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1 Introduction
Complete parabolic equations are used to model transport phenomena. These are highly studied due to the number
of direct applications they are related to in different fields of physics, as they are used to analyze the transfer
of mass, energy, and information in different processes [1, 2]. Among the most important applications, we can
mention the heat transfer of a body immersed in a moving fluid [3], heat transfer in biological tissue [4], and the
concentration of a certain compound in a flow of water [5].

On the other hand, the problem of source determination has been analyzed in recent years in various areas of
applied physics and has garnered considerable attention in current research. It finds applications in fields such as
heat conduction [6, 7, 8, 9], crack identification [10], electromagnetic theory [11, 12, 13], geophysical prospecting
[14], contaminant detection [15], and detection of tumor cells [16], among others.

Several methods are available in the literature for determining a source, and among the most important tools
are the potential logarithmic method [17], the projective method [18], Green functions [19], limit element methods
of dual reciprocity [20], the method of dual reciprocity [21], and the method of fundamental solution [22].

In the context of various transport processes or complete parabolic differential equations, there is a limited
number of articles published for the general case [23, 24, 25], with the majority of available literature focusing on
the one-dimensional heat equation. Different methods, techniques, and strategies have been employed to retrieve
sources in this equation, as seen in [26, 27, 28]. Many articles analyze specific cases with simplifications or
restrictions in mathematical models, source types, boundary conditions, or selected domains, such as [26, 27, 28,
29, 30, 31, 32]. The most commonly used methods in these cases include the limit element method [26, 28],
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the fundamental solution method [27, 32], the Ritz-Galerkin method [33], the finite difference method [34], the
meshless method [35], the conditional stability method [36], and the shooting method [29].

The problem of source determination is considered ill-posed in the sense of Hadamard [37], as the solution
does not depend continuously on the data. Regularization methods [38, 39] play a crucial role in estimating
unstable solutions. Among the most commonly used are the iterative regularization method [40, 41], the simplified
Tikhonov regularization method [42, 43, 44, 45, 46], the modified regularization method [8, 25, 46, 47, 48, 49],
Fourier truncation [48], and the mollification method [50].

When it comes to source determination in parabolic equations, [51] focuses on a convection-diffusion equation,
while [7, 34, 47, 49, 52, 53, 54, 55, 56] exclusively consider diffusion. More recently, the problem of finding the
source term in a complete parabolic equation has been addressed using the quasi-reversibility method, as seen in
[57]. Notably, this method extends its applicability to solving the inverse source problem in nonlinear parabolic
equations [58].

The issue addressed in this article stems from modeling various transportation problems and involves identi-
fying the source term, which is independent of time, in a complete parabolic evolutionary equation using measure-
ments or noisy data taken at an arbitrary fixed time. This problem is ill-posed, as high-frequency components of
arbitrarily small data errors can result in disproportionately large errors in the solution. To tackle this challenge,
three uniparametric families of regularization operators are devised to counteract the instability of the inverse
operator. These regularization operators create families of well-posed problems that approximate the originally ill-
posed problem. Additionally, a guideline is provided for selecting the regularization parameter. The stability and
convergence of each method are analyzed, and an optimal H”older bound is derived for the error of each estimate.

The three strategies presented here generalize the ideas used by other authors for the case of the one-dimensional
heat equation. Here, they are applied to a complete parabolic equation where temperature measurements can be
taken at any instant. On the other hand, the proposal is framed within the theory of operators, giving rise to ap-
plications in more general contexts and problems. Any important application is the detection of contaminants
in groundwater layers, this is a problem that concerns all urbanized cities. Being able to determine the focus of
contamination from measurements in a particular place, minimizes the costs used for the search [15, 59, 60]. An-
other application is the estimation of the metabolic heat in a biological tissue [24] using the Pennes model [4].
Any existing abnormality within the body can lead to variations in temperature and heat flux at the surface. The
presence of a tumor produces local inflammation, increased metabolic activity, among other symptoms. Due to
this, the diseased cells act as a source of temperature that produces abnormal thermal profiles in the skin and its
measurements can be used to identify, locate and characterize the sick cells. The two problems mentioned above
can be addressed with the tools that are explained in this paper. There are many other applications in different
disciplines, these two are mentioned as an example to highlight the importance of the problem and the proposed
methods.

