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Abstract

In symbolic integration, the Risch–Norman algorithm aims to find closed forms of ele-

mentary integrals over differential fields by an ansatz for the integral, which usually is based

on heuristic degree bounds. Norman presented an approach that avoids degree bounds and

only relies on the completion of reduction systems. We give a formalization of his approach

and we develop a refined completion process, which terminates in more instances. In some

situations when the algorithm does not terminate, one can detect patterns allowing to still

describe infinite reduction systems that are complete. We present such infinite systems for

the fields generated by Airy functions and complete elliptic integrals, respectively. More-

over, we show how complete reduction systems can be used to find rigorous degree bounds.

In particular, we give a general formula for weighted degree bounds and we apply it to find

tight bounds for above examples.
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1 Introduction

Integration in finite terms is concerned with algorithmically finding closed-form expressions for
antiderivatives. Typically, elementary integrals are considered, which can be described as being
representable in terms of logarithms, exponentials, and algebraic functions applied to functions
already appearing in the integrand. The main theoretical result for integration in finite terms is
Liouville’s Theorem, which states that if the integrand f has an elementary integral, then the
integral can be written so that new functions appear as constant linear combination of logarithms.
More explicitly, there exist u0, u1, . . . , um consisting of functions appearing in f and constants
c1, . . . , cm such that

f = ∂u0 +

m∑

i=1

ci
∂ui
ui

.

The first purely algebraic proof of Liouville’s Theorem was given by Rosenlicht in [Ros68], where
a precise formulation of the theorem can be found as well. Such an elementary integral of f
may be written as the sum of the so-called rational part u0 and the so-called logarithmic part
∑m

i=1 ci ln(ui).
Liouville’s Theorem and its various refinements on the structure of elementary integrals are

the main theoretical foundation for many algorithms in symbolic integration. Risch gave the first
complete algorithm [Ris69] for elementary integration of a large class of elementary integrands.
His algorithm was subsequently generalized to other classes of integrands, for references see
[Bro05a, Raa22]. Since these algorithms are very involved because of their recursive structure,
a simpler and more efficient approach was devised: the Risch–Norman algorithm [NM77]. Even
though it is not a complete algorithm for elementary integration, i.e. it may fail to find the
elementary integral even if the given integrand has one, it is nonetheless a powerful heuristic in
practice. Moreover, it is rather easy to implement and can even be generalized to many classes
of integrands for which no other algorithm is available.

Several authors have given explicit examples to illustrate that standard versions of the Risch–
Norman algorithm cannot find all elementary integrals. For instance, the following integrand
involving the tangent function was discussed by Norman when he introduced a complementary
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approach based on completion of reduction systems [Nor90].

∫
x

tan(x)2 + 1
dx =

x2 tan(x)2 + 2x tan(x) + x2 + 1

4(tan(x)2 + 1)
(1)

Another example was given more recently by Boettner when he observed that the following
antiderivative cannot be found by recent extensions of the Risch–Norman algorithm [Boe10,
Ex. 8.7].

∫

Ai′(x)2 dx =
x

3
Ai′(x)2 +

2

3
Ai(x)Ai′(x)−

x2

3
Ai(x)2 (2)

The Airy function Ai(x) appearing in this integrand satisfies the second-order differential equa-
tion y′′(x)− xy(x) = 0 and arises in many applications, see [VS10] for example.

In general, the Risch–Norman algorithm may fail to find the elementary integral for various
reasons: it might not detect all terms necessary to form the logarithmic part, the denominator of
the rational part might contain factors not predicted by the algorithm, or the numerator of the
rational part might involve the constituent functions to a much larger degree than the integrand

does. The latter is true for the terms x2 tan(x)2 and x2

3 Ai(x)2 in the two integrals without
logarithmic part shown above.

In this paper, we propose improvements to make the heuristic Risch–Norman algorithm more
powerful by addressing the problem of finding the numerator of the rational part of the integral.
To this end, we develop Norman’s completion-based approach [Nor90] further. In fact, this
completion process can be understood by Gaussian elimination on infinite matrices. For an
outline of the Risch–Norman algorithm and a more detailed explanation and motivation of our
aim to solve Problem 4, see Section 2.1. Relation to other work is discussed also in Section 6.

The rest of this paper is organized as follows. We recall some notions in differential algebra
and symbolic integration for later use and give a brief self-contained introduction to the Risch–
Norman algorithm and related reduction systems in Section 2. A new formalization of such
complete reduction systems and a refinement of Norman’s completion process are presented in
Section 3, and also we give a proof of correctness of the algorithm, which was not mentioned
in [Nor90]. In the appendix, we work out in detail one example posed as open problem by Norman
and show that our refined algorithm terminates in this case. Since the algorithm does not always
terminate, we present three examples of infinite complete reduction systems in Section 4 for
Airy functions and complete elliptic integrals. Instead of applying reduction directly to given
integrands to obtain the rational part of the integral, we show that complete reduction systems
can also be used to find rigorous degree bounds of the numerator. In Section 5, we discuss general
properties of such rigorous weighted degree bounds and how they are obtained by general formulae
under certain conditions, which we illustrate by examples. Finally, we discuss additional aspects,
possible improvements for implementations, and outlook of future study in Section 6.

2 Prerequisites and notation

Throughout this paper, (F, ∂) always denotes a differential field of characteristic zero. Recall
that a differential field (F, ∂) is a field F together with a derivation ∂ on it, i.e. ∂ : F → F
is an additive map that satisfies the Leibniz rule ∂(fg) = (∂f)g + f∂g for all f, g ∈ F . The
set of constant elements in F forms a subfield denoted by Const∂(F ) = {f ∈ F | ∂f = 0}.
Moreover, we only consider the case where the field F is given as a purely transcendental extension
F = C(t1, . . . , tn) of a field of constants C ⊆ Const∂(F ) by elements t1, . . . , tn ∈ F that are
algebraically independent over C. Hence, ∂ is a C-linear map on the multivariate rational
function field C(t1, . . . , tn) and t1, . . . , tn model algebraically independent functions.
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Numerator and denominator of elements of F are defined by viewing those elements as rational
functions in t1, . . . , tn. Recall that a derivation on such a field is completely determined by the
elements ∂t1, . . . , ∂tn via ∂ =

∑n
i=1(∂ti)·∂i, where ∂i is the standard partial derivation with

respect to ti. Conversely, any choice of ∂t1, . . . , ∂tn ∈ F yields a derivation on F this way. The
following definition is based on [Bro05a, Ch. 10] and [Bro07].

Definition 1. For (F, ∂) = (C(t1, . . . , tn), ∂) with C ⊆ Const∂(F ) such that t1, . . . , tn are alge-
braically independent over C, we define the denominator of ∂ as den(∂) := lcm(den(∂t1), . . . , den(∂tn))
and to ∂ we associate the derivation ∂̃ : F → F defined by ∂̃f := den(∂)·∂f .

Note that, in contrast to ∂, the derivation ∂̃ necessarily maps polynomials to polynomials so
that (C[t1, . . . , tn], ∂̃) is a differential subring of (F, ∂̃).

In any polynomial ring R[t1, . . . , tn] over an integral domain R, we denote the coefficient of
a monomial tα = tα1

1 · . . . ·tαn
n in a polynomial p by coeff(p, tα). The support of a polynomial

p ∈ R[t1, . . . , tn] is given by supp(p) := {tα | α ∈ Nn, coeff(p, tα) 6= 0}. For any nonzero w ∈ Rn,
the weighted degree of a polynomial p ∈ R[t1, . . . , tn] w.r.t. w can be defined by

degw(p) := sup{w1α1 + . . .+ wnαn | tα ∈ supp(p)}.

This implies degw(0) = −∞ and degw(1) = 0. Note that the weights in w (and hence the degree
of a polynomial) may also be negative and that these definitions and notations extend also to
Laurent polynomials R[t1, . . . , tn, t

−1
1 , . . . , t−1

n ] by considering all α ∈ Zn.
Recall that a semigroup order is a total order on a semigroup that is compatible with multi-

plication, i.e. x < y implies xz < yz for all elements x, y, z. In the literature, a semigroup order
on [t1, . . . , tn] is called a monomial order if it satisfies ti > 1 for all i.

As usual, a semigroup order on monomials determines the leading monomial, leading coef-
ficient, and leading term of any nonzero (Laurent) polynomial. For the zero polynomial, we
also define lm(0) := 0, lc(0) := 0, and lt(0) := 0 so that lt(p) = lc(p) lm(p) holds for all (Lau-
rent) polynomials. Moreover, we extend the semigroup order to include 0 as new least element.
Consequently, lm(p− lt(p)) < lm(p) holds for all nonzero (Laurent) polynomials p.

Definition 2. Given a semigroup order < on monomials, a (Laurent) polynomial P =
∑

α∈Zn cαt
α,

and a (Laurent) monomial m, we define the truncation of P at m by P≤m :=
∑

α∈Z
n

tα≤m
cαt

α and

the truncation of P below m by P<m :=
∑

α∈Z
n

tα<m
cαt

α.

2.1 Risch–Norman algorithm

In short, the approach of the Risch–Norman algorithm for computing an explicit antiderivative
relies on making an appropriate ansatz and matching its derivative to the given integrand. Both
the effectiveness and the computational effort depend on the details of the ansatz, i.e. how
accurately it predicts the structure of the antiderivative.

Choosing an ansatz is based on refinements of Liouville’s Theorem. Let (F, ∂) and ∂̃ as
above and consider an integrand f ∈ F ∗. Then, a structure theorem given by Bronstein (see
Thm. 10.2.1 in [Bro05a] resp. Thm. 1 in [Bro07]) justifies an ansatz of the form

f = ∂
(u

v

)

+
m∑

i=1

αi
∂pi
pi

+
k∑

i=1

βi
∂si
si
, (3)

with u, v ∈ C[t1, . . . , tn] and α1, . . . , αm, β1, . . . , βk ∈ C for some s1, . . . , sk ∈ C[t1, . . . , tn] sat-
isfying si|∂̃si, where p1, . . . , pm ∈ C[t1, . . . , tn] are the irreducible factors of den(f) satisfying
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gcd(pi, ∂̃pi) = 1. In addition, the theorem also yields upper bounds for the multiplicities of pi
in the polynomial v ∈ C[t1, . . . , tn]. However, the details of choosing v and s1, . . . , sk are not
relevant for what we will be doing. Based on (3), the following three main steps need to be
carried out to compute an elementary integral of f :

1. Find candidates for the polynomials v and s1, . . . , sk.

2. Find a finite set of monomials in t1, . . . , tn that contains supp(u).

3. Compute the constants α1, . . . , αm, β1, . . . , βk and the constant coefficients of u via linear
algebra.

In fact, steps 2 and 3 may also be performed in an interleaving manner by iteratively de-
termining parts of supp(u) and some of the constants involved. In the literature and in imple-
mentations, there are various heuristics for performing steps 1 and 2, see [NM77, Fit81, Dav82b,
GS89, Bro05a, Boe10], for example. No general algorithm is known that would be complete
for choosing candidates for v or for s1, . . . , sk or for supp(u). Under certain conditions on the
derivation, however, some results are known for a comprehensive choice of v and s1, . . . , sk, see
[Dav82a, DT85, Bro07]. In particular, there is the well-known case of rational function integra-
tion corresponding to (C(t1), ∂) with ∂t1 = 1, where even a comprehensive choice of candidate
monomials appearing in u can be given based on f .

We shall focus on the situation after step 1, assuming polynomials v and s1, . . . , sk are given
and only u ∈ C[t1, . . . , tn] and the constants α1, . . . , αm, β1, . . . , βk remain to be found in (3).
Determining u is challenging because of possible cancellations in the derivative ∂u resp. ∂ u

v . In
practice, usually various heuristic degree bounds have been used to determine a finite ansatz
for u. We mention some of these for comparison, using the notation of (3). If only elementary
monomials ti are considered, the bound

degti(u) ≤ 1 + max(degti(num(f)), degti(den(f)))−min(1, degti(∂ti)) (4)

of partial degrees is a common choice, cf. [GS89, Bro05a]. For the general case, the bound

deg(u) ≤ 1 + deg(num(f)) + max(0, deg(den(∂))−max
i

deg(∂̃ti)) (5)

for the total degree was suggested in [Bro05a]. The bound on the total degree of u used by the
Maple program pmint [Bro05b] amounts to

deg(u) ≤ 1 + deg( v
gcd(den(f),∂̃ den(f))

) + max(deg(num(f)), deg(den(f))). (6)

The Sage program parrisch [Boe10] essentially bounds the partial degrees of u by

degti(u) ≤ 1 + max(degti(v), degti(
den(∂)

gcd(den(∂),den(f)) ) + degti(num(f))). (7)

Example 3. For the integral (2), consider the differential field (C(t1, t2, t3), ∂) with ∂t1 = 1,
∂t2 = t3, and ∂t3 = t1t2. The generators t1, t2, t3 correspond to the functions x, Ai(x), and
Ai′(x), respectively. In the notation of (3), we have f = t23, i.e. m = 0. The integral is given by

u =
1

3
t1t

2
3 +

2

3
t2t3 −

1

3
t21t

2
2 (8)

and v = 1. Note that this integral violates all degree bounds (4)–(7) mentioned above.
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In general, based on the Leibniz rule, we can reformulate Eq. (3) as first-order linear differ-
ential equation

∂u−
∂v

v
u = v

(

f −
m∑

i=1

αi
∂pi
pi

−
k∑

i=1

βi
∂si
si

)

(9)

for the polynomial u. To obtain a left hand side that is a polynomial for every u ∈ C[t1, . . . , tn],

we can multiply the equation by den(∂) den
(

∂̃v
v

)

yielding

v

gcd(v, ∂̃v)
∂̃u−

∂̃v

gcd(v, ∂̃v)
u =

v2

gcd(v, ∂̃v)

(

den(∂)f −
m∑

i=1

αi
∂̃pi
pi

−
k∑

i=1

βi
∂̃si
si

)

(10)

in terms of ∂̃. Equations of this form will be our main concern. We do not rely on a special way
of choosing v ∈ C[t1, . . . , tn] in terms of f here. Note that, for a solution u ∈ C[t1, . . . , tn] to
exist, the right hand side of Eq. (10) necessarily has to lie in C[t1, . . . , tn], which puts restrictions
on possible choices of v and of α1, . . . , αm, β1, . . . , βk. In particular, v has to be divisible by
gcd(b, ∂̃b) where b := den(den(∂)f). In general, we end up with the following problem.

Problem 4. Given (F, ∂) = (C(t1, . . . , tn), ∂) with C ⊆ Const∂(F ) and f0, . . . , fm, v ∈ C[t1, . . . , tn],
v 6= 0, find u ∈ C[t1, . . . , tn] and c1, . . . , cm ∈ C such that

v

gcd(v, ∂̃v)
∂̃u−

∂̃v

gcd(v, ∂̃v)
u = f0 +

m∑

i=1

cifi (11)

2.2 Reduction systems

Instead of finding u via an ansatz with undetermined constant coefficients as explained above,
Norman [Nor90] discussed a reduction-based approach to this problem. His reduction rules
are based on identities relating certain polynomials f , involving parameters in their coefficients
and exponents, to corresponding polynomials such that the left hand side of Eq. (11) yields f .
Polynomials in C[t1, . . . , tn] obtained from instantiating these parameters are then used to reduce
the given right hand side of Eq. (11) w.r.t. some monomial order, collecting the contributions to
the solution u ∈ C[t1, . . . , tn] in the process. Note that, here, we reduce modulo the C-vector
space of left hand sides of Eq. (11), in contrast to polynomial reduction in the context of Gröbner
bases, where one reduces modulo an ideal. Consequently, to reduce a given term, a polynomial
used for reducing can only be multiplied by a constant coefficient to match its leading term with
the given term.

Example 5. For the integral (1), consider the differential field (C(t1, t2), ∂) with ∂t1 = 1 and
∂t2 = t22 + 1. The generators t1, t2 correspond to the functions x and tan(x), respectively, so
the integrand is given by f = t1

t22+1
. Using the setting of Eq. (3), we hence have m = 0 and,

to compute an integral, we may choose v = t22 + 1 and k = 0. This leads to ∂u − 2t2u = t1 in
Eq. (11) and we abbreviate the left hand side by L(u) := ∂u− 2t2u. For a monomial order with
t1 > t2, Norman [Nor90, p. 203] computed four reduction rules. The first and the last of them
rely on the two identities

(j − 3)ti1t
j
2 + (j − 1)ti1t

j−2
2 + iti−1

1 tj−1
2 = L(ti1t

j−1
2 ) and (12)

(2i+ 2)ti1 + (i2 + i)ti−1
1 t2 = L(ti+1

1 t22 + ti+1
1 + (i+ 1)ti1t2) (13)

respectively. To solve L(u) = t1 by reducing the right hand side to zero, we can set i = 1 in (13)
and use its left hand side to reduce t1 to − 1

2 t2 first, obtaining contribution 1
4 t

2
1t

2
2 +

1
4 t

2
1 +

1
2 t1t2

6



to the solution. Then, we can set i = 0 and j = 1 in (12) to reduce − 1
2 t2 to zero, yielding the

contribution 1
4 to the solution. Altogether, we obtain the solution

u =
1

4
t21t

2
2 +

1

2
t1t2 +

1

4
t21 +

1

4
(14)

and we see that this integral violates the total degree bounds (5) and (6), but satisfies the bounds
on partial degrees given by (4) and (7).

