SOME CLASSIFICATIONS FOR GAUSS MAP OF TUBULAR HYPERSURFACES IN \mathbb{E}_1^4 CONCERNING LINEARIZED OPERATORS \mathcal{L}_k

AHMET KAZAN^{1*}, MUSTAFA ALTIN² AND NURETTIN CENK TURGAY³

ABSTRACT. In this study, we deal with the Gauss map of tubular hypersurfaces in 4-dimensional Lorentz-Minkowski space concerning the linearized operators \mathcal{L}_1 (Cheng-Yau) and \mathcal{L}_2 . We obtain the \mathcal{L}_1 (Cheng-Yau) operator of the Gauss map of tubular hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on timelike or spacelike curves with non-null Frenet vectors in \mathbb{E}_1^4 and give some classifications for these hypersurfaces which have generalized \mathcal{L}_k 1-type Gauss map, first kind \mathcal{L}_k -pointwise 1-type Gauss map, second kind \mathcal{L}_k -pointwise 1-type Gauss map and \mathcal{L}_k -harmonic Gauss map, $k \in \{1, 2\}$.

1. INTRODUCTION

Let (M, g) be a hypersurface of (n+1)-dimensional Minkowski space \mathbb{E}_1^{n+1} , Δ denote its Laplace operator. A smooth mapping $\phi: M \to \mathbb{E}_1^{n+1}$ is said to be *finite type* if it can be expressed as

$$\phi = \phi_0 + \phi_1 + \dots + \phi_k,$$

where ϕ_0 is a constant vector and ϕ_i is an eigenvector of Δ corresponding to the eigenvector λ_i for i = 1, 2, ..., k. More precisely, if $\lambda_1, \lambda_2, ..., \lambda_k$ are distinct, then ψ is said to be *k*-type ([4, 6, 7]). Several results on the study of finite type mappings were summed up in a report by B.-Y. Chen in [5] (See also [8, 22]).

Let N denote the Gauss map of M. From the definition above, one can conclude that N is of *1-type* if and only if it satisfies the equation

$$\Delta N = \lambda (N + C) \tag{1.1}$$

for a constant $\lambda \in \mathbb{R}$ and a constant vector C. However, Gauss map of some important submanifolds such as catenoid and helicoid of the Euclidean 3-space \mathbb{E}^3 satisfies

$$\Delta N = f(N+C) \tag{1.2}$$

which is weaker than (1.1), where $f \in C^{\infty}(M)$ is a smooth function, [10]. These submanifolds whose Gauss map N satisfying (1.2) are said to have *pointwise 1-type Gauss map*. Submanifolds with pointwise 1-type Gauss map have been worked in several papers (cf. [10, 20, 21, 22]).

On the other hand, the Gauss map of some hypersurfaces of semi-Euclidean spaces satisfies the equation

$$\Delta N = f_1 N + f_2 C \tag{1.3}$$

for some smooth functions f_1 , f_2 and a constant vector C. A submanifold is said to have generalized 1-type Gauss map if its Gauss map satisfies the condition (1.3), [25]. After this definition was given, hypersurfaces of pseudo-Euclidean spaces have been considered in terms of having generalized 1-type Gauss map, [17, 19, 25, 26].

²⁰¹⁰ Mathematics Subject Classification. 14J70, 53A35.

Key words and phrases. Tubular hypersurface, \mathcal{L}_1 (Cheng-Yau) operator, \mathcal{L}_2 operator, Generalized \mathcal{L}_k 1-type Gauss map, First and second kind \mathcal{L}_k -pointwise 1-type Gauss map, \mathcal{L}_k -harmonic Gauss map.

In the recent years, the definition of \mathcal{L}_k -finite type maps has been obtained by replacing Δ in the definition above with the sequence of operators \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_2 , ..., \mathcal{L}_{n-1} , [1, 2]. Note that, by the definition of these operators, one can obtain $\mathcal{L}_0 = -\Delta$ and $\mathcal{L}_1 = \Box$ is called as the Cheng-Yau operator introduced in [9]. By motivating this idea, notion of \mathcal{L}_k -pointwise 1-type Gauss map and generalized \mathcal{L}_k 1-type Gauss map was presented in [14] and [18], respectively (see Definition 1). After the case k = 1 is studied in these papers, many result obtained on hypersurfaces with certain type of Gauss map, [11, 12, 13, 19, 24, 25, 26].

On the other hand, in [3], the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields in \mathbb{E}_1^4 has been given and their some geometric invariants such as unit normal vector felds, Gaussian curvatures, mean curvatures and principal curvatures have been obtained. Also, tubular hypersurfaces in \mathbb{E}_1^4 by taking constant radius function have been studied in [3].

In this paper, we study the tubular hypersurfaces in Lorentz-Minkowski 4-space \mathbb{E}_1^4 with the aid of \mathcal{L}_k operators, $k \in \{1, 2\}$. In Sect. 2, we give basic notation, facts and definitions about hypersurfaces of Minkowski spaces. In Sect. 3 and Sect 4, we consider some classifications of tubular hypersurfaces by considering their Gauss maps in terms of their types with respect to the operators \mathcal{L}_1 and \mathcal{L}_2 .

2. Preliminaries

Let \mathbb{E}_1^{n+1} be the (n + 1)-dimensional Lorentz-Minkowski space with the canonical pseudo-Euclidean metric \langle , \rangle of index 1 and signature (-, +, +, ..., +) given by

$$\langle , \rangle = -dx_1^2 + dx_2^2 + dx_3^2 + \dots + dx_{n+1}^2$$

where $(x_1, x_2, ..., x_{n+1})$ is a rectangular coordinate system in \mathbb{E}_1^{n+1} . If $\Gamma: M \longrightarrow \mathbb{E}_1^{n+1}$ is an isometric immersion from an *n*-dimensional orientable manifold M to \mathbb{E}_1^{n+1} , then the induced metric on M by the immersion Γ can be Riemannian or Lorentzian. Let N denotes a unit normal vector field and put $\langle N, N \rangle = \varepsilon = \pm 1$, so that $\varepsilon = 1$ or $\varepsilon = -1$ according to M is endowed with a Lorentzian or Riemannian metric, respectively.

The operator \mathcal{L}_k acting on the coordinate functions of the Gauss map N of the hypersurface M in (n+1)-dimensional Lorentz-Minkowski space \mathbb{E}_1^{n+1} is

$$\mathcal{L}_k N = -\varepsilon \mathfrak{C}_k \left(\nabla H_{k+1} + \left(n H_1 H_{k+1} - \left(n - k - 1 \right) H_{k+2} \right) N \right).$$
(2.1)

Here,

$$\begin{pmatrix} n \\ k \end{pmatrix} H_k = (-\varepsilon)^k a_k, \quad \left(\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!} \right), \tag{2.2}$$

such that

$$a_{1} = -\sum_{i=1}^{n} \kappa_{i}, a_{k} = (-1)^{k} \sum_{i_{1} < i_{2} < \dots < i_{k}}^{n} \kappa_{i_{1}} \kappa_{i_{2}} \dots \kappa_{i_{k}}, \ k = 2, 3, \dots, n$$

$$(2.3)$$

and H_k is called the k-th mean curvature of order k of M.

Also, the constant \mathfrak{C}_k is given by

$$\mathfrak{C}_k = \binom{n}{k+1} (-\varepsilon)^k.$$
(2.4)

(For more details about the linearized operator \mathcal{L}_k , one can see [16].)

Definition 1. Let \mathfrak{m} and \mathfrak{n} be non-zero smooth functions on M, $C \in \mathbb{E}_1^{n+1}$ be a non-zero constant vector and $k \in \{0, 1, 2, ..., n\}$.