To illustrate the performance of the proposed regularizations and in order to compare the different regulariza-
tion operators introduced in this article; numerical examples of different characteristics are included.

2 Source identification

In this section, the inverse problem to be studied is formally presented, an analytical expression is given for the
solution of the problem of interest, and it is shown that the problem is ill-posed.

2.1 Presentation of the problem

Given u : Rn × R+ −→ R, we seek to determine the source term in the following complete parabolic equation in
an unbounded domain

∂u

∂t
(x, t) = α2∆u(x, t)− β · ∇(u(x, t))− νu(x, t) + f(x), x ∈ Rn, t > 0, (1)



where ∆,∇ denote the Laplacian and Nabla operators, respectively, and “ · ” represents the usual inner product in
Rn. Without loss of generality, the null initial condition is considered, i.e.,

u(x, t) = 0, x ∈ Rn, t = 0. (2)

The determination of the source term in Equation (1) with the condition (2), is carried out using experimental
or simulated noisy data, at an instant of time t0.

u(x, t) = yδ(x), x ∈ Rn, t = t0 > 0, (3)

where yδ represents the noisy data or measurements and δ is the noise in the data. It is also assumed that said noise
is bounded, that is,

||y(x)− yδ(x)||L2(Rn) ≤ δ, 0 < δ ≤ δM , (4)

where δM ∈ R+ is the maximum noise level tolerated. In practice δM is obtained from measurement, instrumen-
tation and calibration errors.

2.2 Problem solution

The source estimation problem will be solved using the n-dimensional Fourier transform. It is included here for
completeness reasons.

Definition 1. Let g ∈ L2(Rn), the n-dimensional Fourier transform [61] is defined by

ĝ(ξ) :=

(
1√
2π

)n ∫
Rn

e−iξ·x g(x) dx, ξ ∈ Rn.

Let ĝ ∈ L2(Rn), the Fourier antitransform is defined by

g(x) :=

(
1√
2π

)n ∫
Rn

eiξ·x ĝ(ξ) dξ, x ∈ Rn.

Proposition 1. The n-dimensional Fourier transform is a linear integral operator that satisfies the following
property. Let g ∈ L2(Rn) hence:

∇̂g(ξ) = i ξ ĝ(ξ), ∆̂g(ξ) = −∥ξ∥2 ĝ(ξ), ξ ∈ Rn.

From the use of the definition 1 and the proposition it is possible to find the analytical solution of the problem
of interest given by the equations (1)-(4). This is given in the following result.

Theorem 1 (Solving the source identification problem). For β ∈ Rn and α2, ν, t0, δ, δM ∈ R+ such that δ < δM ,
are the functions u(·, t), f(·), y(·), yδ(·) ∈ L2(Rn) with ||y − yδ||L2(Rn) ≤ δ satisfying the parabolic problem

∂u

∂t
(x, t) = α2∆u(x, t)− β · ∇(u(x, t))− νu(x, t) + f(x), x ∈ Rn, t > 0,

u(x, t) = 0, x ∈ Rn, t = 0,

u(x, t) = yδ(x), x ∈ Rn, t = t0 > 0.

(5)

Then, the expression for the source is given by

fδ(x) =

(
1√
2π

)n ∫
Rn

eiξ·xΛ(ξ)

( 1√
2π

)n ∫
Rn

e−iξ·xyδ(x)dx

 dξ,



where

Λ(ξ) =
z(ξ)

1− e−z(ξ) t0
,

with

z(ξ) = α2 ∥ξ∥2 + iβ · ξ + ν ∈ C.