A formal treatment of such reduction rules and reduction relations induced by them is pre-
sented in the next section. Recall that a reduction relation is called normalizing if for every
reducible element f there is an irreducible element g such that f can be reduced to g in finitely
many steps. It is called terminating if, for every element f , every chain of reduction steps starting
in f is finite.

3 Complete reduction systems

Throughout this section, we consider the ring of polynomials with coefficients in a field C of
characteristic zero in the indeterminates t1, . . . , tn and a C-linear map L : C[t] → C[t] defined
on the monomial basis by some p ∈ C[x1, . . . , xn][t1, . . . , tn, t

−1
1 , . . . , t−1

n ] via

L(tα) := p(α, t)tα (15)

for all α ∈ Nn. Note that coefficients in C[x1, . . . , xn] of p are restricted by the fact that p(α, t)tα

has to lie in C[t1, . . . , tn] for all α ∈ Nn. So, for each Laurent monomial m ∈ suppt(p) and
i ∈ {1, . . . , n}, k := − degti(m) > 0 implies that coeff(p,m) is divisible by (xi − k + 1)k in
C[x1, . . . , xn].

In the context of the Risch–Norman algorithm, for fixed nonzero v ∈ C[t1, . . . , tn], the left
hand side of (11) amounts to L(u), where L can be given in the form (15) by

p :=
v

gcd(v, ∂̃v)

n∑

i=1

xi
∂̃ti
ti

−
∂̃v

gcd(v, ∂̃v)
∈ C[x1, . . . , xn][t1, . . . , tn, t

−1
1 , . . . , t−1

n ]. (16)

For L defined this way, we always have v ∈ ker(L).
For understanding the completion process presented later, it may be helpful to consider

the linear algebra view. Whenever doing so, we assume for simpler notation that an order of
monomials is chosen such that every monomial has only finitely many monomials that are smaller,
which means that we can enumerate all monomials m0,m1, . . . in {tα | α ∈ Nn} in ascending
order. This gives an ordered basis of C[t] and, w.r.t. this basis, we can represent any polynomial
p ∈ C[t] by an infinite vector (resp. sequence) of coefficients

coeff(p) := (coeff(p,mi))i∈N.

In fact, the index set of monomials can be more general than natural numbers, which depends
on the chosen order.

For such a vector v = (v0, v1, . . . ) ∈ CN, we also define i(v) := max{i ∈ N | vi 6= 0} if v is
nonzero. If p ∈ C[t] is nonzero, then lm(p) = mi(coeff(p)). The standard unit vectors e0, e1, . . .
satisfy ei = coeff(mi) for all i ∈ N.

Similarly, the C-linear map L yields the infinite matrix M ∈ CN×N whose columns are given
by the infinite vectors coeff(L(m0)), coeff(L(m1)), . . . . We will use this notation again in Sections
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3.2 and 3.3 for discussing the linear algebra view. Since L maps to polynomials, there are only
finitely many nonzero entries in each column of M and, since L is given by (15), also each row
has only finitely many nonzero entries. For two polynomials f, g ∈ C[t], the identity L(g) = f is
equivalent to

coeff(f) =M · coeff(g). (17)

However, as any matrix representing L is infinite, there are infinitely many linearly indepen-
dent identities of the form L(g) = f . In order to deal with them in a finite way, we exploit the
patterns of coefficients implied by (15) to represent identities in a parametrized way as follows.

Definition 6. Let P,Q ∈ C[x1, . . . , xn][t1, . . . , tn, t
−1
1 , . . . , t−1

n ] and let B be a logical combination
(i.e. using ∧, ∨, and ¬) of equations, inequations, and inequalities in C[x1, . . . , xn]. We say that
(P,Q,B) encodes a conditional identity for L, if

B|x=α =⇒ L(Q(α, t)tα) = P (α, t)tα (18)

holds for all α ∈ Nn. If (P,Q,B) encodes a conditional identity for L and < is a semigroup order
on monomials, we call the quotient δ(P,Q,B) := lmt(Q)/ lmt(P ) ∈ [t1, . . . , tn, t

−1
1 , . . . , t−1

n ] the
offset of (P,Q,B) w.r.t. <.

Fixing a semigroup order < on monomials, we can define when and how a conditional identity
can be used for reduction.

Definition 7. Let (P,Q,B) encode a conditional identity for L. We call (P,Q,B) a reduction
rule for L w.r.t. < if and only if lmt(P ) = 1 and for all α ∈ Nn satisfying B|x=α we have
lct(P (x, t))|x=α 6= 0. If in addition lct(Q(x, t))|x=α 6= 0 holds for all α ∈ Nn satisfying B|x=α,
we say that the reduction rule (P,Q,B) has exact offset. We call a set of reduction rules a
reduction system.

Note that, at this point, it is not required that the condition B can be satisfied over Nn,
i.e. that there is an α ∈ Nn such that B|x=α is true. Moreover, the offset of a reduction rule
(P,Q,B) is given by lmt(Q) and, for all α ∈ Nn satisfying B|x=α, it is at least as large as the
quotient lmt(Q(α, t)tα)/ lmt(P (α, t)t

α) w.r.t. <. If the reduction rule has exact offset, then this
quotient is equal to the offset for all α ∈ Nn satisfying B|x=α.

If (P,Q,B) is a reduction rule, then for any α ∈ Nn satisfying B|x=α, lmt(P ) = 1 and
lct(P (x, t))|x=α 6= 0 together imply lmt(P (α, t)t

α) = tα. Hence, we can rewrite the monomial tα

as the sum of an element in the image of L and a polynomial that is either zero or has a leading
term smaller than tα:

tα = L

(
Q(α, t)tα

lct(P (x, t))|x=α

)

−
P<1(α, t)t

α

lct(P (x, t))|x=α
. (19)

Since the rewrite rule (19) allows to reduce tα modulo the image of L to a polynomial with
leading monomial smaller than tα, we have the following definition.

Definition 8. Let r = (P,Q,B) be a reduction rule. We say that a monomial tα is reducible
by r, if B|x=α holds. More generally, f ∈ C[t] is reducible by r, if some element of supp(f)

is reducible by r. One reduction step using r replaces f ∈ C[t] by f − coeff(f,tα)
lct(P )|x=α

P (α, t)tα, if

tα ∈ supp(f) and B|x=α.

As illustrated in Example 5, part of the preimage can be computed in a reduction step using
(19). To illustrate the notions and algorithms in this section, we use (1), which is the same
example as was used in [Nor90].
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Example 9. We consider a differential field (C(t1, t2), ∂) with ∂t1 = 1 and ∂t2 = t22 +1 and we
let v = t22+1. Then, we have den(∂) = 1 and (16) yields p(x, t) = x1t

−1
1 +(x2−2)t2+x2t

−1
2 . The

C-linear map on C[t1, t2] defined by (15) satisfies L(u) = v∂ u
v . Trivially, (P,Q,B) = (p, 1, true)

satisfies (18) for all α ∈ N2 by definition. As monomial order, we use the lexicographic order
with t1 > t2. While (p, 1, true) encodes a conditional identity for L, it cannot be a reduction
rule since lmt(p) = t2 6= 1. To obtain a reduction rule for L, we simply perform a shift by
β = (0, 1) to get (P,Q,B) = (p(x − β, t)/tβ , 1/tβ, x2 ≥ 1 ∧ x2 6= 3) with lmt(P ) = 1. Explicitly,
P = (x2 − 3) + (x2 − 1)t−2

2 + x1t
−1
1 t−1

2 and Q = t−1
2 . With this choice of B, we check that (18)

still holds for all α ∈ N2:

α2 ≥ 1 ∧ α2 6= 3 =⇒ L(tα+(0,−1)
︸ ︷︷ ︸

∈C[t1,t2]

) = p(α+ (0,−1), t)tα+(0,−1)

︸ ︷︷ ︸

v∂(tα+(0,−1)/v)

.

Since lct(P )|x=α = α2−3 6= 0 for all α ∈ N2 with B|x=α, r1 := (P,Q,B) is a reduction rule with
offset δ(r1) = t−1

2 . Moreover, lct(Q) = 1 implies that r1 has exact offset. Condition B implies
that every monomial tα with α2 ≥ 1 ∧ α2 6= 3 is reducible by r1.

Note that, while the conditional identity in the above example contained information about
L(tα) for α2 = 2, the reduction rule r1 does not cover such cases because this would mean
lct(P )|x=α = 0 when setting x = α with α2 = 3 in r1. In order not to lose any information
when turning conditional identities into reduction rules, one may need to construct several rules
from a single conditional identity. This is the purpose of Algorithm 1 in the following section.
More generally, we introduce the notion of precompleteness in the following definition to formally
express that all necessary information about L is there.

Definition 10. Let S be a set of triples (P,Q,B) encoding conditional identities for L. We say
that S is precomplete for L, if

spanC{P (α, t)t
α | (P,Q,B) ∈ S, α ∈ Nn, B|x=α} = im(L).

If S is a reduction system for L w.r.t. <, we call it complete for L w.r.t. <, if it is precomplete
for L and the leading monomial of every nonzero f ∈ im(L) is reducible by S.

Evidently, a set S of triples (P,Q,B) encoding conditional identities for L is precomplete for
L if and only if

spanC{Q(α, t)tα | (P,Q,B) ∈ S, α ∈ Nn, B|x=α}+ ker(L) = C[t1, . . . , tn]. (20)

Later, we will use the following straightforward sufficient criterion to show that a given precom-
plete reduction system is in fact complete.

Lemma 11. If S is a precomplete reduction system for L w.r.t. < such that every monomial
can be reduced by at most one element of S, then S is complete for L.

Proof. Let f ∈ im(L) be nonzero. By precompleteness, there are nonzero c1, . . . , cm ∈ C and
pairwise different f1, . . . , fm ∈ C[t1, . . . , tn] such that f =

∑m
i=1 cifi and for every i there are

(P,Q,B) ∈ S and α ∈ Nn with B|x=α ∧fi = P (α, t)tα. By construction, each lm(fi) is reducible
by S. Since f1, . . . , fm are pairwise different, lm(f1), . . . , lm(fm) are pairwise different by as-
sumption on S. Therefore, we have that lm(f) = maxi lm(fi) and hence lm(f) is reducible by
S.
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If S is a complete reduction system for L w.r.t. < and induces a normalizing reduction
relation, then the set of monomials that cannot be reduced by S spans a direct complement of
im(L).

Note that the requirement of being precomplete is not redundant in the definition of complete-
ness, since it is not implied by reducibility of leading monomials of every nonzero f ∈ im(L) in
general. If the induced reduction relation is terminating, however, we easily obtain the following
lemma characterizing completeness of the reduction system.

Lemma 12. Let S be a reduction system for L w.r.t. <. If the induced reduction relation on
C[t1, . . . , tn] is terminating, then the following are equivalent.

1. S is complete for L.

2. Every nonzero f ∈ im(L) is reducible by S.

3. Every f ∈ im(L) is eventually reduced to zero by S.

Proof. Property 1 trivially implies property 2. To show property 3 from 2, we let f ∈ im(L).
Since the reduction relation is terminating, iteratively reducing f by S eventually yields some
g ∈ C[t1, . . . , tn] which cannot be reduced further. By f ∈ im(L), it follows that g ∈ im(L),
which implies g = 0 by property 2.

To show property 1 from 3, we let f ∈ im(L) \ {0}. Since f can be reduced to zero by S,
it is a C-linear combination of some P (α, t)tα with (P,Q,B) ∈ S, α ∈ Nn, B|x=α. Moreover,
lm(f) 6= 0 has to be reducible by S, since f could not be reduced to zero by S otherwise.

In general, however, a complete reduction system for L may not be able to reduce every
f ∈ im(L) to zero in finitely many steps. In fact, a reduction system S for L can reduce every
f ∈ im(L) to zero in finitely many steps if and only if S is both complete for L and induces a
normalizing reduction relation on im(L). Moreover, if every f ∈ im(L) can be reduced to zero by
S in finitely many steps, then S induces a confluent reduction relation on C[t1, . . . , tn], since any
two polynomials that differ by an element from im(L) can be reduced to the same polynomial in
finitely many steps in that case.

Based on the last property listed in the previous lemma, a complete reduction system for L
that induces a terminating reduction relation enables to decide straightforwardly if L(u) = f
has a solution u ∈ C[t1, . . . , tn] for given f ∈ C[t1, . . . , tn] and to compute such a solution if it
exists, as illustrated in Example 5. In fact, for any polynomial f , we can compute an additive
decomposition f = L(u) + r this way, where r is the normal form of f and hence lies in a direct
complement of im(L) as mentioned above. Moreover, if the right hand side of the equation
has the form f0 +

∑m
i=1 cifi with fi ∈ C[t1, . . . , tn] and undetermined ci ∈ C as in (11), then,

using such a reduction system to reduce every fi to its normal form, we can obtain an explicit
representation of all c ∈ Cm that permit a solution u ∈ C[t1, . . . , tn] along with a representation
of a corresponding u.

If p ∈ C[x1, . . . , xn][t1, . . . , tn, t
−1
1 , . . . , t−1

n ] is given such that (15) holds, a precomplete set
of basic reduction rules (P,Q,B) where Q is just a (Laurent) monomial can be created easily.
However, these basic rules do not form a complete reduction system in general. So, the general
outline to construct a complete reduction system S for given L w.r.t. < naturally is as follows,
see also [Nor90].

1. Create basic rules r1, . . . , rm from (p, 1, true).

2. Compute a complete reduction system S from {r1, . . . , rm}.
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How this can be done in detail will be discussed for the rest of this section. Before we do that,
we still need to point out an important algorithmic aspect.

While it is straightforward to decide if any given polynomial is reducible by given reduction
rules by simply plugging exponent vectors into conditions, the definitions and algorithms in the
remainder of this section also involve more difficult problems. In particular, these are equivalent
to asking whether a certain formula B formed from the constituents of reduction rules can be
satisfied by an element of Nn. Even if these conditions B would be restricted to conjunctions
of equations, it is known from the Davis–Putnam–Robinson–Matiyasevich Theorem that ∃α ∈
Nn : B|x=α is undecidable in general. To deal with the undecidability of existential statements
over N in the algorithms that follow, we adopt the following paradigm, since we do not want to
restrict applicability of those algorithms to instances that can be decided in practice.

Remark 13. In order to enable evaluating each instance of existential statements over N arising
during an algorithm in finite time, we allow also false positive answers (but no false negative
answers) to all statements quantified by ∃α ∈ Nn at any step of the algorithms stated in the rest
of this section. We will always use this viewpoint when showing correctness and other properties
of those algorithms. For easier readability, we do not introduce extra notation to signify this
tolerance for false positive evaluations of existential statements. In other words, when existence
of an element of Nn satisfying a given condition is asked in an algorithm, one may safely proceed
assuming that such an element exists if one cannot detect easily that such an element does not
exist.

In theory, this would even permit to replace all statements quantified by ∃α ∈ Nn with the
truth value true in the algorithms. However, since false positives in general will cause unneces-
sary computations and can even lead to non-termination of computations that otherwise would
terminate, at least some effort should be made to detect nonexistence. In practice, there is a wide
range of options from simple Boolean manipulations that exhibit contradictions to more sophis-
ticated manipulations of the polynomials involved. For instance, one can relax the existential
statement into a decidable one such that every witness α ∈ Nn of the original statement is also
a witness of the relaxed statement. One way is to remove all restrictions in the condition that
are inequalities so that only a logical combination of equations and inequations in C[x1, . . . , xn]
remains and no solutions are lost. Existence of solutions in C

n
can then be decided via Gröbner

bases. If C is presented as a field extension of Q, another way is to replace every equation (resp.
inequation) in C[x1, . . . , xn] by an equivalent conjunction of equations (resp. disjunction of in-
equations) in Q[x1, . . . , xn] that has the same solutions in Q

n
. Existence of solutions in (Q∩R+

0 )
n

can then be decided via cylindrical algebraic decomposition and related methods. Moreover,
techniques from satisfiability modulo theories (SMT) can be applied to detect that solutions of
conditions in Q[x1, . . . , xn] do or do not exist.

