SOME CLASSIFICATIONS FOR GAUSS MAP OF TUBULAR HYPERSURFACES IN \mathbb{E}_{1}^{4} CONCERNING LINEARIZED OPERATORS \mathcal{L}_{k}

AHMET KAZAN ${ }^{1 *}$, MUSTAFA ALTIN ${ }^{2}$ AND NURETTIN CENK TURGAY ${ }^{3}$

Abstract

In this study, we deal with the Gauss map of tubular hypersurfaces in 4-dimensional Lorentz-Minkowski space concerning the linearized operators \mathcal{L}_{1} (Cheng-Yau) and \mathcal{L}_{2}. We obtain the \mathcal{L}_{1} (Cheng-Yau) operator of the Gauss map of tubular hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on timelike or spacelike curves with non-null Frenet vectors in \mathbb{E}_{1}^{4} and give some classifications for these hypersurfaces which have generalized $\mathcal{L}_{k} 1$-type Gauss map, first kind \mathcal{L}_{k}-pointwise 1 -type Gauss map, second kind \mathcal{L}_{k}-pointwise 1 -type Gauss map and \mathcal{L}_{k}-harmonic Gauss map, $k \in\{1,2\}$.

1. Introduction

Let (M, g) be a hypersurface of $(n+1)$-dimensional Minkowski space $\mathbb{E}_{1}^{n+1}, \Delta$ denote its Laplace operator. A smooth mapping $\phi: M \rightarrow \mathbb{E}_{1}^{n+1}$ is said to be finite type if it can be expressed as

$$
\phi=\phi_{0}+\phi_{1}+\cdots+\phi_{k},
$$

where ϕ_{0} is a constant vector and ϕ_{i} is an eigenvector of Δ corresponding to the eigenvector λ_{i} for $i=1,2, \ldots, k$. More precisely, if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct, then ψ is said to be k-type ([4, 6, 7]). Several results on the study of finite type mappings were summed up in a report by B.-Y. Chen in [5] (See also [8, 22]).

Let N denote the Gauss map of M. From the definition above, one can conclude that N is of 1-type if and only if it satisfies the equation

$$
\begin{equation*}
\Delta N=\lambda(N+C) \tag{1.1}
\end{equation*}
$$

for a constant $\lambda \in \mathbb{R}$ and a constant vector C. However, Gauss map of some important submanifolds such as catenoid and helicoid of the Euclidean 3 -space \mathbb{E}^{3} satisfies

$$
\begin{equation*}
\Delta N=f(N+C) \tag{1.2}
\end{equation*}
$$

which is weaker than (1.1), where $f \in C^{\infty}(M)$ is a smooth function, [10]. These submanifolds whose Gauss map N satisfying (1.2) are said to have pointwise 1-type Gauss map. Submanifolds with pointwise 1-type Gauss map have been worked in several papers (cf. [10, 20, 21, 22]).

On the other hand, the Gauss map of some hypersurfaces of semi-Euclidean spaces satisfies the equation

$$
\begin{equation*}
\Delta N=f_{1} N+f_{2} C \tag{1.3}
\end{equation*}
$$

for some smooth functions f_{1}, f_{2} and a constant vector C. A submanifold is said to have generalized 1-type Gauss map if its Gauss map satisfies the condition (1.3), [25]. After this definition was given, hypersurfaces of pseudo-Euclidean spaces have been considered in terms of having generalized 1type Gauss map, [17, 19, 25, 26].

[^0]In the recent years, the definition of \mathcal{L}_{k}-finite type maps has been obtained by replacing Δ in the definition above with the sequence of operators $\mathcal{L}_{0}, \mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{n-1},[1,2]$. Note that, by the definition of these operators, one can obtain $\mathcal{L}_{0}=-\Delta$ and $\mathcal{L}_{1}=\square$ is called as the Cheng-Yau operator introduced in [9]. By motivating this idea, notion of \mathcal{L}_{k}-pointwise 1-type Gauss map and generalized $\mathcal{L}_{k} 1$-type Gauss map was presented in [14] and [18], respectively (see Definition 11). After the case $k=1$ is studied in these papers, many result obtained on hypersurfaces with certain type of Gauss map, [11, 12, 13, 19, 24, [25, 26].

On the other hand, in [3], the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields in \mathbb{E}_{1}^{4} has been given and their some geometric invariants such as unit normal vector felds, Gaussian curvatures, mean curvatures and principal curvatures have been obtained. Also, tubular hypersurfaces in \mathbb{E}_{1}^{4} by taking constant radius function have been studied in 3].

In this paper, we study the tubular hypersurfaces in Lorentz-Minkowski 4 -space \mathbb{E}_{1}^{4} with the aid of \mathcal{L}_{k} operators, $k \in\{1,2\}$. In Sect. 2 , we give basic notation, facts and definitions about hypersurfaces of Minkowski spaces. In Sect. 3 and Sect 4, we consider some classifications of tubular hypersurfaces by considering their Gauss maps in terms of their types with respect to the operators \mathcal{L}_{1} and \mathcal{L}_{2}.

2. Preliminaries

Let \mathbb{E}_{1}^{n+1} be the $(n+1)$-dimensional Lorentz-Minkowski space with the canonical pseudoEuclidean metric \langle,$\rangle of index 1$ and signature $(-,+,+, \ldots,+)$ given by

$$
\langle,\rangle=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+\ldots+d x_{n+1}^{2}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ is a rectangular coordinate system in \mathbb{E}_{1}^{n+1}.
If $\Gamma: M \longrightarrow \mathbb{E}_{1}^{n+1}$ is an isometric immersion from an n-dimensional orientable manifold M to \mathbb{E}_{1}^{n+1}, then the induced metric on M by the immersion Γ can be Riemannian or Lorentzian. Let N denotes a unit normal vector field and put $\langle N, N\rangle=\varepsilon= \pm 1$, so that $\varepsilon=1$ or $\varepsilon=-1$ according to M is endowed with a Lorentzian or Riemannian metric, respectively.

The operator \mathcal{L}_{k} acting on the coordinate functions of the Gauss map N of the hypersurface M in $(n+1)$-dimensional Lorentz-Minkowski space \mathbb{E}_{1}^{n+1} is

$$
\begin{equation*}
\mathcal{L}_{k} N=-\varepsilon \mathfrak{C}_{k}\left(\nabla H_{k+1}+\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}\right) N\right) . \tag{2.1}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\binom{n}{k} H_{k}=(-\varepsilon)^{k} a_{k}, \quad\left(\binom{n}{k}=\frac{n!}{k!(n-k)!}\right), \tag{2.2}
\end{equation*}
$$

such that

$$
\left.\begin{array}{l}
a_{1}=-\sum_{i=1}^{n} \kappa_{i} \tag{2.3}\\
a_{k}=(-1)^{k} \sum_{i_{1}<i_{2}<\ldots<i_{k}}^{n} \kappa_{i_{1}} \kappa_{i_{2}} \ldots \kappa_{i_{k}}, k=2,3, \ldots, n
\end{array}\right\}
$$

and H_{k} is called the k-th mean curvature of order k of M.
Also, the constant \mathfrak{C}_{k} is given by

$$
\begin{equation*}
\mathfrak{C}_{k}=\binom{n}{k+1}(-\varepsilon)^{k} \tag{2.4}
\end{equation*}
$$

(For more details about the linearized operator \mathcal{L}_{k}, one can see [16].)

Definition 1. Let \mathfrak{m} and \mathfrak{n} be non-zero smooth functions on $M, C \in \mathbb{E}_{1}^{n+1}$ be a non-zero constant vector and $k \in\{0,1,2, \ldots, n\}$.

