|—0.0446|—0.0352 | —0.0466 | —0.0359| —0.0175

F4G4 model
Go|1.6636 |—2.3393[1.7128 [—2.2591(0.3809 |F;|—2.6971|—2.7190|0.4841 |—0.0176{0.1209
G1(0.0235 |0.1903 |0.0108 |0.1910 |—0.0617|F,|—0.2207|—0.2044|0.0743 |—0.0472|—0.1387
G,(0.0274 |0.0212 |0.0257 |0.0148 |—0.0245|F3|0.0779 |0.0795 |0.0520 |0.0207 |—-0.0215
G;(0.0274 ]0.0212 |0.0257 |0.0148 |—0.0159|F,;|—0.0228|—0.0207{0.0219 |0.0071 |—0.0023
G3|—0.0419{—0.0367 | —0.0441|—0.0372{—0.0116
G4 |—0.0013(0.0007 |—0.0012]0.0007 |—0.0030

TABLE III. For AB-stacked BLBN, the hopping parameters in eV units used to construct the F»Gy, F3G3, and F4G4 models are listed here.
The column labels F,, and G,, emphasize that they consist of the hopping terms related to the f;, and g, structure factors, respectively, for the

n'" nearest neighbor.
AA’ stacked BLBN

F>G, model
Gu|taa BB tarn 5:0: fAn Fn |t IAB 1A/
Go|1.6717 |—2.3068|—2.3074|1.6716 [0.4310 |F;|—2.7049/0.4239 |—0.0613
G1/0.0122 {0.1900 [0.1900 [0.0122 |[—0.0684|F,|—0.1176|0.1338 |—0.0161
G, (0.0520 |0.0372 |0.0372 |0.0520 |—0.0344

F3G3 model
Go|1.6717 |—2.3068|—2.3074|1.6716 [0.4310 |F;|—2.7049|0.4239 |—0.0613
G1(0.0122 |0.1900 [0.1900 |0.0122 |—0.0684|F,|—0.2136/0.1798 |0.0031
G,(0.0288 |0.0186 |0.0186 |0.0288 |—0.0415|F3(0.1921 |—0.0919|—0.0383
G5]0.0288 [0.0186 |0.0186 |0.0288 |—0.0163
G3|—0.0463|—0.0370|—0.0370| —0.0463 | —0.0142

F4G4 model
Gy |1.6717 |—2.3068|—2.3074|1.6716 |0.4310 |F;|—2.7049|0.4239 |—0.0613
G1(0.0122 [0.1900 [0.1900 |0.0122 |—0.0684|F,|—0.2136/0.1798 |0.0031
G,(0.0288 |0.0186 [0.0186 [0.0288 |—0.0415|F5|0.0803 |0.0261 |0.0121
G;(0.0288 ]0.0186 [0.0186 |0.0288 |—0.0163|F,;|—0.0224|0.0236 |0.0101
G3|—0.0438|—0.0381|—0.0381|—0.0438 | —0.0072
G4 [—0.0013[0.0005 [0.0005 |—0.0013|—0.0035

TABLE IV. For AA’-stacked BLBN, the hopping parameters in eV units used to construct the F»G», F3G3, and F4G4 models are listed here.
In the hopping processes of AA’-stacking, tpp = 44’ and t4g= tap by symmetry relations. The column labels F,, and G,, emphasize that they
consist of the hopping terms related to the f;, and g, structure factors, respectively, for the 7" nearest neighbor.

the F,G, model achieves accuracy only near the K-point, as
shown in the top right panel of Fig.|3| Since the MBN has low-
energy band edges near the K-point, the F»G, model could be
an alternative to the FTB model. However, for BLBN with
different stacking, the lower conduction band edge does not
always lie at the K-point. The bands near the M-point for
AB(or BA), AA’, and AB’ stacking, give rise to an indirect
bandgap. On the other hand, the AA and BA' stacking give
rise to a direct bandgap, as illustrated in Figs. [5|and[8[d). The
overall energy variation between the primary conduction band
edges located at the K-point and M-point for different stack-
ing is of the order of 400 meV, as indicated by the dashed

blue line in Fig. Bkd). Therefore, it is desirable to tailor a sim-
plified TB model that can reproduce the ab initio low-energy
bands near the K-point as well as at the M-point.