3.1 From conditional identities to reduction rules

Let (P,Q,B) encode a conditional identity for L such that P (α, t) 6= 0 for at least one α ∈ Nn

that satisfies B|x=α. Such a conditional identity gives rise to one or more reduction rules. In
particular, if there exists α ∈ Nn satisfying B|x=α such that lct(P )|x=α is nonzero, then, with
β being the exponent vector of lmt(P ), the main rule is given by r1 = (P1, Q1, B1) where
P1 := P (x− β, t)/tβ, Q1 := Q(x− β, t)/tβ and B1 := (B ∧ lct(P ) 6= 0)|x=x−β, as in Example 9.
Further reduction rules arise from degenerate cases when lct(P )|x=α = 0. In full generality, we
follow the the algorithm below to generate reduction rules from a triple (P,Q,B) encoding a
conditional identity for L.
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Algorithm 1 Convert a conditional identity into reduction rules

Input: a semigroup order < on monomials and a triple (P,Q,B) encoding a conditional identity
for L

Output: reduction rules r1, . . . , rm for L w.r.t. < s.t. for every α ∈ Nn satisfying B|x=α either
P (α, t) = 0 or there is ri = (Pi, Qi, Bi) among r1, . . . , rm such that the exponent vector γ of
lmt(P (α, t)t

α) satisfiesBi|x=γ , P (α, t)t
α = Pi(γ, t)t

γ , Q(α, t)tα = Qi(γ, t)t
γ , and lmt(Q)tα =

lmt(Qi)t
γ

1. m := 0
2. while P 6= 0 ∧ ∃α ∈ Nn : B|x=α ∧ P (α, t) 6= 0 do

3. if ∃α ∈ Nn : B|x=α ∧ lct(P )|x=α 6= 0 then

4. m := m+ 1, β := exponent vector of lmt(P )
5. Pm := P (x− β, t)/tβ , Qm := Q(x− β, t)/tβ ,

Bm :=



B|x=x−β ∧ lct(P )|x=x−β 6= 0 ∧
n∧

i=1
βi>0

xi ≥ βi





6. rm := (Pm, Qm, Bm)
7. B := (B ∧ lct(P ) = 0)
8. end if

9. P := P − ltt(P )
10. end while

11. return r1, . . . , rm

Lemma 14. Let (P0, Q0, B0) be the input (P,Q,B) of Algorithm 1. At the beginning of each
iteration of the loop in Algorithm 1, the modified triple (P,Q,B) encodes a conditional identity for
L such that P = (P0)≤lmt(P ) is nonzero, Q = Q0, and B is equivalent to B0 ∧

∧
{coeff(P0, t

γ) =
0 | tγ ∈ suppt(P0), t

γ > lmt(P )} over N.

Proof. For the first iteration of the loop, this holds trivially. For the inductive proof in subsequent
iterations, we denote (P,Q,B) at the beginning of the current iteration by (Pold, Qold, Bold) and
assume it satisfies the claim. At the end of the current iteration, we distinguish two cases. If
B was modified, we have that B = (Bold ∧ lct(Pold) = 0). If B was not modified, we have that
the condition in line 3 was false, i.e. Bold implies lct(Pold) = 0 over N. In both cases, B is
equivalent to Bold ∧ coeff(Pold, lmt(Pold)) = 0 over N. Unless the current iteration is the last,
we explicitly have P 6= 0 at the beginning of the next iteration. Altogether, these properties
imply that (P,Q,B) = (Pold − ltt(Pold), Qold, B) satisfies the claim since (Pold, Qold, Bold) does
and since lmt(Pold) is the only monomial of Pold larger than lmt(P ).

Theorem 15. Algorithm 1 terminates and is correct.

Proof. In each iteration of the loop, line 9 removes one term from P . Since the inequation P 6= 0
in line 2 therefore would eventually be violated even if the existential statement in line 2 is always
considered true, the algorithm terminates.

Let (P0, Q0, B0) be the input of Algorithm 1 and let r1, . . . , rm be its output. At the time
when ri, i ∈ {1, . . . ,m}, is created, we have P 6= 0 and tβ = lmt(P ) by lines 2 and 4, which
implies lmt(Pi) = lmt(P )/t

β = 1 by line 5. Moreover, for all α ∈ Nn with Bi|x=α, the definitions
in line 5 imply that α − β ∈ Nn, B|x=α−β , and lct(Pi)|x=α = lct(P )|x=α−β 6= 0. By Lemma 14,
it follows that L(Qi(α, t)t

α) = L(Q(α− β, t)tα−β) = P (α− β, t)tα−β = Pi(α, t)t
α for all such α.

These properties of ri hold regardless whether the existential statements in lines 2 and 3 were
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wrongly or correctly assumed to be true. Altogether, all r1, . . . , rm are reduction rules for L
w.r.t. <.

Now, let α ∈ Nn satisfy B0|x=α and assume P0(α, t) 6= 0. We let tβ̃ := lm(P0(α, t)) and

γ := α+β̃. As long as the monomial tβ̃ := lm(P0(α, t)) is not yet removed from P in Algorithm 1,
the condition in line 2 is always fulfilled and the loop continues. Eventually, there is an iteration

in which lmt(P ) = tβ̃ holds at the beginning. In this particular iteration, B|x=α and lct(P )|x=α =

coeff(P0, t
β̃)|x=α = lc(P0(α, t)) 6= 0 hold by Lemma 14. So, the condition in line 3 is true and

the exponent vector β̃ is chosen in line 4. The rule ri = (Pi, Qi, Bi) created afterwards satisfies
Pi(γ, t)t

γ = P0(α, t)t
α, Qi(γ, t)t

γ = Q0(α, t)t
α, and lmt(Qi)t

γ = lmt(Q0)t
α by line 5 and by

Lemma 14. For the same reason, we also have Bi|x=γ since γ ≥ β̃ holds componentwise.

From the definition of L, we immediately get the conditional identity (18) where P := p,
Q := 1, and B := true. We can apply Algorithm 1 to (p, 1, true) to obtain basic reduction rules
r1, . . . , rm. The first rule r1 is called the generic rule. In particular, r1 = (P1, Q1, B1) is given by
P1 := p(x− β, t)/ lmt(p), Q := 1/ lmt(p), and B1 := (lct(p) 6= 0)|x=x−β, where β is the exponent
vector of lmt(p), cf. Example 9.

Lemma 16. The output of applying Algorithm 1 to (p, 1, true) forms a precomplete reduction
system for L w.r.t. < where each element ri = (Pi, Qi, Bi) has exact offset s.t. Qi is a Laurent
monomial.

Proof. Correctness of the algorithm implies that the output forms a reduction system for L w.r.t.
< and that any tα, α ∈ Nn, either lies in ker(L) or is of the form Qi(γ, t)t

γ for some i ∈ {1, . . . ,m}
and γ ∈ Nn s.t. Bi|x=γ . Therefore, the reduction system satisfies (20). Any Qi created in line 5
is of the form t−β by Lemma 14. In particular, lct(Qi) = 1 implies exact offset.

Example 17. For L and < as defined in Example 9, we compute the basic rules by applying
Algorithm 1 to (P,Q,B) = ((x2 − 2)t2 + x2t

−1
2 + x1t

−1
1 , 1, true). First, we obtain β = (0, 1) and

the reduction rule

r1 = ((x2 − 3) + (x2 − 1)t−2
2 + x1t

−1
1 t−1

2 , t−1
2 , x2 ≥ 1 ∧ x2 6= 3)

exactly as in Example 9. Then, B and P are updated to B = (x2 = 2) and P = x2t
−1
2 + x1t

−1
1 .

So, in the next iteration of the loop, we have β = (0,−1). Based on line 5, this yields the
reduction rule

r2 = ((x2 + 1) + x1t
−1
1 t2, t2, B2)

with condition B2 = (x2 = 1 ∧ x2 6= −1), which can be simplified to the equivalent condition
B2 = (x2 = 1). Next, B and P are updated to B = (x2 = 2 ∧ x2 = 0) and P = x1t

−1
1 . Now, the

condition in line 2 is violated since the new condition B cannot be satisfied by any element of
N2. Hence the algorithm stops and returns the basic rules r1, r2.

It is easy to see that the reduction rules computed by Algorithm 1 have pairwise distinct offset,
if the input satisfies Q 6= 0. However, if the input satisfies Q = 0, we have P (α, t) = 0 whenever
B|x=α by (18) and consequently the output of Algorithm 1 will be empty or, by Remark 13,
consist entirely of rules whose condition Bi is inconsistent over N by construction. Since we will
use it in Section 3.3, we also show the following property of the output of Algorithm 1.

Lemma 18. Let r1, . . . , rm be the result of Algorithm 1 with input (P0, Q0, B0). For all i ∈
{1, . . . ,m} and γ ∈ Nn with Bi|x=γ there exists α ∈ Nn such that B0|x=α and lmt(Qi)t

γ =
lmt(Q0)t

α. Conversely, for every α ∈ Nn with B0|x=α, there exist at most one i ∈ {1, . . . ,m}
and γ ∈ Nn with Bi|x=γ and lmt(Qi)t

γ = lmt(Q0)t
α. Moreover, if lct(Q0)|x=α 6= 0 holds for all

α ∈ Nn with B0|x=α, then r1, . . . , rm have exact offset.
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Proof. Let β(1), . . . , β(m) ∈ Nn be the vectors β used in line 5 for constructing r1, . . . , rm, respec-
tively. By this construction and Lemma 14, it follows for all i ∈ {1, . . . ,m} that Qi = Q0(x −

β(i), t)/tβ
(i)

and that Bi|x=γ implies B0|x=γ−β(i) , tβ
(i)

= lm(P0(γ − β(i), t)), and γ − β(i) ∈ Nn

for all γ ∈ Nn.
Consequently, for γ ∈ Nn with Bi|x=γ , it follows that α := γ − β(i) satisfies α ∈ Nn,

B0|x=α, and lmt(Qi)t
γ = lmt(Q0)t

α. Moreover, together with Qi(γ, t)t
γ = Q0(α, t)t

α, this
implies lct(Qi)|x=γ = lct(Q0)|x=α. Conversely, let α ∈ Nn satisfy B0|x=α, then requiring
lmt(Qi)t

γ = lmt(Q0)t
α from γ ∈ Nn implies that γ = α + β(i). Additionally imposing Bi|x=γ

implies tβ
(i)

= lm(P0(α, t)), which uniquely fixes this monomial independent of i. Therefore at
most one i can be used, since β(1), . . . , β(m) are pairwise different as lmt(P ) decreases w.r.t. <
in each iteration of the loop.

3.2 Norman’s completion process

For formalizing the completion process given in [Nor90], we formalize two concepts that are
needed to create new reduction rules from existing ones. So, in addition to reduction of monomials
and polynomials, we also define what it means to reduce a conditional identity.

Definition 19. Let (P,Q,B) with P 6= 0 encode a conditional identity for L, let β be the
exponent vector of lmt(P ) and let r1 = (P1, Q1, B1) be a reduction rule for L. We say that
(P,Q,B) is reducible by r1, if B|x=α =⇒ (B1|x=α+β ∧ lct(P1)|x=α+β 6= 0) holds for all α ∈ Nn.

In that case, the reduction (P̃ , Q̃, B) of (P,Q,B) by r1 is given by

P̃ :=
lct(P1)|x=x+β

g
P −

lct(P )

g
P1(x+ β, t)tβ ,

Q̃ :=
lct(P1)|x=x+β

g
Q−

lct(P )

g
Q1(x+ β, t)tβ

where g := gcd(lct(P ), lct(P1)|x=x+β) ∈ C[x1, . . . , xn].

Note that, reduction changes only the (Laurent) polynomials P,Q and leaves the condition
B untouched. In view of Remark 13, checking reducibility of (P,Q,B) computationally has to
be done based on the equivalent condition ¬∃α ∈ Nn : B|x=α∧ (¬B1|x=α+β ∨ lct(P1)|x=α+β = 0)
involving the existential quantifier. If in the above definition (P,Q,B) is such that lmt(P ) is a
monomial without negative exponents, then we have α+β ∈ Nn for all α ∈ Nn and the condition
B|x=α =⇒ (B1|x=α+β ∧ lct(P1)|x=α+β 6= 0) is equivalent to B|x=α =⇒ B1|x=α+β . The definition
immediately implies the following properties.

Lemma 20. Let (P,Q,B), β, r1 = (P1, Q1, B1), and P̃ , Q̃, g be as in the definition above. Then,
(P̃ , Q̃, B) encodes a conditional identity for L and we have lmt(P̃ ) < lmt(P ). In particular, for

all α ∈ Nn satisfying B|x=α, we have P̃ (α, t) =
lct(P1)|x=α+β

g(α) P (α, t)− lct(P )|x=α

g(α) P1(α+β, t)t
β with

lct(P1)|x=α+β and g(α) being nonzero and α+β 6∈ Nn =⇒ lct(P )|x=α = 0. If δ(r1) 6= δ(P,Q,B),

then δ(P̃ , Q̃, B) > δ(P,Q,B).

Proof. By construction of P̃ , the leading terms of P and P1(x+β, t)t
β are canceled with each other

so that lmt(P̃ ) < lmt(P ). Let α ∈ Nn satisfy B|x=α. By Definition 19, lct(P1)|x=α+β 6= 0 and also
g(α) is nonzero because g is a factor of lct(P1)|x=x+β. If α+ β 6∈ Nn, then lct(P )|x=α 6= 0 would
imply that the leading monomial of P (α, t)tα has negative exponents, which is in contradiction
with the fact that L is a map of C[t1, . . . , tn] by (18). Thus, α + β 6∈ Nn =⇒ lct(P )|x=α = 0.

Consequently, lct(P )|x=α

g(α) L(Q1(α+ β, t)tα+β) = lct(P )|x=α

g(α) P1(α+ β, t)tα+β , since r1 is a reduction
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rule. Together with the construction of P̃ , Q̃, linearity of L, and (P,Q,B) being a conditional
identity, we obtain

L(Q̃(α, t)tα) =
lct(P1)|x=α+β

g(α)
L(Q(α, t)tα)−

lct(P )|x=α

g(α)
L(Q1(α+ β, t)tα+β)

=
lct(P1)|x=α+β

g(α)
P (α, t) · tα −

lct(P )|x=α

g(α)
P1(α+ β, t)tβ · tα

= P̃ (α, t) · tα,

which implies that (P̃ , Q̃, B) is a conditional identity for L. Moreover, if δ(r1) 6= δ(P,Q,B), then
the leading terms of Q and Q1(x+β, t)t

β cannot be canceled in the linear combination Q̃, which
implies lmt(Q̃) = max(lmt(Q), lmt(Q1)t

β) ≥ lmt(Q). Together with lmt(P̃ ) < lmt(P ), we have
that δ(P̃ , Q̃, B) > δ(P,Q,B).

Definition 21. Let r1 = (P1, Q1, B1), r2 = (P2, Q2, B2) be two distinct reduction rules for L
w.r.t. <. We say that they form a critical pair, if there is α ∈ Nn such that (B1 ∧B2)|x=α holds.

In Algorithm 2, for simplicity of notation, we use the convention that the three components
of any reduction rule ri are always denoted by Pi, Qi, Bi using the same index. Then, Norman’s
completion process can be formalized as follows.

Algorithm 2 Formalization of Norman’s completion process

Input: a semigroup order < on monomials and a precomplete reduction system {r1, . . . , rm} for
L w.r.t. <

Output: complete reduction system S for L w.r.t. <
1. A := {(i, j) ∈ {1, . . . ,m}2 | i < j and ri, rj form a critical pair}
2. while A 6= ∅ do

3. choose (i, j) ∈ A
4. A := A \ {(i, j)}
5. reduce (Pj , Qj, Bi ∧Bj) by ri to obtain (P,Q,B)
6. if P 6= 0 then

7. create new reduction rules rm+1, . . . , rm+k from (P,Q,B) by Algorithm 1
8. m := m+ k
9. A := A ∪ {(i, j) ∈ {1, . . . ,m}2 | i < j,m− k < j, and ri, rj form a critical pair}

10. end if

11. end while

12. return {r1, . . . , rm}

Example 22. Continuing Example 9, we apply Algorithm 2 to the basic rules computed in
Example 17. At the beginning, we have A = {(1, 2)}, so there is only the choice i = 1, j = 2. We
reduce ((x2 + 1) + x1t

−1
1 t2, t2, x2 ≥ 1 ∧ x2 6= 3 ∧ x2 = 1) by r1 to obtain

P = (x2 − 3)P2 − (x2 + 1)P1 = (1 − x22)t
−2
2 + x1(x2 − 3)t−1

1 t2 − x1(x2 + 1)t−1
1 t−1

2 ,

Q = (x2 − 3)Q2 − (x2 + 1)Q1 = (x2 − 3)t2 − (x2 + 1)t−1
2 ,

and same condition B, which can be simplified to the equivalent condition B = (x2 = 1). Since
lct(P )|x=α = 1− α2

2 vanishes for all α ∈ N2 satisfying B|x=α, applying Algorithm 1 to (P,Q,B)
yields the reduction rule

r3 = ((x1 + 1)(x2 − 4)− (x1 + 1)x2t
−2
2 , (x2 − 4)t1 − x2t1t

−2
2 , x2 = 2).
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This results in A = {(1, 3)}, leaving only the choice i = 1, j = 3 for the next iteration of the loop.
Performing the computations, we obtain the new reduction rule

r4 = (−2(x1 + 1)(x22 − 2)− x1(x1 + 1)(x2 − 2)t−1
1 t2,

(x2 − 1)(x2 − 2)t1t
2
2 − (x2 − 1)(x2 + 2)t1 − (x1 + 1)(x2 − 2)t2, x2 = 0),

which does not give rise to critical pairs with previous rules. Hence, the algorithm stops and
returns the complete reduction system {r1, r2, r3, r4}.