If the Gauss map N of an oriented submanifold M in \mathbb{E}_{1}^{4} satisfies
i: $\mathcal{L}_{k} N=\mathfrak{m} N+\mathfrak{n} C$, then M has generalized \mathcal{L}_{k} 1-type Gauss map;
ii: $\mathcal{L}_{k} N=\mathfrak{m} N$, then M has first kind \mathcal{L}_{k}-pointwise 1-type Gauss map;
iii: $\mathcal{L}_{k} N=\mathfrak{m}(N+C)$, then M has second kind \mathcal{L}_{k}-pointwise 1-type Gauss map;
iv: $\mathcal{L}_{k} N=0$, then N is called \mathcal{L}_{k}-harmonic.
In this study, we will deal with Gauss maps of tubular hypersurfaces in 4-dimensional LorentzMinkowski space \mathbb{E}_{1}^{4} concerning linearized operators L_{1} and L_{2}. So, let us give some notions in \mathbb{E}_{1}^{4}.

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right), \vec{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ be three vectors in \mathbb{E}_{1}^{4}. The inner product and vector product are defined by

$$
\begin{equation*}
\langle\vec{u}, \vec{v}\rangle=-u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}+u_{4} v_{4} \tag{2.5}
\end{equation*}
$$

and

$$
\vec{u} \times \vec{v} \times \vec{w}=\operatorname{det}\left[\begin{array}{cccc}
-e_{1} & e_{2} & e_{3} & e_{4} \tag{2.6}\\
u_{1} & u_{2} & u_{3} & u_{4} \\
v_{1} & v_{2} & v_{3} & v_{4} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right]
$$

respectively. Here $e_{i},(i=1,2,3,4)$ are standard basis vectors.
A vector $\vec{u} \in E_{1}^{4}-\{0\}$ is called spacelike, timelike or lightlike (null) if $\langle\vec{u}, \vec{u}\rangle>0$ (or $\vec{u}=0$), $\langle\vec{u}, \vec{u}\rangle<0$ or $\langle\vec{u}, \vec{u}\rangle=0$, respectively. A curve $\beta(s)$ in \mathbb{E}_{1}^{4} is spacelike, timelike or lightlike (null), if all its velocity vectors $\beta^{\prime}(s)$ are spacelike, timelike or lightlike, respectively and a non-null (i.e. timelike or spacelike) curve has unit speed if $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=\mp 1$. Also, the norm of the vector \vec{u} is $\|\vec{u}\|=\sqrt{|\langle\vec{u}, \vec{u}\rangle|}$ [15].

Let $F_{1}, F_{2}, F_{3}, F_{4}$ be unit tangent vector field, principal normal vector field, binormal vector field, trinormal vector field of a timelike or spacelike curve $\beta(s)$, respectively and $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ be the moving Frenet frame along $\beta(s)$ in \mathbb{E}_{1}^{4}. The Frenet equations can be given according to the causal characters of non-null Frenet vector fields F_{1}, F_{2}, F_{3} and F_{4} as follows [23]:

If the curve $\beta(s)$ is timelike, i.e. $\left\langle F_{1}, F_{1}\right\rangle=-1,\left\langle F_{i}, F_{i}\right\rangle=1(i=2,3,4)$, then

$$
\left.\begin{array}{l}
F_{1}^{\prime}=k_{1} F_{2}, \tag{2.7}\\
F_{2}^{\prime}=k_{1} F_{1}+k_{2} F_{3}, \\
F_{3}^{\prime}=-k_{2} F_{2}+k_{3} F_{4}, \\
F_{4}^{\prime}=-k_{3} F_{3} ;
\end{array}\right\}
$$

if the curve $\beta(s)$ is spacelike with timelike principal normal vector field F_{2}, i.e. $\left\langle F_{2}, F_{2}\right\rangle=-1$, $\left\langle F_{i}, F_{i}\right\rangle=1(i=1,3,4)$, then

$$
\left.\begin{array}{l}
F_{1}^{\prime}=k_{1} F_{2}, \tag{2.8}\\
F_{2}^{\prime}=k_{1} F_{1}+k_{2} F_{3}, \\
F_{3}^{\prime}=k_{2} F_{2}+k_{3} F_{4}, \\
F_{4}^{\prime}=-k_{3} F_{3} ;
\end{array}\right\}
$$

if the curve $\beta(s)$ is spacelike with timelike binormal vector field F_{3}, i.e. $\left\langle F_{3}, F_{3}\right\rangle=-1,\left\langle F_{i}, F_{i}\right\rangle=1$ $(i=1,2,4)$, then

$$
\left.\begin{array}{l}
F_{1}^{\prime}=k_{1} F_{2}, \tag{2.9}\\
F_{2}^{\prime}=-k_{1} F_{1}+k_{2} F_{3}, \\
F_{3}^{\prime}=k_{2} F_{2}+k_{3} F_{4}, \\
F_{4}^{\prime \prime}=k_{3} F_{3} ;
\end{array}\right\}
$$

if the curve $\beta(s)$ is spacelike with timelike trinormal vector field F_{4}, i.e. $\left\langle F_{4}, F_{4}\right\rangle=-1,\left\langle F_{i}, F_{i}\right\rangle=1$ ($i=1,2,3$), then

$$
\left.\begin{array}{l}
F_{1}^{\prime}=k_{1} F_{2}, \tag{2.10}\\
F_{2}^{\prime}=-k_{1} F_{1}+k_{2} F_{3}, \\
F_{3}^{\prime}=-k_{2} F_{2}+k_{3} F_{4}, \\
F_{4}^{\prime}=k_{3} F_{3} .
\end{array}\right\}
$$

Here k_{1}, k_{2}, k_{3} are the first, second and third curvatures of the non-null curve $\beta(s)$.
Also, if p is a fixed point in \mathbb{E}_{1}^{4} and r is a positive constant, then the pseudo-Riemannian hypersphere and the pseudo-Riemannian hyperbolic space are defined by

$$
S_{1}^{3}(p, r)=\left\{x \in \mathbb{E}_{1}^{4}:\langle x-p, x-p\rangle=r^{2}\right\}
$$

and

$$
H_{0}^{3}(p, r)=\left\{x \in \mathbb{E}_{1}^{4}:\langle x-p, x-p\rangle=-r^{2}\right\},
$$

respectively.
If M is an oriented hypersurface in E_{1}^{4}, then the gradient of a smooth function $f(s, t, w)$, which is defined in M, can be obtained by

$$
\nabla f=\frac{1}{\mathfrak{g}}\left(\begin{array}{c}
\left(\left(g_{23}^{2}-g_{22} g_{33}\right) f_{s}+\left(-g_{13} g_{23}+g_{12} g_{33}\right) f_{t}+\left(g_{13} g_{22}-g_{12} g_{23}\right) f_{w}\right) \partial s \tag{2.11}\\
+\left(\left(-g_{13} g_{23}+g_{12} g_{33}\right) f_{s}+\left(g_{13}^{2}-g_{11} g_{33}\right) f_{t}+\left(-g_{12} g_{13}+g_{11} g_{23}\right) f_{w}\right) \partial t \\
+\left(\left(g_{13} g_{22}-g_{12} g_{23}\right) f_{s}+\left(-g_{12} g_{13}+g_{11} g_{23}\right) f_{t}+\left(g_{12}^{2}-g_{11} g_{22}\right) f_{w}\right) \partial w
\end{array}\right)
$$

where

$$
\mathfrak{g}=g_{13}^{2} g_{22}-2 g_{12} g_{13} g_{23}+g_{11} g_{23}^{2}+g_{12}^{2} g_{33}-g_{11} g_{22} g_{33} ;
$$

$\{s, t, w\}$ is a local coordinat system of $M ; f_{s}, f_{t}, f_{w}$ are the partial derivatives of f and $g_{11}=$ $\langle\partial s, \partial s\rangle, g_{12}=\langle\partial s, \partial t\rangle, g_{13}=\langle\partial s, \partial w\rangle, g_{22}=\langle\partial t, \partial t\rangle, g_{23}=\langle\partial t, \partial w\rangle, g_{33}=\langle\partial w, \partial w\rangle$.

3. Some Classifications for Tubular Hypersurfaces Generated by Timelike Curves with L_{k} Operators in \mathbb{E}_{1}^{4}

In this section, we obtain the \mathcal{L}_{1} (Cheng-Yau) and \mathcal{L}_{2} operators of the Gauss map of the tubular hypersurfaces $\mathcal{T}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres whose centers lie on a timelike curve with non-null Frenet vectors in \mathbb{E}_{1}^{4} and give some classifications for these hypersurfaces which have generalized $\mathcal{L}_{k} 1$-type Gauss map, first kind \mathcal{L}_{k}-pointwise 1type Gauss map and second kind \mathcal{L}_{k}-pointwise 1 -type Gauss map and \mathcal{L}_{k}-harmonic Gauss map, $k \in\{1,2\}$.