If the Gauss map N of an oriented submanifold M in \mathbb{E}^4_1 satisfies

i: $\mathcal{L}_k N = \mathfrak{m}N + \mathfrak{n}C$, then M has generalized \mathcal{L}_k 1-type Gauss map; ii: $\mathcal{L}_k N = \mathfrak{m}N$, then M has first kind \mathcal{L}_k -pointwise 1-type Gauss map; iii: $\mathcal{L}_k N = \mathfrak{m}(N + C)$, then M has second kind \mathcal{L}_k -pointwise 1-type Gauss map; iv: $\mathcal{L}_k N = 0$, then N is called \mathcal{L}_k -harmonic.

In this study, we will deal with Gauss maps of tubular hypersurfaces in 4-dimensional Lorentz-Minkowski space \mathbb{E}_1^4 concerning linearized operators L_1 and L_2 . So, let us give some notions in \mathbb{E}_1^4 .

Let $\vec{u} = (u_1, u_2, u_3, u_4), \ \vec{v} = (v_1, v_2, v_3, v_4)$ and $\vec{w} = (w_1, w_2, w_3, w_4)$ be three vectors in \mathbb{E}_1^4 . The inner product and vector product are defined by

$$\langle \overrightarrow{u}, \overrightarrow{v} \rangle = -u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4 \tag{2.5}$$

and

$$\vec{u} \times \vec{v} \times \vec{w} = \det \begin{bmatrix} -e_1 & e_2 & e_3 & e_4 \\ u_1 & u_2 & u_3 & u_4 \\ v_1 & v_2 & v_3 & v_4 \\ w_1 & w_2 & w_3 & w_4 \end{bmatrix},$$
(2.6)

respectively. Here e_i , (i = 1, 2, 3, 4) are standard basis vectors.

A vector $\vec{u} \in E_1^4 - \{0\}$ is called spacelike, timelike or lightlike (null) if $\langle \vec{u}, \vec{u} \rangle > 0$ (or $\vec{u} = 0$), $\langle \vec{u}, \vec{u} \rangle < 0$ or $\langle \vec{u}, \vec{u} \rangle = 0$, respectively. A curve $\beta(s)$ in \mathbb{E}_1^4 is spacelike, timelike or lightlike (null), if all its velocity vectors $\beta'(s)$ are spacelike, timelike or lightlike, respectively and a non-null (i.e. timelike or spacelike) curve has unit speed if $\langle \beta', \beta' \rangle = \mp 1$. Also, the norm of the vector \vec{u} is $\|\vec{u}\| = \sqrt{|\langle \vec{u}, \vec{u} \rangle|}$ [15].

Let F_1 , F_2 , F_3 , F_4 be unit tangent vector field, principal normal vector field, binormal vector field, trinormal vector field of a timelike or spacelike curve $\beta(s)$, respectively and $\{F_1, F_2, F_3, F_4\}$ be the moving Frenet frame along $\beta(s)$ in \mathbb{E}_1^4 . The Frenet equations can be given according to the causal characters of non-null Frenet vector fields F_1 , F_2 , F_3 and F_4 as follows [23]:

If the curve $\beta(s)$ is timelike, i.e. $\langle F_1, F_1 \rangle = -1$, $\langle F_i, F_i \rangle = 1$ (i = 2, 3, 4), then

$$\left. \begin{array}{l}
F_{1}' = k_{1}F_{2}, \\
F_{2}' = k_{1}F_{1} + k_{2}F_{3}, \\
F_{3}' = -k_{2}F_{2} + k_{3}F_{4}, \\
F_{4}' = -k_{3}F_{3};
\end{array} \right\}$$
(2.7)

if the curve $\beta(s)$ is spacelike with timelike principal normal vector field F_2 , i.e. $\langle F_2, F_2 \rangle = -1$, $\langle F_i, F_i \rangle = 1$ (i = 1, 3, 4), then

$$\left.\begin{array}{l}
F_{1}' = k_{1}F_{2}, \\
F_{2}' = k_{1}F_{1} + k_{2}F_{3}, \\
F_{3}' = k_{2}F_{2} + k_{3}F_{4}, \\
F_{4}' = -k_{3}F_{3};
\end{array}\right\}$$
(2.8)

if the curve $\beta(s)$ is spacelike with timelike binormal vector field F_3 , i.e. $\langle F_3, F_3 \rangle = -1$, $\langle F_i, F_i \rangle = 1$ (i = 1, 2, 4), then

$$\begin{array}{c}
F_{1}' = k_{1}F_{2}, \\
F_{2}' = -k_{1}F_{1} + k_{2}F_{3}, \\
F_{3}' = k_{2}F_{2} + k_{3}F_{4}, \\
F_{4}' = k_{3}F_{3};
\end{array}$$
(2.9)

if the curve $\beta(s)$ is spacelike with timelike trinormal vector field F_4 , i.e. $\langle F_4, F_4 \rangle = -1$, $\langle F_i, F_i \rangle = 1$ (i = 1, 2, 3), then

$$\begin{array}{c}
F_{1}' = k_{1}F_{2}, \\
F_{2}' = -k_{1}F_{1} + k_{2}F_{3}, \\
F_{3}' = -k_{2}F_{2} + k_{3}F_{4}, \\
F_{4}' = k_{3}F_{3}.
\end{array}$$
(2.10)

Here k_1, k_2, k_3 are the first, second and third curvatures of the non-null curve $\beta(s)$.

Also, if p is a fixed point in \mathbb{E}_1^4 and r is a positive constant, then the pseudo-Riemannian hypersphere and the pseudo-Riemannian hyperbolic space are defined by

$$S_1^3(p,r) = \{ x \in \mathbb{E}_1^4 : \langle x - p, x - p \rangle = r^2 \}$$

and

$$H_0^3(p,r) = \{ x \in \mathbb{E}_1^4 : \langle x - p, x - p \rangle = -r^2 \},\$$

respectively.

If M is an oriented hypersurface in E_1^4 , then the gradient of a smooth function f(s, t, w), which is defined in M, can be obtained by

$$\nabla f = \frac{1}{\mathfrak{g}} \begin{pmatrix} ((g_{23}^2 - g_{22}g_{33}) f_s + (-g_{13}g_{23} + g_{12}g_{33}) f_t + (g_{13}g_{22} - g_{12}g_{23}) f_w) \partial s \\ + ((-g_{13}g_{23} + g_{12}g_{33}) f_s + (g_{13}^2 - g_{11}g_{33}) f_t + (-g_{12}g_{13} + g_{11}g_{23}) f_w) \partial t \\ + ((g_{13}g_{22} - g_{12}g_{23}) f_s + (-g_{12}g_{13} + g_{11}g_{23}) f_t + (g_{12}^2 - g_{11}g_{22}) f_w) \partial w \end{pmatrix}, \quad (2.11)$$

where

$$\mathfrak{g} = g_{13}^2 g_{22} - 2g_{12}g_{13}g_{23} + g_{11}g_{23}^2 + g_{12}^2 g_{33} - g_{11}g_{22}g_{33};$$

 $\{s,t,w\}$ is a local coordinat system of M; f_s , f_t , f_w are the partial derivatives of f and $g_{11} = \langle \partial s, \partial s \rangle$, $g_{12} = \langle \partial s, \partial t \rangle$, $g_{13} = \langle \partial s, \partial w \rangle$, $g_{22} = \langle \partial t, \partial t \rangle$, $g_{23} = \langle \partial t, \partial w \rangle$, $g_{33} = \langle \partial w, \partial w \rangle$.