Finally, we mention the subtle differences between the presentation of Norman [Nor90] and
our formalization of it. Since termination of Algorithm 2 is not guaranteed even if < is a
monomial order, we do not require < to be Noetherian. In contrast to Definition 7, Norman
does not require lct(P )|x=α 6= 0 explicitly in reduction rules, apart from using different notation.
Related to Algorithm 1, he just exemplifies the substitutions x = x − β made in line 5 and
states the necessity “to solve equations (which can sometimes be nonlinear and multivariate) to
determine what values for index variables can cause a reduction to degenerate” on p. 203 in his
paper. However, this is undecidable in general, as discussed earlier, and he does not mention
an analogue of Remark 13. Furthermore, Norman seems to allow only systems of equations
as conditions for reduction rules. So, in comparison, our Algorithm 1 generally will produce
more restrictive conditions for the same input. For reduction of monomials, he compensates
this by allowing reduction of tα only if lct(P )|x=α 6= 0 and all (Laurent-)monomials appearing
in P (α, t)tα and Q(α, t)tα have nonnegative exponents. In fact, the possible reduction steps by
each of r1, . . . , r4 computed in Examples 17 and 22 therefore agree exactly with those by each of
(r1)–(r4) computed in Norman’s paper.

Reviewing the linear algebra view, by (17), a reduction system in our sense can be un-
derstood as representation of two infinite matrices V and W , whose columns are given by all
coeff(P (α, t)tα) resp. coeff(Q(α, t)tα) with B|x=α for any rule (P,Q,B) of the system, satisfying

V =M ·W. (21)

We start with the initial precomplete reduction system obtained from (p, 1, true), which consists
of basic reduction rules (i.e. preimages are chosen to be monomials) and gives rise to

(v0, v1, v2, . . . )
︸ ︷︷ ︸

V

=M · (e0, e1, e2, . . . )
︸ ︷︷ ︸

W

(22)

up to permutation of columns and up to dropping columns that are zero in V . Further rules
are introduced if there exist vj and vk such that i(vj) = i(vk). Actually, two reduction rules
related to these vectors form a critical pair and can give rise to several (possibly infinitely many)
other such pairs of columns at the same time. The new rule comes from the linear combinations
v = c1vj + c2vk such that i(v) < i(vj). The corresponding new columns w in W at the same
position as v in V are just the linear combinations w = c1wj + c2wk with the same c1, c2, j, k.
Therefore, introducing a new rule gives rise to new columns of the matrices V and W such that
Vnew =

(
Vold Vold · T

)
and Wnew =

(
Wold Wold · T

)
with the same T , which has exactly two

nonzero entries in each column. Finally, we obtain a complete reduction system as soon as for any
linear combination v of columns in V , there is some existing column vk such that i(v) = i(vk).

3.3 Refined completion process

One sees that the completion process is closely related to Gaussian elimination on columns in the
linear algebra view. Gaussian elimination on rows of infinite matrices was already considered in
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[Köt70]. If, instead of introducing new columns as above, the column operation v = c1vj + c2vk
replaces vj when j > k, then this corresponds to one elimination step. Eventually, we obtain a
matrix V which is an upper column echelon form ofM ·(e0, e1, . . . ) up to permutation of columns,
since we started the elimination with (22). The property that each column and each row has
only finitely many nonzero entries is maintained in each elimination step. By Noetherianity,
each column is affected only by finitely many elimination steps. So, V = M · (e0, e1, . . . ) · T
can be expressed by an upper triangular transformation matrix T . Since T has only finitely
many nonzero entries in each of its columns, every column of V and W := (e0, e1, . . . ) · T
indeed corresponds to a polynomial in C[t]. In other words, we found a factorization V · T−1 of
M · (e0, e1, . . . ) such that T−1 is upper triangular and V is an upper column echelon form up to
permutation of columns.

Allowing arbitrary semigroup orders on monomials, we give a refinement of Norman’s com-
pletion process in the following. So, instead of just adding new rules and keeping track of pairs of
rules that have not been dealt with yet, we modify existing rules so that critical pairs no longer
arise after they were dealt with. To this end, when handling critical pairs in Algorithm 3, we
split the reduction rule with larger lmt(Q) into two parts: in the part that overlaps with the
second rule to form a critical pair we eliminate ltt(P ) in line 10 as before, while the part where
the condition of the second rule is not satisfied is used to replace the original rule. Forming the
latter part in line 6 makes it necessary to deal with more general conditions than conjunctions of
equations only, allowing logical combinations of equations and inequations at least. In addition,
in order to delay creating new rules as much as possible, we do further reductions before creating
new reduction rules from (P,Q,B) computed in line 10. Altogether, this reduces the number of
critical pairs being considered. This even causes the refined version to terminate in some cases
where Norman’s original completion process does not terminate. In the appendix, we look at
such an example in detail.

In short, the main differences of Algorithms 2 and 3 are that our refined version removes
reduction rules in line 4, which never happens in the original version, and that an inner loop
reduces (P,Q,B) further before adding new rules to the reduction system. Moreover, we reduce
conditional identities during the algorithm only by rules that have smaller offset so that lmt(Q)
does not change during reduction. This preserves exact offset of rules, as Lemma 27 will show.

Example 23. Continuing Example 9, we apply Algorithm 3 to the basic rules {r1, r2} computed
in Example 17. With this input, the computation is still very similar to that of Algorithm 2
shown in Example 22. In the first iteration of the main loop, the only critical pairs arise from
r1 and r2. Since lmt(Q1) = t−1

2 < t2 = lmt(Q2), we remove r2 from S in line 4. In the
next line, the condition B2 ∧ ¬B1 = (x2 = 1 ∧ ¬(x2 ≥ 1 ∧ x2 6= 3)) cannot be satisfied, so we
do not need to include a replacement for r2 into S. The subsequent reduction yields the same
(P,Q,B) as in Example 22. In line 11, we determine that this (P,Q,B) is not reducible by
any element of S = {r1} since condition x2 = 1 does not imply (x2 ≥ 3 ∧ x2 6= 5) ∧ x2 6= 5
over N. So, we proceed with creating r3 as in Example 22 and including it into S. In the next
iteration of the main loop, similarly to the first one, we can only deal with r1 and r3 and we
remove r3 from S since lmt(Q1) = t−1

2 < t1 = lmt(Q3). Again, due to the condition in line 5,
there is no immediate replacement for r3 and we proceed with line 10. The result (P,Q,B) with
lmt(P ) = t−2

2 and B = (x2 = 2) is the same as in Example 22. Since x2 = 2 does not imply
(x2 ≥ 3 ∧ x2 6= 5) ∧ x2 6= 5 over N, the inner loop cannot be entered at line 11 and we create r4
as in Example 22. Now, S = {r1, r4} does not give rise to any critical pairs, so the algorithm
returns this complete reduction system S.

Keep in mind that Remark 13 not only affects line 5 of Algorithm 3 but also allows to choose
any ri, rj with lmt(Qi) < lmt(Qj) in line 3 even if they do not form a critical pair. As a result, the
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Algorithm 3 Refinement of Norman’s completion process

Input: a semigroup order < on monomials and a precomplete reduction system {r1, . . . , rm} for
L w.r.t. < such that for any γ ∈ Nn there is at most one ri = (Pi, Qi, Bi) with ∃α ∈ Nn :
Bi|x=α ∧ lmt(Qi)t

α = tγ

Output: complete reduction system S for L w.r.t. <
1. S := {r1, . . . , rm}
2. while S has two elements with distinct offset that form a critical pair do
3. choose some ri = (Pi, Qi, Bi), rj = (Pj , Qj , Bj) ∈ S with lmt(Qi) < lmt(Qj) that form a

critical pair
4. S := S \ {rj}
5. if ∃α ∈ Nn : Bj |x=α ∧ ¬Bi|x=α then

6. rm+1 := (Pj , Qj , Bj ∧ ¬Bi)
7. S := S ∪ {rm+1}
8. m := m+ 1
9. end if

10. reduce (Pj , Qj, Bi ∧Bj) by ri to obtain (P,Q,B)
11. while (P,Q,B) can be reduced by some r ∈ S with δ(r) < δ(P,Q,B) do
12. choose some r ∈ S with δ(r) < δ(P,Q,B) that can reduce (P,Q,B)
13. replace (P,Q,B) with its reduction by r
14. end while

15. create new reduction rules rm+1, . . . , rm+k from (P,Q,B) by Algorithm 1
16. S := S ∪ {rm+1, . . . , rm+k}
17. m := m+ k
18. end while

19. return S

triples created in lines 6 and 10 may involve conditions that cannot be satisfied in Nn. Moreover,
Remark 13 allows to end the inner loop at line 11 at any point. In particular, the inner loop can
be terminated even if an infinite sequence of reductions would be possible. In any case, we can
assume that line 12 succeeds whenever such an r was correctly determined to exist in line 11.

The remainder of this section is devoted to proving correctness of Algorithm 3 and showing
that it preserves exact offset. Towards correctness, note that the choice in line 3 is always possible
by the condition of the main loop and that the reduction in line 10 is always possible if ri, rj
are reduction rules, since reducibility ∀α ∈ Nn : (Bi ∧ Bj)|x=α =⇒ (Bi|x=α ∧ lct(Pi)|x=α 6= 0)
trivially holds in this case. Since Algorithm 3 may not terminate (even when < is Noetherian),
we prove its correctness in Theorem 26 only if it terminates. Before doing so, we show the
invariant properties in Lemma 25, which hold independent of termination. To this end, we
need the following simple result about reduction of conditional identities by reduction rules with
smaller offset.

Lemma 24. If (P,Q,B) is reduced to (P̃ , Q̃, B) by r1 such that δ(r1) < δ(P,Q,B), then
lmt(Q) = lmt(Q̃) and for all α ∈ Nn with B|x=α we have lct(Q)|x=α 6= 0 if and only if
lct(Q̃)|x=α 6= 0.

Proof. With r1 = (P1, Q1, B1) and lmt(P ) = tβ , we obtain

lmt(Q1)t
β = δ(r1)t

β < δ(P,Q,B)tβ = lmt(Q).

So, with g := gcd(lct(P ), lct(P1)|x=x+β) ∈ C[x1, . . . , xn], we have ltt(Q̃) =
lct(P1)|x=x+β

g ltt(Q).
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Hence, lmt(Q̃) = lmt(Q) and lct(Q̃) =
lct(P1)|x=x+β

g lct(Q). Since lct(P1)|x=α+β 6= 0 for all α ∈ Nn

with B|x=α, we have for all such α that lct(Q)|x=α 6= 0 if and only if lct(Q̃)|x=α 6= 0.

Lemma 25. At the end of each iteration of the main loop in Algorithm 3, the set S is again a
reduction system for L w.r.t. < that satisfies all properties imposed on the input.

Proof. Considering one iteration of the main loop, let Sold be the set S at the beginning of the
current iteration, let Smid be the set S immediately before executing line 10, and let Snew be
the set S at the end of the current iteration. We show that Snew satisfies the desired properties
whenever Sold does.

First, it is easy to see that Snew is a reduction system for L w.r.t. <, because the operations
performed on any triples encoding a conditional identity for L during the algorithm again yield
triples encoding a conditional identity for L and any triples added into S are even reduction
rules w.r.t. < by construction. Triples (P,Q,B) whose condition B cannot be satisfied in Nn

trivially encode conditional identities for L anyway. For any r = (P,Q,B), we abbreviate
U(r) := {lmt(Q)tα | α ∈ Nn, B|x=α} and V (r) := spanC{P (α, t)t

α | α ∈ Nn, B|x=α} for shorter
notation.

Next, we show that the sets U(r) associated to all r ∈ Snew are pairwise disjoint (i.e. for
any γ ∈ Nn there is at most one (P,Q,B) ∈ Snew with ∃α ∈ Nn : B|x=α ∧ lmt(Q)tα = tγ). By
assumption, all sets U(r) with r ∈ Sold are pairwise disjoint. In line 4, the set U(rj) gets removed,
so it suffices to show that all U(r) with r ∈ Snew \ Sold are pairwise disjoint subsets of U(rj).
To this end, we split U(rj) into two disjoint sets U(Pj , Qj , Bj ∧ ¬Bi) and U(Pj , Qj , Bj ∧ Bi).
If nonempty, the first of them is introduced by the only element of Smid \ Sold based on line 6.
Otherwise, any potential r ∈ Smid \ Sold has empty U(r) anyway. For the second one, we note
that U(Pj , Qj, Bj ∧ Bi) agrees with U(P,Q,B) throughout all reductions in line 10 and the
following small loop, because reduction by rules with smaller offset does not change B or lmt(Q)
at all by Lemma 24. Finally, by Lemma 18, the new sets U(r) with r ∈ Snew \ Smid are pairwise
disjoint subsets of U(P,Q,B).

In order to show Snew is precomplete, it suffices to show that V (rj) is contained in the
sum of all V (r) with r ∈ Snew. We consider V (rj) as the sum of V (Pj , Qj , Bj ∧ ¬Bi) and
V (Pj , Qj, Bj ∧Bi). If non-trivial, the first summand is already covered by Smid based on line 6.
For the second summand, we note that it is contained in the sum of all V (r) with r ∈ Smid ∪
{(P,Q,B)} throughout all reductions in line 10 and the following small loop, because the sum
of the space V (P,Q,B) generated after a reduction step and the space generated by the rule
used for reduction contains the space generated by the triple being reduced based on Lemma 20.
Afterwards, in line 15, V (P,Q,B) is contained in the sum of all V (r) with r ∈ Snew \ Smid by
correctness of Algorithm 1, which concludes the proof.

Theorem 26. If Algorithm 3 terminates for a given input, the output S is a complete reduction
system for L w.r.t. <.

Proof. By the previous lemma, S is a precomplete reduction system for L w.r.t. <. If the
algorithm terminates, there are no critical pairs arising from S, since Remark 13 does not allow
critical pairs being overlooked and Lemma 25 implies that rules with the same offset cannot form
critical pairs. Consequently, S is complete by Lemma 11.

In practice, we will use Algorithm 3 with the set of basic rules for L as input, which are
obtained from (p, 1, true) by Algorithm 1. In addition to being a precomplete reduction system,
the basic rules satisfy the conditions for the input of Algorithm 3 by Lemma 18. These rules
always have exact offset by Lemma 16 and this property is preserved throughout the algorithm.
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Lemma 27. If each reduction rule in the input of Algorithm 3 has exact offset, then each
reduction rule created during the algorithm has exact offset as well.

Proof. It suffices to show this for one iteration of the main loop. The reduction rule created in
line 6 trivially has exact offset, since it uses the same Qj as the rule rj and the condition Bj∧¬Bi

implies Bj . Similarly, (Pj , Qj , Bi ∧Bj) in line 10 has exact offset. Then, Lemma 24 shows that
lct(Q)|x=α 6= 0 holds for all α ∈ Nn satisfying B|x=α after reduction in line 10 and also after the
subsequent loop, since B = Bj ∧ Bi. Therefore, the reduction rules created immediately after
this inner loop from (P,Q,B) will have exact offset by Lemma 18.

4 Infinite reduction systems

As said above, complete reduction systems may be infinite. However, we can still find regular
patterns of the reduction rules for certain examples. So in this section, we present infinite
complete reduction systems for two differential fields. In each system shown below, the number
of monomials in P,Q of rules is unbounded, so no finite reduction system can induce the same
reduction relation. To keep things simple, we only look for integrals with denominator v = 1. In
other words, we look at the integration problem in the polynomial ring with derivation ∂̃. The
semigroup orders of monomials will be specified by matrices as follows. Any matrixM ∈ GLn(R)
induces a semigroup order < on (Laurent) monomials by letting tα < tβ if and only if the first
nonzero entry of M · (β − α) ∈ Rn is positive.

4.1 Airy functions

As in Example 3, we consider the differential field generated by constants and the Airy func-
tion Ai(x) with the usual derivation d

dx . This differential field is modelled as C(t1, t2, t3) with
derivation ∂ such that

∂t1 = 1, ∂t2 = t3, and ∂t3 = t1t2.

Since the denominator of the derivation is 1, we have ∂̃ = ∂ and (C[t1, t2, t3], ∂) forms a differential
ring. Using Norman’s setting of reduction rules similar to Example 5, the authors presented two
complete reduction systems for this situation w.r.t. different monomial orders in [DR23]. Below,
we reformulate one of them using the new formalism introduced in Section 3 for further use in

Section 5.3. In particular, we use the order induced by
(

0 1 1
2 0 1
0 0 1

)

.

Since ∂tα = α1t
α−(1,0,0) + α2t

α+(0,−1,1) + α3t
α+(1,1,−1) for all α ∈ N3, we have p(x, t) :=

x1t
−1
1 +x2t

−1
2 t3 + x3t1t2t

−1
3 , cf. (16), and (p, 1, true) encodes a conditional identity, which is not

a reduction rule yet since lmt(p) 6= 1. Then, applying Algorithm 1 to (p, 1, true) yields three
basic rules

((x2 + 1) + (x3 − 1)t1t
2
2t

−2
3 + x1t

−1
1 t2t

−1
3 , t2t

−1
3 , x3 ≥ 1)

((x1 − 1)t−2
1 t−1

2 t3 + (x3 + 1), t−1
1 t−1

2 t3, x2 = 1 ∧ x1 ≥ 1)

(x1 + 1, t1, x2 = 0 ∧ x3 = 0),

where we only show the simplified and equivalent version of conditions B.
When applying Algorithm 2 and Algorithm 3 to these basic rules, we find that neither of

them terminates, which means the complete reduction system for Airy functions is infinite. In
particular, our refined completion process replaces the second basic rule by infinitely many new
rules obtained via successive reduction by the generic rule. However, due to the specific monomial
order above and by computing a large number of reduction rules, we observe that monomials arise
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in the rules following a pattern and that their coefficients also satisfy some kind of patten with
respect to (x1, x2, x3). Based on that, we can present a complete reduction system as follows.