Proof. For the proof of theorem 1 it is used the n-dimensional Fourier transform given in 1 on the space variables
of the system (5). Then the proposition 1 is used to obtain,

∂̂u

∂t
(ξ, t) = −(α2 ∥ξ∥2 + iβ · ξ + ν) û(ξ, t) + f̂(ξ), ξ ∈ Rn, t > 0,

û(ξ, t) = 0, ξ ∈ Rn, t = 0,

û(ξ, t) = ŷδ(ξ), ξ ∈ Rn, t = t0 > 0,

(6)

where ξ is the n-dimensional Fourier variable. Equivalently, the identification problem (5) can be rewritten fron
(6) in frequency space as follows

∂̂u

∂t
(ξ, t) = −z(ξ) û(ξ, t) + f̂(ξ), ξ ∈ Rn, t > 0,

û(ξ, t) = 0, ξ ∈ Rn, t = 0,

û(ξ, t) = ŷδ(ξ), ξ ∈ Rn, t = t0 > 0,

(7)

where z(ξ) is given by the expression,

z(ξ) = α2 ∥ξ∥2 + iβ · ξ + ν. (8)

The system (7) is represented by a first order non-homogeneous differential equation with initial condition.
The analytical solution to this equation is,

û(ξ, t) =
1− e−z(ξ) t

z(ξ)
f̂(ξ). (9)

Because û(ξ, t0) = ŷδ(ξ), evaluating Equation (9) at t = t0 produces a linear expression for the source in
frequency space,

f̂δ(ξ) = Λ(ξ)ŷδ(ξ), (10)

where

Λ(ξ) =
z(ξ)

1− e−z(ξ) t0
. (11)

Equivalently, using the definition 1 (of the Fourier antitransform) results from the Equation(10)

fδ(x) =

(
1√
2π

)n ∫
Rn

eiξ·xΛ(ξ)

( 1√
2π

)n ∫
Rn

e−iξ·xyδ(x)dx

 dξ, (12)

which ends the proof.



2.3 Ill-posed problem

The problem of identifying the source in a complete parabolic equation from noisy measurements turns out to be a
ill-posed problem in the sense of Hadamard [37] since the solution does not depend continuously on the data. This
fact can be seen in the following result.

Theorem 2 (The problem is ill-posed). Under the assumptions used so far, the identification problem (5) given in
Theorem 1. It is an ill-posed problem in Hadamard’s sense, since the solutions do not vary continuously with the
data.

Proof. We denote f̂δ(ξ) = Λ(ξ)ŷδ(ξ). It’s easy to see that

∥f̂ − f̂δ∥L2(Rn) = ∥Λ(ξ)(ŷ(ξ)− ŷδ(ξ))∥L2(Rn) = ∥Λ(ξ)(ŷ(ξ)− ŷδ(ξ))∥L2(Rn) , (13)

on the other hand, using the Equations (8) and (11) it is found that,

|Λ(ξ)| =
∣∣∣∣ z(ξ)

1− e−z(ξ) t0

∣∣∣∣ =
∣∣∣∣∣ α2 ∥ξ∥2 + iβ · ξ + ν

1− e−(α2∥ξ∥2+iβ·ξ+ν) t0

∣∣∣∣∣ ≥ |α2 ∥ξ∥2 + iβ · ξ + ν|
1 + e−(α2∥ξ∥2+ν) t0

, (14)

from (14) it is evident that Λ(ξ) is not bounded, since it tends to infinity as ∥ξ∥ → ∞. As can be seen in
(13) this fact amplifies the error of the measurements at high frequencies and this can lead to a large estimation
error ∥f̂ − f̂δ∥L2(Rn) even for very small observation or measurement errors. In other words, the solution to the
identification problem (5) does not vary continuously with the data (see [38]).

3 Regularization operators
When an inverse problem is ill-posed, a regularization method is usually applied to stabilize the solution. In this
section, three regularization operators are proposed for comparative purposes. The existence of the regularization
parameter leading to three convergent methods is proved, and basic theoretical issues related to regularization
operators are included. Readers unfamiliar with this topic may find more information at[38, 39].

3.1 Regularization solutions

To stabilize the ill-posed problem, regularization operators will be used.

Definition 2. Let X and Y be Hilbert spaces and T : Y −→ X a linear bounded operator. A regularization strategy
for T is a family of linear bounded operators satisfying

Rµ : Y −→ X, µ > 0, / lim
µ→0+

Rµy = Ty, ∀y ∈ Y.