The tubular hypersurfaces $\mathcal{T}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres whose centers lie on a timelike curve with non-null Frenet vectors in \mathbb{E}_{1}^{4} can be parametrized by

$$
\begin{equation*}
\mathcal{T}(s, t, w)=\beta(s)+r\left(\cos t \cos w F_{2}(s)+\sin t \cos w F_{3}(s)+\sin w F_{4}(s)\right) \tag{3.1}
\end{equation*}
$$

The unit normal vector field of (3.1) is

$$
\begin{equation*}
N=-\left(\cos t \cos w F_{2}+\sin t \cos w F_{3}+\sin w F_{4}\right) \tag{3.2}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\langle N, N\rangle=1 \tag{3.3}
\end{equation*}
$$

The coefficients of the first fundamental form of (3.1) are

$$
\left.\begin{array}{l}
g_{11}=-\left(1+r k_{1} \cos t \cos w\right)^{2}+\left(r k_{2} \cos t \cos w-r k_{3} \sin w\right)^{2}+r^{2}\left(k_{2}^{2}+k_{3}^{2}\right) \sin ^{2} t \cos ^{2} w, \\
g_{12}=g_{21}=r^{2}\left(k_{2} \cos w-k_{3} \cos t \sin w\right) \cos w, g_{22}=r^{2} \cos ^{2} w, \tag{3.4}\\
g_{13}=g_{31}=r^{2} k_{3} \sin t, g_{23}=g_{32}=0, g_{33}=r^{2}
\end{array}\right\}
$$

The principal curvatures of (3.1) are

$$
\begin{equation*}
\kappa_{1}=\kappa_{2}=\frac{1}{r}, \kappa_{3}=\frac{k_{1} \cos t \cos w}{1+r k_{1} \cos t \cos w} . \tag{3.5}
\end{equation*}
$$

For more details about these hypersurfaces, one can see [3].
3.1. Some Classifications for Tubular Hypersurfaces Generated by Timelike Curves with \mathcal{L}_{1} (Cheng-Yau) Operator in \mathbb{E}_{1}^{4}.

The functions a_{k} of the tubular hypersurfaces (3.1) in \mathbb{E}_{1}^{4} are obtained from (2.3) and (3.5) by

$$
\begin{equation*}
a_{1}=\frac{-2-3 r k_{1} \cos t \cos w}{r\left(1+r k_{1} \cos t \cos w\right)}, a_{2}=\frac{1+3 r k_{1} \cos t \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)}, a_{3}=-\frac{k_{1}}{r^{2}\left(r k_{1}+\sec t \sec w\right)} . \tag{3.6}
\end{equation*}
$$

Also, from (2.11), (3.4) and (3.6), we have

$$
\begin{align*}
\nabla a_{2} & =-\frac{2\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r\left(1+r k_{1} \cos t \cos w\right)^{3}} F_{1}-\frac{k_{1}\left(2 \cos ^{2} t \cos (2 w)+\cos (2 t)-3\right)}{2 r^{2}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{2} \\
& -\frac{2 k_{1} \sin t \cos t \cos ^{2} w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{3}-\frac{2 k_{1} \cos t \sin w \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{4} \tag{3.7}
\end{align*}
$$

So, from (2.1), (2.2), (3.2), (3.3), (3.6) and (3.7), we reach that

$$
\begin{align*}
\mathcal{L}_{1} N & =-\frac{2\left(k_{1} k_{2} \sin t+k_{1}^{\prime} \cos t\right) \cos w}{r\left(1+r k_{1} \cos t \cos w\right)^{3}} F_{1} \\
& -\frac{2\left(r k_{1}\left(3 r k_{1} \cos ^{3} t \cos ^{3} w+2 \cos ^{2} t \cos (2 w)+\cos (2 t)\right)+\cos t \cos w\right)}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{2} \\
& -\frac{2\left(1+3 r k_{1} \cos t \cos w\right) \sin t \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)} F_{3}-\frac{2\left(3 r k_{1} \cos t \cos w+1\right) \sin w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)} F_{4} . \tag{3.8}
\end{align*}
$$

Now, let us give some classifications for the tubular hypersurfaces (3.1) which have generalized $\mathcal{L}_{1} 1$-type Gauss map, first kind \mathcal{L}_{1}-pointwise 1 -type Gauss map and second kind \mathcal{L}_{1}-pointwise 1 -type Gauss map and \mathcal{L}_{1}-harmonic Gauss map.

Let the tubular hypersurfaces $\mathcal{T}(s, t, w)$ have generalized \mathcal{L}_{1} (Cheng-Yau) 1-type Gauss map, i.e., $\mathcal{L}_{1} N=\mathfrak{m} N+\mathfrak{n} C$, where $C=C_{1} F_{1}+C_{2} F_{2}+C_{3} F_{3}+C_{4} F_{4}$ is a constant vector. Here, by taking derivatives of the constant vector C with respect to s, from (2.7) we obtain that

$$
\left.\begin{array}{l}
C_{1}^{\prime}+C_{2} k_{1}=0 \tag{3.9}\\
C_{2}^{\prime}+C_{1} k_{1}-C_{3} k_{2}=0 \\
C_{3}^{\prime}+C_{2} k_{2}-C_{4} k_{3}=0 \\
C_{4}^{\prime}+C_{3} k_{3}=0
\end{array}\right\}
$$

Also, by taking derivatives the constant vector C with respect to t and w separately, one can see that the functions C_{i} depend only on s.

Firstly, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have generalized \mathcal{L}_{1} (ChengYau) 1-type Gauss map.

From (3.2) and (3.8), we get

$$
\begin{align*}
& -\frac{2\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r\left(1+r k_{1} \cos t \cos w\right)^{3}}=\mathfrak{n} C_{1}, \\
& -\frac{2\left(r k_{1}\left(3 r k_{1} \cos ^{3} t \cos ^{3} w+2 \cos ^{2} t \cos (2 w)+\cos (2 t)\right)+\cos t \cos w\right)}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2}}=\mathfrak{m}(-\cos t \cos w)+\mathfrak{n} C_{2}, \tag{3.10}\\
& -\frac{2\left(1+3 r k_{1} \cos t \cos w\right) \sin t \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}(-\sin t \cos w)+\mathfrak{n} C_{3}, \\
& -\frac{2\left(1+3 r k_{1} \cos t \cos w\right) \sin w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}(-\sin w)+\mathfrak{n} C_{4} .
\end{align*}
$$

Now let us investigate the non-zero functions $\mathfrak{m}(s, t, w)$ and $\mathfrak{n}(s, t, w)$ from the above four equations.

