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Abstract 

This research was focused on the efficient collection of experimental Metal-Organic 

Framework (MOF) data from scientific literature to address the challenges of accessing hard-

to-find data and improving the quality of information available for machine learning studies in 

materials science. Utilizing a chain of advanced Large Language Models (LLMs), we 

developed a systematic approach to extract and organize MOF data into a structured format. 

Our methodology successfully compiled information from more than 40,000 research articles, 

creating a comprehensive and ready-to-use dataset. The findings highlight the significant 

advantage of incorporating experimental data over relying solely on simulated data for 

enhancing the accuracy of machine learning predictions in the field of MOF research. 

 

Introduction 

In the past decade, there has been an increasing number of datasets available in 

materials science obtained from computational simulations and experimental studies.1-6 This 

abundance of data is crucial for the advancement of machine learning in the field, as it 

underpins the development of models that can accurately predict material properties and lead 

to the discovery of new materials. The significance of extracting and collecting this data cannot 

be overstated, as it improves the accuracy of predictive models7,8 and addresses the challenges 

associated with relying solely on computational simulations, which may not always reflect 

experimental results. This approach underscores the need to extract empirical data from the 

vast textual corpus of scientific literature. By mining large amounts of experimental data from 

already published papers, the data acquisition hurdle becomes lowered and one can enrich the 

connection between theoretical predictions and experimental validations in materials science. 

Metal-Organic Frameworks (MOFs) are porous materials composed of metal ions or 
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clusters coordinated with organic ligands, forming extensive networks with vast surface areas. 

Their significance is highlighted by a wide range of applications, from gas storage9-13 and 

separation14-17 to catalysis17,18 and drug delivery19,20, thanks to their customizable porosity and 

functionality. The sheer variety of MOFs, arising from the numerous potential metal-ligand 

combinations, emphasizes the critical need for comprehensive MOF data mining. This process 

is vital for systematically cataloging the properties and functionalities of MOFs, thus 

facilitating the precise design and utilization of these versatile materials across various sectors. 

Given the extensive potential and variability of MOFs, it is unsurprising that a substantial body 

of research is devoted to mining MOF data. 

Previously, Park et al.21 extracted specific data, such as surface area and pore volumes, 

from scientific texts using rule-based techniques, shedding light on the structural-property 

relationships in MOFs. Projects such as 'DigiMOF'22 have demonstrated the effectiveness of 

rule-based coding in extracting synthetic information of MOFs using Natural Language 

Processing (NLP). The landscape has transformed with the incorporation of machine learning, 

as seen in the works of Nandy et al.23,24 They leveraged predictive models to assess the stability 

of MOFs, marking a leap in the accuracy, and sophistication of data mining efforts. Park et al.25 

highlighted further advancements by employing Positive and Unlabeled (PU) learning to 

predict MOF synthesizability, showcasing the nuanced capabilities of machine learning in 

addressing complex challenges in MOF synthesis. Manning et al.26 conducted a thorough 

analysis of synthesis protocols, focusing on ZIF-8. They identified prevailing trends and 

optimized methodologies, demonstrating the importance of data mining in refining synthesis 

processes and deepening the understanding of MOF characteristics, underscoring the 

significant and evolving impact of data mining techniques in the field. 

Recently, the emergence of large language models (LLMs), such as ChatGPT, has 
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revolutionized data mining, particularly in extracting nuanced information from textual sources. 

These models excel at understanding textual context, enabling them to perform complex data 

mining tasks with high efficiency. LLMs have demonstrated remarkable capability in few-shot 

learning, achieving accurate results with minimal examples. This reduces the threshold for 

adopting advanced data mining techniques across various research fields. Furthermore, prompt 

engineering has become crucial in optimizing LLMs for specific challenges. Yaghi's group 

applied LLMs to extract metal-organic framework (MOF) synthesis parameters from scientific 

literature with exceptional precision.27 LLMs have a wide range of applications, including 

predicting crystallization outcomes and facilitating interactive platforms such as MOF chatbots, 

significantly enriching the paradigms of data-driven research. 

