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Abstract. We investigate the reconstruction of time series from dynamical networks that are
partially observed. In particular, we address the extent to which the time series at a node of the
network can be successfully reconstructed when measuring from another node, or subset of nodes,
corrupted by observational noise. We will assume the dynamical equations of the network are known,
and that the dynamics are not necessarily low-dimensional. The case of linear dynamics is treated
first, and leads to a definition of observation error magnification factor (OEMF) that measures
the magnification of noise in the reconstruction process. Subsequently, the definition is applied to
nonlinear and chaotic dynamics. Comparison of OEMF for different target/observer combinations
can lead to better understanding of how to optimally observe a network. As part of the study,
a computational method for reconstructing time series from partial observations is presented and
analyzed.

Keywords: Time series reconstruction, data assimilation, chaotic networks, observ-
ability of nonlinear systems

1. Introduction. The subject of network dynamics is increasingly common in
physical process modeling. Networks present a fascinating departure from generic
dynamical systems due to the constraints imposed on direct communication between
nodes, resulting in complicated dynamics and nontrivial bifurcation structures [3, 18,
1, 17]. Modeling by networks has become an important topic in almost every area of
physical and biological science, including distributed mechanical processes, weather
and climate, and metabolic, genomic and neural networks.

An important aspect of understanding distributed systems is the choice of ob-
servables that facilitate reconstruction of the collective dynamics of the network. The
theory of observability was pioneered for linear dynamics by Kalman [8]. For nonlin-
ear dynamics, the theory of attractor reconstruction [22, 20] provides hope that for
generic observables of sufficiently high dimension, the dynamics can be reconstructed.
Although observations at single or even multiple nodes of a network may not be prov-
ably generic, the results of Joly [7] show that some aspects of reconstructibility may be
present by observing even a single node in a strongly connected network, i.e. a network
for which every node is downstream from every other node. Observability in both lin-
ear and nonlinear networks is a topic of intense recent interest [11, 9, 10, 14, 21, 24, 15]
and has close connections to controllability [12, 13, 23].

However, observability in theory does not guarantee a satisfactory reconstruction
in practice, in particular from data collected from a sparsely–connected network, or
far from target nodes, even in the case where the equations of motion are known. To
date, even in this more tractable scenario, surprisingly little in the way of general
practical requirements have been developed for inferring information from measure-
ments. A critical obstruction is the presence of noise in the observations, and the
tendency of noise to be magnified in efforts to reconstruct the dynamics. In this arti-
cle, we analyze a definition of observability error magnification, first introduced in [4],
for reconstruction of network trajectories, and exhibit its behavior for some relevant
examples. The main conclusion is that for practical use of network reconstruction
techniques, theoretical observability may be only a first step, and that a multiplier
that measures error magnification, akin to condition number in matrix calculations,
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may fundamentally govern the limits of reconstructibility. In short, if the observa-
tional noise level is σ times the macroscopic variability of the dynamics, then the error
magnification must be on the order of 1/σ or lower to allow accuracy in the recon-
structed dynamics. Our first aim is to quantify this magnification for each specific
observing subset and target node of the network.

A second objective of this article is to present a general method to spin up the
entire network using only observations from a fixed subset of the nodes. When dynam-
ical equations are known, the reconstruction of time series from partial observations
is a data assimilation problem. One major part of data assimilation, as used in mod-
ern applications such as weather forecasting, is the spin-up phase, i.e. developing a
consistent set of initial conditions that the atmosphere, for example, is obeying. This
initial condition, along with the known equations, allows the “digital twin” formed
by data assimilation techniques to mirror the real system.

Our focus on these two problems is due to the obvious intrinsic utility of not only
being able to reconstruct unmeasured dynamics at nodes by measuring other nodes,
but also to understand the relative difficulty levels of different potential reconstruc-
tions. Such considerations allow the user to decide where to efficiently observe the
network if choices are available.

Note that we are not directly addressing many other pertinent questions about
dynamical networks, for example: (1) reconstructing dynamics at other network nodes
when observations of the full network have been previously made, or (2) reconstruct-
ing the network or network equations themselves from full or partial observations.
Problem (1) is connected with Takens’ theorem and its analogues, and is largely ef-
fective in the domain of low-dimensional dynamics. We do not make any dimensional
restrictions in the current work. Problem (2) is also under intense development but
is not the subject of this paper.

We begin in Section 2 with a review of observability in the discrete linear case,
presented in a way to simplify our later discussion of error magnification. In Section
3 we define the Observation Error Magnification Factor, and in Section 4 we present
a numerical method for reconstruction for nonlinear time series. Section 5 contains
results of applying the methods to nonlinear networks.

2. Discrete linear networks. In this section, we collect some elementary prin-
ciples of observing networks in the simplest case of linear dynamics. Most of these
ideas date back at least to Kalman [8]. Our description is designed to lead to a
practical notion of observational error magnification that we can later extend to the
nonlinear case.

Consider the discrete linear dynamical system xk+1 = Axk on Rn where A is
an n × n matrix. We can write down the relation between the initial state x0 =
[x0

1, x
0
2, x

0
3, . . . , x

0
n] and the time series observed at an arbitrary node j, which is de-

noted by sk = (Akx0)j for k = 0.1.2. . . .. For t > 0, consider the matrix
(2.1)

Mt,j =


0 · · · 0 1 · · · 0

(A)j1 · · · (A)j,j−1 (A)jj · · · (A)jn
(A2)j1 · · · (A2)j,j−1 (A2)jj · · · (A2)jn

...
...