Firstly, let us assume that $C_{1} \neq 0$.
In this case, from the first equation of (3.10) it's easy to see that

$$
\begin{equation*}
\mathfrak{n}(s, t, w)=-\frac{2\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r\left(1+r k_{1} \cos t \cos w\right)^{3} C_{1}} . \tag{3.11}
\end{equation*}
$$

Here, when the equation (3.11) is successively substituted into the second, third and fourth equations of (3.10), we obtain

$$
\begin{aligned}
\mathfrak{m}(s, t, w) & =\frac{2\left(\begin{array}{l}
\left(\begin{array}{l}
r k_{1}\binom{3 r k_{1} \cos ^{3} t \cos ^{3} w}{+2 \cos ^{2} t \cos (2 w)+\cos (2 t)}+\cos t \cos w
\end{array}\right) C_{1}\left(1+r k_{1} \cos t \cos w\right) \\
-C_{2} r^{2}\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w
\end{array}\right.}{C_{1} r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3} \cos t \cos w}, \\
\mathfrak{m}(s, t, w) & =\frac{2\left(C_{1}\left(1+r k_{1} \cos t \cos w\right)^{2}\left(1+3 r k_{1} \cos t \cos w\right)-C_{3} r^{2}\left(k_{1}^{\prime} \cot t+k_{1} k_{2}\right)\right)}{C_{1} r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}}, \\
\mathfrak{m}(s, t, w) & =\frac{2\left(C_{1}\left(1+r k_{1} \cos t \cos w\right)^{2}\left(1+3 r k_{1} \cos t \cos w\right)-C_{4} r^{2}\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cot w\right)}{C_{1} r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}} .
\end{aligned}
$$

When we equate the functions $\mathfrak{m}(s, t, w)$ found above to each other, we arrive at the following equations:

$$
\begin{align*}
& \left(C_{3}-C_{4} \sin t \cot w\right)\left(k_{1}^{\prime} \cot t+k_{1} k_{2}\right)=0, \tag{3.12}\\
& k_{1}\left(C_{1} \sec t \sec w+k_{2} r\left(C_{2} \tan t-C_{4} \sin t \cot w\right)\right)+r\left(C_{1} k_{1}^{2}-k_{1}^{\prime}\left(C_{4} \cos t \cot w-C_{2}\right)\right)=0, \tag{3.13}\\
& k_{1}\left(r k_{2}\left(C_{3}-C_{2} \tan t\right)-C_{1} \sec t \sec w\right)-C_{1} r k_{1}^{2}+r k_{1}^{\prime}\left(C_{3} \cot t-C_{2}\right)=0 . \tag{3.14}
\end{align*}
$$

In the equation (3.12), it holds that $k_{1}^{\prime} \cot t+k_{1} k_{2} \neq 0$. This is because, when $k_{1}^{\prime} \cot t+k_{1} k_{2}=0$, the function $\mathfrak{n}(s, t, w)$ in the first equation of (3.10) becomes zero. This, in turn, contradicts the definition of the function $\mathfrak{n}(s, t, w)$ in our classification as $\mathcal{L}_{1} N=\mathfrak{m} N+\mathfrak{n} C$. So, from the equation (3.12) and $k_{1}^{\prime} \cot t+k_{1} k_{2} \neq 0$, we have $C_{3}=C_{4}=0$. When $C_{3}=C_{4}=0$, substituting this into the equation (3.14) yields

$$
\left(C_{1} r k_{1}^{2}+C_{2} r k_{1}^{\prime}\right) \cos t+C_{1} k_{1} \sec w+C_{2} r k_{1} k_{2} \sin t=0
$$

Thus, we have

$$
C_{1} k_{1}^{2}+C_{2} k_{1}^{\prime}=C_{1} k_{1}=C_{2} k_{1} k_{2}=0
$$

and so $C_{1}=C_{2}=0$. This is a contradiction.
Secondly, let us assume that $C_{1}=0$.
In this case, from the first equation of the set of equations (3.9) it's easy to see that

$$
\begin{equation*}
C_{2} k_{1}=0 \tag{3.15}
\end{equation*}
$$

If $k_{1}=0$ in (3.15), then from the second, third and fourth equations of (3.10), it is calculated as

$$
\begin{align*}
& C_{2} r^{3} \mathfrak{n}(s, t, w)=\left(\mathfrak{m}(s, t, w) r^{3}-2\right) \cos t \cos w \\
& C_{3} r^{3} \mathfrak{n}(s, t, w)=\left(\mathfrak{m}(s, t, w) r^{3}-2\right) \sin t \cos w, \tag{3.16}\\
& C_{4} r^{3} \mathfrak{n}(s, t, w)=\left(\mathfrak{m}(s, t, w) r^{3}-2\right) \sin w
\end{align*}
$$

respectively. Since the functions C_{i} depend only on s, there is no solution for functions $\mathfrak{n}(s, t, w)$ in (3.16).

Now, let us assume that $C_{2}=0$ in (3.15). In this case, from the second equation of (3.10), it's easy to see that

$$
\begin{equation*}
\mathfrak{m}(s, t, w)=\frac{2\left(\cos t \cos w+r k_{1}\left(\cos (2 t)+3 r k_{1} \cos ^{3} t \cos ^{3} w+2 \cos ^{2} t \cos (2 w)\right)\right)}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2} \cos t \cos w} . \tag{3.17}
\end{equation*}
$$

Here, when the equation (3.17) is successively substituted into the third and fourth equations of (3.10), we obtain

$$
\begin{aligned}
\mathfrak{n}(s, t, w) C_{3} & =\frac{-2 k_{1}}{r^{2}\left(1+r \cos t \cos w k_{1}\right)^{2}} \tan t, \\
\mathfrak{n}(s, t, w) C_{4} & =\frac{-2 k_{1}}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{2}} \sec t \tan w .
\end{aligned}
$$

Here, there is no solution for functions $\mathfrak{n}(s, t, w)$.
Hence, we can state the following theorem:
Theorem 1. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, with generalized \mathcal{L}_{1} 1-type Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have second kind \mathcal{L}_{1}-pointwise 1 -type Gauss map, i.e., $\mathcal{L}_{1} N=\mathfrak{m}(N+C)$.

From (3.2) and (3.8), we get

$$
\begin{align*}
& -\frac{2\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r\left(1+r k_{1} \cos t \cos w\right)^{3}}=\mathfrak{m} C_{1}, \\
& -\frac{2\left(r k_{1}\left(3 r k_{1} \cos ^{3} t \cos ^{3} w+2 \cos ^{2} t \cos (2 w)+\cos (2 t)\right)+\cos t \cos w\right)}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2}}=\mathfrak{m}\left(-\cos t \cos w+C_{2}\right), \tag{3.18}\\
& -\frac{2\left(1+3 r k_{1} \cos t \cos w\right) \sin t \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}\left(-\sin t \cos w+C_{3}\right), \\
& -\frac{2\left(1+3 r k_{1} \cos t \cos w\right) \sin w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}\left(-\sin w+C_{4}\right) .
\end{align*}
$$

Here, from the fourth equation of (3.18) it's easy to see that

$$
\begin{equation*}
\mathfrak{m}(s, t, w)=-\frac{2\left(1+3 r k_{1} \cos t \cos w\right) \sin w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)\left(-\sin w+C_{4}\right)} . \tag{3.19}
\end{equation*}
$$

When the equation (3.19) is successively substituted into the second and third equations of (3.18), we obtain

$$
\begin{aligned}
& 3 C_{2} r^{2} k_{1}^{2} \cos ^{2} t \cos ^{2} w+4 C_{2} r k_{1} \cos t \cos w+C_{2}-r k_{1}=0 \\
& C_{4} \sin t \cos w-C_{3} \sin w=0
\end{aligned}
$$

So, we have

$$
\begin{equation*}
k_{1}=C_{2}=C_{3}=C_{4}=0 \tag{3.20}
\end{equation*}
$$

Now, when the components of the equation (3.20) is substituted into the second or third equations of (3.18), we calculated

$$
\begin{equation*}
\mathfrak{m}(s, t, w)=\frac{2}{r^{3}} . \tag{3.21}
\end{equation*}
$$

Also, from the first equation of (3.18) and (3.21), we have $C_{1}=0$.
From the calculations made above for classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have second kind \mathcal{L}_{1}-pointwise 1-type Gauss map, i.e., $\mathcal{L}_{1} N=\mathfrak{m}(N+C)$, we can give the following theorem:

Theorem 2. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, with second kind \mathcal{L}_{1}-pointwise 1 -type Gauss map.

Moreover, if the function m is constant in Definition 1 (ii or iii), then we say M has first or second kind $\mathcal{L}_{k^{-}}$(global) pointwise 1-type Gauss map. Thus, we can state the following theorem:
Theorem 3. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, have first kind \mathcal{L}_{1}-(global) pointwise 1-type Gauss map, i.e., $\mathcal{L}_{1} N=\mathfrak{m} N$ if and only if $k_{1}=0$, where $\mathfrak{m}(s, t, w)=\frac{2}{r^{3}}$.

Finally, in the equation (3.8), since the coefficients of F_{1}, F_{2}, F_{3} and F_{4} cannot all be zero, we can give the following theorem:
Theorem 4. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, cannot have \mathcal{L}_{1}-harmonic Gauss map.
3.2. Some Classifications for Tubular Hypersurfaces Generated by Timelike Curves with \mathcal{L}_{2} Operator in \mathbb{E}_{1}^{4}.