Building on the pioneering work of Yaghi's group in using large language models 

(LLMs) for data mining, we present 'L2M3' (Large Language Model MOF Miner), an 

innovative data mining system that fully automates the extraction process through a 

sophisticated array of LLMs. Our system has rigorously analyzed over 40,000 MOF papers, 

extracting 32 well-defined properties in a specific format, alongside a broader collection of 

properties in a more general form. We have further classified the MOF synthesis process into 

21 distinct categories, each with its unique data format, thereby enhancing the granularity of 

our dataset. Our subsequent machine learning analysis leverages this rich dataset to elucidate 

the critical role of experimental data in advancing MOF research, demonstrating the profound 

impact that systematic data collection has on the field. 
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Result & Discussion 

Workflow 
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Figure 1. (a) Overall schematic of the L2M3 model (b) Overall process of table mining (c) 

Overall process of text mining 

 

Figure 1(a) shows the overall framework of the L2M3 model, which extracts information from 

both text and tables in scientific papers. The model employs three specialized agents: the table 

agent, the synthesis condition agent and the property agent, all of which are used in the mining 

process. These three agents are used to extract information from papers about the properties 

and synthesis conditions of MOFs. After extraction, a matching agent standardizes material 

names and symbols to consolidate the extracted data into a unified metadata set. Finally, the 

consolidated dataset is matched against crystal data in the CCDC database28 for structural 

matching, as shown in Supplementary Figure S1. The process is designed for efficient input 

and output handling through a single code execution. 

Figure 1(b) explains how the table agent processes table data. Achieving accurate extraction 

from complex tables using rule-based coding techniques is challenging. To address this, a table 

agent based on LLM has been developed to increase the reliability of information extraction 

from tables. This agent works in three stages: categorization, inclusion and extraction. First a 

categorization agent sorts tables into different types. Examples of each table type are provided 

in Supplementary Table S1-3. Next, inclusion is performed on the property table and the crystal 

information table, determining what information is contained in these tables. Finally, the 

extraction agent retrieves relevant information from both the Property and Crystal Info tables. 

Figure 1(c) shows the process used by the synthesis condition agent and the property agent to 

extract information from text. In categorization step, the agent classifies the texts based on 

whether they describe a property, a synthesis condition, or contain no relevant information. If 

a paragraph describes a synthesis condition, the synthesis condition agent is used; if it refers to 
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a property, the property agent is used. Each agent then performs inclusion steps to determine 

the specific information present. The properties and synthesis methods that can be extracted 

are listed in Supplementary Table S4-5. Following the inclusion steps, the extraction steps are 

performed to extract the information. The extraction prompt is tailored to the synthesis 

condition or property type identified, increasing accuracy and correctly formatting the data. 

 

Data mining result 

After analyzing more than 40,000 academic papers and excluding those with errors, 

we successfully collected data from 39,476 papers related to synthesis conditions and 

properties. To evaluate the accuracy of our data analysis, which was performed using LLM, we 

randomly selected 150 papers. The evaluation was conducted separately for the type of task 

and the type of paragraph described. Additional information on our grading process and other 

important factors can be found in Supplementary Note S1. 

 

 

Table 1. Precision, recall, and F1 score of each step 

 

In the categorization task, our research achieved F1 scores higher than 0.95 across all 

three categories, outperforming previous studies in terms of accuracy. Similarly, the inclusion 

task consistently scored F1 scores of 0.95 or higher in every instance. Lastly, our extraction 

task demonstrated enhanced accuracy compared to past efforts in most situations. A detailed 

comparison between other papers and this work can be found in the Supplementary Note S2. 
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As noted in Supplementary Note S2, previous studies on text mining for extracting 

properties MOFs have been limited to only one or two specific properties. In contrast, our 

research is able to extract a wide range of properties, encompassing over 20 different attributes, 

and surpasses the accuracy achieved in previous works. Furthermore, our data mining tool 

demonstrates higher accuracy in identifying synthesis conditions compared to previous efforts. 

Moreover, our tool covers not only the synthesis condition but also the entire synthesis process, 

including pre-processing and post-processing steps, unlike earlier research that mainly focused 

on the synthesis condition. 

As the number of papers increases, the diversity of paper formats also increases. This 

can lead to a decrease in the accuracy of mining. Previous studies have shown a trade-off 

between accuracy and the number of papers extracted, as shown in Supplementary Note S2. 

Some studies have high accuracy but extract only a few papers, while others extract a large 

number of papers but with lower accuracy. However, this study achieved high accuracy despite 

extracting from a large number of papers. 