...
...

(At−1)j1 · · · (At−1)j,j−1 (At−1)jj · · · (At−1)jn

 =


(A0)j
(A1)j

...
(At−1)j
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That is, the rows of Mt,j consist of the jth rows of Ak for 0 ≤ k < t. Note that

(2.2) Mt,j


x0
1

x0
2

x0
3
...
x0
n

 =


s0
s1
s2
...

st−1

 ,

which is the connection between initial conditions and observations that we will be
able to exploit. First, we define the concept of a kernel node.

Defn. Let M be an m × n matrix. Call node i (or variable i) a kernel node (or
variable) for M if vi ̸= 0 for some vector v = [v1, . . . , vn] in the nullspace of M , and a
regular node otherwise. More generally, let M be a structured matrix, i.e. one with
only certain specified nonzero entries. We call node i a generic kernel node for M
if for Lebesgue-almost every choice of specified nonzero entries in M , respecting the
structure of M , there is v ∈ null(M) such that vi ̸= 0; we call i a generic regular
node if vi = 0 for every vector v ∈ null(M) for almost every choice of entries in M .

By definition, for a specific matrix M , every node is either a kernel node or a
regular node. Interestingly, the same is true for nodes of a generic linear network.

Fact 1. [6] For matrices M with a given structure, every node is either a generic
kernel node or a generic regular node.

If Mt,j cannot be made to be full rank by taking t sufficiently large, there are
distinct initial states which result in the same observations at the j-th node and thus
produce indistinguishable time series. The vectors in the kernel of Mt,j will have
non-zero entries for nodes that are related to the indistinguishable states. Conversely,
if every vector in the kernel of Mt,j has a zero entry for the ith node, this indicates
that the ith node does not participate in any of the indistinguishable states, and so
the state of the ith node will be identifiable from observations at the jth node. These
properties are summarized in the following proposition.

Proposition 1. Consider the observations sk = (Akx0)j at node j. The follow-
ing are equivalent:
(1) Node i of the initial state is uniquely determined by infinite sequence {s0, s1, . . .}.
(2) Node i of the initial state is uniquely determined by finite sequence {s0, . . . , sn−1}.
(3) Node i is a regular node of Mn,j.

Proof. By the Cayley-Hamilton Theorem, the matrix A satisfies its own characteristic
equation, so the row vectors eTj A

0, ..., eTj A
n are linearly dependent, where ej denotes

the jth column of the identity matrix. This implies that rows n + 1, n + 2, . . . , t of
Mt,j are linear combinations of the rows of Mn,j . Therefore for t ≥ n, v ∈ ker Mt,j if
and only if v ∈ ker Mn,j , and it reduces to proving (2) and (3) are equivalent.

If v ∈ ker Mn,j and vi ̸= 0, then for any solution x = [x1, . . . , xn] of (2.2), x+αv
are also solutions and the ith coordinates have many different values, contradicting
uniqueness. Conversely, if there are solutions with two different values at the ith
coordinate, then there is a kernel node with nonzero ith coordinate.

Example 1. Fig. 1(a) shows a 4-node network that is fully observable, in the
sense that generically, measurements at any node can be reconstructed from observa-
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(a) (b) (c)

Fig. 1. Three example networks. (a) A 4-node network that is observable from any node for
generic weights. (b) An undirected network, also observable from any node. (c) Three-node network
that exhibits a bottleneck for generic weights, which obstructs the reconstruction of nodes 2 or 3
from observations at node 1.

tions at any other node. The edge weight matrix A is

A =


0 0 0 a14
a21 0 0 0
0 a32 0 0
0 0 a43 0


where the aij are arbitrary entries into this structured matrix, and the rest of the
entries are fixed at zero. Without loss of generality, consider observing at node j = 1,
for which the observation matrix is

M4,1 =


1 0 0 0
0 0 0 a14
0 0 a14a43 0
0 a14a43a32 0 0

 .

The determinant of the matrix is a314a
2
43a32. It follows that for generic entries (avoiding

the lower-dimensional hypersurface defined by the determinant) there are no kernel
nodes, so according to Proposition 1, we will be able to reconstruct each node from
the time series at node 1.

Example 2. Fig. 1(b) shows a 4-node network that is also fully observable, in
the same way as Example 1. The edge weight matrix A is

A =


0 a12 0 a14
a21 0 a23 0
0 a32 0 a34
a41 0 a43 0


where the aij are arbitrary entries into this structured matrix, and the rest of the
entries are fixed at zero. Without loss of generality, consider observing at node j = 1,
for which the observation matrix is

M4,1 =


1 0 0 0
0 a12 0 a14

a12a21 + a14a41 0 a12a23 + a14a43 0
0 m42 0 m44

 .

where m42 = a12(a12a21 + a14a41) + a32(a12a23 + a14a43) and m44 = a14(a12a21 +
a14a41)+a34(a12a23+a14a43). The determinant of the matrix is a (nonzero) degree 6
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polynomial in the aij . For generic entries (avoiding the lower-dimensional hypersur-
face defined by the determinant) there are no kernel nodes, so according to Proposition
1, the time series at each node is reconstructible from the time series at node 1.