Firstly, it is calculated from (2.11), (3.4) and (3.6) as

$$
\begin{align*}
\nabla a_{3}= & \frac{\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{3}} F_{1}+\frac{k_{1}\left(2 \cos ^{2} t \cos (2 w)+\cos (2 t)-3\right)}{4 r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{2} \\
& +\frac{k_{1} \sin t \cos t \cos ^{2} w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{3}+\frac{k_{1} \cos t \sin w \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{2}} F_{4} . \tag{3.22}
\end{align*}
$$

So, from (2.1), (2.2), (3.2), (3.3), (3.6) and (3.22), we have

$$
\begin{align*}
\mathcal{L}_{2} N & =\frac{\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{3}} F_{1} \\
& +\frac{k_{1}\binom{\frac{r k_{1}}{2}\binom{24 r k_{1} \cos ^{4} t \cos ^{4} w+12 \cos ^{3} t \cos (3 w)}{+19 \cos t \cos w+9 \cos (3 t) \cos w}}{+6 \cos ^{2} t \cos (2 w)+3 \cos (2 t)-1}}{4 r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}} F_{2} \\
& +\frac{3 k_{1} \sin t \cos t \cos ^{2} w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)} F_{3}+\frac{3 k_{1} \cos t \sin w \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)} F_{4} . \tag{3.23}
\end{align*}
$$

Now, let us give some classifications for the tubular hypersurfaces (3.1) which have generalized $\mathcal{L}_{2} 1$-type Gauss map, first kind \mathcal{L}_{2}-pointwise 1 -type Gauss map and second kind \mathcal{L}_{2}-pointwise 1 -type Gauss map and \mathcal{L}_{2}-harmonic Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have generalized $\mathcal{L}_{2} 1$-type Gauss map. From (3.2) and (3.23), we get

$$
\begin{align*}
& \frac{\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{3}}=\mathfrak{n} C_{1}, \\
& k_{1}\binom{\frac{r k_{1}}{2}\binom{24 r k_{1} \cos ^{4} t \cos ^{4} w+12 \cos ^{3} t \cos (3 w)}{+19 \cos t \cos w+9 \cos (3 t) \cos w}}{+6 \cos ^{2} t \cos (2 w)+3 \cos (2 t)-1} \tag{3.24}\\
& 4 r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3} \\
& \frac{\mathfrak{m}(-\cos t \cos w)+\mathfrak{n} C_{2},}{} \\
& \frac{3 k_{1} \sin t \cos t \cos ^{2} w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}(-\sin t \cos w)+\mathfrak{n} C_{3}, \\
& \frac{3 k_{1} \cos t \sin w \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}(-\sin w)+\mathfrak{n} C_{4} .
\end{align*}
$$

Firstly, let us assume that $C_{1} \neq 0$.
In this case, from the first equation of (3.24) it's easy to see that

$$
\begin{equation*}
\mathfrak{n}(s, t, w)=\frac{\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{3} C_{1}} . \tag{3.25}
\end{equation*}
$$

Here, when the equation (3.25) is successively substituted into the second, third and fourth equations of (3.24), we obtain

$$
\begin{aligned}
\mathfrak{m}(s, t, w) & =\frac{\binom{2 k_{1}\left(-3 C_{1} \cos t \cos w+C_{1} \sec t \sec w+C_{2} r k_{2} \tan t\right)+2 C_{2} r k_{1}^{\prime}}{-6 C_{1} r^{2} k_{1}^{3} \cos ^{3} t \cos ^{3} w-C_{1} r k_{1}^{2}\left(6 \cos ^{2} t \cos (2 w)+3 \cos (2 t)+1\right)}}{2 C_{1} r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}}, \\
\mathfrak{m}(s, t, w) & =\frac{C_{3} r\left(k_{1}^{\prime} \cot t+k_{1} k_{2}\right)-3 C_{1} k_{1}\left(1+r k_{1} \cos t \cos w\right)^{2} \cos t \cos w}{C_{1} r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}}, \\
\mathfrak{m}(s, t, w) & =\frac{C_{4} r\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cot w-3 C_{1} k_{1}\left(1+r k_{1} \cos t \cos w\right)^{2} \cos t \cos w}{C_{1} r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}} .
\end{aligned}
$$

When we equate the functions $\mathfrak{m}(s, t, w)$ found above to each other, we arrive at the following equations:

$$
\begin{align*}
& \left(C_{4} \sin t \cos w-C_{3} \sin w\right)\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right)=0, \tag{3.26}\\
& k_{1}\left(C_{1} \sec t \sec w+r k_{2}\left(C_{2} \tan t-C_{4} \sin t \cot w\right)\right)+C_{1} r k_{1}^{2}+r k_{1}^{\prime}\left(C_{2}-C_{4} \cos t \cot w\right)=0, \tag{3.27}\\
& k_{1}\left(C_{1} \sec t \sec w+r k_{2}\left(C_{2} \tan t-C_{3}\right)\right)+C_{1} r k_{1}^{2}+r k_{1}^{\prime}\left(C_{2}-C_{3} \cot t\right)=0 . \tag{3.28}
\end{align*}
$$

In the equation (3.26), it holds that $k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t \neq 0$. This is because when $k_{1}^{\prime} \cos t+$ $k_{1} k_{2} \sin t=0$, the function $\mathfrak{n}(s, t, w)$ in the first equation of (3.24) becomes zero. This, in turn, contradicts the definition of the function $\mathfrak{n}(s, t, w)$ in our classification as $\mathcal{L}_{2} N=\mathfrak{m} N+\mathfrak{n} C$. So, from the equation (3.26) and $k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t \neq 0$, we have $C_{3}=C_{4}=0$. When $C_{3}=C_{4}=0$, substituting this into the equation (3.28) yields

$$
r\left(C_{1} k_{1}^{2}+C_{2} k_{1}^{\prime}\right) \cos t+C_{2} r k_{1} k_{2} \sin t+C_{1} k_{1} \sec w=0 .
$$

Thus, we have

$$
C_{1} k_{1}^{2}+C_{2} k_{1}^{\prime}=C_{1} k_{1}=C_{2} k_{1} k_{2}=0
$$

and so $C_{1}=C_{2}=0$. This is a contradiction.
Secondly, let us assume that $C_{1}=0$.
In this case, from the first equation of the set of equations (3.9) it's easy to see that

$$
\begin{equation*}
C_{2} k_{1}=0 \tag{3.29}
\end{equation*}
$$

If $k_{1}=0$ in (3.29), then from the second, third and fourth equations of (3.24), it is calculated as

$$
\left.\begin{array}{l}
\mathfrak{m}(s, t, w) \cos t \cos w=\mathfrak{n}(s, t, w) C_{2}, \\
\mathfrak{m}(s, t, w) \sin t \cos w=\mathfrak{n}(s, t, w) C_{3} \tag{3.30}\\
\mathfrak{m}(s, t, w) \sin w=\mathfrak{n}(s, t, w) C_{4}
\end{array}\right\}
$$

respectively. Since the functions C_{i} depend only on s, there is no solution for functions $\mathfrak{m}(s, t, w)$ and $\mathfrak{n}(s, t, w)$ in (3.30).

Now, let us assume that $C_{2}=0$ in (3.29). In this case, from the second equation of (3.24), it's easy to see that

$$
\begin{equation*}
\mathfrak{m}(s, t, w)=-\frac{k_{1}\binom{r k_{1}\binom{24 r k_{1} \cos ^{4} t \cos ^{4} w+12 \cos ^{3} t \cos (3 w)}{+19 \cos t \cos w+9 \cos (3 t) \cos w}}{+12 \cos ^{2} t \cos (2 w)+6 \cos (2 t)-2}}{8 r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3} \cos t \cos w} \tag{3.31}
\end{equation*}
$$

Here, when the equation (3.31) is successively substituted into the third and fourth equations of (3.24), we obtain

$$
\begin{aligned}
& \mathfrak{n}(s, t, w) C_{3}=\frac{k_{1}\left(r k_{1} \sin t \cos w+\tan t\right)}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}}, \\
& \mathfrak{n}(s, t, w) C_{4}=\frac{k_{1}\left(r k_{1} \sin w+\sec t \tan w\right)}{r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}} .
\end{aligned}
$$

Here, there is no solution for functions $\mathfrak{n}(s, t, w)$.
Therefore, we can give the following theorem:
Theorem 5. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, with generalized \mathcal{L}_{2} 1-type Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have second kind \mathcal{L}_{2}-pointwise 1-type Gauss map, i.e., $\mathcal{L}_{2} N=\mathfrak{m}(N+C)$.