We can improve the accuracy of the effective TB models
far from the K-point by taking a larger number of nearest
neighbor hopping parameters (n) along with the correspond-
ing structure factors [3)]. In this study, we have extended the
effective TB models to include n = 3 and n = 4 truncation
in the expansion of the f, and g, functions to improve the
accuracy of the bands away from the K-point. In these
models, we use the ab initio near-neighbor hopping terms for
the shortest hopping terms, and we correct the most distant



AB’ stacked BLBN BA’stacked BLBN

F>G, model F>G, model
Gu |taa BB Ipar Fn |1aB fanr tAB G |1a4 BB tap |FnllaB Tanl tpa/
Go|1.8176 |—2.1740|0.2059 |F;|—2.6892|0.0687 |0.4460 Gp|1.8325 |—2.1688(0.7813|F; | —2.6866|0.0763 |0.0604
G;10.0183 |0.1911 |—0.0283|F,|—0.1183|—0.0823 | —0.0686 G;]0.0096 |0.1965 |0.0877|F,|—0.1202|—0.0569|—0.0735
G,|0.0451 |0.0377 |0.0129 G,(0.0497 10.0379 |0.0242

F3G3 model F3G3 model
Go|1.8176 |—2.1740/0.2059 |F;|—2.6892|0.0687 |0.4460 Go|1.8325 |—2.1688(0.7813|F; | —2.6866|0.0762 |0.0604
G;]0.0183 |0.1911 |—0.0283|F,|—0.2104|—0.0771|—0.0328 G;]0.0096 |0.1965 |0.0877|F,|—0.2187|—0.0622|—0.0665
G,(0.0219 |0.0205 |0.0170 |F5[0.1842 |—0.0103|—-0.0717 G,(0.0244 10.0204 |0.0312|F5|0.1971 |0.0106 |—0.0140
G; 0.0219 |0.0205 |—0.0064 G; 0.0244 ]0.0204 |0.0193
Gj3|—0.0464 | —0.0343|0.0083 G3|—0.0507]-0.035210.0140

F4G4 model F4G4 model
Go|1.8176 |—2.1740{0.2059 |F;|—2.6892(0.0687 [0.4460 Gg|1.8325 |—2.1688|0.7813 |F; | —2.6866|0.0763 |0.0604
G;]0.0183 |0.1911 |—0.0283|F,|—0.2104|—0.0771|—0.0328 G;]0.0096 |0.1965 |0.0877|F,|—0.2187|—0.0622|—0.0665
G,(0.0219 |0.0205 |0.0170 |F5[0.0752 |—0.00540.0452 G,(0.0244 10.0204 |0.0312|F5|0.0794 |—0.0141|0.0122
G; 0.0219 10.0205 |—0.0064|F4|—0.0218]|0.0010 |0.0234 GE 0.0244 {0.0204 [0.0193|F4|—0.0235|—0.00490.0052
G3|—0.0431|—-0.0356|0.0063 G3|—0.0466|—0.0370|0.0093
Gy4|—0.0016|0.0007 |0.0010 Gy4|—0.00200.0009 |0.0024

TABLE V. For AB’-stacked BLBN, the hopping parameters in eV
units used to construct the F»G,, F3G3, and F4G4 TB models are
listed here. In the hopping processes of AB’-stacking, t44r = tpg,
tgp = taa, tap = tap, and tgg = taar by symmetry relations. The
column labels F,, and G,, emphasize that they consist of the hopping
terms related to the f;, and g, structure factors, respectively, for the
n'" nearest neighbor.

hopping term using the following relations:

n=3:
fap3 = ZCaﬁl/\@athaﬁl - 2taﬁ27
! 1 / / / / (9)
tags = 5(7 aﬁOthaﬁO 731‘0:/31 +6ta/32)7
n=4:
-1
tapa = 7(2C¢xﬁ1/\/§a+taﬁl - 2taﬁ2 _tozﬁ3)7
> (10)

1
f,'xm = 6(_ (/xBO +t(/xﬁ0 - 3t(/xﬁl +6t(/xﬁ2 - 3t(lxﬁ3)

The band structures for #-BN monolayer and bilayer that are
obtained from DFT, the FTB model, and different simplified
effective models are compared in Fig. [3|and Fig.[5] The F4G4
effective model reproduces the ab initio low-energy bands
near the K-point and at the M-point. All the effective TB mod-
els with n = 2, 3, 4 can capture the low energy bands at the
K-point including band crossing for AA’, AB, BA’-stackings
and its absence for AA, AB, and BA-stackings.