Statistics 



9 

 

Figure 2. Distribution of mined properties of Metal-organic framework 

 

 Through the L2M3 system, we have collected information on synthesis conditions 

and various physical and chemical properties of the MOF material group. Figures 2~3 depict 

the distribution of these properties in graphical form, and statistics related to synthesis 

conditions can also be found in Supplementary Figure S2~3. Figure 2 shows the distribution 

of properties which we have clearly defined formats in JSON, revealing that information on 

chemical formula, lattice parameters, and density, which are necessary to estimate in the 

synthesis of MOF materials, are most frequently reported. We have also gathered a substantial 

amount of data on properties that are difficult or impossible to obtain through simulation, such 

as crystal size, decomposition temperature, and yield. 

 



10 

 

 

Figure 3. (a~c) Distribution of mined Surface Area data and its comparison with simulation 
(d~e) Distribution of mined Pore Volume data and its comparison with simulation 
(g~h) Distribution of mined Density data and its comparison with simulation 

 

 

Figure 3 provides a more detailed distribution of properties such as pore volume and 

surface area among various properties. More detailed distributions of other properties can be 

found in Supplementary Figure S4. As seen in Figure 3(a), the most widely used methodology 

for measuring the surface area of MOF materials is the BET method, and a comparison between 
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the mined BET surface values and the calculated BET surface area values based on structure 

can be found in Figure 3(c). 

Similarly, as shown in Figure 3(d), N2 is most commonly used as a probe for measuring 

the pore volume of MOFs, and a comparison between the extracted values from documents 

using N2 as a probe and simulation calculated values can be found in Figure 3(f). The reason 

for the fewer data points in Figures 3(c) and 3(f) compared to 3(b) and 3(e) is that simulation 

values can only be calculated when the structure is reported along with the data values in the 

literature. 

Examining Figures 3(c), 3(f), and Figure 3(h), it is clear that there is a discrepancy 

between the simulation and the experimental data. The reasons for this discrepancy are 

numerous. Simulations assume ideal conditions, whereas experiments are affected by various 

environmental factors such as temperature, pressure, and humidity, which are not fully 

considered in simulations. Furthermore, simulations often assume a perfectly ordered and 

defect-free structure, whereas real MOFs may exhibit surface roughness, defects, and 

irregularities. In addition, simulations often overlook the contribution of guest molecules. In 

addition to these factors, differences can arise due to various factors such as methodological 

differences in measurements and failure to account for intermolecular interactions in 

calculations. 

As mentioned above, Figures 3(c), 3(f) and 3(h) show the discrepancy between 

experimental and simulation data resulting from various assumptions made in the simulation 

process. This discrepancy has a significant impact on the accuracy of predicting experimental 

values between models trained on simulation and experimental data. Therefore, to accurately 

understand the properties of MOFs and to efficiently develop materials based on them, it is 

crucial to use experimental data for prediction. To validate this, we first used a descriptor-based 
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model29 to see how the difference can affect to the accuracy of prediction. Next, to investigate 

how the prediction accuracy varies with machine learning model, we utilized three machine 

learning models: the descriptor-based model, CGCNN30, and MOFTransformer31. 

Supplementary Note S3 provides relevant information about these machine learning models. 

For machine learning model prediction, we chose density as the target property because it can 

be easily obtained through data mining. The density prediction data contained 30,892 samples, 

which is sufficient for machine learning training. 

 

Machine learning result – Effect of training data type on prediction 

To investigate the impact of training data on predicting experimental outcome, we conducted 

an experiment using a descriptor-based model. We prepared two sets of training data; both 

containing the information on the same MOFs. One set was compiled from experimental data, 

while the other was derived from simulation data. We then trained two descriptor-based models 

separately: one with the experimental data and the other with the simulation data. Both models 

were used to predict outcomes on the same set of experimental test data. The model trained on 

experimental data achieved an R2 value of 0.802, indicating a strong correlation between 

predicted and actual values. In contrast, the model trained with simulation data showed a lower 

R2 value of 0.483. Parity plots graph predicted values against actual values to highlight 

discrepancies in model predictions. Figure 4 shows that models trained on simulation data 

deviate from the trend line when predicting experimental outcomes. This suggests that models 

trained on experimental data are more accurate in forecasting experimental values. 



13 

 

 

Figure 4. Parity plot of predicted value and real value when using a model that trains simulation 

data (a) and a model that trains experimental data (b). Model (a) was trained on simulation data, 

while model (b) was trained on experimental data. Both models predicted the same 

experimental data values during testing. The R2 values for models (a) and (b) are 0.483 and 

0.802, respectively. 