For our particular case, the parametric families of linear operators are defined by Ri
µ : L2(Rn) → L2(Rn)

with µ ∈ R+ and i = 1, 2, 3; such that

R1
µ ŷ :=

Λ(ξ)

1 + µ2 ∥ξ∥2
ŷ, R2

µ ŷ :=
Λ(ξ)

1 + µ2 ∥ξ∥4
ŷ, R3

µ ŷ :=
Λ(ξ)

eµ2 ∥ξ∥2/4
ŷ, (15)

where Λ(ξ) is defined in (11), Ri
µ with i = 1, 2, 3, are regularization strategies for Λ(ξ) and µ is the regularization

parameter.

Note 1. Note that the denominators of the expressions (15) that define the linear operators Ri
µ with i = 1, 2, 3,

were introduced in the solution only for stabilization purposes.



Theorem 3 (Convergent regularization operators). Consider the source identification problem (5). Let u(·, t), f(·) ∈
L2(Rn) that satisfy the following differential equation with initial condition

∂u

∂t
(x, t) = α2∆u(x, t)− β · ∇(u(x, t))− νu(x, t) + f(x), x ∈ Rn, t > 0,

u(x, t) = 0, x ∈ Rn, t = 0
(16)

and let {Ri
µ} with i = 1, 2, 3 be the families of operators defined in (15). Then, for all y(x) = u(x, t0) there exists

an a priori parameter choice rule for µ > 0 such that the pairs (Ri
µ, µ) for i = 1, 2, 3 are convergent regularization

methods for the identification problem (16).

Proof. The operators {Ri
µ} with i = 1, 2, 3 defined in (15) are continuous for all ξ ∈ Rn and are bounded, since

it is evident that,

0 ≤ lim
∥ξ∥→∞

Ri
µ < ∞, i = 1, 2, 3.

Therefore, for each parameter µ > 0, the operators Ri
µ with i = 1, 2, 3 are linear, continuous and it has to be

lim
µ→0+

Ri
µ ŷ = Λ ŷ, i = 1, 2, 3,

where ŷ ∈ L2(Rn), then Ri
µ with i = 1, 2, 3 are regularization strategies for Λ. Therefore, according to [38], there

exist a priori parameter choice rules µ such that (Ri
µ, µ) with i = 1, 2, 3 are convergent regularization methods to

solve (10).

The regularized solution of the inverse source identification problem, in frequency space, is given by

f̂ i
δ,µ(ξ) = Ri

µ ŷδ(ξ), i = 1, 2, 3. (17)

Therefore, from the equation (17) an approximate expression for the function f is obtained, solution of the problem
given in (16). This is,

f i
δ,µ(x) =

(
1√
2π

)n ∫
Rn

eiξ·xRi
µ ŷδ(ξ) dξ, i = 1, 2, 3,

equivalently

f i
δ,µ(x) =

(
1√
2π

)n ∫
Rn

eiξ·xRi
µ

( 1√
2π

)n ∫
Rn

e−iξ·x yδ(x)dx

 dξ, i = 1, 2, 3. (18)

Using in the equation (18), the definitions of the regularization operators (Ri
µ, µ) with i = 1, 2, 3 given by the

equations (15), three analytic expressions for the source estimate are obtained (one for each regularization strategy).
These are,

f1
δ,µ(x) =

(
1√
2π

)n ∫
Rn

eiξ·x
Λ(ξ)

1 + µ2 ∥ξ∥2

( 1√
2π

)n ∫
Rn

e−iξ·x yδ(x)dx

 dξ,

f2
δ,µ(x) =

(
1√
2π

)n ∫
Rn

eiξ·x
Λ(ξ)

1 + µ2 ∥ξ∥4

( 1√
2π

)n ∫
Rn

e−iξ·x yδ(x)dx

 dξ

and

f3
δ,µ(x) =

(
1√
2π

)n ∫
Rn

eiξ·x
Λ(ξ)

eµ2 ∥ξ∥2/4

( 1√
2π

)n ∫
Rn

e−iξ·x yδ(x)dx

 dξ.



3.2 Error Analysis

In this section, a bound will be obtained for the error committed by each estimation.