As shown in Fig. {] the pink large circle (n = 2) enclos-
ing the boron and nitrogen atoms represents the six intra-
sublattice (G,) nearest neighbors, among which the alternat-
ing sublattices are oriented with 60° rotations with respect to
the other three, as represented with black and red arrows from
the origin. In the G; interlayer hopping processes of AB(or
BA), AA’, AB’ & BA’-stacked bilayers, these alternating sub-
lattice hopping energies are expected to be different even if
they are at the same distance from the origin because of the

TABLE VI. For BA’-stacked BLBN, the hopping parameters in eV
units used to construct the F»G,, F3G3, and F4G4 TB models are
listed here. In the hopping processes of BA’-stacking, t414' = tpp,
tgp = tAA, targ = tap, and tgp = 144’ by symmetry relations. The
column labels F,, and G,, emphasize that they consist of the hopping
terms related to the f;, and g, structure factors, respectively, for the
n'" nearest neighbor.

different arrangements of atoms around them. The F,G; ef-
fective model’s inability to accurately reproduce the ab initio
bands near the M-point can be attributed to the assumption
that all six interlayer G, hopping energies are equal. This
inaccuracy is corrected in higher-order effective models, as
demonstrated in Tables. [T to In the presented data ta-
bles, the four sub-lattices of 4-BN, namely By, Ny, B,, and
N,, are denoted by the labels A, B, A’, and B', respectively.
Note that for the BA-stacked BLBN, the data is not explic-
itly given, as it can be obtained from the AB-stacked bilayer
data by swapping the corresponding hopping energies. Specif-
ically, the hopping energies t44, BB, tara’s tp'B'> tpa’s tABs tA'B
taa’, tpp, and t, g of the AB-stacked bilayer correspond to the
hopping energies f4/41, tgip', tAA, IBBs LB’ EA'B!s TABS Lan!> IBB!»
and tg4, respectively, for the BA-stacked bilayer.

Since the precise determination of the band extrema in the
Brillouin zone is critical for understanding and optimizing the
electronic properties of these materials, additionally, we have
presented the surface plots of lower energy bands calculated
in the whole Brillouin zone, using the FTB model in Fig. [6]
Here, VB and CB refer to the valence and conduction bands,
respectively, that are closest to the Fermi level, as indicated
in Fig. [5] In the upper panel of Fig. [f] it is shown that for
all stackings except AA’, the valence band maxima occur at
the Brillouin zone corners (K-points), while the valence band
minima occur at the I'-point. However, for the AA’-type, the
valence bands cross at the K-points, as also shown in Fig. [5
The bottom panel of Fig. [6] shows that the conduction band
minima occur at the M-point for all stackings except for AA
and BA'. However, for the AA and BA’-types, the conduction
band minima occur at the K-point.
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FIG. 5. (Color online) Accuracy of the FTB and F4G4 model in
reproducing the ab initio m-bands along the given k-path compared
to other fewer parameter effective models is shown for AA, AB, BA,
AA’, AB’ and BA’ stacked BLBN.

IV. INTERLAYER DISTANCE-DEPENDENT EFFECTIVE
TIGHT-BINDING MODELS

The interlayer distance of BLBN can vary due to external
conditions, such as strain or pressure. To provide effective
TB models that can account for such variations in the atomic
structure, we have presented a fitting parametrization for the
c-dependence of each of the standard stackings in BLBN. This
allows for simplified and efficient modeling of the electronic
properties of bilayer BLBN under different external condi-
tions. We focus on the dependence of the F4G4-TB model on
the interlayer distance c as this model accurately predicts the
low-energy band structures. To investigate the dependence of
hopping energies on ¢, we have computed the F4G4-TB model
hopping data for different stacking at interlayer distances of
c=23.1,3.2,3.3,3.4, and 3.5 A. We have fitted this data with

an exponential function of the form:
ti(c) = a;e” + c;e* (11)

for each of the intralayer and interlayer hopping processes be-
tween intra- and inter-sublattices in all the stackings studied
in this work. The corresponding fitting parameters a;, b;, c;,
and d;, which define the hopping term 7;(c) in eV units, are
listed in Tables to in the appendix. Here, we have
omitted the sublattice indices for brevity and the index i refers
to the distant neighbor for each stacking and hopping process
corresponding to the G or F structure factors that we have pa-
rameterized against DFT values up to n = 4. Specifically, for
the hopping processes corresponding to the G structure factor,
the i index takes the values 0, 1,2, 3, and 4, while the hopping
processes corresponding to the F structure factor, i takes the
values 1,2,3, and 4. The fitting parameters a;, b;, ¢, and d;
for each process are provided in TABLES. [AT| to [A3]in Ap-
pendix. We show in Fig.[7[(a) and (b) the quality of this fitting
for the B to A’-sublattice interlayer hopping process and the A
to B-sublattice intra-layer hopping process for an AB-stacked
bilayer. We represent the calculated data with circles that fit an
exponentially decaying function. This fitting function is suit-
able for all the hopping processes including the distant neigh-
bor terms having the energy of the order of 10~ eV. This
parametrization can accurately reproduce the F4G4-TB model
band structures, at any intermediate interlayer distance. For
instance, at the intermediate interlayer distance of ¢ = 3.261
A in the AB-stacking, the fitting function can produce hop-
ping terms as accurate as those listed in Table. and the
resulting band structures are in close agreement, as compared
in Fig.[/c). The increasing interlayer distance leads to an in-
crease in the energy separation between the primary and sec-
ondary bands, as shown in Fig. [/(d) & (e). Specifically, the
separation between the primary valence band VB and pri-
mary conduction band CB; at the K-point is plotted as a func-
tion of interlayer distance.