 

Machine learning result – Effect of machine learning models on prediction 

To evaluate the accuracy of machine learning models in predicting outcomes, we 

trained three models using both simulation and experimental data. These models were then 

used to forecast experimental values, and we assessed their accuracy using five distinct sets of 

test and training data for each model. The results, including average accuracy and standard 

deviation for each dataset, are summarized in Table 2, while Table S6 provides details of the 

R2 values obtained in each trial. The study found that all three models were highly accurate in 

predicting experimental data when trained with experimental data. However, when the models 

trained on simulation data were applied to predict experimental outcomes, a noticeable drop in 
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precision was observed. This difference highlights the inherent dissimilarities between 

experimental and simulation data, emphasizing the significance of matching the training data 

type with the data type being predicted for optimal accuracy. 

 

 

Table 2. Average and standard deviation of density prediction accuracy for the descriptor-based 

model32-35, CGCNN, and MOFTransformer. The three train/test datasets contain the same list 

of MOFs. However, the first dataset includes experimental data for both the training and test 

sets, the second dataset includes simulation data for both the training and test sets, and the last 

dataset includes simulation data for the training set and experimental data for the test set. 

 

When applying machine learning to three different models, clear variances in 

performance were noted, as evidenced by the R2 values. The descriptor-based model showed 

the lowest performance, followed by CGCNN, and MOFTransformer showed the highest 

performance when the data used for training is congruent with the type of data being predicted. 

These differences are due to the ability of each model to accurately represent the features of 

MOFs when converting these features into a numerical form. The descriptor-based model relies 

on basic attributes, such as the atomic weight of the metals and their composition. On the other 

hand, CGCNN takes a nuanced approach by utilizing the relationships between atoms and 

bonds within graph structures. This enables it to consider details such as the type of bond, the 

distance between atoms, and the solid angles. However, MOFTransformer surpasses CGCNN 

by incorporating both local and global features derived from energy-grid embeddings, offering 
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a more comprehensive representation than CGCNN, which primarily focuses on local 

characteristics. As a result, MOFTransformer achieves the highest accuracy among the tested 

models. 

When training models on simulation data and subsequently using them to predict 

experimental outcomes, a reversal in trends was observed compared to when the models predict 

based on the type of data they were trained on. This shift is due to the distinct patterns present 

in experimental versus simulation data. Advanced models, which excel at capturing the 

intricacies of their training datasets, naturally provide more precise forecasts for data that 

closely resemble their training inputs. However, the effectiveness of these models may decrease 

when predicting outcomes for data that differ in trends from their training sets. This is because 

the models are specifically tuned to the characteristics of their training data. 

The difference in performance is evident in the R2 values: CGCNN and 

MOFTransformer achieved high scores of 0.93 and 0.97, respectively, when predicting 

simulation data. However, their accuracy in predicting experimental data decreased, with 

CGCNN achieving 0.815 and MOFTransformer achieving 0.892. This suggests that while 

techniques such as atom-based graph embeddings or energy-grid embeddings are effective for 

simulation data, predicting experimental data accurately requires the consideration of 

additional variables. 

To improve predictions of experimental data, it is essential to train machine learning 

models with relevant experimental datasets. Moreover, to ensure a comprehensive analysis, it 

is important to expand traditional methods of turning data into numerical features to 

encapsulate factors beyond the standard featurization processes, including environmental 

influences. This approach highlights the importance of not only relying on sophisticated 

vectorization but also integrating comprehensive datasets and modeling techniques that 
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account for the complex realities that influence experimental results. 

 

Methods 

Journal Paper Retrieval & Crawling 

Our research employed a comprehensive data mining approach to collect a significant 

corpus of journal papers relevant to Metal-Organic Frameworks (MOFs). We targeted 

publications from four major scientific publishers: the American Chemical Society (ACS), 

Elsevier, the Royal Society of Chemistry (RSC), and Springer. We amassed a total of 41,681 

unique papers, contributing to a rich dataset for our analysis. The papers were distributed 

among the publishers as follows: ACS contributed 16,481 papers, Elsevier 18,778, RSC 4,775, 

and Springer 1,647. Additional statistics on journal crawling can be found in the Supplementary 

Figure S5. 

To maintain the integrity of our research process and respect copyright laws, we 

downloaded the journal papers in XML or HTML formats, adhering to ethical guidelines and 

obtaining explicit approval from each publisher to ensure compliance with their data usage 

policies. 