Next we consider how the topology of the network affects observability from a
node. One might expect, for example, that trajectories of all upstream nodes can be
successfully reconstructed from a downstream node. More precisely, assume there is a
path through the network from a node i to an observation node j. Can the trajectories
at node i be reconstructed from the time series observed at node j? The answer is
no, even if we assume the network weights are generic.

Example 3. A simple instance is shown in Fig. 1(c). If we assume the weights of
the graph are a12 and a13 on the left and right arrows, respectively, then the identically
zero time series observed at node 1 can be explained by zeros on nodes 2 and 3, or
alternatively by any multiple of the constant time series (−a13, a12). Therefore the
time series at nodes 2 and 3 are not uniquely determined by measurements at node 1.

This is an illustration of Proposition 1, since

A =

 0 a12 a13
0 0 0
0 0 0

 , M3,1 =

 1 0 0
0 a12 a13
0 0 0

 ,

so nodes 2 and 3 are identified as kernel nodes for M3,1, no matter what the values
a12 and a13 are.

Example 4. Consider the graph in Figure 2(a). Its edge weight matrix is

A =


0 a12 a13 0 0 0
0 0 0 a24 a25 a26
0 a32 0 a34 a35 a36
a41 0 0 0 0 0
0 0 0 a54 0 0
a61 0 0 0 0 0

 .

We can see that all nodes are upstream from node 1. However, it turns out that only
node 4 can be successfully observed from node 1. It can verified (somewhat laboriously
with symbolic algebra) that nodes 2, 3, 5, and 6 are kernel nodes, from which this
fact follows by Proposition 1. However, the concept of bottlenecks, introduced by Lin
in [12] and further developed in [6], can make it much easier to diagnose obstructions
like this one directly from the topology of the graph.

Let S be a subset of nodes of a directed graph with n nodes. We will denote by
S→ the forward set of S, the set of all nodes such that there is an arrow to the node
from a node in S. We call the sets {S, S→} a k-bottleneck if |S| = |S→| + k for
some k > 0. A minimax k-bottleneck is a k-bottleneck of maximal k that is minimal
with the property of being a k-bottleneck, more precisely, such that no subset is a
k-bottleneck.

It turns out that there is a connection between minimax bottlenecks and the
nullspace of A. The following fact is proved in [6]:

Fact 2. For generic entries respecting the structure of A, rank(A) < n if and only if
there is a k-bottleneck for some k > 0. Moreover, the minimax bottleneck consists of
the generic kernel nodes of A.

5
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(a) (b)

Fig. 2. (a) Example of 6-node network with a 1-bottleneck consisting of the subset B =
{2, 3, 5, 6}. (b) Adding one edge from node 5 to node 6 eliminates the bottleneck

For example, consider the set S = {2, 3, 5, 6} in Fig. 2(a). Note that S→ =
{1, 2, 3}. This is a minimax 1-bottleneck, so the nodes 2, 3, 5, and 6 are generic
kernel nodes of the structured matrix A.

The following key observation shows that kernel nodes for the weight matrix A
are also kernel nodes for the observation matrix Mn,j .

Proposition 2.1. Let A be a structured matrix and let S = set of generic kernel
nodes of A. If j /∈ S, the set S consists of generic kernel nodes for Mn,j.

Proof. Let v ∈ null(A). Since j /∈ S, the first row of Mn,j is orthogonal to v. Since
Av = 0, A2v = 0, . . ., each row of Mn,j after the first is also orthogonal to v. Thus
v ∈ null(Mn,j).

By Proposition 2.1, the time series at 2, 3, 5 and 6 cannot be reconstructed from
node 1 or from node 4. This is not surprising for node j = 4, since not all nodes are
upstream from 4. However, it is interesting for j = 1, because all nodes are upstream
from node 1. One can further check using Proposition 1 that the time series at node
4 can be uniquely reconstructed from observing at node 1, even though the rest of
the nodes cannot.

Knowledge of the bottleneck, S = {2, 3, 5, 6} → S→ = {1, 2, 3} in this case, shows
what is necessary to remove it. By connecting nodes 5 and 6 as in Fig. 2(b), S→

becomes {1, 2, 3, 6}, destroying the bottleneck. In the revised network, all nodes are
observable from node 1.

Example 5. The graph in Fig. 3(a) is a further illustration of a bottleneck. Note
that S = {1, 2, 6, 7} → S→ = {3, 4, 5} is a 1-bottleneck, so by Fact 2, nodes 1, 2, 6
and 7 are generic kernel nodes for A, and according to Proposition 2.1, also for Mn,j

for j = 3, 4 and 5. Therefore nodes 3, 4, and 5 cannot be used to reconstruct time
series from the other nodes.

As in the previous example, if we could add another edge, say from node 1 to node
2, the bottleneck disappears. Therefore the network in Fig. 3(b) is reconstructible
from observations at any node. However, while this is theoretically true, there may
be a price to pay in such a marginal case. We return to this network shortly in
Example 8 to examine how practical this would be.

Although we have focused on obstructions to reconstruction up to this point, it is
still likely that wide swaths of examples are fully observable, even in the discrete linear
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(a) (b)

Fig. 3. Example of 7-node network. (a) The graph has a 1-bottleneck with S = {1, 2, 6, 7},
which obstructs observability. (b) Adding one extra directed edge to the graph allows every node to
be reconstructed from every other node.

case, if problems such as bottlenecks are avoided. In particular, we suggest two sets
of hypotheses that preclude bottlenecks and can provide lots of successful examples of
reconstructing times series from partial observations. For a fixed directed graph with
n nodes, denote by A the structured matrix of edge weights aij . A subset of nodes in
a directed graph is strongly connected if there is a directed path connected from
node i to node j for any pair of nodes i, j in the subset.