3. Some Classifications for Tubular Hypersurfaces Generated by Timelike Curves with L_k Operators in \mathbb{E}^4_1

In this section, we obtain the \mathcal{L}_1 (Cheng-Yau) and \mathcal{L}_2 operators of the Gauss map of the tubular hypersurfaces $\mathcal{T}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres whose centers lie on a timelike curve with non-null Frenet vectors in \mathbb{E}^4_1 and give some classifications for these hypersurfaces which have generalized \mathcal{L}_k 1-type Gauss map, first kind \mathcal{L}_k -pointwise 1type Gauss map and second kind \mathcal{L}_k -pointwise 1-type Gauss map and \mathcal{L}_k -harmonic Gauss map, $k \in \{1, 2\}$.

The tubular hypersurfaces $\mathcal{T}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres whose centers lie on a timelike curve with non-null Frenet vectors in \mathbb{E}_1^4 can be parametrized by

$$\mathcal{T}(s,t,w) = \beta(s) + r(\cos t \cos w F_2(s) + \sin t \cos w F_3(s) + \sin w F_4(s)). \tag{3.1}$$

The unit normal vector field of (3.1) is

$$N = -\left(\cos t \cos w F_2 + \sin t \cos w F_3 + \sin w F_4\right) \tag{3.2}$$

and so,

$$\langle N, N \rangle = 1. \tag{3.3}$$

The coefficients of the first fundamental form of (3.1) are

$$g_{11} = -(1 + rk_1 \cos t \cos w)^2 + (rk_2 \cos t \cos w - rk_3 \sin w)^2 + r^2 (k_2^2 + k_3^2) \sin^2 t \cos^2 w,$$

$$g_{12} = g_{21} = r^2 (k_2 \cos w - k_3 \cos t \sin w) \cos w, \ g_{22} = r^2 \cos^2 w,$$

$$g_{13} = g_{31} = r^2 k_3 \sin t, \ g_{23} = g_{32} = 0, \ g_{33} = r^2.$$

$$(3.4)$$

The principal curvatures of (3.1) are

$$\kappa_1 = \kappa_2 = \frac{1}{r}, \ \kappa_3 = \frac{k_1 \cos t \cos w}{1 + rk_1 \cos t \cos w}.$$
(3.5)

For more details about these hypersurfaces, one can see [3].

3.1. Some Classifications for Tubular Hypersurfaces Generated by Timelike Curves with \mathcal{L}_1 (Cheng-Yau) Operator in \mathbb{E}_1^4 .

The functions a_k of the tubular hypersurfaces (3.1) in \mathbb{E}^4_1 are obtained from (2.3) and (3.5) by

$$a_1 = \frac{-2 - 3rk_1\cos t\cos w}{r(1 + rk_1\cos t\cos w)}, \ a_2 = \frac{1 + 3rk_1\cos t\cos w}{r^2(1 + rk_1\cos t\cos w)}, \ a_3 = -\frac{k_1}{r^2(rk_1 + \sec t\sec w)}.$$
 (3.6)

Also, from (2.11), (3.4) and (3.6), we have

$$\nabla a_{2} = -\frac{2\left(k_{1}'\cos t + k_{1}k_{2}\sin t\right)\cos w}{r(1+rk_{1}\cos t\cos w)^{3}}F_{1} - \frac{k_{1}\left(2\cos^{2}t\cos(2w) + \cos(2t) - 3\right)}{2r^{2}(1+rk_{1}\cos t\cos w)^{2}}F_{2} - \frac{2k_{1}\sin t\cos t\cos^{2}w}{r^{2}(1+rk_{1}\cos t\cos w)^{2}}F_{3} - \frac{2k_{1}\cos t\sin w\cos w}{r^{2}(1+rk_{1}\cos t\cos w)^{2}}F_{4}.$$
(3.7)

So, from (2.1), (2.2), (3.2), (3.3), (3.6) and (3.7), we reach that

$$\mathcal{L}_{1}N = -\frac{2(k_{1}k_{2}\sin t + k_{1}'\cos t)\cos w}{r(1 + rk_{1}\cos t\cos w)^{3}}F_{1}$$

$$-\frac{2(rk_{1}(3rk_{1}\cos^{3}t\cos^{3}w + 2\cos^{2}t\cos(2w) + \cos(2t)) + \cos t\cos w)}{r^{3}(1 + rk_{1}\cos t\cos w)^{2}}F_{2}$$

$$-\frac{2(1 + 3rk_{1}\cos t\cos w)\sin t\cos w}{r^{3}(1 + rk_{1}\cos t\cos w)}F_{3} - \frac{2(3rk_{1}\cos t\cos w + 1)\sin w}{r^{3}(1 + rk_{1}\cos t\cos w)}F_{4}.$$
(3.8)

Now, let us give some classifications for the tubular hypersurfaces (3.1) which have generalized \mathcal{L}_1 1-type Gauss map, first kind \mathcal{L}_1 -pointwise 1-type Gauss map and second kind \mathcal{L}_1 -pointwise 1-type Gauss map and \mathcal{L}_1 -harmonic Gauss map.

Let the tubular hypersurfaces $\mathcal{T}(s, t, w)$ have generalized \mathcal{L}_1 (Cheng-Yau) 1-type Gauss map, i.e., $\mathcal{L}_1 N = \mathfrak{m} N + \mathfrak{n} C$, where $C = C_1 F_1 + C_2 F_2 + C_3 F_3 + C_4 F_4$ is a constant vector. Here, by taking derivatives of the constant vector C with respect to s, from (2.7) we obtain that

$$\begin{array}{c}
C_1' + C_2 k_1 = 0, \\
C_2' + C_1 k_1 - C_3 k_2 = 0, \\
C_3' + C_2 k_2 - C_4 k_3 = 0, \\
C_4' + C_3 k_3 = 0.
\end{array}$$
(3.9)

Also, by taking derivatives the constant vector C with respect to t and w separately, one can see that the functions C_i depend only on s.

Firstly, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have generalized \mathcal{L}_1 (Cheng-Yau) 1-type Gauss map.

From (3.2) and (3.8), we get

$$-\frac{2(k_{1}'\cos t+k_{1}k_{2}\sin t)\cos w}{r(1+rk_{1}\cos t\cos w)^{3}} = \mathfrak{n}C_{1},$$

$$-\frac{2(rk_{1}(3rk_{1}\cos^{3}t\cos^{3}w+2\cos^{2}t\cos(2w)+\cos(2t))+\cos t\cos w)}{r^{3}(1+rk_{1}\cos t\cos w)^{2}} = \mathfrak{m}(-\cos t\cos w) + \mathfrak{n}C_{2},$$

$$-\frac{2(1+3rk_{1}\cos t\cos w)\sin t\cos w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}(-\sin t\cos w) + \mathfrak{n}C_{3},$$

$$-\frac{2(1+3rk_{1}\cos t\cos w)\sin w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}(-\sin w) + \mathfrak{n}C_{4}.$$

$$(3.10)$$

Now let us investigate the non-zero functions $\mathfrak{m}(s,t,w)$ and $\mathfrak{n}(s,t,w)$ from the above four equations.

Firstly, let us assume that $C_1 \neq 0$.