We have also studied the impact of the lattice constant on
the effective hopping parameters in these bilayer systems. Our
results indicate that the effective hopping parameters at n = 4
remain nearly unchanged with variations in the lattice param-
eters for all the hopping processes in each stacking. The dom-
inant hopping energies in AB-stacked BLBN calculated for
three specific lattice constant values of a ~2.42, 2.48, 2.51 A
are illustrated in Fig. [§(a)&(b) for the hopping processes from
B to A’ sublattice corresponding to G,, structure factors and
from A to B sublattice corresponding to F, structure factors.
It is observed that, for a ~1% variation in a, the magnitude
of the nearest neighbor (n = 1) hopping energy changes by
~3% in the intra-layer A to B process and by ~2% in the
interlayer B to A’ process. To understand the effect of bond
distortions on the Fermi velocity in BLBN systems, we have
calculated the first nearest neighbor hopping energy for the
intra-layer process of A-site to B-site as a function of bond
length, in the most stable AB-stacked structure. The hopping
energy exhibits an exponential dependence on the bond length
(rij = |r,- i), which we fit with the following relation:

e
tan(rij) = tan(ros)) exp(72.45(7”r0 ) (12)
sL]
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FIG. 7. (Color online) a) Fitting lines for the calculated hopping en-
ergies (circles) as a function of ¢ are shown for the interlayer hopping
process between sublattice B to A’, and b) for the intra-layer hopping
process between sublattice A to B, in AB-stacked BLBN. ¢) A com-
parison of the band structures of AB-stacked BLBN at ¢ = 3.261 A,
obtained from DFT and the F4G4-TB model, and the fitted F4G4-TB
model from Eq. (TT). At the K-point, the separation between the pri-
malgy bands d) CB; and e) VB, is depicted for different values of
c(A).

This relation can also account for hopping terms that use lat-
tice constants more closely comparable to the experimental
values. Here, 745(70 ;) is the hopping energy calculated at the
equilibrium bond length r;; = 1.43 A in this work, which is
approximately —2.7 eV. The comparison between the hopping
data and the fitting function in Eq. (T2Z) is shown in Fig. [§[c).

V. DISTANCE-DEPENDENT TWO-CENTER
APPROXIMATION FOR INTERLAYER HOPPING
PROCESSES

So far we have discussed the effective TB models that re-
produce the LDA band edges for zero-twist standard stack-
ings in BLBN. However, we would like to build a Hamilto-
nian model that describes the electronic structures of twisted
BLBN configurations, covering both large and small twist an-
gles. Such a generalized model for twisted bilayer graphene
has been addressed previously through two center (TC)
distance-dependent approximations [17-20]. Atomic species
dependent interlayer tunneling models were proposed in ear-
lier literature to fit the bands against DFT results [21] 22].
Here, we propose a TC interlayer model for BLBN distin-
guishing B-B, B-N and N-N interactions whose interlayer tun-
neling Hamiltonian at the K-point matches the DFT calcula-
tions [23].

We note that the TC-approximation is used to compute the
interlayer hopping energies as a function of the relative dis-
tance r;; between two sublattices positioned at boron or ni-
trogen atoms from different layers, each located at r; and r;,
respectively. Meanwhile, the intra-layer hopping energies are
extracted from the FTB model data of AA-stacked BLBN. For
calculation convenience, we have truncated both intra- and in-
terlayer hopping processes up to the sixth nearest neighbors.
The distance-dependent interlayer hopping energy in this TC-
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tained using DFT for different stackings of BLBN.