3.2.1 Auxiliary results

In order to analyze the behavior of the proposed regularizations, some results are first introduced that will be used
later to obtain an error bound between the source f(x) and its estimates f i

δ,µ(x).

Note 2. Some of the auxiliary results may seem trivial to the reader. However, and in order to carry out a complete
and self-contained work, a brief demonstration is presented for each one of them.

Lemma 1. Let ω ∈ C with Re(ω) > 0 then
∣∣∣∣ 1

1− e−ω

∣∣∣∣ ≤ 1

1− e−Re(ω)
.

Proof. Euler’s formula is used for complex numbers and it is found that,∣∣1− e−ω
∣∣2 = (1− e−Re(ω)

)2
+ 2e−Re(ω) (1− cos (Im(ω))) ≥

(
1− e−Re(ω)

)2
,

therefore, ∣∣1− e−ω
∣∣ ≥ 1− e−Re(ω) =⇒

∣∣∣∣ 1

1− e−ω

∣∣∣∣ ≤ 1

1− e−Re(ω)
.

Lemma 2. The function f : R+ → R defined by f(x) :=


x

1− e−x
, 0 < x < 1,

1

1− e−x
, 1 ≤ x,

satisfies f(x) < 2.

Proof. First, consider f at (0, 1). Differentiating, in this case, we have

f ′(x) =

(
x

1− e−x

)′
=

1 + e−x(−1 + x)

(1− e−x)2
> 0,

the function f is increasing in (0, 1). Then
x

1− e−x
≤ 1

1− e−1
.

On the other hand, for x ≥ 1, we have

f ′(x) =

(
1

1− e−x

)′
=

−e−x

(1− e−x)2
< 0,

the function f is decreasing ∀x ≥ 1. Then
x

1− e−x
≤ 1

1− e−1
.

So, f(x) ≤ 1

1− e−1
< 2,

Lemma 3. Let x ∈ R− {0}. If 0 < µ < 1 we have
x2

(1− e−x2)e(µ2x2)/4
<

4

µ2
.

Proof. Using the lemma 2 the proof is immediate since,

0 ≤ x2 < 1 =⇒ x2

(1− e−x2)e(µ2x2)/4
<

2

e(µ2x2)/4
< 2 <

2

µ2
<

4

µ2
,

x2 ≥ 1 =⇒ x2

(1− e−x2)e(µ2x2)/4
<

2x2

e(µ2x2)/4
<

2

eµ2/4
<

4

µ2
,



Lemma 4. Let x ∈ R− {0}. So
1− e−x2

x2
< 1.

Proof. Let g : R+ → R be defined by g(x) :=
1− e−x2

x2
. Differentiating we get,

g′(x) =
−2x

[
1− (x2 + 1)e−x2

]
x2

< 0, ∀x > 0.

Then, the function g is strictly decreasing and also,

lim
x→0+

g(x) = 1, lim
x→+∞

g(x) = 0.

Then g(x) < limx→0+ g(x) = 1, ∀x > 0.

Lemma 5. Let a, b, x ∈ R+. So
x

ax2 + b
≤ 1

2
√
ab

.

Proof. Let h : R+ → R be defined by h(x) :=
x

ax2 + b
. Differentiating we get,

h′(x) =
b− ax2

ax2 + b
, ∀x > 0.

Then the function h has its only critical point at x0 =

√
b

a
. Noting that f(0) = 0 and limx→+∞ h(x) = 0, it

follows that x0 is the absolute maximum of h. So,

h(x) =
x

ax2 + b
≤ h(x0) =

1

2
√
ab

, ∀x > 0,

Lemma 6. Let ρ ∈ R. If 0 < µ < 1 we have
|ρ|

1 + ρ2µ2
<

1

2µ2
. Furthermore, for α2, ν > 0 the following

inequality is valid
α2ρ2 + ν

1 + ρ2µ2
<

1

µ2

(
ν + α2

)
.

Proof. For all ρ ∈ R holds

0 ≤ (1− |ρ|µ)2 = 1− 2|ρ|µ+ |ρ|2µ2 =⇒ 1 + |ρ|2µ2 ≥ 2|ρ|µ.