In this case, from the first equation of (3.10) it's easy to see that

$$\mathfrak{n}(s,t,w) = -\frac{2(k_1'\cos t + k_1k_2\sin t)\cos w}{r(1+rk_1\cos t\cos w)^3 C_1}.$$
(3.11)

Here, when the equation (3.11) is successively substituted into the second, third and fourth equations of (3.10), we obtain

$$\mathfrak{m}(s,t,w) = \frac{2 \left(\begin{array}{c} \left(rk_1 \left(\begin{array}{c} 3rk_1 \cos^3 t \cos^3 w \\ +2\cos^2 t \cos(2w) + \cos(2t) \end{array} \right) + \cos t \cos w \right) C_1 (1 + rk_1 \cos t \cos w) \\ -C_2 r^2 \left(k'_1 \cos t + k_1 k_2 \sin t \right) \cos w \\ \hline C_1 r^3 (1 + rk_1 \cos t \cos w)^3 \cos t \cos w \end{array} \right),$$

$$\mathfrak{m}(s,t,w) = \frac{2(C_1(1+rk_1\cos t\cos w)^2(1+3rk_1\cos t\cos w) - C_3r^2(k_1'\cot t+k_1k_2))}{C_1r^3(1+rk_1\cos t\cos w)^3},$$

$$\mathfrak{m}(s,t,w) = \frac{2(C_1(1+rk_1\cos t\cos w)^2(1+3rk_1\cos t\cos w) - C_4r^2(k'_1\cos t+k_1k_2\sin t)\cot w)}{C_1r^3(1+rk_1\cos t\cos w)^3}$$

When we equate the functions $\mathfrak{m}(s, t, w)$ found above to each other, we arrive at the following equations:

$$(C_3 - C_4 \sin t \cot w) (k'_1 \cot t + k_1 k_2) = 0, \qquad (3.12)$$

$$k_1(C_1 \sec t \sec w + k_2 r(C_2 \tan t - C_4 \sin t \cot w)) + r(C_1 k_1^2 - k_1'(C_4 \cos t \cot w - C_2)) = 0, \quad (3.13)$$

$$k_1(rk_2(C_3 - C_2\tan t) - C_1\sec t\sec w) - C_1rk_1^2 + rk_1'(C_3\cot t - C_2) = 0.$$
(3.14)

In the equation (3.12), it holds that $k'_1 \cot t + k_1 k_2 \neq 0$. This is because, when $k'_1 \cot t + k_1 k_2 = 0$, the function $\mathfrak{n}(s, t, w)$ in the first equation of (3.10) becomes zero. This, in turn, contradicts the definition of the function $\mathfrak{n}(s, t, w)$ in our classification as $\mathcal{L}_1 N = \mathfrak{m} N + \mathfrak{n} C$. So, from the equation (3.12) and $k'_1 \cot t + k_1 k_2 \neq 0$, we have $C_3 = C_4 = 0$. When $C_3 = C_4 = 0$, substituting this into the equation (3.14) yields

$$\left(C_1 r k_1^2 + C_2 r k_1'\right) \cos t + C_1 k_1 \sec w + C_2 r k_1 k_2 \sin t = 0.$$

Thus, we have

$$C_1k_1^2 + C_2k_1' = C_1k_1 = C_2k_1k_2 = 0$$

and so $C_1 = C_2 = 0$. This is a contradiction.

Secondly, let us assume that $C_1 = 0$.

In this case, from the first equation of the set of equations (3.9) it's easy to see that

$$C_2 k_1 = 0. (3.15)$$

If $k_1 = 0$ in (3.15), then from the second, third and fourth equations of (3.10), it is calculated as

$$C_{2}r^{3}\mathfrak{n}(s,t,w) = (\mathfrak{m}(s,t,w)r^{3}-2)\cos t\cos w,$$

$$C_{3}r^{3}\mathfrak{n}(s,t,w) = (\mathfrak{m}(s,t,w)r^{3}-2)\sin t\cos w,$$

$$C_{4}r^{3}\mathfrak{n}(s,t,w) = (\mathfrak{m}(s,t,w)r^{3}-2)\sin w,$$
(3.16)

respectively. Since the functions C_i depend only on s, there is no solution for functions $\mathfrak{n}(s, t, w)$ in (3.16).

Now, let us assume that $C_2 = 0$ in (3.15). In this case, from the second equation of (3.10), it's easy to see that

$$\mathfrak{m}(s,t,w) = \frac{2\left(\cos t \cos w + rk_1\left(\cos(2t) + 3rk_1\cos^3 t \cos^3 w + 2\cos^2 t \cos(2w)\right)\right)}{r^3(1 + rk_1\cos t \cos w)^2\cos t\cos w}.$$
(3.17)

Here, when the equation (3.17) is successively substituted into the third and fourth equations of (3.10), we obtain

$$\mathfrak{n}(s,t,w)C_3 = \frac{-2k_1}{r^2(1+r\cos t\cos wk_1)^2}\tan t,$$
$$\mathfrak{n}(s,t,w)C_4 = \frac{-2k_1}{r^2(1+rk_1\cos t\cos w)^2}\sec t\tan w.$$

Here, there is no solution for functions $\mathfrak{n}(s, t, w)$.

Hence, we can state the following theorem:

Theorem 1. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_1^4 , with generalized \mathcal{L}_1 1-type Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have second kind \mathcal{L}_1 -pointwise 1-type Gauss map, i.e., $\mathcal{L}_1 N = \mathfrak{m}(N + C)$.

From (3.2) and (3.8), we get

$$-\frac{2(k_{1}'\cos t+k_{1}k_{2}\sin t)\cos w}{r(1+rk_{1}\cos t\cos w)^{3}} = \mathfrak{m}C_{1},$$

$$-\frac{2(rk_{1}(3rk_{1}\cos^{3}t\cos^{3}w+2\cos^{2}t\cos(2w)+\cos(2t))+\cos t\cos w)}{r^{3}(1+rk_{1}\cos t\cos w)^{2}} = \mathfrak{m}(-\cos t\cos w+C_{2}),$$

$$-\frac{2(1+3rk_{1}\cos t\cos w)\sin t\cos w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}(-\sin t\cos w+C_{3}),$$

$$-\frac{2(1+3rk_{1}\cos t\cos w)\sin w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}(-\sin w+C_{4}).$$
(3.18)

Here, from the fourth equation of (3.18) it's easy to see that

$$\mathfrak{m}(s,t,w) = -\frac{2\left(1 + 3rk_1\cos t\cos w\right)\sin w}{r^3(1 + rk_1\cos t\cos w)\left(-\sin w + C_4\right)}.$$
(3.19)

When the equation (3.19) is successively substituted into the second and third equations of (3.18), we obtain

$$3C_2r^2k_1^2\cos^2 t\cos^2 w + 4C_2rk_1\cos t\cos w + C_2 - rk_1 = 0,$$

$$C_4\sin t\cos w - C_3\sin w = 0.$$

So, we have

$$k_1 = C_2 = C_3 = C_4 = 0. (3.20)$$

Now, when the components of the equation (3.20) is substituted into the second or third equations of (3.18), we calculated

$$\mathfrak{m}(s,t,w) = \frac{2}{r^3}.$$
(3.21)

Also, from the first equation of (3.18) and (3.21), we have $C_1 = 0$.

From the calculations made above for classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have second kind \mathcal{L}_1 -pointwise 1-type Gauss map, i.e., $\mathcal{L}_1 N = \mathfrak{m}(N+C)$, we can give the following theorem:

Theorem 2. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_1^4 , with second kind \mathcal{L}_1 -pointwise 1-type Gauss map.

Moreover, if the function m is constant in Definition 1 (ii or iii), then we say M has first or second kind \mathcal{L}_k -(global) pointwise 1-type Gauss map. Thus, we can state the following theorem:

Theorem 3. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_1^4 , have first kind \mathcal{L}_1 -(global) pointwise 1-type Gauss map, i.e., $\mathcal{L}_1 N = \mathfrak{m} N$ if and only if $k_1 = 0$, where $\mathfrak{m}(s, t, w) = \frac{2}{r^3}$.

Finally, in the equation (3.8), since the coefficients of F_1 , F_2 , F_3 and F_4 cannot all be zero, we can give the following theorem:

Theorem 4. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_1^4 , cannot have \mathcal{L}_1 -harmonic Gauss map.