From (3.2) and (3.23), we get

$$
\begin{align*}
& \frac{\left(k_{1}^{\prime} \cos t+k_{1} k_{2} \sin t\right) \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{3}}=\mathfrak{m} C_{1} \\
& \frac{k_{1}\binom{\frac{r k_{1}}{2}\binom{24 r k_{1} \cos ^{4} t \cos ^{4} w+12 \cos ^{3} t \cos (3 w)}{+19 \cos t \cos w+9 \cos (3 t) \cos w}}{+6 \cos ^{2} t \cos (2 w)+3 \cos (2 t)-1}}{4 r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}}=\mathfrak{m}\left(-\cos t \cos w+C_{2}\right) \tag{3.32}\\
& \frac{3 k_{1} \sin t \cos t \cos ^{2} w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}\left(-\sin t \cos w+C_{3}\right) \\
& \frac{3 k_{1} \cos t \sin w \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}\left(-\sin w+C_{4}\right)
\end{align*}
$$

Here, from the last equation of (3.32) it's easy to see that

$$
\begin{equation*}
\mathfrak{m}(s, t, w)=\frac{3 k_{1} \cos t \sin w \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)\left(-\sin w+C_{4}\right)} . \tag{3.33}
\end{equation*}
$$

Here, when the equation (3.33) is substituted into the second equation of (3.32), we obtain

$$
-1+3 C_{2} \cos t \cos w+3 C_{2} r k_{1} \cos ^{2} t \cos ^{2} w=0
$$

Since the last equality is never zero, we can give the following theorem:
Theorem 6. There are no tubular hypersurface (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, with second kind \mathcal{L}_{2}-pointwise 1 -type Gauss map.

Now, let us classificate the tubular hypersurfaces $\mathcal{T}(s, t, w)$ which have first kind \mathcal{L}_{2}-pointwise 1 -type Gauss map, i.e., $\mathcal{L}_{2} N=\mathfrak{m} N$.

From (3.2) and (3.23), we get

$$
\begin{align*}
& \frac{\cos w\left(\cos t k_{1}^{\prime}+k_{1} k_{2} \sin t\right)}{r^{2}\left(1+r k_{1} \cos t \cos w\right)^{3}}=0, \\
& \frac{k_{1}\binom{\frac{1}{2} r k_{1}\binom{24 r k_{1} \cos ^{4} t \cos ^{4} w+12 \cos ^{3} t \cos (3 w)}{+19 \cos t \cos w+9 \cos (3 t) \cos w}}{+6 \cos ^{2} t \cos (2 w)+3 \cos (2 t)-1}}{4 r^{3}\left(1+r k_{1} \cos t \cos w\right)^{3}}=\mathfrak{m}(-\cos t \cos w), \tag{3.34}\\
& \frac{3 k_{1} \sin t \cos t \cos ^{2} w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}(-\sin t \cos w), \\
& \frac{3 k_{1} \cos t \sin w \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)}=\mathfrak{m}(-\sin w) .
\end{align*}
$$

Here, from the last equation of (3.34) it's easy to see that

$$
\begin{equation*}
\mathfrak{m}(s, t, w)=\frac{-3 k_{1} \cos t \cos w}{r^{3}\left(1+r k_{1} \cos t \cos w\right)} . \tag{3.35}
\end{equation*}
$$

Here, when the equation (3.35) is substituted into the second equation of (3.32), we obtain

$$
k_{1}\left(r k_{1}+\sec t \sec w\right)=0
$$

Since the last equality is never zero, we can give the following theorem:
Theorem 7. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, with first kind \mathcal{L}_{2}-pointwise 1-type Gauss map.

Finally, since the coefficients F_{1}, F_{2}, F_{3} and F_{4} in equation (3.23) are all zero only for $k_{1}=0$, we can give the following theorem:

Theorem 8. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose centers lie on a timelike curve in \mathbb{E}_{1}^{4}, have \mathcal{L}_{2}-harmonic Gauss map if and only if $k_{1}=0$.

4. Some Classifications for Tubular Hypersurfaces Generated by Spacelike Curves with \mathcal{L}_{k} Operators in \mathbb{E}_{1}^{4}

In this section, we give the general formulas for \mathcal{L}_{1} (Cheng-Yau) and \mathcal{L}_{2} operators of the Gauss maps of the six types of tubular hypersurfaces $\mathcal{T}^{\{j, \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on spacelike curves $\beta(s)$ with non-null Frenet vectors in \mathbb{E}_{1}^{4} and give some classifications for these hypersurfaces which have generalized $\mathcal{L}_{k} 1$-type Gauss map, first kind \mathcal{L}_{k}-pointwise 1-type Gauss map and second kind \mathcal{L}_{k}-pointwise 1 -type Gauss map and \mathcal{L}_{k}-harmonic Gauss map, $k \in\{1,2\}$.

The tubular hypersurfaces $\mathcal{T}^{\{j, \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with nonnull Frenet vectors F_{i} in \mathbb{E}_{1}^{4} can be parametrized by

$$
\left.\begin{array}{l}
\mathcal{T}^{\{2,1\}}(s, t, w)=\beta(s)+r\left(\cosh t \sinh w F_{2}(s)+\cosh w F_{3}(s)+\sinh t \sinh w F_{4}(s)\right), \\
\mathcal{T}^{\{2,-1\}}(s, t, w)=\beta(s)+r\left(\cosh t \cosh w F_{2}(s)+\sinh w F_{3}(s)+\sinh t \cosh w F_{4}(s)\right), \\
\mathcal{T}^{\{3,1\}}(s, t, w)=\beta(s)+r\left(\sinh t \sinh w F_{2}(s)+\cosh t \sinh w F_{3}(s)+\cosh w F_{4}(s)\right), \tag{4.1}\\
\mathcal{T}^{\{3,-1\}}(s, t, w)=\beta(s)+r\left(\sinh t \cosh w F_{2}(s)+\cosh t \cosh w F_{3}(s)+\sinh w F_{4}(s)\right), \\
\mathcal{T}^{\{4,1\}}(s, t, w)=\beta(s)+r\left(\cosh w F_{2}(s)+\sinh t \sinh w F_{3}(s)+\cosh t \sinh w F_{4}(s)\right), \\
\mathcal{T}^{\{4,-1\}}(s, t, w)=\beta(s)+r\left(\sinh w F_{2}(s)+\sinh t \cosh w F_{3}(s)+\cosh t \cosh w F_{4}(s)\right),
\end{array}\right\}
$$

respectively. Here, we suppose for $\mathcal{T}^{\{j ; \lambda\}}(s, t, w)$ that
i) $\left\langle F_{j}, F_{j}\right\rangle=-1=\varepsilon_{j}$ and for $i \neq j,\left\langle F_{i}, F_{i}\right\rangle=1=\varepsilon_{i}, i, j \in\{1,2,3,4\}$,
ii) if the tubular hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic hyperspheres, then $\lambda=1$ or $\lambda=-1$, respectively (for more details, one can see [3]).

Now, let us write the following lemma which states the general parametric expressions of 6 different types of tubular hypersurfaces given by (4.1) and obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields in \mathbb{E}_{1}^{4}.