Conjecture 1. Assume that all nodes have self-connections, i.e. assume aii ̸= 0
for 1 ≤ i ≤ n. Then for almost every choice of entries of the edge weight A, each node
upstream of node j can be observed from node j. More precisely, if there is a directed
path from node i to node j, then the time series of node i can be reconstructed from
the time series observed at j.

Conjecture 2. For almost every choice of entries aij in a structured edge weight
matrix A, any strongly connected subset of nodes can be observed from any node in
the subset.

3. Observational Error Magnification Factor. In the previous section we
discussed necessary conditions that imply that a given trajectory at some network
node can be uniquely reconstructed from observations at another node. Given that
such a reconstruction exists, we next turn to whether it is feasible in an experimental
context to carry out the reconstruction. To this end, we investigate the role of noise in
the reconstruction. In particular, we will define the Observational Error Magnification
Factor, that quantifies the conditioning of the problem of reconstructing one time
series from another. As in the previous section, we begin by looking at the linear
case.

In particular, assume we want to reconstruct the time series at node i from the
observations at node j. We will achieve this by first using Mt,j to estimate the initial
state of the network from the observations at node j, and then applying Mt,i to the
estimated initial condition in order to reconstruct the observations at node i. The
goal is then to determine how the size of a random perturbation to the observation
at node j will effect the error in the resulting estimate of the time series at node i.

Consider initial condition x0 = [x0
1, . . . , x

0
n] of the network and let s = [s1, . . . , st]

denote the time series of length t observed (exactly) at some node number j from
which all nodes can be reconstructed. Let Mt,j be the matrix of (2.1), which by our
assumption and Propostion 1 has full rank n. According to this equation, Mt,jx

0 = s.

7
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Now assume we observe node j with noise level σ and attempt to reconstruct the initial
condition x0. Thus we observe s + e for some observational error e. The deviation
of the initial condition of the true trajectory due to this observational error can be
denoted h0, defined by Mt,j(x

0 + h0) = s+ e, where the error e = [e0, . . . , et] satisfies
E(ek) = 0 and E(e2k) = σ2. Since in general t > n, it is unlikely that this problem has
an exact solution, so we must consider the corresponding least squares problem:

(3.1) min
h0

||Mt,j(x
0 + h0)− (s+ e)||2 = min

h0
||Mt,jh

0 − e||2.

The minimum-norm least squares solution of (3.1) is

h0 = M†
t,je,

where M†
t,j denotes the pseudoinverse of Mt,j . This expression makes sense even

if Mt,j is not full rank. To compute M†, let Mt,j = USV T be the singular value

decomposition of Mt,j , and set M†
t,j = V SinvU

T , where Sinv is the diagonal matrix
of the same shape as Mt,j for which each diagonal entry is the reciprocal of the
corresponding entry of S if it is nonzero, and zero otherwise.

Now that we have an optimal estimate of the initial state (using observations at
node j), we are ready to reconstruct the time series at node i. We need to apply Mt,i

from (2.1) to the least squares initial condition x0 + h0. Since Mt,ix
0 gives the true

time series at node i, the length-t time series of perturbations at node i generated by
h0 is

(3.2) h = Mt,ih
0 = Mt,iM

†
t,je.

The error magnification factor will be defined in terms of root-mean-squared (RMS)
error.

Defn. For a random vector v ∈ Rn, define RMS(v) =

(
1

n
E[

n∑
i=1

v2i ]

)1/2

Lemma 2. Let A be an m× n matrix and let e = [e1, . . . , en] be a random vector
with E[ei] = 0,E[e2i ] = σ2, and E[eiej ] = 0 for i ̸= j. Then

(3.3) RMS(Ae) =
1√
m
||A||F RMS(e) =

σ√
m
||A||F ,

where || ||F denotes the Frobenius norm.

Proof. Note that for v ∈ Rn we have RMS(v)2 = E[vT v/n] = E[trace(vvT )/n] so

RMS(Ae)2 = E[trace(AeeTAT )/m] = E[trace(ATAeeT )/m]

= trace(E[ATAeeT ])/m = trace(ATAE[eeT ])/m

= trace(ATAσ2I)/m =
σ2

m
||A||2F =

1

m
||A||2FRMS(e)2

where we applied invariance of trace to cyclic permutations, linearity of expectation,
and ||A||2F = trace(ATA).

8
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(a) (b)

Fig. 4. OEMF for 4-node network in Fig. 1(a). (a) The OEMF κt
i1 for i = 1, . . . , 4. The OEMF

appear to tend to a limit as the trajectory length t increases. (b) The OEMF κt
i2 for each i. In both

cases, the lowest OEMFs occur for the diagonally opposed node, not the ones directly connected to
the observer.

(a) (b)

Fig. 5. OEMF for 6-node network in Fig. 2(b). (a) The OEMF κt
i1 for i = 1, . . . , 6. The OEMF

tend to a limit as the trajectory length t increases. (b) The OEMF κt
i2 for each i.