3.2. Some Classifications for Tubular Hypersurfaces Generated by Timelike Curves with \mathcal{L}_2 Operator in \mathbb{E}_1^4 .

Firstly, it is calculated from (2.11), (3.4) and (3.6) as

$$\nabla a_3 = \frac{(k_1' \cos t + k_1 k_2 \sin t) \cos w}{r^2 (1 + r k_1 \cos t \cos w)^3} F_1 + \frac{k_1 (2 \cos^2 t \cos(2w) + \cos(2t) - 3)}{4r^3 (1 + r k_1 \cos t \cos w)^2} F_2 + \frac{k_1 \sin t \cos t \cos^2 w}{r^3 (1 + r k_1 \cos t \cos w)^2} F_3 + \frac{k_1 \cos t \sin w \cos w}{r^3 (1 + r k_1 \cos t \cos w)^2} F_4.$$
(3.22)

So, from (2.1), (2.2), (3.2), (3.3), (3.6) and (3.22), we have

$$\mathcal{L}_{2}N = \frac{(k_{1}'\cos t + k_{1}k_{2}\sin t)\cos w}{r^{2}(1 + rk_{1}\cos t\cos w)^{3}}F_{1}$$

$$+ \frac{k_{1}\left(\frac{rk_{1}}{2}\left(24rk_{1}\cos^{4}t\cos^{4}w + 12\cos^{3}t\cos(3w)\right)\right) + (1 + 19\cos t\cos w + 9\cos(3t)\cos w) + (1 + 19\cos t\cos w + 9\cos(3t)\cos w) + (1 + 19\cos t\cos(2t) - 1) + (1 + 19\cos t\cos(2t) + (1 + 19\cos t\cos(2t) - 1) + (1 + 19\cos t\cos(2t) + (1 + 19\cos t\cos(2t$$

Now, let us give some classifications for the tubular hypersurfaces (3.1) which have generalized \mathcal{L}_2 1-type Gauss map, first kind \mathcal{L}_2 -pointwise 1-type Gauss map and second kind \mathcal{L}_2 -pointwise 1-type Gauss map and \mathcal{L}_2 -harmonic Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have generalized \mathcal{L}_2 1-type Gauss map. From (3.2) and (3.23), we get

$$\frac{\left(k_{1}^{\prime}\cos t+k_{1}k_{2}\sin t\right)\cos w}{r^{2}(1+rk_{1}\cos t\cos w)^{3}} = \mathfrak{n}C_{1}, \\
\frac{k_{1}\left(\frac{rk_{1}}{2}\left(\begin{array}{c}24rk_{1}\cos^{4}t\cos^{4}w+12\cos^{3}t\cos(3w)\\+19\cos t\cos w+9\cos(3t)\cos w\end{array}\right)\right)\\+6\cos^{2}t\cos(2w)+3\cos(2t)-1\\4r^{3}(1+rk_{1}\cos t\cos w)^{3}\end{array}} = \mathfrak{m}\left(-\cos t\cos w\right)+\mathfrak{n}C_{2}, \\
\frac{3k_{1}\sin t\cos t\cos^{2}w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}\left(-\sin t\cos w\right)+\mathfrak{n}C_{3}, \\
\frac{3k_{1}\cos t\sin w\cos w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}\left(-\sin w\right)+\mathfrak{n}C_{4}.$$
(3.24)

Firstly, let us assume that $C_1 \neq 0$.

In this case, from the first equation of (3.24) it's easy to see that

$$\mathfrak{n}(s,t,w) = \frac{(k_1'\cos t + k_1k_2\sin t)\cos w}{r^2(1+rk_1\cos t\cos w)^3C_1}.$$
(3.25)

Here, when the equation (3.25) is successively substituted into the second, third and fourth equations of (3.24), we obtain

$$\mathfrak{m}(s,t,w) = \frac{\left(\frac{2k_1(-3C_1\cos t\cos w + C_1\sec t\sec w + C_2rk_2\tan t) + 2C_2rk'_1}{-6C_1r^2k_1^3\cos^3 t\cos^3 w - C_1rk_1^2\left(6\cos^2 t\cos(2w) + 3\cos(2t) + 1\right)\right)}{2C_1r^3(1+rk_1\cot so t\cos w)^3},$$

$$\mathfrak{m}(s,t,w) = \frac{C_3r(k'_1\cot t+k_1k_2)-3C_1k_1(1+rk_1\cos t\cos w)^2\cos t\cos w}{C_1r^3(1+rk_1\cot so t\cos w)^3},$$

$$\mathfrak{m}(s,t,w) = \frac{C_4r(k'_1\cot t+k_1k_2\sin t)\cot w-3C_1k_1(1+rk_1\cos t\cos w)^2\cos t\cos w}{C_1r^3(1+rk_1\cot so t\cos w)^3}.$$

When we equate the functions $\mathfrak{m}(s, t, w)$ found above to each other, we arrive at the following equations:

$$(C_4 \sin t \cos w - C_3 \sin w) (k'_1 \cos t + k_1 k_2 \sin t) = 0, \qquad (3.26)$$

$$k_1(C_1 \sec t \sec w + rk_2(C_2 \tan t - C_4 \sin t \cot w)) + C_1 rk_1^2 + rk_1'(C_2 - C_4 \cos t \cot w) = 0, \quad (3.27)$$

$$k_1(C_1 \sec t \sec w + rk_2(C_2 \tan t - C_3)) + C_1 rk_1^2 + rk_1'(C_2 - C_3 \cot t) = 0.$$
(3.28)

In the equation (3.26), it holds that $k'_1 \cos t + k_1 k_2 \sin t \neq 0$. This is because when $k'_1 \cos t + k_1 k_2 \sin t = 0$, the function $\mathfrak{n}(s, t, w)$ in the first equation of (3.24) becomes zero. This, in turn, contradicts the definition of the function $\mathfrak{n}(s, t, w)$ in our classification as $\mathcal{L}_2 N = \mathfrak{m} N + \mathfrak{n} C$. So, from the equation (3.26) and $k'_1 \cos t + k_1 k_2 \sin t \neq 0$, we have $C_3 = C_4 = 0$. When $C_3 = C_4 = 0$, substituting this into the equation (3.28) yields

$$r\left(C_{1}k_{1}^{2}+C_{2}k_{1}^{\prime}\right)\cos t+C_{2}rk_{1}k_{2}\sin t+C_{1}k_{1}\sec w=0.$$

Thus, we have

$$C_1k_1^2 + C_2k_1' = C_1k_1 = C_2k_1k_2 = 0$$

and so $C_1 = C_2 = 0$. This is a contradiction.

Secondly, let us assume that $C_1 = 0$.

In this case, from the first equation of the set of equations (3.9) it's easy to see that

$$C_2 k_1 = 0. (3.29)$$

If $k_1 = 0$ in (3.29), then from the second, third and fourth equations of (3.24), it is calculated as

$$\mathfrak{m}(s,t,w) \cos t \cos w = \mathfrak{n}(s,t,w)C_2, \\ \mathfrak{m}(s,t,w) \sin t \cos w = \mathfrak{n}(s,t,w)C_3, \\ \mathfrak{m}(s,t,w) \sin w = \mathfrak{n}(s,t,w)C_4,$$

$$(3.30)$$

respectively. Since the functions C_i depend only on s, there is no solution for functions $\mathfrak{m}(s, t, w)$ and $\mathfrak{n}(s, t, w)$ in (3.30).