Theorem 28. The following are reduction rules for L = ∂ w.r.t. < defined above.

(i) The generic rule is the first basic rule as above, which is equal to

(
(x2 + 1) + (x3 − 1)t1t

2
2t

−2
3 + x1t

−1
1 t2t

−1
3 , t2t

−1
3 , x3 ≥ 1

)
.

(ii) For every odd integer j ≥ 1, a reduction rule is given by

Pj = 1 +

j+1
2∑

m=1

cj,m(x1 −m)t−m−1
1 t−2m+1

2 t2m−1
3

Qj =

j+1
2∑

m=1

cj,mt
−m
1 t−2m+1

2 t2m−1
3

Bj =

(

x3 = 0 ∧ x2 = j ∧ x1 ≥
j + 1

2

)

,

where

cj,m = (−1)m+1 (j − 1)!!

(j − 2m+ 1)!!(2m− 1)!!
.

(iii) For every even integer j ≥ 0, a reduction rule is given by

Pj = bj,0 +

j
2∑

m=1

bj,m+1(x1 −m)t−m−1
1 t−2m+1

2 t2m−1
3

Qj = bj,1

j
2∑

m=0

(−1)m
( j

2

m

)

t−m+1
1 t−2m

2 t2m3 +

j
2∑

m=1

bj,m+1t
−m
1 t−2m+1

2 t2m−1
3

Bj =

(

x3 = 0 ∧ x2 = j ∧ x1 ≥
j

2
− 1

)

,

where bj,0 = x1 + 1− j
4 and

















(x1 + 1)
(
j/2
0

)
1

−x1
(
j/2
1

)
j − 1 3

(x1 − 1)
(
j/2
2

)
j − 3 5

...
. . .

. . .

(−1)
j
2−1(x1 + 2− j

2 )
(

j/2
j/2−1

)
3 j − 1

(−1)
j
2 (x1 + 1− j

2 )
(j/2
j/2

)
1

















·
















bj,1

bj,2

bj,3

...

bj, j2
bj, j2+1
















=















bj,0

0

0

...

0

0















.

Proof. For all (P,Q,B) in the statement, it is straightforward to verify using the product rule
that L(Q(α, t)tα) = P (α, t)tα for all α ∈ N3 with B|x=α. We further prove that the determinant
of above coefficient matrix in (iii) is equal to bj,0 · j!!, so that each bj,i belongs to C[x1, x2, x3] by
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Cramer’s rule for i ∈ {1, 2, . . . , j2 +1}. We denote the above matrix by A = (am,n)0≤m≤ j
2 ,0≤n≤ j

2

with 





am,0 = (−1)m(x1 + 1−m)
( j

2
m

)
0 ≤ m ≤ j

2

am,m = j − 2m+ 1 1 ≤ m ≤ j
2

am−1,m = 2m− 1 1 ≤ m ≤ j
2

am,n = 0 otherwise.

Then by the Laplace expansion with respect to the first column of A we get

det(A) =

j
2∑

m=0

(x1 + 1−m)

( j
2

m

)

(2m− 1)!!(j − 2m− 1)!!.

In order to show det(A) = bj,0 · j!!, we only need to prove the following identities

n∑

m=0

(
n

m

)

(2m− 1)!!(2n− 2m− 1)!! = (2n)!!

n∑

m=0

m

(
n

m

)

(2m− 1)!!(2n− 2m− 1)!! =
n

2
(2n)!!,

where n = j
2 is a nonnegative integer. These identities can be shown by the Wilf–Zeilberger

method, which implies det(A) = bj,0 · j!! and bj,1, . . . , bj, j2+1 ∈ C[x1, x2, x3].

Theorem 29. The reduction system given in Theorem 28 is complete. That is, no monomial of
the form ti1t

j
2 such that i ≤ j

2 − 2, for even j, or i ≤ j−1
2 , for odd j, is the leading monomial of

any derivative in C[t1, t2, t3].

Proof. Let S be the reduction system given by above theorem. We first prove that every non-
constant monomial occurs as leading monomial of Q(α, t)tα for some (P,Q,B) ∈ S and α ∈ N3

with B|x=α. Let (i, j, k) ∈ N3 be nonzero. If j ≥ 1, then lm(Q(α, t)tα) arising from the generic
rule with α = (i, j − 1, k + 1) is equal to ti1t

j
2t

k
3 . Otherwise, ti1t

k
3 is the leading monomial of

Qk(α, t)t
α for α = (i+ k+1

2 , k, 0), if k is odd, or of Qk(α, t)t
α for α = (i+ k

2 − 1, k, 0), if k is even.

Note that (i, j, k) is nonzero, so i + k
2 − 1 ≥ 0 if j = 0. Altogether, S is precomplete by (20).

On the other hand, no two reduction rules in S form a critical pair, because any two conditions
among x3 ≥ 1 and all Bj , j ∈ N, are inconsistent. Then, by Lemma 11, the reduction system
shown in Theorem 28 is complete, that is, a monomial is the leading monomial of a derivative
in C[t1, t2, t3] if and only if it is reducible by S. So, a monomial whose exponent vector does not
satisfy the condition B of any (P,Q,B) ∈ S is not the leading monomial of any derivative in
C[t1, t2, t3].

Example 30. Revisiting Example 3, we now apply the complete reduction system given by
Theorem 28 to compute u ∈ C[t1, t2, t3] such that ∂u = f for f = t23. First, the exponents
α = (0, 0, 2) of t23 satisfy the condition x3 ≥ 1 of the generic rule. So, instantiating (19) as
t23 = L(t2t3)− t1t

2
2, we reduce f to the remainder −t1t22 and we obtain t2t3 as contribution to u.

Next, the exponents α = (1, 2, 0) of the leading monomial of the remainder satisfy the condition
B2 = (x3 = 0 ∧ x2 = 2 ∧ x1 ≥ 0) of the reduction rule (P2, Q2, B2) obtained by setting j = 2
in Theorem 28 (iii). Explicitly, we have P2 = (x1 +

1
2 ) +

x1

2 (x1 − 1)t−2
1 t−1

2 t3 as well as Q2 =
1
2 (t1 − t−2

2 t23)+
x1

2 t
−1
1 t−1

2 t3. This yields P2(α, t)t
α = 3

2 t1t
2
2 and Q2(α, t)t

α = 1
2 (t

2
1t

2
2− t1t

2
3+ t2t3).

Therefore, the remainder is reduced to −t1t22− (− 2
3 )P2(α, t)t

α, which equals zero. Altogether, we
obtain the solution u = t2t3 −

2
3Q2(α, t)t

α = − 1
3 t

2
1t

2
2 +

1
3 t1t

2
3 +

2
3 t2t3.
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4.2 Complete elliptic integrals

Let K(x) and E(x) be the complete elliptic integrals of first and second kind, respectively, where

K(x) =

∫ π/2

0

dy
√

1− x2 sin(y)2
and E(x) =

∫ π/2

0

√

1− x2 sin(y)2 dy.

In this subsection, we present a complete reduction system for the differential ring generated over
constants by x and above two complete elliptic integrals. Modelling x,K(x), E(x) by t1, t2, t3,
respectively, we first generate the differential field (C(t1, t2, t3), ∂) with

∂t1 = 1, ∂t2 =
t3 − (1− t21)t2
t1(1− t21)

, and ∂t3 =
t3 − t2
t1

.

Multiplying ∂ with the denominator t1(1− t21), we further get a differential ring (C[t1, t2, t3], ∂̃)
with

∂̃t1 = t1(1 − t21), ∂̃t2 = t3 − (1 − t21)t2, and ∂̃t3 = (1− t21)(t3 − t2).

Similar to the previous example involving Airy functions, by (16), it is easy to find

p = (x1 − x2 + x3)(1− t21) + x3t
2
1t2t

−1
3 + x2t

−1
2 t3 − x3t2t

−1
3 ,

such that (p, 1, true) encodes a conditional identity for L = ∂̃. We are going to use two different
monomial orders to construct a complete reduction system.

First, we use the block order induced by
(

0 1 1
0 0 1
1 0 0

)

. Then, applying Algorithm 1 to (p, 1, true),

we get basic reduction rules as follows:
(

1 + x2 −
(x1 − x2 + x3 − 2)(t21 − 1)t2

t3
+

(x3 − 1)(t21 − 1)t22
t23

, t2t
−1
3 , x3 ≥ 1

)

(

(2− x1 + x2 − x3)(1 − t−2
1 ) +

x3t2
t3

−
x3t2
t21t3

, t−2
1 , x2 = 0 ∧ x1 ≥ 2 ∧ x1 + x3 6= 2

)

.

According to Algorithm 3, the latter rule is replaced by infinitely many new ones, which can be
equivalently described as follows.

Theorem 31. The following are reduction rules for L = t1(1− t21)∂ w.r.t. the block order defined
above.

(i) The generic rule is the first basic reduction rule as above.

(ii) For all j ∈ N, we have reduction rules with

Pj =

j+1
∑

n=0

aj,nt
2n−2j−2
1

Qj =

j
∑

m=0

m∑

n=0

bj,m,nt
2n−2j−2
1 tm−j

2 tj−m
3

Bj = (x3 = 0 ∧ x2 = j ∧ x1 ≥ 2j + 2 ∧ x1 6= 2),

where bj,0,0 = 1 and bj,m,n with 1 ≤ m ≤ j and 0 ≤ n ≤ m satisfies the recursion

bj,m,n =
−x1 + j + 2(m− n)

m
bj,m−1,n +

x1 − j − 2(m− n+ 1)

m
bj,m−1,n−1

+
j + 2−m

m
bj,m−2,n +

m− j − 2

m
bj,m−2,n−1,
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with the assumption that bj,m,n = 0 when n > m or n < 0, and where

aj,n = (x1 − 3j − 2 + 2n)bj,j,n − (x1 − 3j − 4 + 2n)bj,j,n−1 − bj,j−1,n + bj,j−1,n−1.

Proof. For all (P,Q,B) in the statement, it is a straightforward computation in C[t1, t2, t3]
to verify that L(Q(α, t)tα) = P (α, t)tα for all α ∈ N3 with B|x=α. It remains to show that
aj,j+1|x=α 6= 0 whenever Bj |x=α. By the assumption that bj,m,n = 0 for n > m, we have
aj,j+1 = (j + 2 − x1)bj,j,j and bj,m,m = x1−j−2

m bj,m−1,m−1 for all m with 1 ≤ m ≤ j. Since

bj,0,0 = 1 for all j ∈ N, it is easy to check that aj,j+1 = − (x1−j−2)j+1

j! , hence aj,j+1|x=α is

nonzero for all α ∈ N3 satisfying Bj |x=α.

Theorem 32. The reduction system given in Theorem 31 is complete. In particular, no mono-
mial of the form ti1t

j
2 with i < max(2j+2, 3) is the leading monomial of any element in the image

of C[t1, t2, t3] under ∂̃.

Proof. Let S be the set of reduction rules given in Theorem 31. For showing completeness, we
verify that

(i) every non-constant monomial occurs as leading monomial of Q(α, t)tα for some (P,Q,B) ∈
S and α ∈ N3 with B|x=α and

(ii) no two elements of S form a critical pair.

For proving (i), let (i, j, k) ∈ N3 be nonzero. If j ≥ 1, we have lm(Q(α, t)tα) = ti1t
j
2t

k
3 from the

generic rule with α = (i, j − 1, k + 1) satisfying α3 ≥ 1. If j = 0, choosing α = (i+ 2k + 2, k, 0)
yields lm(Qk(α, t)t

α) = ti1t
k
3 and Bk|x=α. Thus, (i) holds and S is precomplete. It is easy to see

(ii), since any two conditions among x3 ≥ 1 and all Bj with j ∈ N in Theorem 31 are inconsistent.
Then, by Lemma 11, we obtain completeness, i.e. the monomials reducible by S are precisely
those that arise as leading monomials of elements in the image of C[t1, t2, t3] under ∂̃.

On the other hand, we are going to show another complete reduction system for the same
operator L with respect to a different order by swapping the two blocks of the above block

order of monomials, i.e. we use the order induced by
(

1 0 0
0 1 1
0 0 1

)

. Then, we see that the reduction

rules below are much easier than before with respect to this order. They not only contain fewer
monomials but even admit a simple fully explicit representation.

Theorem 33. The following are reduction rules for L = t1(1− t21)∂ w.r.t. the block order < with
t2 < t3 < t1 defined above.

(i) The generic rule is given in terms of

P0 = − (x1 − x2 + x3 − 2) + x3t2t
−1
3 + x2t

−2
1 t−1

2 t3

+ (x1 − x2 + x3 − 2)t−2
1 − x3t

−2
1 t2t

−1
3

Q0 = t−2
1

B0 = (x1 ≥ 2 ∧ x1 − x2 + x3 6= 2)

(23)

(ii) For each k ∈ N+, we additionally have a reduction rule given by

Pk =

(

t3 −
t2
2

)k−2 (

(x1 + k − 1)t3 − (
x1
2

+ k − 1)t2

)

t−k+1
3

Qk = t2

(

t3 −
t2
2

)k−1

t−k
3

Bk = (x3 = k ∧ x1 + x3 6= 1 ∧ x2 = x1 + k − 2)

(24)
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Proof. Verifying that these are indeed reduction rules for L w.r.t. < can be done by easy
computations in the differential ring.

Again, for completeness of this reduction system, it is easy to verify that every non-constant
monomial ti1t

j
2t

k
3 , with i, j, k not all zero, occurs as a leading monomial of either Q0t

i+2
1 tj2t

k
3 or

Qk+1t
i
1t

i+k−1
1 tk+1

3 , and that no critical pairs are formed. So, monomials that cannot be reduced
by these rules are indeed not reducible w.r.t. the chosen monomial order. Nonetheless, we also
present another proof of completeness as follows.

Theorem 34. If a monomial is neither reducible by (23) nor by (24), then it is not the leading
monomial of any element in the image of C[t1, t2, t3] under ∂̃.

Proof. Since ∂̃tα is homogeneous w.r.t. (0, 1, 1) with the same degree as tα, monomials with
different deg(0,1,1) can be considered independently of each other. For another monomial order,
it has already been shown in Theorem 32 that any monomial is the leading monomial of an
element in the image of C[t1, t2, t3] under ∂̃, unless it is of the form ti1t

d
2 with i ≤ max(2, 2d+1).

Therefore, it is sufficient to show that for every d ∈ N there are exactly max(3, 2d+2) monomials
with deg(0,1,1)(t

α) = d that can be reduced by neither (23) nor (24) w.r.t. the present monomial
order.

If d = 0, then only (23) can be applied and all ti1 with i ≥ 3 can be reduced leaving exactly
the same irreducible monomials 1, t1, t

2
1 as for the previous monomial order. If d ≥ 1, then a

monomial ti1t
j
2t

k
3 , with j + k = d and i ≥ 2, can be reduced by (23), if j 6= i + k − 2, and by

(24), if j = i + k − 2 and k ≥ 1. Hence, td+2
1 td2 is the only irreducible monomial with i ≥ 2. A

monomial ti1t
j
2t

k
3 , with j+ k = d and i ≤ 1, can only be reduced by (24) and only if j = i+ k− 2,

which is equivalent to j = d+i
2 −1 and k = d−i

2 +1 ≥ 1. Hence, among the monomials with i ≤ 1,

t
(d mod 2)
1 t

⌊ d−1
2 ⌋

2 t
⌊ d
2 ⌋+1

3 is the only reducible one and the other 2d+ 1 are irreducible. Altogether,
this gives 2d+2 irreducible monomials with j+k = d, which is precisely the number determined
w.r.t. the previous monomial order.

5 Rigorous degree bounds

Solving (10) by ansatz usually relies on determining a finite candidate set for the monomials in
supp(u) via degree bounds like (4)–(7), which typically are only heuristic for given f and v. For
solving our main problem (11), we now investigate degree bounds for L given by (15) and (16)
that are rigorous in the sense of the following definition. Throughout this section, C[t1, . . . , tn] is
the ring of polynomials with coefficients in a field C of characteristic zero in the indeterminates
t1, . . . , tn and L denotes a C-linear map from C[t1, . . . , tn] to itself.

Definition 35. Let w ∈ Rn. A function ϕ : R → [−∞,∞] is called a degree bound for L w.r.t.
weights w, if for every nonzero f ∈ im(L) there exists g ∈ C[t1, . . . , tn] with f = L(g) s.t.

degw(g) ≤ ϕ(degw(f)). (25)

Despite often being only heuristic, all standard bounds used in Risch–Norman integration
could essentially be represented by functions of the form ϕ(x) = max(x + b, c) with b, c ∈ Z

w.r.t. some w = ei or w = (1, . . . , 1). By considering concrete examples, we will see later
that the situation for rigorous degree bounds is different. For given L induced by (16), there
might be weights w that do not admit any nontrivial degree bounds ϕ with ϕ(degw(f)) <
sup{degw(t

α) | α ∈ Nn} for some nonzero f ∈ im(L), see Theorem 46 in the case of Airy
functions. Even if nontrivial degree bounds ϕ exist for fixed L and w, it might be that none of
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them is asymptotically equivalent to x as x→ ∞, see Example 45 for w = (1, . . . , 1). Abstractly,
by considering the whole set of solutions L−1(f) := {g ∈ C[t] | L(g) = f} for any f ∈ im(L), we
can think of degree bounds that are optimal as follows.