approximation [[17H20] is defined as,
t(rij) :n,-2j7ZVppg(r,-j)+(1 —nl-2j7Z)Vppn(rij) (13)

where n;; , is the direction cosine of r;;, defined as n;;, =
zij/rij» where z;; is the coordinate of r;; along the z-axis. We
have

rij
Vppo(rij) =71 exp(ge(1 — TJ»’
rij (14)
Vppr(rij) = 10 exp(gz(1 — )
aBN
and
o _ 4x _ In(1/%) (15)
c aBN apN —a

where we use the same parameters as graphene for the near-
est neighbor interaction 7y within a plane of —2.7 eV and the
second nearest neighbor interaction 7{) as 0.1y [L7]. The apn
is the LDA bond length between boron and nitrogen (1.43 A)
and a is the LDA optimized lattice parameter (2.48 A). The
interlayer distance ¢ (3.261 A) is constant since each h-BN
layer in the BLBN is considered to be flat in these calcula-
tions. We fit the interlayer hopping parameter prefactors in
the TC approximation to be

YBB,1 = 0.831 ev,
N1 = 0.3989 eV, (16)
18N,1 = 0.6601 eV

for boron-boron, nitrogen-nitrogen and boron-nitrogen atoms.

As mentioned already, the 7, term is obtained by fitting the
TB tunneling Hamiltonian element H(K : d,) with ab initio
data near the K-point [23]. Here d,, indicates all possible
sliding vectors in real space within the span of d, =0 to a
andd, =0to v/3a in BLBN. The fitting process aims to mini-
mize the error between the H(K : d,) data obtained from both
the TB model and LDA [18]. By substituting these values in
Eqgs. (13) to (15), we calculate the TC-approximated interlayer
hopping energy for the BLBN system.

In Fig. [0] we compare the band structures obtained from
LDA calculations with those from the TC-approximated TB
model for various high symmetry stacking configurations of
BLBN. The comparison reveals that away from the K-point
the band dispersion is not as precise as that obtained from the
full- or effective (n = 4) TB models but the TC-approximation
method effectively captures the presence of both crossing and
non-crossing bands at the K-point for all standard stackings.
However, it should be noted that the indirect bandgap in the
AB (or BA) stacking is not recovered.

In summary, although the interlayer coupling model may
not accurately reproduce the band dispersion away from the
K-point in zero-twist atomic structures, it remains a viable
approach for accurately calculating the low-energy bands near
the K-point in twisted BLBN systems containing a large num-
ber of atoms in the unit cell.

VI. SUMMARY AND CONCLUSIONS

We have derived the m-band tight-binding (TB) models
for h-BN monolayer and bilayer using maximally localized
Wannier functions. We presented three effective TB models
as simpler alternatives to the 15-parameter full tight-binding
(FTB) model to describe the bands near the high symmetry
points K and M in the FBZ. It is found that we need upton =4
distant hopping terms, namely the F4G4 model, to capture the
indirect nature of the LDA band gaps for AB and BA stack-
ings. The fact that the double structure factor effective model
F>G, with n = 2 truncation is accurate only near the K-point
stems from the limiting approximation that all six interlayer
G, hopping parameters are equal. To offer effective TB mod-
els capable of accommodating external conditions like strain
or pressure, we introduced an interlayer distance-dependent
F4G4 model for each of the standard stacking types of BLBN,
covering interlayer distances ¢ ranging from 3.1 to 3.5 A. The
impact of changing lattice parameters on the effective hopping
parameters of BLBN is also discussed.

Furthermore, we introduced a two-center (TC) approxi-
mated TB model parameterized from LDA input. This model
is employed to define the interlayer hopping parameters for
any stacking or twisted BLBN configuration, based on the
relative distance between a pair of atoms, where we distin-
guished the hopping terms involving the same and differ-
ent atomic species. The TC-approximation method effec-
tively captures the presence of both crossing and non-crossing
bands at the K-point across all standard stackings. While
this method may not accurately reproduce the band disper-
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sion away from the K-point in zero-twist atomic structures, it
remains a viable approach for accurately calculating the low-
energy bands at the K-point in twisted BLBN systems.
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Appendix: Interlayer distance dependent fitting
parametrization tables for F4G4-TB model in BLBN with
stackings

In this section, we provide the data required for the c-
dependent parametrization of the hopping energies in each
hopping process within the effective TB model with n = 4
for the BLBN system with different stackings. The hopping
data obtained from first-principles, as a function of interlayer
distance ranging from 3.1 to 3.5 A for the given stackings, is
fitted with a function described in Eq. (I1). The fitting pa-
rameters for all the hopping processes in AA, AA’, AB/, BA/,

and AB stackings are listed in Tables[AT] [A2] [A3] [A4] and[A5]

below, respectively.
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A—-A |B—-B |A-A" |B-B |A-B [A-F
ap|0.4606 |—4.0140({2.2170 |1.6800 |- -

by |0.3915 |—0.1848|—-2.7200|—0.1375|- -
co [0.0256 | —0.0024|1.4480 |—0.2480]- -
dp|0.4038 | —4.6280(—0.2130(0.3563 |- -