It follows from Lemma 2 that the RMS of the perturbations in the reconstruction
at node i is given by

(3.4) RMS(h) =
1√
t
||Mt,iM

†
t,j ||F RMS(e).

Thus stepwise noise of size σ inserted to the length t time series at the observation
node j will result in magnification of the reconstructed time series by

(3.5)
RMS(h)

RMS(e)
=

1√
t
κt
ji

where we have defined κt
ji ≡ ||Mt,i M

†
t,j ||F .

As a consistency check, in the special case when we reconstruct the j-th node
from observations of itself, and Mt,j is full rank n, then

Mt,jM
†
t,j = USV TV SinvU

T = USSinvU
T = U(1 : n)U(1 : n)T

9
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where U(1 : n) denotes the first n columns of U . In this case,

κt
jj = ||Mt,jM

†
t,j ||F =

√
tr (U(1 : n)U(1 : n)T )TU(1 : n)U(1 : n)T

=
√

tr U(1 : n)U(1 : n)T =
√

tr U(1 : n)TU(1 : n) =
√
n,

and (3.5) shows that

RMS(h) =
1√
t
κt
jj RMS(e) =

√
n√
t
RMS(e).

For t = n, RMS(h) = RMS(e) as expected. For t > n, RMS(h) < RMS(e) because
the longer time series provides more information, in a similar way to the general fact
that taking more samples improves the estimate of a mean.

An alternative way of calculating κt
ji is through the QR-factorizations of Mt,i =

Qt,iRt,i and Mt,j = Qt,jRt,j . Then

κt
ji = ||Rt,i(1 : n)Rt,j(1 : n)†||F

where Rt,i(1 : n) denotes the first n rows of Rt,i. The advantage of this formulation
is that the Frobenius norm is taken over an n× n matrix for all t.

What happens to κt
ji as the length t of the trajectory increases? On the one

hand, we expect the error magnification to decrease since there is more information
in longer time series. On the other hand, the Frobenius norm in (3.5) is taken over a
matrix of increasing size t×n. We conjecture that in the case of distinct i and j , the
limit of κt

ji reaches a limit, which we’ll call κji as t → ∞. We examine this question
in the following three examples.

Example 6. Consider the 4-node network sketched in Fig. 1(a). We define a
weight matrix respecting the graph, with nonzero weights chosen as aij = 1 + 0.5νij ,
where νij ∈ N(0, 1), and consider the discrete linear dynamical system produced.
Fig. 4 shows the mean κt

ij taken over 104 realizations of the weight matrices. for (a)
j = 1 and (b) j = 2.

We note two interesting observations from the result. First, the value of each κt
ji

is not constant with t, and appears to monotonically decrease with t to a limiting value
as proposed in the above definition. Second, one may not have guessed the relative
sizes of the κt

ji from the weighted graph in Fig. 1(a) that defines the dynamics. For
the observations at node 1 in Fig. 4(a), the “farthest” node 4 from node 1 is has the
least error magnification, and the nodes adjacent to node 1 have the largest error
magnification. Likewise in Fig. 4(b), it is node 3, which is not directly connected
to node 2, which has by far the lowest error magnification. This apparently shows
the utility of the κt

ji to identify the practicality of reconstruction, that may not be
obvious by other means.

Example 7. In the six-node network of Fig. 2(b), we added an edge from node 5
to node 6, to destroy the bottleneck and guarantee reconstruction from observations
at nodes 1 or 2. As in the previous example, we establish weights as aij = 1 + 0.5νij
corresponding to each directed edge in the graph, where νij ∈ N(0, 1), and average
κt
ij over 104 realizations of the weights. Fig. 5 shows the results.

Example 8. The average κt
i1 and κt

i4 for the system of Fig. 3(b) are shown in
Fig. 6. Recall that there was an obstruction to observability in Fig. 3(a), which was
relieved by adding one extra directed edge. As in the above examples, we generate
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(a) (b)

Fig. 6. OEMF for 7-node network. (a) κt
i1 from observations at node 1 (b)κt

i4 from node 4.

weights as aij = 1 + 0.5νij corresponding to each directed edge in the graph, where
νij ∈ N(0, 1), and average κt

ji over 104 realizations of the weights. The system has
relatively high error magnification, perhaps due to being near the border of observ-
ability.

In Examples 6, 7, and 8, it is apparent that the κt
ji are monotonically decreasing

in the trajectory length t, and that they appear to approach a limit. These examples
motivate the following definition, which considers the limit of (3.5) as t → ∞, if it
exists.

Defn. [4] Let [x0, . . . , xt] be a trajectory at node X, and let [x0 + h0, . . . , xt + ht] be
a trajectory reconstructed from observations on the set S. The observational error
magnification factor (OEMF) of the trajectory is defined to be

κS,X ≡ lim
σ→0

lim
t→∞

{
E
[
||h||22

]}1/2
σ

= lim
σ→0

lim
t→∞

√
t E
[
||h||22/t

]1/2
σ

≈
√
t
RMS reconstruction error per step at X

RMS observation error per step at S
(3.6)

As we showed above, in the discrete linear case with S = {j} andX = {i}, κS,X = κji.
ln the general nonlinear case, we can also expect a constant κS,X that is indepen-

dent of the length of the trajectory and the size of the observational noise, at least in
the limiting case. The significance of this definition is that it is useful to have a single
number which characterizes the ability to reconstruct a time series at a node X from
observations at a subset S of the network. We will pursue this larger context in the
next two sections.