Lemma 36. Let w ∈ Rn be any weight vector such that the function ϕ∗ : R → [−∞,∞] can be
defined by

ϕ∗(x) := sup{min{degw(g) | g ∈ L−1(f)} | f ∈ im(L) ∧ degw(f) = x}, (26)

i.e. for every nonzero f ∈ im(L) the set {degw(g) | g ∈ L−1(f)} has a minimal element. Let
D := {degw(f) | f ∈ im(L) \ {0}}. Then, the following hold:

1. For all f ∈ im(L) \ {0} there exists g ∈ L−1(f) with degw(g) ≤ ϕ∗(degw(f)).

2. For all x ∈ D with ϕ∗(x) < ∞ and all ε > 0, there exists f ∈ im(L) with degw(f) = x
such that for all g ∈ L−1(f) we have degw(g) > ϕ∗(x)− ε.

3. For all x ∈ D with ϕ∗(x) = ∞ and all ε > 0, there exists f ∈ im(L) with degw(f) = x
such that for all g ∈ L−1(f) we have degw(g) >

1
ε .

4. On D, the restriction ϕ∗|D is (weakly) monotonically increasing.

Proof. The first property immediately follows form the definition (26), if we choose g ∈ L−1(f)
with minimal w-degree, which exists by assumption. Similarly, properties 2 and 3 are direct
consequences of (26) as well.

Finally, to show monotonicity, we take x1, x2 ∈ D with x1 ≤ x2 and we take ε > 0 arbitrary.
By virtue of properties 2 and 3, there exists f1 ∈ im(L) with degw(f1) = x1 such that for
all g1 ∈ L−1(f1) we have degw(g1) > min(ϕ∗(x1) − ε, 1ε ). We also fix some f2 ∈ im(L) with
degw(f2) = x2. By assumption on w, we can choose g1, g2 ∈ C[t] with L(gi) = fi and degw(gi) =
min{degw(g) | g ∈ L−1(fi)}.

Next, we show that degw(g1) ≤ ϕ∗(x2). If degw(g1) ≤ degw(g2), then we immediately get
degw(g1) ≤ degw(g2) ≤ ϕ∗(x2). Otherwise, if degw(g1) > degw(g2), then there exists c ∈ C
such that f := f1 + cf2 satisfies degw(f) = x2 and g := g1 + cg2 satisfies degw(g) = degw(g1).
If some g̃ ∈ C[t] would satisfy L(g̃) = f and degw(g̃) < degw(g), then L(g̃ − cg2) = f1 and
degw(g̃ − cg2) ≤ max(degw(g̃), degw(g2)) < max(degw(g), degw(g1)) = degw(g1) would follow in
contradiction to minimality of degw(g1). Hence, degw(g) = min{degw(g̃) | g̃ ∈ L−1(f)} holds.
Together with degw(f) = x2, this implies degw(g1) = degw(g) ≤ ϕ∗(x2) again.

Altogether, we obtain min(ϕ∗(x1) − ε, 1ε ) ≤ ϕ∗(x2) independent of g1, g2. Since ε > 0 was
arbitrary, it follows from ϕ∗(x1) = sup{min(ϕ∗(x1) − ε, 1ε ) | ε > 0} that ϕ∗(x1) ≤ ϕ∗(x2) as
claimed.

Monotonicity is not only a natural property of optimal degree bounds as shown above. In
general, monotonicity allows to construct degree bounds for new weight vectors from existing
ones as shown by the following lemma.

Lemma 37. Let f ∈ C[t1, . . . , tn], w1, . . . , wk ∈ Rn and let ϕ1, . . . , ϕk be (weakly) monotonically
increasing maps from R to [−∞,∞]. Let v ∈ Rn, c1, . . . , ck ∈ R, and λ1, . . . , λk > 0 such that

vj ≤
∑k

i=1 λiwi,j and degwi
(f) ≤ ci degv(f). Then,

ϕ(x) :=

k∑

i=1

λiϕi(cix) (27)

satisfies degv(g) ≤ ϕ(degv(f)) for all g ∈ C[t1, . . . , tn] with degwi
(g) ≤ ϕi(degwi

(f)) for every
i ∈ {1, . . . , k}.
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Proof. Let g ∈ C[t1, . . . , tn] such that degwi
(g) ≤ ϕi(degwi

(f)) holds for every i ∈ {1, . . . , k}.
The case g = 0 is trivial. For g 6= 0, let tα ∈ supp(g) with degv(t

α) = degv(g). Then, by

vj ≤
∑k

i=1 λiwi,j , we have degv(g) =
∑n

j=1 vjαj ≤
∑n

j=1

∑k
i=1 λiwi,jαj =

∑k
i=1 λi degwi

(tα)
since αj ≥ 0. Using tα ∈ supp(g) and the assumptions on ϕi and ci, it follows that degwi

(tα) ≤
degwi

(g) ≤ ϕi(degwi
(f)) ≤ ϕi(ci degv(f)). Altogether, with λi > 0, we obtain degv(g) ≤

∑k
i=1 λi degwi

(tα) ≤
∑k

i=1 λiϕi(ci degv(f)) = ϕ(degv(f)).

Note that in the following theorem, the value +∞ does not appear in the degree bounds and
we restrict to nonnegative weights. So, we can use the construction of the previous lemma to
obtain a new degree bound that excludes the value +∞ and is monotonically increasing as well.

Theorem 38. Let w1, . . . , wk ∈ (R+
0 )

n and let ϕ1, . . . , ϕk be (weakly) monotonically increasing
maps from R to [−∞,∞[. Furthermore, let v ∈ (R+

0 )
n such that for all j ∈ {1, . . . , n} with

vj > 0 there exists i ∈ {1, . . . , k} such that wi,j > 0 and ∀m ∈ {1, . . . , n} : vm = 0 ⇒ wi,m = 0.
Then, there is a (weakly) monotonically increasing map ϕ : R → [−∞,∞[ such that degv(g) ≤
ϕ(degv(f)) holds for all f, g ∈ C[t1, . . . , tn] that satisfy degwi

(g) ≤ ϕi(degwi
(f)) for every i ∈

{1, . . . , k}.

Proof. If v = 0, then the statement trivially holds with ϕ(x) := 0. So, we assume v 6= 0 now.

By assumption on v, there are λ1, . . . , λk ≥ 0 with vj ≤
∑k

i=1 λiwi,j for all j ∈ {1, . . . , n}
and such that for all i with λi > 0 we have ∀m ∈ {1, . . . , n} : vm = 0 ⇒ wi,m = 0. With-
out loss of generality, we assume that λ1, . . . , λk > 0, since we can remove some of the wi

and their corresponding ϕi. Then, w1,j = . . . = wk,j = 0 holds for all j ∈ {1, . . . , n} with
vj = 0. Hence, with ci := max{wi,j

vj
| j ∈ {1, . . . , n} ∧ vj > 0} ≥ 0, we have degwi

(tα) =
∑n

j=1 wi,jαj ≤
∑n

j=1 civjαj = ci degv(t
α) for all α ∈ Nn and therefore degwi

(f) ≤ ci degv(f) for

all f ∈ C[t1, . . . , tn]. Now, Lemma 37 implies that ϕ(x) :=
∑k

i=1 λiϕi(cix) satisfies degv(g) ≤
ϕ(degv(f)) whenever degwi

(g) ≤ ϕi(degwi
(f)) holds for every i ∈ {1, . . . , k}. Since all λi, ci are

nonnegative and all ϕi are monotonically increasing and do not take the value +∞, ϕ too is
monotonically increasing and does not take the value +∞.

In particular, the following two special cases are covered by the above theorem. By choosing
the standard unit vectors wi = ei, we see that a collection of finite degree bounds ϕ1, . . . , ϕn

for all partial degrees gives rise to a finite bound ϕ(x) :=
∑n

i=1 ϕi(x) for the total degree. From
a finite degree bound ϕ for a single nonzero weight vector w ∈ (R+

0 )
n, we obtain finite bounds

ψ(x) := λϕ(cx) for any weight vectors v ∈ (R+
0 )

n that have zeros in exactly the same positions
as w by letting λ := max{ vi

wi
| wi 6= 0} and c = max{wi

vi
| wi 6= 0}.

5.1 Bounds based on homogeneity

For given Laurent-polynomial p in t1, . . . , tn, let us now assume that w ∈ Rn is such that p
is w-homogeneous. Based on (15), it is straightforward to see that the following is true with
d := degw(p). For any f ∈ im(L) there exists g ∈ C[t1, . . . , tn] such that L(g) = f and
degw(g) ≤ degw(f)− d. In other words,

ϕ(x) := x− d (28)

is a degree bound for L w.r.t. weights w. In fact, the bound results from the following stronger
statement that allows to split the problem (11), if (16) is w-homogeneous.

Lemma 39. Let w ∈ Rn such that p ∈ C[x1, . . . , xn][t1, . . . , tn, t
−1
1 , . . . , t−1

n ] is w-homogeneous of
w-degree d ∈ R as a Laurent-polynomial in t1, . . . , tn. Let f ∈ C[t1, . . . , tn] and let f1, . . . , fk be
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its nonzero w-homogeneous components. Then, f ∈ im(L) if and only if there are w-homogeneous
g1, . . . , gk ∈ C[t1, . . . , tn] such that L(gi) = fi and degw(gi) = degw(fi)− d for all i ∈ {1, . . . , k}.

Proof. Trivially, L(gi) = fi for all i ∈ {1, . . . , k} yields L(
∑k

i=1 gi) =
∑k

i=1 fi = f . Conversely,
let g ∈ C[t1, . . . , tn] such that L(g) = f and let g1, . . . , gm be the w-homogeneous components
of g. Without loss of generality, we assume that L(gi) 6= 0 for all i ∈ {1, . . . ,m}. Since L(gi)

is nonzero and w-homogeneous for all i ∈ {1, . . . ,m},
∑m

i=1 L(gi) =
∑k

i=1 fi implies m = k and
(after possibly permuting the gi) L(gi) = fi for all i ∈ {1, . . . , k}. By (15) and definition of d,
this also yields degw(gi) = degw(fi)− d.

In general, one cannot expect that a nonzero weight vector with this property exists for a given
Laurent-polynomial p. However, it is fairly easy to determine the set of all w ∈ Rn such that p is
w-homogeneous using linear algebra with exponent vectors of the monomials tα ∈ supp(p). So, in
practice, it can still be worthwhile to check for nonzero weight vectors that make p homogeneous,
since they provide an easy way of predicting part of the shape of solutions of L(g) = f . Indeed,
all the examples involving non-elementary functions considered in Section 4 are homogeneous
w.r.t. (0, 1, 1).

5.2 Bounds based on complete reduction systems

In order to prove a rigorous degree bound for L using a reduction system S, a slightly stronger
condition than completeness is needed for the given reduction system. We require that every
element of im(L) can be reduced to zero by S in finitely many steps. For shorter notation in
what follows, we associate to a reduction system S its set of instances

Σ := {(P (α, t)tα, Q(α, t)tα) | (P,Q,B) ∈ S, α ∈ Nn, B|x=α}. (29)

Theorem 40. Let S be a complete reduction system for L w.r.t. < that induces a normalizing
reduction relation on im(L) and let Σ be its set of instances. Let w ∈ Rn be an arbitrary weight
vector that satisfies

∀ (P,Q,B) ∈ S : degw(P ) = 0. (30)

Then, the function ϕ : R → [−∞,∞] given by

ϕ(x) := sup{degw(g) | (f, g) ∈ Σ ∧ degw(f) ≤ x} (31)

is a degree bound for L w.r.t. w. Moreover, this bound is everywhere tight in the sense that, for
all x ∈ {degw(f) | f ∈ im(L) \ {0}} and all ε > 0, there exist f ∈ im(L) and g ∈ L−1(f) with
degw(f) = x and degw(g) > ϕ(degw(f))− ε, if ϕ(x) <∞, or degw(g) >

1
ε , if ϕ(x) = ∞.

Proof. First, let f ∈ im(L) be nonzero. Since the reduction system S induces a normalizing
reduction relation on im(L), there are (f1, g1), . . . , (fm, gm) ∈ Σ and nonzero c1, . . . , cm ∈ C

such that f −
∑m

i=1 cifi ∈ im(L) cannot be reduced further and lm(fj) ∈ supp
(

f −
∑j−1

i=1 cifi

)

for all j ∈ {1, . . . ,m}. From completeness of S it follows that f =
∑m

i=1 cifi. Then, with (30), we

obtain degw(fj) = degw(lm(fj)) ≤ degw

(

f −
∑j−1

i=1 cifi

)

for all j ∈ {1, . . . ,m}, which implies

degw(fj) ≤ degw(f) by induction. Consequently, with g :=
∑m

i=1 cigi, we have L(g) = f and
degw(g) ≤ maxmi=1 degw(gi) ≤ ϕ(degw(f)) by (31). This proves that ϕ is a degree bound for L
w.r.t. w.

Second, to show tightness, let x ∈ {degw(f) | f ∈ im(L) \ {0}} and ε > 0. By definition of x,
there is (f1, g1) ∈ Σ with degw(f1) = x. By (31), there is (f2, g2) ∈ Σ with degw(f2) ≤ degw(f1)
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and degw(g2) > ϕ(degw(f1))− ε resp. degw(g2) >
1
ε , if ϕ(x) <∞ resp. ϕ(x) = ∞. Furthermore,

there exist c1, c2 ∈ C not both zero such that f := c1f1 + c2f2 satisfies degw(f) = degw(f1)
and g := c1g1 + c2g2 satisfies degw(g) = max(degw(g1), degw(g2)). Altogether, we have that
degw(g) ≥ degw(g2) > ϕ(degw(f1)) − ε = ϕ(degw(f)) − ε resp. degw(g) ≥ degw(g2) >

1
ε . This

concludes the proof since L(g) = f .

Remark 41. We emphasize a few immediate properties of the above degree bound.

1. Note that the function ϕ defined by (31) is (weakly) monotonically increasing. In par-
ticular, it is minimal among all monotonically increasing functions satisfying ϕ(x) ≥
sup{degw(g) | (f, g) ∈ Σ ∧ degw(f) = x} for all x.

2. It may happen that the bound ϕ gives a trivial value, i.e. ϕ(x) = sup{degw(t
α) | α ∈ Nn},

for some x.

3. Even though Theorem 40 shows tightness of the bound in a certain sense, the values
determined by (31) may still not be the lowest possible choice. Note the difference to the
properties 2 and 3 of Lemma 36. However, if for all (f, g) ∈ Σ and all g̃ ∈ L−1(f) we have
degw(g̃) ≥ degw(g), then (31) yields the optimal value (26) for every x ∈ {degw(f) | f ∈
im(L) \ {0}}.

Note that, if < is Noetherian, then any reduction system w.r.t. < trivially induces a normal-
izing reduction relation. If the order < is induced by M ∈ GLn(R), then choosing w equal to
the first row of M trivially yields (30). Clearly, any function that is an upper bound of (31) will
yield another degree bound w.r.t. w. For instance, the following degree bound can be computed
easily without looking at the conditions B at all.

Corollary 42. With the assumptions of Theorem 40, we also have

ϕ(x) := x+ sup{degw(Q) | (P,Q,B) ∈ S}. (32)

as a degree bound for L w.r.t. w.

Proof. By (32), we have sup{degw(g) | (f, g) ∈ Σ∧ degw(f) ≤ x} ≤ ϕ(x) for all x ∈ R, since, for
(f, g) = (P (α, t)tα, Q(α, t)tα) ∈ Σ, we have degw(g) ≤ degw(Q)+degw(t

α) = degw(Q)+degw(f)
by (30).

5.3 Examples

According to the above analysis, we can easily find a weighted degree bound depending on a
complete reduction system. Since we have complete reduction systems for Airy functions and
complete elliptic integrals in Section 4 w.r.t. Noetherian orders, we can find several weighted
degree bounds for the two classes of functions as follows.

5.3.1 Airy functions

For the elements of the differential ring (C[t1, t2, t3], ∂) used in Section 4.1 for Airy functions,
it is straightforward to obtain degree bounds of L w.r.t. (0, 1, 1) and (2, 0, 1) because the order

that we consider to find the complete reduction system is induced by
(

0 1 1
2 0 1
0 0 1

)

. Note that the

derivative of each generator is a monomial and deg(0,1,1)(∂ti) = deg(0,1,1)(ti) for i ∈ {1, 2, 3}.
Then, by Lemma 39, a tight degree bound for L w.r.t. (0, 1, 1) is given by ϕ(x) = x.
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Then, for the degree bound w.r.t. (2, 0, 1), we need to apply Theorem 40 to the complete
reduction system shown in Theorem 28 and, thanks to homogeneity, we can even get a more
general result as follows. While (32) easily yields an explicit degree bound w.r.t. many weight
vectors, direct application of (31) allows for refined degree bounds w.r.t. particular weights.