ay |—0.009310.6383 |—0.3910|—0.1087|—0.9425|1.9030
b1(0.6518 |0.1833 |0.6001 |0.1701 |—8.8350|—0.9914
c1 [0.0055 |—-0.4867|0.3238 |0.0715 |—-2.9180|—0.0007
d;0.8256 102112 |0.6629 |0.2693 |—0.0238|1.2810

ap | —0.000210.0268 |0.0202 |0.0095 |—0.1598|8.8100
by (0.6784 |0.4281 |0.7543 ]0.3499 [0.0820 |—2.8300
¢ [0.0040 |—0.0191|—-0.0403|—-0.0157|9.2690 |1.3430
d»10.5384 10.4734 [0.5324 |0.2181 |—7.2540|—1.5260

a3[0.5653 [0.0108 [0.1714 |0.4662 |0.0015 |—-0.1925
b3|—0.2976|0.5824 |—0.1436|0.7221 |—1.2870|—0.0979
c3 |—0.6604 | —0.0367 | —0.3223| —0.4688|0.0782 |0.4838

d3|—0.2825]0.3377 |—0.3789(0.7200 |0.0111 |—-0.4207

a4 |—0.0077|—0.0005 | —0.0725|0.0002 |—0.0454|—0.1698
b4 (0.5426 | —9.3350|—-0.6360|0.8318 |—0.1396|0.1638
¢4 (0.0072 |0.0010 |0.0065 |—0.0006{0.0214 |0.2067
dy]0.5580 ]0.0058 [0.0999 (0.4771 |—0.2948|0.1068

TABLE Al. The fitting parameters a;, b;, c;, and d; for the c-
dependent hopping parametrization shown in Eq. (IT)), for the F4Gy4
model for AA-stacked BLBN are presented. Here, i represents the
neighbor index n. The top row of the table illustrates the hopping
processes between corresponding sublattices. In AA-stacking, 44/
=14, tgp =1BB, tA'B = IAB, and fgar = tap by symmetry relations.
The hopping parameters are given in eV units.
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A—A |B—-B [A-A" |[A-B |A-B [B-A
ap |0.0164 |0.4819 |2.8020 |- - -

by |—3.0860(0.2315 |—0.3861 |- - -
co|1.5040 |—1.7470|—0.0073 |- - -
dp |0.0303 |0.1979 |1.1910 |- - -

a; |—0.0931]0.3269 |—0.0279|—-2.4920|—-5.4770|—0.8401
b1 |—0.2723|-0.1689]0.2853 |—9.2210|—6.02800.2899
¢ |11.750 |—1.7430{7.1910 |—-2.6770(1.8530 |0.6791
dy | —1.6680|—7.4570|—9.0300{0.0038 |—0.4450{0.3461

a |0.3006 |3.9530 [0.9573 [0.0056 |—0.2072|1.0550
b>10.3349 |—-1.0680(0.1134 |—0.0310|—-0.3630|0.1763
¢y |—0.2654|—-4.3010|—0.9907 | —0.4010|0.6907 |—1.1360
d> |0.3630 |—1.1420|0.1122 |—-0.1920|—0.3184|0.1531

a;|0.3006 |3.9530 [0.2170 |- - -
b310.3349 |—1.0680(0.4179 |- - -
c5 |—0.2654| —4.3010| —0.2164 |- - -
d;10.3630 |—1.1420]0.4246 |- - -

a3 |—0.0187|—-0.0178|—0.0703|0.0285 |0.1277 |0.9009
b3|0.2587 |0.2275 ]0.3113 [0.3129 |0.2866 |0.5398
c3|—0.0838|—0.6783]0.0801 [0.0061 |—0.1503|—-0.9120
d3 | —1.8550|—-9.6650|0.2584 |—10.520{0.2081 |0.5353

as|0.1765 10.0204 [0.1122 [0.0183 |0.0147 |0.0028
b4 |0.3853 | —1.1480|—0.1774|—9.8800(0.0422 |0.3726
¢4 |—0.1565|0.1483 | —0.1163|—0.0536|0.0046 |—3.7130
dy |0.4226 | —3.4070|—0.1702|—0.2787]0.1945 |—4.746

TABLE A2. The fitting parameters a;, b;, ¢;, and d; for the c-
dependent hopping parametrization shown in Eq. (TT), for the F4Gy4
model for AA’-stacked BLBN are presented. Here, i represents
the neighbor index n. The top row of the table illustrates the hop-
ping processes between corresponding sublattices. In AA’-stacking,
tarar = 1BB, tR'g = tAA, targ = tAB, and tpp = tya by symmetry rela-
tions. The hopping parameters are given in eV units.