4. Numerical method. In this section we describe a numerical algorithm for
reconstructing time series at a network node from observations at a downstream node.
In the previous section, we accomplished this in the discrete linear case, when such a
reconstruction was possible. In this section we pursue the same question for nonlinear
dynamics.
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Since we know the dynamical equations, the problem is closely related to repro-
ducing an initial condition of the entire system that generates the trajectory. We will
assume that we can observe the entire time series at a subset S of network nodes,
including the initial condition at those nodes, but have no such knowledge at the
desired node X.

Our computational approach will consist of minimizing a loss function on poten-
tial full trajectories, that simultaneously monitors both the distance from the obser-
vations and the discrepancy of the trajectory’s iterations from exactness. We note
that whether the observations are made with or without noise, this minimization is
highly nonconvex, and we will find that calculating a minimum is often nontrivial.

4.1. Loss function. Let f : Rn → Rn be a discrete map, and let {xk
i } be an

exact trajectory of f for 1 ≤ i ≤ n and 0 ≤ k ≤ t. Assume that m ≥ 1 nodes
are observed, and renumber them as nodes 1, . . . ,m for simplicity. Up to this point,
we have shown examples with m = 1, but we allow m > 1 in general for the case
where more than one node can be observed. In the absence of noise, the following
m(t+ 1) + nt equations in n(t+ 1) unknowns xk

i hold for the trajectory:

xk
i = ski for i = 1, . . . ,m and k = 0, . . . , t(4.1)

xk+1
i = f(xk

i ) for i = 1, . . . , n and k = 0, . . . , t− 1.

In a realistic application, the nodes are observed with noise, i.e.

ski = xk
i + eki

for i = 1, . . . ,m. Our goal is to reconstruct xk
i for i = 1, . . . , n and k = 0, . . . , t only

from knowledge of the observations sti for i = 1, . . . ,m and the dynamical equations
denoted by f . Let {yki } be the target time series and denote hk

i = yki − xk
i the errors

in reconstructing the exact trajectory.
Comparing the number of equations above that the yki must satisfy shows that the

equations in (4.1) are overdetermined as long as the trajectory length t > (n−m)/m.
For moderately long times series, this requirement will be easy to achieve. Due to the
noise, the xk

i will not satisfy the equations (4.1), but we will search for the best least
squares alternative yki .

The overdetermined least squares problem that arises is to minimize the loss
function

(4.2) Lw(y) ≡ w

t∑
k=0

m∑
i=1

[yki − ski ]
2 +

t−1∑
k=0

n∑
i=1

[yk+1
i − f(yki )]

2

for a weight w. The first double sum represents the observational discrepancy, the
difference between the y trajectory and the noisy observations of the x trajectory.
The second double sum represents the consistency discrepancy of the y trajectory, a
measurement of how far the y time series is from being an exact trajectory of the
dynamical map f .

4.2. Gauss-Newton with QR. Let r1(x), . . . , rm(x) be functions ri : R
n → R.

To minimize
∑m

i=1 ri(x)
2, start with initial guess x0. Set r = [r1(x), . . . , rm(x)] and

denote by Dr(x) the m×n matrix of partial derivatives. The Gauss-Newton method
[19] produces the iterates xk+1 = xk + vk where vk is the linear least squares solution
of

Dr(xk)vk = −r(xk).

12
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(a) (b)

Fig. 7. Reconstruction of times series in a 4-node network with topology as in Fig. 1(b) with
local Hénon dynamics (4.4) at each node. (a) An exact trajectory (in blue) of length 120, plotted at
each of the four nodes; nodes arranged vertically by number. (b) Reconstruction (in red) produced by
Gauss-Newton from observations at node 1, observed with noise level σ = 0.03. The exact trajectories
are in plotted in blue. The largest errors are seen in the reconstruction of node 3, consistent with
the OEMF displayed in Fig. 7(b).

If x0 is close enough to the optimum, the iterates will converge to it.
In cases where the minimization problem is poorly conditioned, it is helpful to

use the QR factorization to compute vk. That is, set QkRk = Dr(xk) where Qk is an
orthogonal m×m matrix and Rk is m× n upper triangular. Then

(4.3) vk = (Rtop
k )−1QL

k Dr(xk)

similar to the calculation in section 3.
As a local optimization algorithm, the Gauss-Newton method is not guaranteed

to converge to the minimum of a nonconvex optimization problem, especially if the
initial guess is far from the optimum. In our case, we assume little information about
the optimum, the exact full trajectory, is available.

4.3. Networks of nonlinear systems. Most of the computer simulations in
this section use network topologies studied above in the discrete linear case, but where
each network node has been replaced by a nonlinear map. The examples typically use
a modification of the Hénon map [5] due to its relative simplicity.

Define the modified Hénon map F : R2 → R2 by

F (x, y) = (b cosx+ cy, x).

In the following examples, the parameters b = 2.2, c = 0.4 are used, and if used in
a network, parameter values generated near those values with small changes chosen
from a normal distribution are used, to avoid unwanted symmetries. These parameter
values results in chaotic dynamics for each node separately, and depending on the
influences from other nodes from the network weights, tend to result in chaotic network
dynamics.