Now, let us assume that $C_2 = 0$ in (3.29). In this case, from the second equation of (3.24), it's easy to see that

$$\mathfrak{m}(s,t,w) = -\frac{k_1 \left(\begin{array}{c} rk_1 \left(\begin{array}{c} 24rk_1\cos^4 t\cos^4 w + 12\cos^3 t\cos(3w) \\ +19\cos t\cos w + 9\cos(3t)\cos w \end{array}\right) \right)}{+12\cos^2 t\cos(2w) + 6\cos(2t) - 2} \right)}{8r^3(1 + rk_1\cos t\cos w)^3\cos t\cos w}.$$
(3.31)

Here, when the equation (3.31) is successively substituted into the third and fourth equations of (3.24), we obtain

$$\mathfrak{n}(s,t,w)C_3 = \frac{k_1(rk_1\sin t\cos w + \tan t)}{r^3(1+rk_1\cos t\cos w)^3},$$
$$\mathfrak{n}(s,t,w)C_4 = \frac{k_1(rk_1\sin w + \sec t\tan w)}{r^3(1+rk_1\cos t\cos w)^3}.$$

Here, there is no solution for functions $\mathfrak{n}(s, t, w)$.

Therefore, we can give the following theorem:

Theorem 5. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_1^4 , with generalized \mathcal{L}_2 1-type Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have second kind \mathcal{L}_2 -pointwise 1-type Gauss map, i.e., $\mathcal{L}_2 N = \mathfrak{m}(N + C)$.

From (3.2) and (3.23), we get

$$\frac{(k_{1}^{\prime}\cos t+k_{1}k_{2}\sin t)\cos w}{r^{2}(1+rk_{1}\cos t\cos w)^{3}} = \mathfrak{m}C_{1}, \\
\frac{k_{1}\left(\frac{rk_{1}}{2}\left(\begin{array}{c}24rk_{1}\cos^{4}t\cos^{4}w+12\cos^{3}t\cos(3w)\\+19\cos t\cos w+9\cos(3t)\cos w\end{array}\right)\right)\\+6\cos^{2}t\cos(2w)+3\cos(2t)-1\\\frac{4r^{3}(1+rk_{1}\cos t\cos w)^{3}}{4r^{3}(1+rk_{1}\cos t\cos w)^{3}} = \mathfrak{m}\left(-\cos t\cos w+C_{2}\right), \\
\frac{3k_{1}\sin t\cos t\cos^{2}w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}\left(-\sin t\cos w+C_{3}\right), \\
\frac{3k_{1}\cos t\sin w\cos w}{r^{3}(1+rk_{1}\cos t\cos w)} = \mathfrak{m}\left(-\sin w+C_{4}\right).
\end{cases}$$
(3.32)

Here, from the last equation of (3.32) it's easy to see that

$$\mathfrak{m}(s,t,w) = \frac{3k_1 \cos t \sin w \cos w}{r^3(1+rk_1 \cos t \cos w) \left(-\sin w + C_4\right)}.$$
(3.33)

Here, when the equation (3.33) is substituted into the second equation of (3.32), we obtain

$$-1 + 3C_2 \cos t \cos w + 3C_2 r k_1 \cos^2 t \cos^2 w = 0.$$

Since the last equality is never zero, we can give the following theorem:

Theorem 6. There are no tubular hypersurface (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4} , with second kind \mathcal{L}_{2} -pointwise 1-type Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have first kind \mathcal{L}_2 -pointwise 1-type Gauss map, i.e., $\mathcal{L}_2 N = \mathfrak{m} N$.

From (3.2) and (3.23), we get

$$\frac{\cos w (\cos t k_1' + k_1 k_2 \sin t)}{r^2 (1 + r k_1 \cos t \cos w)^3} = 0,
\frac{k_1 \left(\frac{1}{2} r k_1 \left(\frac{24 r k_1 \cos^4 t \cos^4 w + 12 \cos^3 t \cos(3w)}{+19 \cos t \cos w + 9 \cos(3t) \cos w} \right) \right) \\ + 6 \cos^2 t \cos(2w) + 3 \cos(2t) - 1 \\ \hline 4r^3 (1 + r k_1 \cos t \cos w)^3 \\ = \mathfrak{m} \left(-\cos t \cos w \right), \\ \frac{3k_1 \sin t \cos t \cos^2 w}{r^3 (1 + r k_1 \cos t \cos w)} = \mathfrak{m} \left(-\sin t \cos w \right), \\ \frac{3k_1 \cos t \sin w \cos w}{r^3 (1 + r k_1 \cos t \cos w)} = \mathfrak{m} \left(-\sin w \right).$$

$$(3.34)$$

Here, from the last equation of (3.34) it's easy to see that

$$\mathfrak{m}(s,t,w) = \frac{-3k_1 \cos t \cos w}{r^3(1+rk_1 \cos t \cos w)}.$$
(3.35)

Here, when the equation (3.35) is substituted into the second equation of (3.32), we obtain

$$k_1(rk_1 + \sec t \sec w) = 0.$$

Since the last equality is never zero, we can give the following theorem:

Theorem 7. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4} , with first kind \mathcal{L}_{2} -pointwise 1-type Gauss map.

Finally, since the coefficients F_1 , F_2 , F_3 and F_4 in equation (3.23) are all zero only for $k_1 = 0$, we can give the following theorem:

Theorem 8. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_1^4 , have \mathcal{L}_2 -harmonic Gauss map if and only if $k_1 = 0$.

4. Some Classifications for Tubular Hypersurfaces Generated by Spacelike Curves with \mathcal{L}_k Operators in \mathbb{E}^4_1

In this section, we give the general formulas for \mathcal{L}_1 (Cheng-Yau) and \mathcal{L}_2 operators of the Gauss maps of the six types of tubular hypersurfaces $\mathcal{T}^{\{j,\lambda\}}(s,t,w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on spacelike curves $\beta(s)$ with non-null Frenet vectors in \mathbb{E}_1^4 and give some classifications for these hypersurfaces which have generalized \mathcal{L}_k 1-type Gauss map, first kind \mathcal{L}_k -pointwise 1-type Gauss map and second kind \mathcal{L}_k -pointwise 1-type Gauss map and \mathcal{L}_k -harmonic Gauss map, $k \in \{1, 2\}$. The tubular hypersurfaces $\mathcal{T}^{\{j,\lambda\}}(s,t,w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with nonnull Frenet vectors F_i in \mathbb{E}_1^4 can be parametrized by

$$\mathcal{T}^{\{2,1\}}(s,t,w) = \beta(s) + r(\cosh t \sinh w F_2(s) + \cosh w F_3(s) + \sinh t \sinh w F_4(s)), \\
\mathcal{T}^{\{2,-1\}}(s,t,w) = \beta(s) + r(\cosh t \cosh w F_2(s) + \sinh w F_3(s) + \sinh t \cosh w F_4(s)), \\
\mathcal{T}^{\{3,1\}}(s,t,w) = \beta(s) + r(\sinh t \sinh w F_2(s) + \cosh t \sinh w F_3(s) + \cosh w F_4(s)), \\
\mathcal{T}^{\{3,-1\}}(s,t,w) = \beta(s) + r(\sinh t \cosh w F_2(s) + \cosh t \cosh w F_3(s) + \sinh w F_4(s)), \\
\mathcal{T}^{\{4,1\}}(s,t,w) = \beta(s) + r(\cosh w F_2(s) + \sinh t \sinh w F_3(s) + \cosh t \sinh w F_4(s)), \\
\mathcal{T}^{\{4,-1\}}(s,t,w) = \beta(s) + r(\sinh w F_2(s) + \sinh t \cosh w F_3(s) + \cosh t \cosh w F_4(s)),$$
(4.1)

respectively. Here, we suppose for $\mathcal{T}^{\{j;\lambda\}}(s,t,w)$ that

i) $\langle F_j, F_j \rangle = -1 = \varepsilon_j$ and for $i \neq j$, $\langle F_i, F_i \rangle = 1 = \varepsilon_i$, $i, j \in \{1, 2, 3, 4\}$,

ii) if the tubular hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic hyperspheres, then $\lambda = 1$ or $\lambda = -1$, respectively (for more details, one can see [3]).