In addition, since µ > 0 the first inequality is obtained,
|ρ|

1 + ρ2µ2
≤ 1

2µ
<

1

2µ2
.

On the other hand, let k(ρ) :=
α2ρ2 + ν

1 + ρ2µ2
then k′(ρ) =

2ρ(α2 − νµ2)

(1 + ρ2µ2)2
and k has a single critical point ρ = 0.

Three cases are considered:

• α2 = νµ2: we have k(ρ) = ν, constant ∀ρ ∈ R.

• α2 < νµ2: then the function k reaches its global maximum value ν at ρ = 0.

• α2 > νµ2: k is an even and increasing function for ρ >0 with lim
ρ→±∞

k(ρ) =
α2

µ2
we have k(ρ) ≤ α2

µ2
.



Therefore,
α2ρ2 + ν

1 + ρ2µ2
≤ max

{
ν,

α2

µ2

}
≤ max

{
ν

µ2
,
α2

µ2

}
<

1

µ2

(
ν + α2

)
.

Lemma 7. Let ρ ∈ R+. If 0 < µ < 1 we have
ρ

1 + ρ4µ2
<

1

µ2
. Also, for α2, ν > 0 the following inequality is

valid
α2ρ2 + ν

1 + ρ4µ2
<

1

µ2

(
ν + α2

)
.

Proof. For all ρ ≥ 1 the lemma 6 is used and the proof is immediate, since

ρ

1 + ρ4µ2
≤ ρ

1 + ρ2µ2
<

1

2µ2
<

1

µ2
,

α2ρ2 + ν

1 + ρ4µ2
≤ α2ρ2 + ν

1 + ρ2µ2
<

1

µ2

(
ν + α2

)
.

On the other hand, for the case 0 < ρ < 1, we have,

ρ

1 + ρ4µ2
<

1

1 + ρ4µ2
< 1 <

1

µ2
,

α2ρ2 + ν

1 + ρ4µ2
<

α2 + ν

1 + ρ4µ2
< α2 + ν <

1

µ2
(α2 + ν).

Lemma 8. Let β ∈ Rn; α2, ν, t0 > 0; 0 < µ < 1 and Ri
µ with i = 1, 2, 3 given by (15). So∣∣Ri

µ(ξ)
∣∣ < Mi

µ2
, i = 1, 2, 3,

where

M1 = max

{
2 ν + 2α2 +

√
n ∥β∥∞ ;

2

t0
+

√
n ∥β∥∞
ν t0

}
, (19)

M2 = max

{
2 ν + 2α2 + 2

√
n ∥β∥∞ ;

2

t0
+

2
√
n ∥β∥∞
ν t0

}
, (20)

M3 = max

{
(α2 + ν)

[
8 +

4
√
n ∥β∥∞√
α2 ν

]
;
8

t0
+

4
√
n ∥β∥∞

t0
√
α2 ν

}
. (21)

Proof. Since the three regularization operators given in (15) contain the expression Λ(ξ) defined in (11), we begin
by bounding this operator. The lemma 1 applied to the absolute value of (11) is used and we immediately obtain,

|Λ(ξ)| =
∣∣∣∣ z(ξ)

1− e−z(ξ) t0

∣∣∣∣ =
∣∣∣∣∣ α2 ∥ξ∥2 + iβ · ξ + ν

1− e−(α2∥ξ∥2+iβ·ξ+ν) t0

∣∣∣∣∣ ≤
∣∣∣∣∣α2 ∥ξ∥2 + iβ · ξ + ν

1− e−(α2∥ξ∥2+ν) t0

∣∣∣∣∣ . (22)

If (α2 ∥ξ∥2+ν) t0 ≥ 1 : From the inequality (22), using the triangular inequality, the lemma 2 and the lemma
6, we have,

∣∣R1
µ(ξ)

∣∣ = ∣∣∣∣ Λ(ξ)

1 + ∥ξ∥2 µ2

∣∣∣∣ ≤ |α2 ∥ξ∥2 + ν + β · ξ i|
(1− e−(α2∥ξ∥2+ν) t0)(1 + ∥ξ∥2 µ2)

< 2

(
α2 ∥ξ∥2 + ν

1 + ∥ξ∥2 µ2
+

∥β∥ ∥ξ∥
1 + ∥ξ∥2 µ2

)
< 2

(
1

µ2

(
ν + α2

)
+

√
n ∥β∥∞
2µ2

)
=

1

µ2

(
2ν + 2α2 +

√
n ∥β∥∞

)
.