Theorem 43. Let w = (2, w2, w2+1) with w2 ∈ R. Then, a degree bound for L w.r.t. w is given
by ϕ(x) = x+ 2. Moreover, if w2 = −1, another degree bound for L w.r.t. (2,−1, 0) is given by

ϕ(x) =

{

⌊x⌋ − 1 x < −2

2
⌊
x
2

⌋
+ 2 x ≥ −2

.

Proof. Let S be the reduction system given in Theorem 28, which is complete by Theorem 29.
For each (P,Q,B) ∈ S, the leading monomial of P is always equal to 1 by definition and other
monomials appearing in P are of w-degree at most 0, that is, degw(P ) = 0. Since< is Noetherian,
the assumptions of Theorem 40 are satisfied. While we have degw(Q) = 2 for all (P,Q,B) arising
from Theorem 28 (iii), all other rules arising from Theorem 28 have degw(Q) = −1. Hence, by
Corollary 42, we immediately obtain ϕ(x) = x+ 2 as degree bound for L w.r.t. w.

Moreover, if w2 = −1, we evaluate (31) noting that (f, g) = (P (α, t)tα, Q(α, t)tα) ∈ Σ has
degw(f) = degw(t

α) = 2α1 − α2 and degw(g) = degw(Q(α, t)) + degw(f). For (f, g) originating
from Theorem 28 (i), we see that degw(f) can assume any integer value and we have degw(g) =
degw(f)− 1. For (f, g) originating from Theorem 28 (iii), we have α1 ≥ α2

2 − 1 and α2 is even,
hence degw(f) ranges over all even integers ≥ −2, and we have degw(g) = degw(f) + 2, since

bα2,1 = (α2−1)!!
α2!!

6= 0. Altogether, using Remark 41.1, we obtain ϕ(x) ≥ x+ 2 if x is an even
integer ≥ −2, and ϕ(x) ≥ x− 1 if x is any other integer. The minimal (weakly) monotonically
increasing map satisfying these conditions is given by ϕ(x) = ⌊x⌋ − 1 for x < −2, and by
ϕ(x) = 2⌊x

2 ⌋+ 2 for x ≥ −2.

Since the Airy differential equation has no nonzero Liouvillian solutions, it follows that
Const∂(F ) = C, see [DR23], hence ker(L) = C. For w2 ≥ 0, the above theorem together
with ker(L) = C implies that, for any nonzero f, g ∈ C[t1, t2, t3] with f = ∂g, we have

deg(2,w2,w2+1)(g) ≤ deg(2,w2,w2+1)(f) + 2. (33)

By Theorems 38 and 43, we know that a non-trivial degree bound w.r.t. the total degree
exists. In particular, one can show the following.

Corollary 44. For any nonzero f, g ∈ C[t1, t2, t3] such that f = ∂g, we have the total degree
bound

deg(1,1,1)(g) ≤
⌊
3
2 deg(1,1,1)(f)

⌋

+ 1.

Proof. Choosing w2 = 2, λ = 1
2 , and c = 3, we obtain the total degree bound ϕ(x) = 3

2x+1 from
(33) using Lemma 37. Then, the statement follows, since the total degree of g is an integer.

Example 45. Actually, the degree bound w.r.t. (2, w2, w2 + 1) given in Theorem 43 and the
total degree bound given in Corollary 44 are tight. For example, the integrand f = t23 and its
integral g = 1

3 t1t
2
3 +

2
3 t2t3 −

1
3 t

2
1t

2
2 considered in Example 3 satisfy deg(2,w2,w2+1)(f) = 2w2 + 2

and deg(2,w2,w2+1)(g) = 2w2 + 4, so the degree bound (33) is tight. In addition, the total degrees

of f and g are equal to 2 and 4, respectively. So deg(1,1,1)(g) =
⌊
3
2 deg(1,1,1)(f)

⌋

+ 1, that is, the

total degree bound given in Corollary 44 is also tight. Furthermore, equality holds in (33) also
for all instances arising from Theorem 28 (iii) and, regarding Corollary 44,
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1.
∫
Ai′(x)4 dx has total degree 7;

2.
∫
4xAi′(x)4 − 7xAi(x)3Ai′(x) dx has total degree 8;

3.
∫
24Ai′(x)6 − 77Ai(x)3Ai′(x)3 dx has total degree 10;

4.
∫
1092xAi′(x)6 − 6449xAi(x)3Ai′(x)3 dx has total degree 11;

5.
∫
8Ai′(x)8 − 49Ai(x)6Ai′(x)2 dx has total degree 13.

In fact, for any even n ∈ N, one can construct f ∈ C[t1, t2, t3], homogeneous of degree n and free
of t1, such that there exists an integral g ∈ C[t1, t2, t3] satisfying

f = ∂g and g = t
n/2+1
1 tn2 + terms of lower total degree,

which implies that deg(1,1,1)(g) =
3
2 deg(1,1,1)(f) + 1. The construction is similar to the one used

in the proof of Theorem 46 below.

From the above weighted degree bound ϕ(x) = x + 2 w.r.t. the weight w = (2, 0, 1), we
trivially obtain a bound degt1(g) ≤ 1

2 degw(g) ≤
1
2 degw(f) + 1 on the partial degree w.r.t. t1,

which depends on the weighted degree of the integrand, where f = ∂g. However, the only degree
bound for L w.r.t. (1, 0, 0) is the trivial one ϕ(x) = ∞, as shown below.

Theorem 46. For any m,n, d ∈ N with d ≥ 2m+ 1 there exist f, g ∈ C[t1, t2, t3] homogeneous
of degree d w.r.t. (0, 1, 1) such that ∂g = f , degt1(f) = n, and degt1(g) = n+m.

Proof. Let z be a new indeterminate and consider the differential ring (Q[z],′ ) with derivation
′ = d

dz . We define g−1(z) := 0 and g0(z) := 1 and we recursively fix g1, . . . , gm+1 ∈ Q[z] such
that g′l(z) = z2g′l−1(z)− dzgl−1(z)− (m + n− l + 2)gl−2(z) for l = 1, . . . ,m + 1. The choice of

such g1, . . . , gm+1 is not unique, but always satisfies deg(gl) ≤ 2l and coeff(gl, z
2l) = (− d

2 )l/l!,
which follows by induction on l. Then, we let

f := −g′m+1

(
t3
t2

)

tn1 t
d
2 + ngm

(
t3
t2

)

tn−1
1 td2 and g :=

m∑

l=0

gl

(
t3
t2

)

tm+n−l
1 td2.

Evidently, f, g ∈ C[t1, t2, t3] are homogeneous of degree dw.r.t. (0, 1, 1). Applying ∂ to gl(
t3
t2
)tm+n−l

1 td2
yields

(

g′l

(
t3
t2

)(

t1 −
t23
t22

)

+ (m+ n− l)gl

(
t3
t2

)
1

t1
+ dgl

(
t3
t2

)
t3
t2

)

tm+n−l
1 td2.

So, collecting terms in ∂g with same powers of t1, we obtain

∂g = g′0

(
t3
t2

)

︸ ︷︷ ︸

=0

tm+n+1
1 td2

+
m−1∑

l=0

(

g′l+1

(
t3
t2

)

− g′l

(
t3
t2

)
t23
t22

+ (m+ n− l + 1)gl−1

(
t3
t2

)

+ dgl

(
t3
t2

)
t3
t2

)

︸ ︷︷ ︸

=0

tm+n−l
1 td2

+

(

−g′m

(
t3
t2

)
t23
t22

+ (n+ 1)gm−1

(
t3
t2

)

+ dgm

(
t3
t2

)
t3
t2

)

︸ ︷︷ ︸

=−g′

m+1(
t3
t2

)

tn1 t
d
2 + ngm

(
t3
t2

)

tn−1
1 td2.

Hence, we have ∂g = f . Since d ≥ 2m + 1, coeff(gm+1, z
2m+2) = (− d

2 )m+1/(m + 1)! implies
g′m+1(z) 6= 0 and therefore degt1(f) = n. Finally, g0(z) = 1 implies degt1(g) = n+m.
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5.3.2 Complete elliptic integrals

Let (C[t1, t2, t3], ∂̃) be the differential ring used in Section 4.2 for the complete elliptic integrals
of the first kind and of the second kind, which has

∂̃t1 = t1(1 − t21), ∂̃t2 = t3 − (1 − t21)t2, and ∂̃t3 = (1− t21)(t3 − t2).

Since ∂̃ti is homogeneous w.r.t. (0, 1, 1) with degree equal to deg(0,1,1)(ti) for each i ∈ {1, 2, 3},
a tight degree bound for L w.r.t. (0, 1, 1) is given by ϕ(x) = x. Then, different from the Airy
case, we look at the degree bound w.r.t. weights w = (1, w2, w2 + 2), where w2 ∈ R. Note that
the weight w is chosen such that the monomials along the slope of the triangle supp(Qj) for all
j ∈ N arising from the reduction rules shown in Theorem 31 (ii) have the same degree.

Theorem 47. Let w = (1, w2, w2 +2) with w2 ∈ R. Then, ϕ(x) = x− 2 is a degree bound for L
w.r.t. w.

Proof. Let S be the reduction system given in Theorem 31, which is complete by Theorem 32.
For each (P,Q,B) ∈ S, we have degw(P ) = 0 and degw(Q) = −2. Since the order used in
Theorem 31 is Noetherian, the statement then follows from Corollary 42.

Theorem 48. Let w = (1, w2, w2) with w2 ∈ R. Then, ϕ(x) = x is a degree bound for L w.r.t.
w. Moreover, if w2 = −1, a smaller degree bound for L w.r.t. (1,−1,−1) is given by

ϕ(x) =







⌊x⌋ x < 0

0 0 ≤ x < 3

⌊x⌋ − 2 x ≥ 3

and, if w2 = 1, another degree bound for L w.r.t. the total degree is given by

ϕ(x) =

{

−∞ x < 2

2
⌊
x
2

⌋
x ≥ 2

.

Proof. Let S be the reduction system given in Theorem 33, which is complete by Theorem 34.
For each (P,Q,B) ∈ S, we have degw(P ) = 0. Since the order we use for the reduction system
S is Noetherian, the assumptions of Theorem 40 are satisfied. We have degw(Q) = −2 for the
rule (P,Q,B) given by (23), and degw(Q) = 0 for all rules (P,Q,B) given by (24). This implies
that ϕ(x) = x is a degree bound for L w.r.t. w by Corollary 42.

In the following, note that (f, g) = (P (α, t)tα, Q(α, t)tα) ∈ Σ has degw(f) = degw(t
α) and

degw(g) = degw(Q(α, t)) + degw(f). First, let w2 = −1. For (f, g) originating from (23),
α1 ≥ 2 ∧ α1 − α2 + α3 6= 2 implies that degw(f) = α1 − α2 − α3 can assume any integer
value and we have degw(g) = degw(f) − 2. For (f, g) originating from (24), α3 ≥ 1 ∧ α2 =
α1 + α3 − 2 ∧ α1 + α3 6= 1 implies that degw(f) = −2(α3 − 1) ranges over all even integers ≤ 0
and we have degw(g) = degw(f). Consequently, ϕ(x) defined by (31) satisfies ϕ(x) ≥ x, if x is an
even integer less than or equal to zero, and ϕ(x) ≥ x − 2, if x is any other integer. Theorem 40
together with Remark 41.1 then proves the claim.

Now, assume w2 = 1. For (f, g) ∈ Σ originating from (23), α1 ≥ 2∧α1 −α2 +α3 6= 2 implies
that degw(f) ranges over all integer values ≥ 3 and we have degw(g) = degw(f) − 2. For (f, g)
originating from (24), α3 ≥ 1∧α2 = α1+α3−2∧α1+α3 6= 1 implies that degw(f) = 2(α1+α3−1)
ranges over all even values ≥ 2 and we have degw(g) = degw(f). Evidently, ϕ(x) defined by (31)
evaluates to −∞ for x < 2. For x ≥ 2, we conclude that ϕ(x) ≥ x if x is an even integer and
ϕ(x) ≥ x− 2 if x is an odd integer. Altogether, since ϕ(x) is (weakly) monotonically increasing
and minimal with these constraints, we obtain ϕ(x) = 2⌊x

2 ⌋ for x ≥ 2.
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6 Discussion

Any reduction system or rigorous degree bound computed by the methods discussed depends
on the map L acting on polynomials. Since this map is induced by (16), it does not only
depend on the derivation, but also on the choice of v. So, using a particular reduction system
(or resulting degree bounds), one can solve Problem 4 for different choices of fi, but only for
particular v. Consequently, it allows finding elementary integrals at most of those integrands
for which the integral (3) can be written with the chosen denominator v. If (F, ∂) is such that
the denominator v and the logarithmic part of elementary integrals can be determined correctly,
e.g. by Thm. 4 in [Bro07], then successful computation of complete reduction systems allows
to decide elementary integrability over (F, ∂). Moreover, since the matryoshka decomposition
presented in [DGLW20] provides a direct complement of C[t1, . . . , tn] in F , we can compute,
using a fixed complete reduction system, for any f ∈ F an additive decomposition f = ∂(uv ) + r
with u ∈ C[t1, . . . , tn] and r ∈ F by applying the reduction system to the polynomial part in the

matryoshka decomposition of v2 den(∂)f

gcd(v,∂̃v)
.

For D-finite functions, an alternative approach that allows to find antiderivatives was given
in [AH97]. In short, it aims to find antiderivatives that are expressible as linear combination
with rational function coefficients of the integrand’s derivatives. While this rules out finding even

some simple integrals like
∫ ln(x)

x dx = 1
2 ln(x)

2 by design, the algorithm is applicable in principle
to a very large class of integrands and is able to find the denominator, which is a polynomial in x
only, required for the solution. Representing the integrand by a differential operator annihilating
it, this approach, however, may also fail due to non-minimality of the order of the representation,
as it can result from straightforward application of D-finite closure properties.

Our presentation focused on complete reduction systems, their construction, and their use for
solving integration problems in the form (11) via reduction or via degree bounds. It should be
noted that, in practice, also incomplete reduction systems can be used in a similar way. Given
any reduction system for a fixed L, we evidently can try to solve (11) by reducing the right hand
side to zero. If zero can be reached for a particular right hand side, we still obtain a valid solution
by the reduction system, regardless of its completeness. Alternatively, we can also apply (31),
or any variant like (32), to compute an ansatz for the solution u via bounds on the degree of its
monomials based on the reduction system. For particular right hand sides, valid solutions may
still be found via such heuristic degree bounds, just like with existing heuristic degree bounds
like those mentioned in Section 2.1. Whether we apply reduction or degree bounds, completeness
of the reduction system is only needed to ensure that a solution is always found if one exists. In
particular, a precomplete reduction system consisting of basic reduction rules can be obtained
with relatively little computational effort, as mentioned in Section 3.

Moreover, one can also use Algorithm 3 at the core of a semi-decision procedure that mixes
the computation of a complete reduction system with computing a solution of (11). After a
limited number of iterations of the main loop or after a limited number of new reduction rules
have been found in Algorithm 3, the procedure would try to solve (11) via reduction or via degree
bounds based on the intermediate reduction system obtained so far. Unless a solution is found,
we resume Algorithm 3 and keep trying. Using a Noetherian order and a fair selection that
ensures that every critical pair is treated eventually and by enforcing termination of the inner
loop in Algorithm 3, we indeed obtain a semi-decision procedure for solving (11) even in cases
when Algorithm 3 does not terminate. Since we do not have a criterion to decide at a given point
if a given monomial will become reducible during one of the infinitely many remaining iterations,
the above obviously is not a decision procedure in cases when Algorithm 3 does not terminate.

Apart from not always terminating, there are two aspects of the completion process that can
cause considerable computational effort in practice. First, conditional identities and reduction
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rules computed during completion can exhibit considerable expression swell. Reducing a condi-
tional identity by a reduction rule according to Definition 19 can lead to a conditional identity
where the degree of P,Q in the variables x is increased. The degrees in x of intermediate reduc-
tion rules can be higher than the degrees needed to express the coefficients in the corresponding
complete reduction system. For example, computing the reduction system of Section 4.1 by com-
pletion requires intermediate reduction rules with necessarily unbounded x3-degree even though
the infinite complete reduction system can be expressed with coefficients that are linear in the
variables x. Second, conditions of reduction rules can involve nonlinear equations and inequa-
tions. Nonlinear conditions can be introduced during completion in steps 5 and 7 of Algorithm 1
if the leading coefficient of P at this stage is not linear in the variables x. This is also the case
for the reduction system of Section 4.1 before simplification of conditions, for example. While
the exact form of coefficients appearing in reduction rules is essential for performing reduction,
it is not relevant for constructing degree bounds based on (31) as the degree depends only on the
monomials appearing. In future research, we plan to investigate how the completion process can
be simplified to obtain degree bounds more efficiently by keeping only partial information about
reduction rules during completion. The resulting degree bounds may no longer be rigorous and
so it will be important to find a good balance between accuracy and efficiency.