Now, let us write the following lemma which states the general parametric expressions of 6 different types of tubular hypersurfaces given by (4.1) and obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields in \mathbb{E}_1^4 .

Lemma 1. The general expression of the tubular hypersurfaces $\mathcal{T}^{\{j,\lambda\}}(s,t,w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve $\beta(s)$ with non-null Frenet vectors $F_i(s)$ in \mathbb{E}^4_1 can be given by

$$\mathcal{T}^{\{j,\lambda\}}(s,t,w) = \beta(s) + r\left(\sum_{i=2}^{4} \mu_i^{\lambda}(s,t,w)F_i(s)\right), \qquad (4.2)$$

where

$$\mu_{5}^{\lambda}(s,t,w) = \mu_{2}^{\lambda}(s,t,w), \ \mu_{6}^{\lambda}(s,t,w) = \mu_{3}^{\lambda}(s,t,w)$$

and for j = 2, 3, 4

$$\mu_j^{\lambda}(s,t,w) = (\sinh w)^{\frac{1+\lambda}{2}} (\cosh w)^{\frac{1-\lambda}{2}} \cosh t,$$
$$\mu_{j+1}^{\lambda}(s,t,w) = (\sinh w)^{\frac{1-\lambda}{2}} (\cosh w)^{\frac{1+\lambda}{2}},$$
$$\mu_{j+2}^{\lambda}(s,t,w) = (\sinh w)^{\frac{1+\lambda}{2}} (\cosh w)^{\frac{1-\lambda}{2}} \sinh t.$$

Here, if the canal hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic hyperspheres, then $\lambda = 1$ or $\lambda = -1$, respectively.

Here, we can give the general parametric expressions of the unit normal vector fields, the coefficients of the first fundamental forms and the principal curvatures of the tubular hypersurfaces $\mathcal{T}^{\{j,\lambda\}}$ parametrized by (4.2).

The unit normal vector fields $N^{\{j,\lambda\}}$ (j = 2, 3, 4) of (4.2) are

$$N^{\{j,\lambda\}} = -(-1)^{(4-j)!} \lambda^j \sum_{i=2}^4 \mu_i^{\lambda} F_i.$$
(4.3)

The coefficients of the first fundamental forms $g_{ik}^{\{j,\lambda\}}$ (j = 2, 3, 4) of (4.2) are

$$g_{11}^{\{j,\lambda\}} = 1 + r^{2}(k_{2})^{2} \left(-(-1)^{(4-j)!} \left(\mu_{3}^{\lambda}\right)^{2} + (-1)^{j} \left(\mu_{4}^{\lambda}\right)^{2} \right) \\ + r^{2}(k_{3})^{2} \left((-1)^{(5-j)!} \left(\mu_{3}^{\lambda}\right)^{2} + (-1)^{j} \left(\mu_{4}^{\lambda}\right)^{2} \right) \\ + 2(-1)^{(4-j)!} r k_{1} \mu_{2}^{\lambda} + r^{2}(k_{1})^{2} \left(\mu_{2}^{\lambda}\right)^{2} - 2(-1)^{(5-j)!} r^{2} k_{2} k_{3} \mu_{2}^{\lambda} \mu_{4}^{\lambda}, \\ g_{12}^{\{j,\lambda\}} = g_{21}^{\{j,\lambda\}} = r^{2} \left(\mu_{j+1}^{\lambda}\right)_{w} \left((-1)^{j} k_{3} \left(\mu_{2}^{\lambda}\right)_{w} - (-1)^{(4-j)!} k_{2} \left(\mu_{4}^{\lambda}\right)_{w} \right), \\ g_{22}^{\{j,\lambda\}} = r^{2} \left(\left(\mu_{j+1}^{\lambda}\right)_{w} \right)^{2}, \\ g_{13}^{\{3,\lambda\}} = g_{31}^{\{2,\lambda\}} = \lambda r^{2} \left(-k_{2} \cosh t + k_{3} \sinh t \right), \\ g_{13}^{\{3,\lambda\}} = g_{31}^{\{4,\lambda\}} = -\lambda r^{2} k_{3} \cosh t, \\ g_{13}^{\{4,\lambda\}} = g_{32}^{\{j,\lambda\}} = 0, \\ g_{33}^{\{j,\lambda\}} = -\lambda r^{2}. \end{cases}$$

$$(4.4)$$

The principal curvatures $\kappa_i^{\{j,\lambda\}}~(j=2,3,4)$ of (4.2) are

$$\kappa_{1}^{\{j,\lambda\}} = \kappa_{2}^{\{j,\lambda\}} = \frac{(-1)^{(4-j)!}\lambda^{j}}{r}, \\ \kappa_{3}^{\{j,\lambda\}} = \frac{k_{1}\mu_{2}^{\lambda}}{\lambda^{j}\left(1 + (-1)^{(4-j)!}rk_{1}\mu_{2}^{\lambda}\right)}.$$

$$(4.5)$$

From Lemma 1, (4.3), (4.4) and (4.5), we get

$$\mathcal{L}_{1}N^{\{j,\lambda\}} = \frac{2\left(-(-1)^{(5-j)!}k_{1}k_{2}\mu_{3}^{\lambda} + k_{1}'\mu_{2}^{\lambda}\right)}{r\left((-1)^{(4-j)!} + rk_{1}\mu_{2}^{\lambda}\right)^{3}}F_{1} + \frac{-2\lambda\left(\mu_{2}^{\lambda} + 3r^{2}(\mu_{2}^{\lambda})^{3}\left(k_{1}\right)^{2} + k_{1}\left(\lambda r + 4(-1)^{(4-j)!}r(\mu_{2}^{\lambda})^{2}\right)\right)}{r^{3}\left((-1)^{(4-j)!} + rk_{1}\mu_{2}^{\lambda}\right)^{2}}F_{2} + \frac{-2\lambda(-1)^{(4-j)!}\mu_{3}^{\lambda}\left(1 + 3(-1)^{(4-j)!}rk_{1}\mu_{2}^{\lambda}\right)}{r^{3}\left((-1)^{(4-j)!} + rk_{1}\mu_{2}^{\lambda}\right)}F_{3} + \frac{-2\lambda\mu_{4}^{\lambda}\left((-1)^{(4-j)!} + 3rk_{1}\mu_{2}^{\lambda}\right)}{r^{3}\left((-1)^{(4-j)!} + rk_{1}\mu_{2}^{\lambda}\right)}F_{4}.$$
 (4.6)

Let $\mathcal{T}^{\{j,\lambda\}}(s,t,w)$ have generalized L_1 (Cheng-Yau) 1-type Gauss map, i.e., $\mathcal{L}_1 N^{\{j,\lambda\}} = \mathfrak{m} N^{\{j,\lambda\}} + \mathfrak{n} C$, where $C = C_1 F_1 + C_2 F_2 + C_3 F_3 + C_4 F_4$ is a constant vector. Here, by taking derivatives of the constant vector C with respect to s, from (2.8)-(2.10) we obtain for $\mathcal{T}^{\{j,\lambda\}}$ that

Also, by taking derivatives the constant vector C with respect to t, w separately, one can see that the functions C_i depend only on s.

So, with similar procedure in Subsection 3.1, we can give the following theorems:

Theorem 9. There are no tubular hypersurfaces (4.2), obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 , with generalized \mathcal{L}_1 1-type Gauss map in \mathbb{E}_1^4 .