A substantial portion of our dataset, which includes 23,091 papers, is directly linked 

to structures identified as part of the MOF substance family within the Cambridge Structural 

Database (CSD)28, providing a robust foundation for our research. Additionally, we utilized 

specialized crawling code to automatically identify and retrieve 18,590 articles from Elsevier's 

Scopus database, leveraging the Elsevier Scopus API for efficient filtering. This process 

targeted articles based on their relevance to MOF substances, discerned through related terms 

in their titles, abstracts, and keywords, thereby ensuring a comprehensive and relevant 

collection of studies for our MOF research dataset. 
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Integration with the CSD database 

To improve the depth and usefulness of our dataset, we integrated our collection of 

journal papers with the Cambridge Structural Database (CSD)28, a well-known repository for 

crystallographic data. This integration was made possible by using Digital Object Identifiers 

(DOIs) associated with our crawled papers. By querying the CSD database with these DOIs, 

we determined the presence and relevance of each paper within the CSD. This ensures a 

seamless linkage between our dataset and the valuable crystallographic information housed in 

the CSD. 

The CSD database contains detailed crystallography data, providing access to structure 

files (e.g., CIF files), refcodes, lattice information, and more. These elements are essential for 

our research as they provide insights into the molecular and crystalline structures of MOF 

substances and serve as valuable metadata for our dataset. The integration process utilized the 

csd-python-api version 3.0.1436, which is compatible with the 2022 version of the CSD 

software. This API facilitated automated queries and retrievals from the CSD, streamlining the 

process of enriching our dataset with high-quality, relevant crystallographic data. 

 

Structure Refinement and Zeo++ Calculation 

To prepare the structures sourced from the CSD database for analysis, we standardized 

their representation by adopting P1 symmetry for all structures to ensure consistency across 

the dataset. We removed floating solvents from the structures during the refinement process to 

eliminate potential interference. However, we retained binding ligands that are crucial for the 

structural and functional integrity of the Metal-Organic Frameworks (MOFs). 

In addition, structures obtained from the CSD database may present challenges such 
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as disorders or atom duplications, which can complicate analysis. To ensure the quality of our 

dataset, we excluded structures with atoms located too closely together, specifically those with 

interatomic distances less than 1 Angstrom. This selection criterion helps to avoid inaccuracies 

in the dataset due to overlapping or unrealistic atomic arrangements. After the refinement stage, 

properties such as the density, pore volume and surface area of the structures were calculated 

using zeo++ software37 with 1.82 probe radius. This tool is widely recognized for its capability 

in analyzing the geometric properties of nano-porous materials. 

 

Prompt Engineering and Find-tuning 

The data extraction process began by analyzing individual paragraphs within each journal 

paper. To prepare the text for processing, we utilized the Python libraries beautifulsoup438 

and chemdataextractor39. These tools were effective in separating the papers into distinct 

paragraphs and eliminating any unnecessary HTML and XML formatting, resulting in a clean 

dataset for further analysis. 

To orchestrate interactions between different large language models (LLMs), we used the 

Langchain Python library40, specifically version 0.0.268. This setup allowed for a fully 

automated data extraction workflow, which was divided into three critical stages: 

categorization, property inclusion, and extraction. The Langchain library was instrumental in 

chaining these LLMs and automating the entire process. The automation was further 

streamlined by additional refinements, such as monitoring token length with the tiktoken 

Python library41 and ensuring output consistency in TypeScript format. 

For the categorization and property inclusion stages, we employed LLMs fine-tuned on 

OpenAI's GPT-3.5-turbo model, tailored with 723 and 681 example sets, respectively. This 

fine-tuning was crucial for achieving high accuracy in classifying and identifying relevant data, 
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with examples developed through GPT-442 prompt engineering and refined with human review. 

Figure 5(a) illustrates the categorization process, employing finely tuned, concise prompts and 

examples for precise text category identification. Figure 5(b) depicts the inclusion step by the 

synthesis agent, adopting a similar approach to categorization but with explicit rules and 

human-provided examples to assure task accuracy, especially in distinguishing various 

synthesis conditions. 

The final extraction step shifted to prompt engineering with GPT-4, chosen for its 

adaptability in processing novel information, with occasional support from GPT-3.5-turbo-

0125 for tasks exceeding GPT-4's 8000-token limit. The introduction of the GPT-4-32K API 

was not incorporated due to the project's advanced stage and budget considerations. Figure 5(c) 

explores the extraction methodology for the synthesis condition agent, employing a detailed 

prompt strategy that includes a comprehensive rule set and specifies the data format, notably 

using JSON for consistency. 
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Figure 5. (a) An example prompt for categorization task (b) An example prompt for inclusion 

task (c) An example prompt for extraction prompt 

 

 

ChatMOF Integration (Optional) 
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With the development of LLMs, there has been a significant increase in interest in their 

accuracy and applicability in various fields43-51, including materials science. Researchers in this 

field are particularly interested in using chatbots to obtain accurate synthetic information and 

to answer unstructured questions. Yaghi et al.27 proposed an innovative approach to addressing 

these challenges by introducing a chatbot designed to navigate and interpret synthetic datasets. 