Another open problem is the choice of order of monomials used. As Norman already pointed
out, it can influence termination of the completion process. This applies to our refined completion
process as well. In addition, when computing a degree bound based on a reduction system using
Theorem 40, the order restricts the possible weight vectors by (30). For example, the total
degree w = (1, 1, 1) satisfies this condition only for the second but not for the first reduction
system given for the same L in Section 4.2. When a solution of Lu = f is computed via ansatz
based on degree bounds, the choice of weights can have a substantial influence on the size of the
ansatz determined by the resulting bounds. For example, both weight vectors (1, 0, 0) and (1, 0, 2)
satisfy condition (30) for the reduction system of Theorem 33. For fixed k ≥ 2, the same reduction
system yields deg(1,0,0)(u) ≤ 0 and deg(1,0,2)(u) ≤ 2k − 2 for f = tk−2

2 t3(t3 − t2)(2t3 − t2)
k−2

that is reduced to zero by setting (x1, x2, x3) = (0, k − 2, k) in (24). Combining each of these
bounds with homogeneity of L w.r.t. (0, 1, 1), the former bound yields an ansatz with 2k − 1
monomials for u while the latter would allow k2 monomials in the ansatz to find the solution
u = 1

2(k−1) t
k−1
2 (2t3 − t2)

k−1 that involves only those k monomials that appear in both ansatzes.

While our motivation and focus is solving first-order differential equations (11) arising from
the Risch–Norman approach in symbolic integration, the methods presented are also applicable
to other linear operators of the form (15), like higher-order differential operators, since we made
use of the concrete form (16) only when discussing examples. Throughout the paper, we used the
monomial basis {tα}α∈Nn to work with polynomials. In the linear algebra view, it is clear that the
framework can also be adapted to other bases {bα}α∈Nn of C[t1, . . . , tn] provided that applying
the operator of interest can be expressed as finite sum

∑

β cβ(α)bα+β with cβ(x) ∈ C[x1, . . . , xn],

generalizing (15) and the finitely many coefficients coeff(p(x, t), tβ) of the Laurent polynomial p.
Finally, we note that our notion of complete reduction systems is closely related to the

notion of staggered linear bases introduced in [GM86]. In particular, a reduction system S for
L is complete according to Definition 10 if and only if the set {P (α, t)tα | (P,Q,B) ∈ S, α ∈
Nn, B|x=α} is a staggered generator of im(L) as defined in [MMT92]. Moreover, that set is even
a staggered linear basis of im(L) if and only if the reduction system is complete and no two
rules in S form a critical pair, which is the case for the output of Algorithm 3 as well as for
all reduction systems shown in Section 4. It will be interesting to explore if recent ideas for
the computation of staggered linear bases of polynomial ideals [HJ21, HM23] can be adapted to
improve Algorithm 3.
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A Norman’s example involving tan(ln(x))

Norman reports on p. 204 of [Nor90] that his algorithm does not seem to terminate when using
the denominator tan(ln(x))2 + 1 for the integral and he poses as open problem to characterize
how the reduction system evolves in such cases. To model tan(ln(x)), we consider the differential

field (Q(t1, t2, t3), ∂) with ∂t1 = 1, ∂t2 = 1
t1
, and ∂t3 =

t23+1
t1

. Then, the denominator of the

integral is chosen as v = t23 + 1. This example was mentioned by Norman as being particularly
problematic when he considered a monomial order with t3 > t2 > t1. He did not fully specify the
monomial order he had used beyond the comparison of individual variables, however. In what
follows, we will use the lexicographic order, since the point can be made most easily with this
monomial order. In A.1, we exhibit one infinite pattern that arises during Algorithm 2, showing
that Norman’s completion process indeed does not terminate in this example. In A.2, we display
the finitely many iterations our Algorithm 3 takes for constructing a complete reduction system
for the same input. In fact, the refined version terminates in this example for any semigroup
order < that satisfies t2 > 1 and t3 > 1.

From the derivatives ∂ti, we see that den(∂) = t1. Then, ∂̃v = 2t3v yields

p(x, t) := x1 + x2
1

t2
+ x3

t23 + 1

t3
− 2t3

by Eq. (16). Therefore, the basic rules r1, r2, r3, r4 as computed by Algorithm 1 from (p, 1, true)
are given as ri = (Pi, Qi, Bi), where the generic rule has

P1 = (x3 − 3) +
x1
t3

+
x2
t2t3

+
x3 − 1

t23
, Q1 =

1

t3
, B1 = (x3 6= 3 ∧ x3 ≥ 1)

and the degenerate cases are given by

P2 = x1 + x2t
−1
2 + x3t

−1
3 , Q2 = 1, B2 = (x3 = 2 ∧ x1 6= 0),

P3 = (x2 + 1) + x3t2t
−1
3 , Q3 = t2, B3 = (x3 = 2 ∧ x1 = 0 ∧ x2 + 1 6= 0),

P4 = x3 + 1, Q4 = t3, B4 = (x3 = 1 ∧ x1 = 0 ∧ x2 = 0 ∧ x3 + 1 6= 0)

Critical pairs are formed by the following pairs of basic rules: (r1, r2), (r1, r3), (r1, r4).
The formulae for conditions Bi of new rules computed during the completion process can get

quite involved. So, in the following, we replace those conditions by simpler ones that have the
same solutions in N3.
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A.1 Norman’s completion process

When applying Algorithm 2 to the basic rules r1, r2, r3, r4 computed above, at the beginning of
each iteration of the main loop an element of A needs to be chosen. The concrete choice does
not affect whether the loop is iterated infinitely often or a finite number of times. The following
choices are made to show in a straightforward way that Algorithm 2 does not terminate in this
example.

In the first iteration of the loop, we start by choosing i = 1, j = 2. We obtain the condition
B = B1 ∧B2 = (x3 6= 3 ∧ x3 ≥ 1 ∧ x3 = 2 ∧ x1 6= 0) and reduction yields the polynomials

P = (x3 − 3)P2 − x1P1 =
x2(x3 − 3)

t2
+
x23 − 3x3 − x21

t3
−
x1x2
t2t3

−
x1(x3 − 1)

t23

and Q = (x3 − 3)Q2 − x1Q1 = (x3 − 3) − x1

t3
. Creating reduction rules from (P,Q,B) by

Algorithm 1, we obtain the rule r5 with

P5 = (x2 + 1)(x3 − 3) + (x23 − 3x3 − x21)
t2
t3

−
x1(x2 + 1)

t3
− x1(x3 − 1)

t2
t23
,

Q5 = (x3 − 3)t2 − x1
t2
t3
,

and condition B5 = (x3 6= 3 ∧ x3 ≥ 1 ∧ x3 = 2 ∧ x1 6= 0 ∧ (x2 + 1)(x3 − 3) 6= 0) that can be
simplified to B5 = (x3 = 2 ∧ x1 6= 0). We also obtain r6 from the degenerate case of (P,Q,B).
These new rules give rise to additional critical pairs, one of the three elements added into A is
(2, 5).

For the second iteration of the loop, we choose i = 2, j = 5. The condition B = B2 ∧B5 can
be simplified to B = (x3 = 2 ∧ x1 6= 0). Reduction by r2 yields

P = x1P5 − (x2 + 1)(x3 − 3)P2 = −
x2(x2 + 1)(x3 − 3)

t2
+ x1(x

2
3 − 3x3 − x21)

t2
t3

−
(x2 + 1)(x23 − 3x3 + x21)

t3
− x21(x3 − 1)

t2
t23

and Q = x1Q5 − (x2 + 1)(x3 − 3)Q2 = x1(x3 − 3)t2 − (x2 + 1)(x3 − 3)− x21
t2
t3
. Then, (P,Q,B)

gives rise to the new rules r7 and r8, where the main rule has

P7 = −(x2 + 1)(x2 + 2)(x3 − 3) + x1(x
2
3 − 3x3 − x21)

t22
t3

− (x2 + 2)(x23 − 3x3 + x21)
t2
t3

− x21(x3 − 1)
t22
t23

Q7 = x1(x3 − 3)t22 − (x2 + 2)(x3 − 3)t2 − x21
t22
t3

and simplified condition B7 = (x3 = 2 ∧ x1 6= 0). Among the four new elements added into A,
we find (2, 7).

In subsequent iterations, inductively for n = 1, 2, . . . , we choose i = 2 and j = 2n+ 5 based
on A. With this choice, rj is given by

P2n+5 = (−1)n(x2 + 1)n+1(x3 − 3) + xn1 (x
2
3 − 3x3 − x21)

tn+1
2

t3
− xn−1

1 (x2 + n+ 1)(x23 − 3x3 + x21)
tn2
t3

+

n−1∑

l=1

(−1)n−l+1xl−1
1 (x2 + l + 1)n−l+1x3(x3 − 3)

tl2
t3

− xn+1
1 (x3 − 1)

tn+1
2

t23

Q2n+5 =

n+1∑

l=1

(−1)n−l+1xl−1
1 (x2 + l + 1)n−l+1(x3 − 3)tl2 − xn+1

1

tn+1
2

t3
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and B2n+5 = (x3 = 2 ∧ x1 6= 0). The case n = 1 agrees with r7 computed above. Reduction by
r2 gives P = x1P2n+5−(−1)n(x2+1)n+1(x3−3)P2, Q = x1Q2n+5−(−1)n(x2+1)n+1(x3−3)Q2,
and B = (x3 = 2 ∧ x1 6= 0). Collecting terms in P and Q we obtain

P =− (−1)nx2(x2 + 1)n+1(x3 − 3)
1

t2
+ xn+1

1 (x23 − 3x3 − x21)
tn+1
2

t3
− xn1 (x2 + n+ 1)(x23 − 3x3 + x21)

tn2
t3

+

n−1∑

l=0

(−1)n−l+1xl1(x2 + l + 1)n−l+1x3(x3 − 3)
tl2
t3

− xn+2
1 (x3 − 1)

tn+1
2

t23

and Q =
∑n+1

l=0 (−1)n−l+1xl1(x2 + l + 1)n−l+1(x3 − 3)tl2 − xn+2
1

tn+1
2

t3
. Converting (P,Q,B) into

reduction rules, we obtain r2n+7 and r2n+8, where r2n+7 is given by P2n+7 = P |x2=x2+1t2,
Q2n+7 = Q|x2=x2+1t2, and B2n+7 = (B|x2=x2+1∧−(−1)n(x2+1)n+2(x3−3) 6= 0). We can check
that P2n+7 and Q2n+7 obtained this way agree with replacing n by n + 1 in the formulae for
P2n+5 and Q2n+5 above. Furthermore, we can check that B2n+7 is equivalent to x3 = 2∧x1 6= 0.
Based on critical pairs involving the two new rules, (2, 2n+7) is among the n+4 elements added
into A. So, the next iteration of the loop is exactly as the current one, except n being replaced
by n+ 1. Hence, Algorithm 2 continues indefinitely.

A.2 Refinement of Norman’s completion process

We apply Algorithm 3 to the basic rules S = {r1, r2, r3, r4} computed above.
In the first iteration of the main loop, we choose i = 1 and j = 2 satisfying lmt(Qi) =

1
t3
<

1 = lmt(Qj). We remove r2 from the reduction system S and we check that B2 ∧ ¬B1 has no
solution in N3. Reduction by ri yields

P = (x3 − 3)P2 − x1P1 =
x2(x3 − 3)

t2
+
x23 − 3x3 − x21

t3
−
x1x2
t2t3

−
x1(x3 − 1)

t23

Q = (x3 − 3)Q2 − x1Q1 = (x3 − 3)−
x1
t3

and simplified condition B = (x3 = 2 ∧ x1 6= 0), just as before when we applied Algorithm 2.
The current offset is δ(P,Q,B) = t2. Now, instead of immediately creating new rules from
(P,Q,B), we can enter the inner while loop to reduce (P,Q,B) further by r1 ∈ S having offset
δ(r1) = 1

t3
< δ(P,Q,B). This can be done four times. Each time, there is only one choice

for reduction and the current offset δ(P,Q,B) increases. In most cases, Q is only modified by
introducing a new smallest term without changing the existing terms. Eventually, we arrive at

P =
x1(x

2
1 − 4 + 8x3 − 2x23)

t23
+
x2(3x

2
1 − 4 + 8x3 − 2x23)

t2t23
+ lower terms

Q = (x3 − 3)(x3 − 4)−
x1(x3 − 4)

t3
−
x2(x3 − 4)

t2t3
+
x21 + 3x3 − x23

t23
+

2x1x2
t2t23

+
x2(x2 − 1)

t22t
2
3

.

Even though all elements of S = {r1, r3, r4} have smaller offset than δ(P,Q,B) = t23, no further
reduction is possible. Creating new reduction rules from (P,Q,B) by Algorithm 1 yields only
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one new rule r5, which we add into S.

P5 = x1(x
2
1 + 4− 2x23) +

x2(3x
2
1 + 4− 2x23)

t2
+

3x1x2(x2 − 1)

t22
+
x2(x2 − 1)(x2 − 2)

t32

+ x3

(
x21 + 2− x3 − x23

t3
+

2x1x2
t2t3

+
x2(x2 − 1)

t22t3

)

Q5 = (x3 − 1)(x3 − 2)t23 − x1(x3 − 2)t3 − x2(x3 − 2)
t3
t2

+ (x21 + 2− x3 − x23) +
2x1x2
t2

+
x2(x2 − 1)

t22
B5 = (x3 = 0 ∧ x1 6= 0)

No new critical pairs can be formed with r5. Note that condition B5 implies that the last (i.e.
smallest) three terms of P5 vanish in P5(α, t) for every α ∈ N3 satisfying B5|x=α.

In the second iteration of the main loop, we choose i = 1 and j = 3 satisfying lmt(Qi) =
1
t3
<

t2 = lmt(Qj). We remove r3 from S and we check that B3∧¬B1 has no solution in N3. Reduction
by ri yields (P,Q,B) with polynomials P = (x3−3)P3−(x2+1)P1, Q = (x3−3)Q3−(x2+1)Q1,
and simplified condition B = (x3 = 2 ∧ x1 = 0). In the inner while loop, there is only one

choice for reduction, namely by r1. The first time, we obtain ltt(P ) = −x1(x2+1)(x3−4)
t3

and

δ(P,Q,B) = t2t3. Note that, even though lct(P )|x=α = 0 for all α ∈ N3 with B|x=α, we can
reduce the new (P,Q,B) again and r1 is the only option to do so. After this second iteration

of the inner while loop, we have ltt(P ) = −x2(x2+1)(x3−4)
t2t3

and δ(P,Q,B) = t22t3. We can iterate
the inner loop once more. Again, only r1 can be used for reduction and we obtain

P = −x1x3(x3 − 3)
t2
t23

+
(x2 + 1)(x21 − 4 + 8x3 − 2x23)

t23
+ smaller terms

Q = (x3 − 3)(x3 − 4)t2 −
(x2 + 1)(x3 − 4)

t3
− x3(x3 − 3)

t2
t23

+
x1(x2 + 1)

t23
+
x2(x2 + 1)

t2t23
,

which cannot be reduced further by any element of S. So, we apply Algorithm 1 to (P,Q,B),
whereby we obtain only one new reduction rule r6. It is given by

P6 = (x2 + 1)(x21 + 4− 2x23) +
2x1x2(x2 + 1)

t2
+

(x2 − 1)x2(x2 + 1)

t22

+ x3

(

−(x3 − 1)(x3 + 2)
t2
t3

+
x1(x2 + 1)

t3
+
x2(x2 + 1)

t2t3

)

Q6 = (x3 − 1)(x3 − 2)t2t
2
3 − (x2 + 1)(x3 − 2)t3 − (x3 − 1)(x3 + 2)t2 + x1(x2 + 1) +

x2(x2 + 1)

t2

B6 = (x3 = 0 ∧ x1 = 0)

and does not give rise to new critical pairs in S = {r1, r4, r5, r6}. Note that, due to condition
B6 implying α1 = α3 = 0 for all α ∈ N3 satisfying B6|x=α, only the first and third term of P6

can contribute to P6(α, t) and, likewise, the coefficient of the second-last term of Q6 vanishes in
Q6(α, t).

In the third and final iteration of the main loop, the only choice left is i = 1 and j = 4
satisfying lmt(Qi) =

1
t3
< t3 = lmt(Qj). We remove r4 from S and we check that B4 ∧ ¬B1 has

no solution in N3. Reduction by ri yields

P = (x3 − 3)P4 − (x3 + 1)P1 = −
x1(x3 + 1)

t3
−
x2(x3 + 1)

t2t3
−

(x3 − 1)(x3 + 1)

t23

Q = (x3 − 3)Q4 − (x3 + 1)Q1 = (x3 − 3)t3 −
x3 + 1

t3
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and simplified condition B = (x3 = 1 ∧ x1 = 0 ∧ x2 = 0). The rule r1 ∈ S is the only one
with offset smaller than δ(P,Q,B) = t23, but cannot be used for reduction of (P,Q,B). The rule
r6 ∈ S is the only one that could be used for reduction here, but δ(r6) = lmt(Q6) = t2t

2
3 is too

large. So the inner while loop cannot be entered and we proceed with creating new rules from
(P,Q,B). Since condition B implies α = (0, 0, 1), we have P (α, t) = 0 for all α ∈ N3 satisfying
B|x=α. Hence, no new rule is created by Algorithm 1 and Q(α, t)tα = −2t23 − 2 is a nontrivial
element of ker(L). Since S = {r1, r5, r6} does not give rise to any critical pairs, the algorithm
stops and returns the complete reduction system S.
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