We will use dynamics on a n-node network to illustrate the properties of the error
magnification discussed above. Consider the Hénon-like map f : R2n → R2n defined
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(a) (b)

Fig. 8. Reconstruction of times series in a 6-node network with topology as in Fig. 2(b) with
local Hénon dynamics (4.4) at each node. (a) An exact trajectory (in blue) of length 100, plotted
at each of the six nodes. (b) Reconstruction (in red) from observations at nodes 1 and 2, observed
with noise level σ = 0.001.

by

xk+1
i = bi cosx

k
i + cix

k
i+1 +

n∑
j=1

aijx
k
2j−1(4.4)

xk+1
i+1 = xk

i

for i = 1, 3, 5, . . . , 2n − 1, where the aij form an n × n weight matrix A. Thus
the network communicates through the odd-numbered variables, one per node, while
the even numbered variables are considered “internal” or recovery variables. In the
following examples, certain of the aij are fixed at zero to respect a particular directed
graph, and the nonzero bi, ci are chosen to be normal random perturbations of 2.2
and 0.4, respectively.

Example 9. Fig. 7 shows the results of reconstruction of times series in the 4-
node network of Fig. 1(a) with observations from the x-variable at node 1 (variable
x1 in terms of equation (4.4)), the top trace in each of the panels. A small amount of
observational noise is added. Panel (a) shows the exact traces, and panel (b) shows the
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(a) (b)

Fig. 9. Success curve for damped Gauss-Newton algorithm. For larger noise levels, most initial
starts end by diverging to infinity, and only a small fraction converge to a trajectory near the true
one. The probability of a convergence is plotted as a function of observation noise level for (a)
the 4-node Hénon network with the topology of Fig. 1(a), and (b) 6-node Hénon network with the
topology of Fig. 2(b).

reconstructed traces from the Gauss-Newton iteration plotted in red. Some deviations
from the true trajectory are noticeable at node 3. The fact that observational error is
magnified more for the reconstruction of node 3 reflects the predictions of the OEMF
as displayed in Fig. 10.

Example 10. In Fig. 8, the reconstruction of a network of Hénon maps connected
as the 6-node network in Fig. 2(b) is carried out. The exact trajectories are shown in
panel (a). As in the previous example, only the x-variable at the first node is observed,
and the remaining 11 traces are reconstructed by the Gauss-Newton method described
above and displayed in panel (b).

4.4. Reconstruction algorithm. In this subsection we collect some details on
the application of Gauss-Newton to minimize the loss function (4.2). As an initial
guess for the minimization, we use a short trajectory consisting of the m observable
coordinates, observed with noise, and the other n−m coordinates seeded with normal
random numbers.

Starting with random coordinates in this way is a challenge for a local method like
Gauss-Newton, which tends to diverge to infinity if it is too far from the minimum.
This problem is more prevalent with increasing observation noise level σ. We address
this problem in two ways:

(1) The application of Gauss-Newton algorithm is done with a reduced step size,
using the idea which is often called damped Gauss-Newton. In other words, we
routinely multiply the proposed Gauss-Newton innovation (4.3) by a small number
(such as 10−p for p = 1, 2 or 3) which can allow the method, once it acquires the basin
of convergence, to avoid jumping out of the basin.

(2) Multiple restarts of the damped Gauss-Newton method are needed in most
circumstances. For larger noises, hundreds or thousands of restarts (reseeding the
initial guess of the trajectory with random numbers) were required to converge to a
trajectory close to the original exact trajectory. The growth of the number of restarts
needed for convergence, as a function of observation noise level, is analyzed in Fig. 9.

Fig. 9 summarizes important facts about our ability to reconstruct from partial
observations. The basins of convergence of damped Gauss-Newton for this problem
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(a) (b)

Fig. 10. (a) Estimated OEMF of modified Hénon dynamics connected in a directed circular
network as in Fig. 1(a) with observations at node 1 and noise level 10−4. (b) Estimated OEMF for
the undirected circular network as in Fig. 1(b)

are extremely complex. It is common to see trajectories that track closely to the
desired trajectory for a finite number of steps, and then suddenly diverge from that
trajectory. In such a case, the Gauss-Newton has to be reinitialized with a new
random start trajectory. The difficulty of finding the correct basin of convergence
appears to increase exponentially with the observational noise level, according to the
fit shown in the figure. We do not have a theoretical explanation for this scaling.

5. OEMF for nonlinear networks. In this section, we use the definition (3.6)
of OEMF derived in section 3 and the numerical method developed in section 4
to estimate the error magnification inherent in some example networks. We rely
primarily on the networks of modified Hénon maps defined above, and use some of
the same network topologies from the discrete linear examples in section 2. We will
see that the same network topologies exhibit quite different OEMFs in the nonlinear
case.

Example 11. Fig. 10(a) displays an estimate of OEMF from a directed network
with topology as in Fig. 1(a), with four nodes arranged in a circle. Noisy observations
are made from the first coordinate at node 1, and the remaining seven time series are
reconstructed according to the algorithm in section 4. Then the formula (3.6) reveals
the estimated OEMF as a function of step number t. Several trajectories of the same
system are averaged and plotted versus time.

One notes that the relative sizes of the OEMF are arranged in the same order as
the relationship to the observing node 1. In fact, node 4, which directly feeds node
1, has the lowest error magnification, followed by node 3 and node 2, which has the
longest path to node 1.