Through their work, they envisioned transforming complex datasets into a dynamic, interactive 

dialogue system, making the data more accessible and understandable to users. This initiative 

led to the creation of the ChatGPT Chemistry Assistant, designed as a reliable and 

knowledgeable companion for exploring chemical reactions, with a particular focus on MOF 

synthesis. 

Recent research has focused on extending the capabilities of LLMs by integrating them with 

a variety of tools51,52. Innovations such as babyAGI53 and AutoGPT54 are at the forefront of 

these efforts, demonstrating the potential of LLMs when combined with external tools to 

perform tasks that were previously beyond their scope. A recent development in this area is 

ChatMOF55, a chatbot tailored for the prediction of properties and inverse design of MOFs. 

ChatMOF offers a variety of services related to MOFs, such as database searching, property 

prediction using MOFTransformer31,56 with universal transfer learning, and the generation of 

materials with user-desired properties using genetic algorithms. 

Figure 6 and Supplementary Figure S10 demonstrate the functionality of this chatbot by 

linking ChatMOF with an L2M3 database. Supplementary Figure S10 introduces two new tools: 

the Search Synthesis Condition tool, which finds synthesis details and related articles using 

user questions, and the Material Finder, which translates common MOF names (such as 

IRMOF-1 and MIL-102) to their CCDC database REFCODEs. Figure 6 explains how 

ChatMOF finds the synthesis details of MIL-120. It uses Material Finder to match MIL-120 to 
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its REFCODE and then employs the Synthesis Condition tool to retrieve the synthesis 

information. This enables ChatMOF to provide the requested synthesis details. Additionally, 

Supplementary Figure S11 demonstrates how ChatMOF obtains the metadata for the MOF-649 

synthesis article, indicating its compatibility with the L2M3 database. 

The integration of ChatMOF into an autonomous artificial intelligence system represents a 

significant leap into the future of materials science research. While traditional LLMs have been 

limited to processing text-based data, the envisioned future expands their capabilities to provide 

accurate and quality-assured information in the field of materials science using a variety of 

specialized tools. This evolution marks a significant advance in the utility and applicability of 

LLMs in scientific research, particularly in the field of materials science. 
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Figure 6. ChatMOF combined with L2M3 database. Casestudy of MIL-120 
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Supplementary Notes S1. Explanation of the evaluation process and criteria 
 
For the evaluation of MOF synthesis papers published by ACS, Elsevier, RSC, and 

Springer, 25 papers each were randomly selected. Additionally, 25 papers each were 

randomly chosen from MOF application papers published by ACS and Elsevier. In total, 

1069 paragraphs from the 150 selected papers underwent evaluation. 

During the assessment of the categorization task, we considered three evaluation criteria. 

The first criterion is the true case, as shown in Supplementary Figure S6 a, where the agent 

accurately identifies the property or synthesis condition within the paragraph. In the table, 

this refers to correctly identifying which category - crystal information, property information, 

or bond & angle information - the table belongs to. Secondly, there are false positive cases, as 

depicted in Supplementary Figure S6 b, where a property or synthesis condition is believed to 

exist, but in reality, it either does not exist at all or contains different information. Lastly, 

there are false negative cases, as shown in Supplementary Figure S6 c, where the agent 

determines that there is no information, but in fact, information does exist. 

The Inclusion task is divided into three evaluation criteria. The first criterion is the true case, 

as illustrated in Supplementary Figure S7 a, where all information within the paragraph is 

accurately identified. In this scenario, all properties or synthesis processes within the 

paragraph are listed, and each component is individually assessed. As shown in 

Supplementary Figure S7 a, correctly extracting all three synthesis process pieces of 

information would be marked as three correct answers. In the example, only one paragraph is 

evaluated. However, in real, all information from multiple paragraphs of the same type is 

extracted simultaneously during Inclusion task. Additionally, there are two cases to consider: 

the false negative case (depicted in Supplementary Figure S7 b), where information within 

the paragraph is either not listed or listed with incorrect names, and the false positive case 
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(shown in Supplementary Figure S7 c), where information not present within the paragraph is 

falsely listed. 