Lemma 1. The general expression of the tubular hypersurfaces $\mathcal{T}^{\{j, \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve $\beta(s)$ with non-null Frenet vectors $F_{i}(s)$ in \mathbb{E}_{1}^{4} can be given by

$$
\begin{equation*}
\mathcal{T}^{\{j, \lambda\}}(s, t, w)=\beta(s)+r\left(\sum_{i=2}^{4} \mu_{i}^{\lambda}(s, t, w) F_{i}(s)\right), \tag{4.2}
\end{equation*}
$$

where

$$
\mu_{5}^{\lambda}(s, t, w)=\mu_{2}^{\lambda}(s, t, w), \mu_{6}^{\lambda}(s, t, w)=\mu_{3}^{\lambda}(s, t, w)
$$

and for $j=2,3,4$

$$
\begin{aligned}
& \mu_{j}^{\lambda}(s, t, w)=(\sinh w)^{\frac{1+\lambda}{2}}(\cosh w)^{\frac{1-\lambda}{2}} \cosh t \\
& \mu_{j+1}^{\lambda}(s, t, w)=(\sinh w)^{\frac{1-\lambda}{2}}(\cosh w)^{\frac{1+\lambda}{2}} \\
& \mu_{j+2}^{\lambda}(s, t, w)=(\sinh w)^{\frac{1+\lambda}{2}}(\cosh w)^{\frac{1-\lambda}{2}} \sinh t .
\end{aligned}
$$

Here, if the canal hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic hyperspheres, then $\lambda=1$ or $\lambda=-1$, respectively.

Here, we can give the general parametric expressions of the unit normal vector fields, the coefficients of the first fundamental forms and the principal curvatures of the tubular hypersurfaces $\mathcal{T}^{\{j, \lambda\}}$ parametrized by (4.2).

The unit normal vector fields $N^{\{j, \lambda\}}(j=2,3,4)$ of (4.2) are

$$
\begin{equation*}
N^{\{j, \lambda\}}=-(-1)^{(4-j)!} \lambda^{j} \sum_{i=2}^{4} \mu_{i}^{\lambda} F_{i} . \tag{4.3}
\end{equation*}
$$

The coefficients of the first fundamental forms $g_{i k}^{\{j, \lambda\}}(j=2,3,4)$ of (4.2) are

$$
\begin{align*}
g_{11}^{\{j, \lambda\}}= & 1+r^{2}\left(k_{2}\right)^{2}\left(-(-1)^{(4-j)!}\left(\mu_{3}^{\lambda}\right)^{2}+(-1)^{j}\left(\mu_{2}^{\lambda}\right)^{2}\right) \\
& +r^{2}\left(k_{3}\right)^{2}\left((-1)^{(5-j)!}\left(\mu_{3}^{\lambda}\right)^{2}+(-1)^{j}\left(\mu_{4}^{\lambda}\right)^{2}\right) \\
& +2(-1)^{(4-j)!} r k_{1} \mu_{2}^{\lambda}+r^{2}\left(k_{1}\right)^{2}\left(\mu_{2}^{\lambda}\right)^{2}-2(-1)^{(5-j)!} r^{2} k_{2} k_{3} \mu_{2}^{\lambda} \mu_{4}^{\lambda}, \\
g_{12}^{\{j, \lambda\}}= & g_{21}^{\{j, \lambda\}}=r^{2}\left(\mu_{j+1}^{\lambda}\right)_{w}\left((-1)^{j} k_{3}\left(\mu_{2}^{\lambda}\right)_{w}-(-1)^{(4-j)!} k_{2}\left(\mu_{4}^{\lambda}\right)_{w}\right), \\
g_{22}^{\{j, \lambda\}}= & r^{2}\left(\left(\mu_{j+1}^{\lambda}\right)_{w}\right)^{2}, \tag{4.4}\\
g_{13}^{\{2, \lambda\}}= & g_{31}^{\{2, \lambda\}}=\lambda r^{2}\left(-k_{2} \cosh t+k_{3} \sinh t\right), \\
g_{13}^{\{3, \lambda\}}= & g_{31}^{\{3, \lambda\}}=-\lambda r^{2} k_{3} \cosh t, \\
g_{13}^{\{4, \lambda\}}= & g_{31}^{\{4, \lambda\}}=\lambda r^{2} k_{2} \sinh t, \\
g_{23}^{\{j, \lambda\}}= & g_{32}^{\{j, \lambda\}}=0, \\
g_{33}^{\{j, \lambda\}}= & -\lambda r^{2} .
\end{align*}
$$

The principal curvatures $\kappa_{i}^{\{j, \lambda\}}(j=2,3,4)$ of (4.2) are

$$
\left.\begin{array}{l}
\kappa_{1}^{\{j, \lambda\}}=\kappa_{2}^{\{j, \lambda\}}=\frac{(-1)^{(4-j)!} \lambda^{j}}{r} \tag{4.5}\\
\kappa_{3}^{\{j, \lambda\}}=\frac{k_{1} \mu_{2}^{\lambda}}{\lambda^{j}\left(1+(-1)^{(4-j)!} r k_{1} \mu_{2}^{\lambda}\right)}
\end{array}\right\}
$$

From Lemma 1, (4.3), (4.4) and (4.5), we get

$$
\begin{align*}
\mathcal{L}_{1} N^{\{j, \lambda\}} & =\frac{2\left(-(-1)^{(5-j)!} k_{1} k_{2} \mu_{3}^{\lambda}+k_{1}^{\prime} \mu_{2}^{\lambda}\right)}{r\left((-1)^{(4-j)!}+r k_{1} \mu_{2}^{\lambda}\right)^{3}} F_{1} \\
& +\frac{-2 \lambda\left(\mu_{2}^{\lambda}+3 r^{2}\left(\mu_{2}^{\lambda}\right)^{3}\left(k_{1}\right)^{2}+k_{1}\left(\lambda r+4(-1)^{(4-j)!} r\left(\mu_{2}^{\lambda}\right)^{2}\right)\right)}{r^{3}\left((-1)^{(4-j)!}+r k_{1} \mu_{2}^{\lambda}\right)^{2}} F_{2} \\
& +\frac{-2 \lambda(-1)^{(4-j)!} \mu_{3}^{\lambda}\left(1+3(-1)^{(4-j)!} r k_{1} \mu_{2}^{\lambda}\right)}{r^{3}\left((-1)^{(4-j)!}+r k_{1} \mu_{2}^{\lambda}\right)} F_{3}+\frac{-2 \lambda \mu_{4}^{\lambda}\left((-1)^{(4-j)!}+3 r k_{1} \mu_{2}^{\lambda}\right)}{r^{3}\left((-1)^{(4-j)!}+r k_{1} \mu_{2}^{\lambda}\right)} F_{4} . \tag{4.6}
\end{align*}
$$

Let $\mathcal{T}^{\{j, \lambda\}}(s, t, w)$ have generalized L_{1} (Cheng-Yau) 1-type Gauss map, i.e., $\mathcal{L}_{1} N^{\{j, \lambda\}}=\mathfrak{m} N^{\{j, \lambda\}}+$ $\mathfrak{n} C$, where $C=C_{1} F_{1}+C_{2} F_{2}+C_{3} F_{3}+C_{4} F_{4}$ is a constant vector. Here, by taking derivatives of the constant vector C with respect to s, from (2.8)-(2.10) we obtain for $\mathcal{T}^{\{j, \lambda\}}$ that

$$
\left.\begin{array}{l}
C_{1}^{\prime}+(-1)^{(4-j)!} C_{2} k_{1}=0, \tag{4.7}\\
C_{2}^{\prime}+C_{1} k_{1}+(-1)^{(5-j)!} C_{3} k_{2}=0, \\
C_{3}^{\prime}+C_{2} k_{2}-(-1)^{(4-j)!} C_{4} k_{3}=0, \\
C_{4}^{\prime}+C_{3} k_{3}=0
\end{array}\right\}
$$

Also, by taking derivatives the constant vector C with respect to t, w separately, one can see that the functions C_{i} depend only on s.

So, with similar procedure in Subsection 3.1, we can give the following theorems:

Theorem 9. There are no tubular hypersurfaces (4.2), obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4}, with generalized \mathcal{L}_{1} 1-type Gauss map in \mathbb{E}_{1}^{4}.
Theorem 10. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} with second kind \mathcal{L}_{1}-pointwise 1-type Gauss map in \mathbb{E}_{1}^{4}.