A—A |[B—B [B-A" |[A-B [A-A" [A-F
ap |0.9895 |—0.1395|0.8377 |- - -

by |0.2307 |—4.9030|—0.0721 |- - -
co |—0.0034|—-2.2510|—0.0643 | - - -
do |1.3550 |—0.0105]|0.5943 |- - -

ap |4.1740 |1.2190 |—0.2888|1.8790 [3.9740 |—0.0145
b1 |—1.6680|—6.9440|—5.5960|—9.1540| —0.7872|0.6848
c110.1304 |0.2440 |—10.570|—-2.7100|—0.4307|1.0160
dy | —4.5090|—-0.0753|—1.8350|—0.0023 | —0.1839 | —0.1714

ay |—0.0037|—-0.0112]0.0840 |—0.3066|—0.0613|0.0646
b>10.7808 |0.7136 |—9.7680|—0.1052{0.0712 |0.1191
¢ 10.0104 |0.0235 [0.0011 [8.1740 |—2.8940|—14.240
d> |0.5810 |0.5375 |0.8206 |—2.1490|—7.2330|—1.4450

a; |—0.0037|-0.0112|—-0.5739 |- - -
b310.7808 0.7136 [0.3430 |- - -
c510.0104 0.0235 ]0.5383 |- - -
d;10.5810 |0.5375 ]0.3615 |- - -

a3 |0.0469 |7.2940 |—-0.0343|0.0312 [5.2910 |—1.3750
b3 |—4.1440|-9.0010]0.6859 [0.2687 |—1.7530/0.5064
c3|—0.0225|-0.0157]0.0310 |0.0000 |—0.0022|1.3750
d3|0.1979 10.2507 |0.7234 |—-10.900{0.7159 |0.5083

a4 0.2959 10.0045 [0.0065 |[—0.0324|0.4313 |—0.0016
by |—1.0540|—0.2546(-0.2343 |—0.1242|0.2359 |0.6225
¢4 |—0.1077|—0.0004|-2.2330 |2.5360 |—0.3990(0.0171
dy | —0.693710.3998 |-2.1300 |—12.150]0.2594 [0.2214

TABLE A3. The fitting parameters a;, b;, ¢;, and d; for the c-
dependent hopping parametrization shown in Eq. (TT), for the F4Gy4
model for AB’-stacked BLBN are presented. Here, i represents
the neighbor index n. The top row of the table illustrates the hop-
ping processes between corresponding sublattices. In AB’-stacking,
tarar = 1BB, tR'g = tAA, targ = tAB, and tgp = tya by symmetry rela-
tions. The hopping parameters are given in eV units.



A—A |B—B A—B [|A-B [A-A" |[B-A
ap|1.7450 |—-0.4610 |—1.0390|- - -

by |0.4394 |0.4089 |0.7784 |- - -
co | —0.8599|—-60.580 [1.3910 |- - -
dy|0.5683 | —1.5240 |0.7067 |- - -

ay |0.2493 |0.0759 —0.0556|—2.6490(3.6570 |8.0410

b110.4731 ]0.1196 1.1320 [0.0043 |—0.7636|—0.1605
c11—0.236210.2223  10.0465 [0.3333 |—0.1874|—7.0360
d; |0.4874 |—0.3001 |1.1980 |—2.4060]0.05863 |—0.1236

ay|0.0634 |0.3877 |0.0002 |—0.2814]0.1185 [5.5470

by|0.3311 |—-0.1194 |1.4740 |—0.0789|—-9.8480|—2.3650
¢y | —0.0482|—0.3550 |0.0000 [0.0000 |—0.0280|—3.0960
d>|0.3728 |—-0.1166 |—9.9250|—15.660]0.2427 |—1.1660

a3 |0.0634 |0.3877 —0.0779|- - -
b310.3311 |—0.1194 |0.4572 |- - -
c5 |—0.0482|—-0.3550 |0.0682 |- - -
d;|0.3728 |—0.1166 |0.5146 |- - -

a3 |—0.1957|0.0062 —0.3733]—-1.7680(0.4363 |0.0000
b3 | —0.6550{0.1607 —0.4989|—7.6770| —0.4018 | —14.260
c3 |—0.0027|—0.0306 [0.1213 ]0.0595 |—0.1385|0.0002
d3|0.6550 |0.1345 —0.1180{0.0894 |—0.0170|1.2130

ay|—0.0725|0.1227  |0.0550 |2.2160 |—0.0660]0.4512

by |—1.1070|—1.5420 ]0.4468 |—10.750(0.4113 |—0.0064
c410.9846 [0.0000 |—0.0619|—-0.0282|0.0908 |—0.4692
dy|—4.0320| —13.8600|0.4074 |—0.0593]0.3079 |—0.0221