The Extraction task applies similar scoring criteria to the preceding tasks. Accurately 

extracted information is considered a true case, as shown in Supplementary Figure S8 a. 

Scoring is based on individual keys within each dictionary. If all components associated with 

a key are correctly extracted, it is marked as correct. For example, in the case of 'meta', 

correct extraction of name, symbol, and chemical formula information results in a correct 

mark. Similarly, for 'magnetic susceptibility', correctness is determined by the accurate 

extraction of the value, unit, temperature, and condition. Synthesis conditions are evaluated 

separately for each method. In solvothermal synthesis, for instance, details such as precursor, 

solvent, surfactant, pressure, and temperature are assessed individually. All extracted 

information is considered correct only if all details are accurately extracted. For example, 

when dealing with the term 'precursor', each instance within a paragraph is evaluated 

separately for its name, amount, and unit. If all details for each precursor are accurately 

extracted, it is marked as correct. However, if any information within a paragraph is not listed 

correctly, as demonstrated in Supplementary Figure S8 b, it is classified as a false negative 

case. If information that does not exist is fabricated and listed, as shown in Supplementary 

Figure S8 c, it is classified as a false positive case. Similar to the Inclusion task, in the 

Extraction task, information is extracted from multiple paragraphs simultaneously during the 

actual assessment process. All information within these paragraphs is extracted collectively. 
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Supplementary Notes S2. Comparison of performance with previous studies 
 

Several papers have conducted text mining on MOF papers. Most of them focused on 

extracting specific information, such as a certain property or synthesis condition of MOF. To 

ensure a fair comparison, we conducted accuracy measurements based on the types of data 

extracted from different papers and compared the results with each respective paper. 

The study compared its performance with research focused on extracting properties. Park et 

al.1 reported an accuracy of 73.2% for surface area and 85.1% for pore volume when mining 

on approximately 200 sets of surface area and pore volume. In this study, there were 

approximately 100 items assessed for pore volume and about 150 for surface area. The 

evaluation results showed an accuracy of 100% for pore volume and 99.4% for surface area. 

Nandy et al.2 extracted information on approximately 3000 decomposition temperatures, 

while our study extracted decomposition temperatures for over 20,000 items. Tayfuroglu et 

al.3 extracted 6000 surface area and 7500 pore volume data from nearly 60,000 papers. 

However, when we randomly sampled 100 data points from their extracted dataset and 

assessed accuracy, we observed relatively low accuracy ranging from 70% to 80%. 

Next, we compared our study with papers that focus on extracting synthesis conditions. In 

Luo et al.'s study4 , they categorized synthesis paragraphs and extracted information on time, 

temperature, solvent, and additive. They performed extraction on approximately 6,000 papers 

and demonstrated high accuracy of over 90% in both tasks. In our study, we performed data 

mining on over 40,000 papers and achieved high F1 scores close to 0.9 for both tasks. Park et 

al.5  reported that they conducted text mining on approximately 30,000 papers. For both the 

synthesis paragraph categorization task and the extraction task of MOF, precursor, and 

solvent, the F1 scores were close to 0.9. In our study, the F1 score for each task was higher 

than 0.95. In Glasby et al.'s study6 , mining was conducted on over 40,000 papers to measure 
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accuracy for synthesis routes, topologies, linkers, and metal precursors. The results showed a 

relatively lower accuracy with an F1 score of around 0.5. In our research, we confirmed 

achieving high accuracy of around 0.9. Zheng et al.7 distinguished three processes to measure 

individual performances in their work. Process 1 involved extracting desired information 

from given synthesis paragraphs and demonstrated a very high F1 score of 0.96. However, 

this was observed for only about 200 papers with specific formats, indicating that the high F1 

score might be limited to such papers. For Process 2, which is similar to the classification 

task in our research, our study achieved a higher F1 score. 
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Supplementary Note S3. Training details for three machine learning models 
 