Theorem 11. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} have first kind \mathcal{L}_{1} (global) pointwise 1-type Gauss map, i.e., $\mathcal{L}_{1} N^{\{j, \lambda\}}=\mathfrak{m} N^{\{j, \lambda\}}$ in \mathbb{E}_{1}^{4} if and only if $k_{1}=0$, where $\mathfrak{m}(s, t, w)=\frac{2 \lambda^{j+1}(-1)^{(4-j)!}}{r^{3}}$.
Theorem 12. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} cannot have \mathcal{L}_{1}-harmonic Gauss map.

Also, from Lemma 1 (4.3), (4.4) and (4.5), we get

$$
\begin{align*}
\mathcal{L}_{2} N^{\{j, \lambda\}} & =\frac{\lambda^{j}\left((-1)^{j} \mu_{3}^{\lambda} k_{1} k_{2}-(-1)^{(4-j)!} \mu_{2}^{\lambda} k_{1}^{\prime}\right)}{r^{2}\left((-1)^{(4-j)!}+r k_{1} \mu_{2}^{\lambda}\right)^{3}} F_{1} \\
& +\frac{-\lambda^{j+1} k_{1}\left(2 \lambda(-1)^{(4-j)!}-3(-1)^{j}\left(\mu_{4}^{\lambda}\right)^{2}-3(-1)^{(5-j)!}\left(\mu_{3}^{\lambda}\right)^{2}-3(-1)^{(4-j)!} r k_{1}\left(\mu_{2}^{\lambda}\right)^{3}\right)}{r^{3}\left((-1)^{(4-j)!}+r k_{1} \mu_{2}^{\lambda}\right)^{2}} F_{2} \\
& +\frac{\lambda^{j+1} \mu_{3}^{\lambda}\left(3(-1)^{(5-j)!} r k_{1} \mu_{2}^{\lambda}\right)}{r^{4}\left((-1)^{(5-j)!}+(-1)^{j} r k_{1} \mu_{2}^{\lambda}\right)} F_{3}+\frac{\lambda^{j+1} \mu_{4}^{\lambda}\left(3(-1)^{(5-j)!} r k_{1} \mu_{2}^{\lambda}\right)}{r^{4}\left((-1)^{(5-j)!}+(-1)^{j} r k_{1} \mu_{2}^{\lambda}\right)} F_{4} . \tag{4.8}
\end{align*}
$$

Thus, with similar procedure in Subsection 3.2, we can give the following theorems:
Theorem 13. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} with generalized \mathcal{L}_{2} 1-type Gauss map in \mathbb{E}_{1}^{4}.
Theorem 14. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} with second kind \mathcal{L}_{2}-pointwise 1-type Gauss map in \mathbb{E}_{1}^{4}.

Theorem 15. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} with first kind \mathcal{L}_{2}-pointwise 1-type Gauss map in \mathbb{E}_{1}^{4}.
Theorem 16. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet vector fields F_{i} in \mathbb{E}_{1}^{4} have \mathcal{L}_{2}-harmonic Gauss map if and only if $k_{1}=0$.

References

[1] Alias, L., Ferrández, A. and Lucas, P., Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=A x+B$, Pacific J. Math. 156(2) (1992), 201-208.
[2] Alias, L.J. and Gürbüz, N., An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121(1) (2006), 113-127.
[3] Altın, M., Kazan, A. and Yoon, D.W., Canal Hypersurfaces generated by Non-null Curves in LorentzMinkowski 4-Space, Bull. Korean Math. Soc. 60(5) (2023), 1299-1320.
[4] Chen, B.-Y., Total Mean Curvature and Submanifold of Finite Type, World Scientific Publisher, 1984.
[5] Chen, B.-Y., A report on submanifolds of finite type, Soochow J. Math., 22(2) (1996), 117-337.
[6] Chen, B.-Y., Morvan, J.-M. and Nore, T., Energy, tension and finite type maps, Kodai Math. J., 9(3) (1986), 406-418.
[7] Chen, B.-Y. and Petrovic, M., On spectral decomposition of immersions of finite type, Bull. Aust. Math. Soc. 44(1) (1991), 117-129.
[8] Chen, B.-Y. and Piccinni, P. Submanifolds with Finite Type Gauss Map, Bull. Austral. Math. Soc., 35(2) (1987), 161-186.
[9] Cheng, S.-Y. and Yau, S.-T., Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.
[10] Choi, M. and Kim, Y.H., Characterization of the helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(4) (2001), 753-761.
[11] Kazan, A., Altın, M. and Turgay, N.C., Rotational hypersurfaces in \mathbb{E}_{1}^{4} with Generalized L_{k} 1-Type Gauss Map, arXiv:2403.19671v1, (2024).
[12] Kelleci, A. ,Rotational surfaces with Cheng-Yau operator in Galilean 3-spaces, Hacet. J. Math. Stat. 50(2) (2021), 365-376.
[13] Kim, D-S., Kim, J.R. and Kim, Y.H., Cheng-Yau Operator and Gauss Map of Surfaces of Revolution, Bull. Malays. Math. Sci. Soc. 39(4) (2016), 1319-1327.
[14] Kim, Y.H. and Turgay, N.C., On the surfaces in \mathbb{E}^{3} with L_{1} pointwise 1-type Gauss map, (submitted).
[15] Kuhnel, W.: Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999.
[16] Lucas, P. and Ramírez-Ospina, H.F., Hypersurfaces in the Lorentz-Minkowski space satisfying $L_{k} \psi=A \psi+b$, Geom. Dedicata 153(1) (2011), 151-175.
[17] Qian, J., Fu, X. and Jung, S.D., Dual associate null scrolls with generalized 1-type Gauss maps, Mathematics 8(7) (2020), 1111.
[18] Qian, J., Fu, X., Tian, X. and Kim, Y.H., Surfaces of Revolution and Canal Surfaces with Generalized ChengYau 1-Type Gauss Maps, Mathematics 8(10) (2020), 1728.
[19] Qian, J., Su, M., Kim, Y.H., Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent. 62(1) (2021), 199-211.
[20] Yeğin Şen, R., Dursun, U., On submanifolds with 2-type pseudo-hyperbolic Gauss map in pseudo-hyperbolic space, Mediterr. J. Math. 14(1) (2017), 1-20.
[21] Takahashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18(4) (1966), 380-385.
[22] Yoon, D.W., Rotation surfaces with finite type Gauss Map in E ${ }^{4}$, Indian J. Pure. Appl. Math. 32(12) (2001), 1803-1808.
[23] Walrave, J., Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
[24] Yang, B. and Liu, X., Hypersurfaces satisfying $L_{r} x=R x$ in sphere S^{n+1} or hyperbolic space H^{n+1}, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), no. 4, 487-499.
[25] Yoon, D.W., Kim, D.S., Kim, Y.H. and Lee, J.W., Hypersurfaces with generalized 1-type Gauss maps, Mathematics 6(8) (2018), 130.
[26] Yoon, D.W., Kim, D.S., Kim, Y.H. and Lee, J.W., Classifications of flat surfaces with generalized 1-type Gauss map in \mathbb{L}^{3}, Mediterr. J. Math. 15 (2018), 78.
${ }^{1}$ Department of Computer Technologies, Doğanşehir Vahap Küçük Vocational School, Malatya Turgut Özal University, Malatya, Turkey
${ }^{2}$ Technical Sciences Vocational School, Bingöl University, Bingöl, Turkey
${ }^{3}$ Department of Mathematics, Faculty of Science and Letters, İstanbul Technical University, İstanbul, Turkey
*Corresponding author: ahmet.kazan@ozal.edu.tr

[^0]: 2010 Mathematics Subject Classification. 14J70, 53A35.
 Key words and phrases. Tubular hypersurface, \mathcal{L}_{1} (Cheng-Yau) operator, \mathcal{L}_{2} operator, Generalized \mathcal{L}_{k} 1-type Gauss map, First and second kind \mathcal{L}_{k}-pointwise 1 -type Gauss map, \mathcal{L}_{k}-harmonic Gauss map.