Fig. 10(b) shows the results from an undirected network with circular topology,
as depicted in Fig. 1(b). As before, noisy observations are made from node 1. In
this case, the OEMF at nodes 2 and 4 are essentially the same, as can be expected.
The highest OEMF occurs for node 3, which is farthest in path distance from node 1.
However, all error magnification factors are lower than in the corresponding directed
network case in panel (a) of the figure.

Example 12. Fig. 11(a) shows the OEMF for the six-node network of Fig. 2(b).
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(a) (b)

Fig. 11. (a) Estimated OEMF for 6-node network of modified Henon maps arranged according
to Fig. 2(b). (b) Estimated OEMF for 7-node network arranged according to Fig. 3(b). Comparing
to Figs. 5 and 6, the nonlinear versions show the same difference in reconstruction difficulty between
panels (a) and (b) as the discrete linear case.

The size of the OEMF are increasing consecutively from node 1 to node 6. It is not
very clear from the network topology why this is the correct order, which is one reason
that our ability to easily estimate the OEMF from simulation is useful.

Example 13. Fig. 11(b) shows the OEMF for the seven-node network of Fig. 3(b).
The relative sizes of OEMF are informative: The middle tier (nodes 3, 4 and 5) are
the easiest to reconstruct from node 1, followed by the upper tier (nodes 6 and 7),
leaving node 2 to be the most difficult. We have no explanation for this type of effect,
and in fact it would be extremely useful to find a way to predict such phenomena
from the topology, for example from the characteristics of the allowable paths, etc.

Example 14. The method that we propose can also be applied to differential
equations. The Fitzhugh-Nagumo neural model [2, 16] is given by

v̇ = bv + cw + d− v3/3

ẇ = ev + fw + g.

The parameters are set to be small perturbations of the set b = 1, c = −1, d =
0.36, e = −0.08, f = 0.064, g = 0.056. Communication between neurons is established
in analogy with (4.4), by adding to each vi voltage variable the contributions of all
other vi variables according to the network topology. That is, at each node we solve

v̇i = bivi + ciwi + di − v3i /3 +

n∑
j=1

aijvj

ẇi = eivi + fiwi + g.

In order to apply the numerical method described above, we denote by f the
time-τ map of the differential equation, with τ = 3. The derivative of the time τ -
map is extracted in the standard way, i.e. by solving the variational equations of the
system on each observation step for τ times units, starting with initial vectors equal
to the elementary coordinate vectors. This derivative is updated on each step and
used in the application of the Gauss-Newton minimization.

Fig. 12 shows the reconstruction of a network of Fitzhugh-Nagumo models. The
dynamics are weakly chaotic. The rightmost panel shows the w, or recovery, variables.
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(a) (b)

Fig. 12. Reconstruction of times series in a 6-node network with topology as in Fig. 2(b) with
local Fitzhugh-Nagumo dynamics (5.1) at each node. (a) An exact trajectory (in blue) of length 100,
plotted at each of the six nodes. (b) Reconstruction (in red) of the v variables using observations
only at node 1, observed with noise level σ = 0.001. The reconstructed v time series at the 6 nodes,
are plotted on the left side of (b), and the 6 recovery w time series are plotted on the right.

In this example, 11 unobserved traces are reconstructed from the single trace observed
at node 1.

6. Discussion. The primary goal of this article is to establish that for a tra-
jectory of a dynamical network, there is a single number, the Observational Error
Magnification Factor (OEMF), that quantifies the ability to reconstruct the trajec-
tory at a given node by observing at a different node, or subset of nodes, of the
network. The OEMF can be used in two obvious ways: (1) to decide how to choose
where to extract observations of the network, in order to best monitor the dynamics
at another node, or (2) once an observation node is chosen, to quantify how faithful
the reconstruction will be at unobserved nodes. The OEMF can be calculated by
simulation, in advance of the collection of data, as long as a faithful model of the
dynamical network is known.

Our second goal is to propose a plausible numerical algorithm for obtaining the
trajectory at unobserved nodes of the network from partial observations elsewhere in
the network. We showed results from applying a modified Gauss-Newton iteration
to minimize a loss function, which eventually converges to a nearby trajectory, de-
spite potentially requiring a large number of restarts. We were able to quantify the
exponential scaling of the number of restarts required.

The exponential scaling of restarts is a reflection of the complicated convergence
basin structure of pseudo-trajectories, near the true trajectories of a complex network.
Loosely speaking, there are a plethora of trajectories that follow a desired trajectory
for a relatively short time and then diverge from it. This is in fact a well-known
characteristic of high-dimensional chaotic systems. Shedding light on this fascinating
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basin structure would be a way to increase the capabilities of this approach.
The application of damped Gauss-Newton should be regarded as only an initial

attempt to reconstructing time series from chaotic networks. It is an open question
whether a more sophisticated optimization approach could improve the exponential
success curves in Fig. 8 or perhaps achieve subexponential convergence rates.

In this article, we have studied the effect of observational noise as a first step.
Systems with dynamical noise or model error will present another important source
of error magnification and an additional challenge for time series reconstruction, and
for analysis of how noise affects reconstruction more generally.

A future application of the ability to quantify error magnification, not addressed
in this article, is to predict the potential success of reconstruction at specific nodes
based on the topology of the network. This is important both for analysis of existing
networks and for design of future networks. Examples shown here indicate that espe-
cially in the nonlinear dynamics case, such predictions may not be straightforward.
This highlights the need for easily-computable invariants like the OEMF that can be
leveraged to investigate these questions.
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