The descriptor-based model8 uses different MOF features to generate a single vector, which 

serves as input for a machine learning model. The model employs three main types of 

descriptors: metal features, linker features, and global features. Metal features comprise six 

attributes, namely atomic number, atomic weight, atomic radius, Mulliken electronegativity, 

polarizability, and electron affinity of the metal. The Linker features consist of 210 RDKit 

descriptors9 and 1024 Morgan fingerprints10, which are extracted from the SMILES 

notation11 of the linker. Global features include 120 Meredig descriptors12 that encompass 

elemental fractions, average atomic mass, and other relevant properties. The number of 

vectors for metal and linker features is determined based on the maximum number of metals 

and linkers per MOF, as shown in Figure S9. The machine learning models used in this study 

were selected by comparing their performance using the Python PyCaret module13. The top-

performing models, including Random Forest14, XGBoost15, SVM16, and KNN17, were 

chosen based on this comparison. The hyperparameters for each model were optimized using 

GridsearchCV18. For Random Forest, the n_estimators were set to 100, and for 

XGBRegressor, the n_estimators were also set to 100. SVM used rfb as the kernel, and KNN 

set n_neighbors to 5. 

The CGCNN19, or Crystal Graph Convolutional Neural Network, is a model specifically 

designed for the periodic crystal system. It represents atoms and bonds of a crystal as nodes 

and edges in a graph, respectively. Using a convolutional neural network, it learns to consider 

the relationships with neighboring atoms, achieving higher accuracy. The architecture of 

CGCNN consists of 5 convolution layers, followed by 1 hidden layer after pooling. The 

convolution layers have 64 hidden atom features, and there are 128 hidden features after 

pooling. The models are trained using the adam optimizer with a learning rate of 0.01 and a 
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batch size of 16. The training process lasts for 40 epochs. For more information, please refer 

to the original CGCNN paper. 

In the case of MOFTransformer20, the AdamW optimizer was used during the pre-training step 

with a learning rate set to 10-4 and weight decay set to 10-2 for all three tasks. The model was 

trained with a batch size of 1024 for 100 epochs. For the pre-training dataset, it was randomly 

divided into training, validation, and test sets with sizes of 800,000, 126,611, and 100,000 

respectively. During fine-tuning, the model was trained with a batch size of 32 for 40 epochs. 

The optimizer and learning rates remained the same as those used during the pre-training step. 

The fine-tuning dataset was split into training, validation, and test sets in an 8:1:1 ratio. 
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Supplementary Figure S1. Schematic figure for a matching agent. The purpose of the 

matching agent is the standardization of material names and symbols. Combine the name, 

symbol, and structural data to create a single dataset for each material. 

  



38 

 

 

Supplementary Figure S2. Figure for distribution of synthesis process 
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Supplementary Figure S3. Figure for distribution of synthesis conditions 
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Supplementary Figure S4. Distribution of extracted properties Distribution of a. 

Decomposition Temperature, b. Crystal Size, c. Yield 
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Supplementary Figure S5. Distribution of crawled paper a. Distribution based on the 

publisher b. Distribution according to the year of publication 
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Supplementary Figure S6. a. Examples of true cases b. An example of false positive case 

that misunderstands ‘property’ as ‘synthesis condition’ c. An example of false negative case 

that misunderstands ‘property as ‘else 
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Supplementary Figure S7. a. Examples of right cases b. An example of false negative case 

that misunderstands ‘solvothermal_synthesis’ as ‘chemical_synthesis’ c. An example of false 

positive case that hallucinates ‘porev_volume’ even though ‘pore_volume’ information does 

not exist 
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Supplementary Figure S8 a. Correct example of property extraction and synthesis condition 

extraction b. An example of false negative case that the agent does not extract existing 

information c. An example of false positive case that the agent hallucinates the information 



45 

 

 
 

Supplementary Figure S9. An overview of descriptor model 
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Supplementary Figure S10. Two tools of chatbot system 
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Supplementary Figure S11. Figure for chatbot casestudy: MOF-649 
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Supplementary Table S1. Example of a property table. 

(Source: Chinese Chemical Letters Volume 26, Issue 1, January 2015, Pages 6-10) 
 

https://www.sciencedirect.com/journal/chinese-chemical-letters
https://www.sciencedirect.com/journal/chinese-chemical-letters/vol/26/issue/1
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Supplementary Table S2. Example of a bond table. 

(Source: Z. Naturforsch. 2012, 67b, 103 – 106; received January 12, 2012) 
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Supplementary Table S3. Example of a crystal information table.  

(Source: Z. Naturforsch. 2012, 67b, 103 – 106; received January 12, 2012) 
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Supplementary Table S4. List of properties 
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Supplementary Table S5. List of synthesis condition type 
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Supplementary Table S6. R2 scores for five different train/test dataset 

(Exp: Experiment, Sim: Simulation) 
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