TABLE A4. The fitting parameters a;, b;, ¢;, and d; for the c-
dependent hopping parametrization shown in Eq. (TT), for the F4Gy4
model for BA’-stacked BLBN are presented. Here, i represents
the neighbor index n. The top row of the table illustrates the hop-
ping processes between corresponding sublattices. In BA’-stacking,
tarar = 1BB, tR'g = tAA, targ = tAB, and tgp = tya by symmetry rela-
tions. The hopping parameters are given in eV units.
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A—A B-B |A—-A" |[B—-B [B-A" |[A-B |A'—-B [A-A" |[B-B [|A-PB
ap|1.4020 |0.0108 |2.5140 |0.0783 |—0.0400|- - - - -

by |0.0526  |0.6491 |—6.3220{0.9919 |0.3796 |- - - - -
co |-0.0988 | —2.5820(3.6710 |—0.7260(42.640 |- - - - -
dy|—9.7670 |—0.0221|-0.2225|0.5373 |—-1.359 |- - - - -

ay|1.4180 | —0.0553|—-0.1604|0.3536 |—0.0059|—2.8050|—0.0222|—0.5973|—0.1576|—0.0386
b1 |—0.0319 |0.1875 |0.0707 |—0.1884]0.7141 |—0.0033|—4.3200/0.9163 |—0.3161|0.3746
c1 |—1.2310 |0.3135 ]0.2551 [0.8459 |[4.2250 |0.0924 |—2.6880|0.7005 |1.3570 [9.9740
dy |0.0069 —0.0232]—0.0568 | —4.8530|—8.9810|—0.0101|0.0012 |0.8792 |—1.0680|—1.1130

ay|0.5976  |0.1805 |—0.1176|—0.0004|—0.5243|—-2.8900(0.7870 |—0.6613|0.0008 |—0.2680
by |—0.8391 |—0.6548|0.3172 |1.4970 |—-0.5917|—-7.4550|—0.2730(0.8112 |0.8209 |—-0.2156
¢y | —54.380 |—0.0378]0.1424 [0.0025 [5.0960 |—0.3349|—-0.9677|0.6552 |—0.1054|—-0.9209
dr | —2.5620 |—1.4540|0.2810 |1.0030 |—1.3950|—0.1262|—0.1840(0.8161 |—0.1697|—6.4990

a3 |0.5976  |0.1805 |—0.1176]|—0.0004|0.4423 |- - - -
b3 |—0.8391 |—0.6548|0.3172 [1.4970 [-0.2127|- - - -
c5 | —54.3800|—0.0378]0.1424 |0.0025 |—0.2044|- - - -
d; | —2.5620 |—1.4540/0.2810 |1.0030 [0.0444 |- - - -

a3 |0.0000 —0.0798]0.0000 |—0.2003|—0.7780(0.0381 |0.0364 |—0.0089|0.1372 |—0.5453
b3 |—18.650 |—0.8135|—13.680|—0.9921|—-0.6396|0.2253 [0.2405 [0.6663 |0.2613 |—0.2354
c3 |—0.0207 |—0.0073|—-0.0273|—0.0036|1.6600 |—1.9910|—4.233 |0.0128 |—0.1557|1.4150

d;|0.2181 0.4485 [0.1478 |0.6417 |—0.9052|—-7.3900|—5.304 |0.7016 |0.2034 |—0.5496

as|—4.3320 |0.2453 |—4.0280(0.0421 |0.0155 ]0.2825 |—0.5826(0.0097 |0.0026 |—0.6390
by |—7.4290 |—1.4510|—-3.7300|0.1121 |—10.720{0.0066 [0.4629 [0.2387 |0.3089 |—2.7570
¢4 | —0.0005 |—0.0968|—0.0003 | —0.0377|—0.0132| —0.3180|0.5664 |0.7201 |—1.8140{4.0990

e4 [0.3698 —1.252010.4917 ]0.1420 |—0.4014|—0.0066|0.4690 |—3.8410|—5.5240|—3.9340

TABLE AS5. The fitting parameters a;, b;, ¢;, and d; for the c-dependent hopping parametrization shown in Eq. (T), for the F4G4 model for
AB-stacked BLBN are presented. Here, i represents the neighbor index n. The top row of the table illustrates the hopping processes between
corresponding sublattices. The hopping parameters are given in eV units.
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