Theorem 10. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 with second kind \mathcal{L}_1 -pointwise 1-type Gauss map in \mathbb{E}_1^4 .

Theorem 11. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 have first kind \mathcal{L}_1 -(global) pointwise 1-type Gauss map, i.e., $\mathcal{L}_1 N^{\{j,\lambda\}} = \mathfrak{m} N^{\{j,\lambda\}}$ in \mathbb{E}_1^4 if and only if $k_1 = 0$, where $\mathfrak{m}(s, t, w) = \frac{2\lambda^{j+1}(-1)^{(4-j)!}}{r^3}$.

Theorem 12. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 cannot have \mathcal{L}_1 -harmonic Gauss map.

Also, from Lemma 1, (4.3), (4.4) and (4.5), we get

$$\mathcal{L}_{2}N^{\{j,\lambda\}} = \frac{\lambda^{j} \left((-1)^{j} \mu_{3}^{\lambda} k_{1} k_{2} - (-1)^{(4-j)!} \mu_{2}^{\lambda} k_{1}^{\prime}\right)}{r^{2} \left((-1)^{(4-j)!} + r k_{1} \mu_{2}^{\lambda}\right)^{3}} F_{1} + \frac{-\lambda^{j+1} k_{1} \left(2\lambda(-1)^{(4-j)!} - 3(-1)^{j} \left(\mu_{4}^{\lambda}\right)^{2} - 3(-1)^{(5-j)!} \left(\mu_{3}^{\lambda}\right)^{2} - 3(-1)^{(4-j)!} r k_{1} \left(\mu_{2}^{\lambda}\right)^{3}\right)}{r^{3} \left((-1)^{(4-j)!} + r k_{1} \mu_{2}^{\lambda}\right)^{2}} F_{2} + \frac{\lambda^{j+1} \mu_{3}^{\lambda} \left(3(-1)^{(5-j)!} r k_{1} \mu_{2}^{\lambda}\right)}{r^{4} \left((-1)^{(5-j)!} + (-1)^{j} r k_{1} \mu_{2}^{\lambda}\right)} F_{3} + \frac{\lambda^{j+1} \mu_{4}^{\lambda} \left(3(-1)^{(5-j)!} r k_{1} \mu_{2}^{\lambda}\right)}{r^{4} \left((-1)^{(5-j)!} + (-1)^{j} r k_{1} \mu_{2}^{\lambda}\right)} F_{4}.$$

$$(4.8)$$

Thus, with similar procedure in Subsection 3.2, we can give the following theorems:

Theorem 13. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 with generalized \mathcal{L}_2 1-type Gauss map in \mathbb{E}_1^4 .

Theorem 14. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 with second kind \mathcal{L}_2 -pointwise 1-type Gauss map in \mathbb{E}_1^4 .

Theorem 15. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 with first kind \mathcal{L}_2 -pointwise 1-type Gauss map in \mathbb{E}_1^4 .

Theorem 16. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_i in \mathbb{E}_1^4 have \mathcal{L}_2 -harmonic Gauss map if and only if $k_1 = 0$.

References

- [1] Alias, L., Ferrández, A. and Lucas, P., Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x = Ax + B$, Pacific J. Math. **156**(2) (1992), 201-208.
- [2] Alias, L.J. and Gürbüz, N., An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121(1) (2006), 113-127.
- [3] Altın, M., Kazan, A. and Yoon, D.W., Canal Hypersurfaces generated by Non-null Curves in Lorentz-Minkowski 4-Space, Bull. Korean Math. Soc. 60(5) (2023), 1299-1320.

- [4] Chen, B.-Y., Total Mean Curvature and Submanifold of Finite Type, World Scientific Publisher, 1984.
- [5] Chen, B.-Y., A report on submanifolds of finite type, Soochow J. Math., **22**(2) (1996), 117-337.
- [6] Chen, B.-Y., Morvan, J.-M. and Nore, T., Energy, tension and finite type maps, Kodai Math. J., 9(3) (1986), 406–418.
- [7] Chen, B.-Y. and Petrovic, M., On spectral decomposition of immersions of finite type, Bull. Aust. Math. Soc. 44(1) (1991), 117-129.
- [8] Chen, B.-Y. and Piccinni, P. Submanifolds with Finite Type Gauss Map, Bull. Austral. Math. Soc., 35(2) (1987), 161-186.
- [9] Cheng, S.-Y. and Yau, S.-T., Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.
- [10] Choi, M. and Kim, Y.H., Characterization of the helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(4) (2001), 753-761.
- [11] Kazan, A., Altın, M. and Turgay, N.C., Rotational hypersurfaces in \mathbb{E}_1^4 with Generalized L_k 1-Type Gauss Map, arXiv:2403.19671v1, (2024).
- [12] Kelleci, A. ,Rotational surfaces with Cheng-Yau operator in Galilean 3-spaces, Hacet. J. Math. Stat. 50(2) (2021), 365-376.
- [13] Kim, D-S., Kim, J.R. and Kim, Y.H., Cheng-Yau Operator and Gauss Map of Surfaces of Revolution, Bull. Malays. Math. Sci. Soc. 39(4) (2016), 1319-1327.
- [14] Kim, Y.H. and Turgay, N.C., On the surfaces in \mathbb{E}^3 with L_1 pointwise 1-type Gauss map, (submitted).
- [15] Kuhnel, W.: Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999.
- [16] Lucas, P. and Ramírez-Ospina, H.F., Hypersurfaces in the Lorentz-Minkowski space satisfying $L_k \psi = A\psi + b$, Geom. Dedicata **153**(1) (2011), 151-175.
- [17] Qian, J., Fu, X. and Jung, S.D., Dual associate null scrolls with generalized 1-type Gauss maps, Mathematics 8(7) (2020), 1111.
- [18] Qian, J., Fu, X., Tian, X. and Kim, Y.H., Surfaces of Revolution and Canal Surfaces with Generalized Cheng-Yau 1-Type Gauss Maps, Mathematics 8(10) (2020), 1728.
- [19] Qian, J., Su, M., Kim, Y.H., Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent. 62(1) (2021), 199-211.
- [20] Yeğin Şen, R., Dursun, U., On submanifolds with 2-type pseudo-hyperbolic Gauss map in pseudo-hyperbolic space, Mediterr. J. Math. 14(1) (2017), 1-20.
- [21] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18(4) (1966), 380-385.
- [22] Yoon, D.W., Rotation surfaces with finite type Gauss Map in E⁴, Indian J. Pure. Appl. Math. 32(12) (2001), 1803-1808.
- [23] Walrave, J., Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
- [24] Yang, B. and Liu, X., Hypersurfaces satisfying $L_r x = Rx$ in sphere S^{n+1} or hyperbolic space H^{n+1} , Proc. Indian Acad. Sci. (Math. Sci.) **119** (2009), no. 4, 487-499.
- [25] Yoon, D.W., Kim, D.S., Kim, Y.H. and Lee, J.W., Hypersurfaces with generalized 1-type Gauss maps, Mathematics 6(8) (2018), 130.
- [26] Yoon, D.W., Kim, D.S., Kim, Y.H. and Lee, J.W., Classifications of flat surfaces with generalized 1-type Gauss map in L³, Mediterr. J. Math. 15 (2018), 78.

¹Department of Computer Technologies, Doğanşehir Vahap Küçük Vocational School, Malatya Turgut Özal University, Malatya, Turkey

- ²Technical Sciences Vocational School, Bingöl University, Bingöl, Turkey
- ³Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
- * Corresponding author: ahmet.kazan@ozal.edu.tr