(23)



Similarly, from the inequality (22), using the triangular inequality, the lemma 2 and the lemma 7, we obtain,

∣∣R2
µ(ξ)

∣∣ = ∣∣∣∣ Λ(ξ)

1 + ∥ξ∥4 µ2

∣∣∣∣ ≤ |α2 ∥ξ∥2 + ν + β · ξ i|
(1− e−(α2∥ξ∥2+ν) t0)(1 + ∥ξ∥4 µ2)

< 2

(
α2 ∥ξ∥2 + ν

1 + ∥ξ∥4 µ2
+

∥β∥ ∥ξ∥
1 + ∥ξ∥4 µ2

)
< 2

(
1

µ2

(
ν + α2

)
+

√
n ∥β∥∞
µ2

)
=

2

µ2

(
ν + α2 +

√
n ∥β∥∞

)
.

(24)

Finally, from the inequality (22), using the triangular inequality, the lemmas 2, 3, 4 and 5 hold that,

∣∣R3
µ(ξ)

∣∣ = ∣∣∣∣ Λ(ξ)

e(∥ξ∥
2µ2)/4

∣∣∣∣ ≤ |α2 ∥ξ∥2 + ν + β · ξ i|
(1− e−(α2∥ξ∥2+ν) t0)(e(∥ξ∥

2µ2)/4)

< 2

(
α2 ∥ξ∥2 + ν + ∥β∥ ∥ξ∥

e(∥ξ∥
2µ2)/4

)
∥ξ∥2

1− e−∥ξ∥2
1− e−∥ξ∥2

∥ξ∥2

<
8

µ2
(α2 ∥ξ∥2 + ν)

(
1 +

∥β∥ ∥ξ∥
α2 ∥ξ∥2 + ν

)
1− e−∥ξ∥2

∥ξ∥2

=
8

µ2

(
α2 ∥ξ∥2 (1− e−∥ξ∥2)

∥ξ∥2
+ ν

1− e−∥ξ∥2

∥ξ∥2

)(
1 +

∥β∥ ∥ξ∥
α2 ∥ξ∥2 + ν

)
<

8

µ2
(α2 + ν)

[
1 +

√
n ∥β∥∞
2
√
α2 ν

]
.

(25)

If (α2 ∥ξ∥2 + ν) t0 ∈ (0, 1) : From the inequality (22), using the triangular inequality, the lemma 2 and the
lemma 6, we have,

∣∣R1
µ(ξ)

∣∣ = ∣∣∣∣ Λ(ξ)

1 + ∥ξ∥2 µ2

∣∣∣∣ ≤ |α2 ∥ξ∥2 + ν + β · ξ i|
(1− e−(α2∥ξ∥2+ν) t0)(1 + ∥ξ∥2 µ2)

=
(α2 ∥ξ∥2 + ν) t0

1− e−(α2∥ξ∥2+ν) t0

(
1

(1 + ∥ξ∥2 µ2) t0
+

|β · ξ i|
(1 + ∥ξ∥2 µ2)(α2 ∥ξ∥2 + ν) t0

)
< 2

(
1

t0
+

√
n ∥β∥∞
2µ2 ν t0

)
<

2

µ2

(
1

t0
+

√
n ∥β∥∞
2 ν t0

)
.

(26)

Similarly, from the inequality (22), using the triangular inequality, the lemma 2 and the lemma 7, we obtain,

∣∣R2
µ(ξ)

∣∣ = ∣∣∣∣ Λ(ξ)

1 + ∥ξ∥4 µ2

∣∣∣∣ ≤ |α2 ∥ξ∥2 + ν + β · ξ i|
(1− e−(α2∥ξ∥2+ν) t0)(1 + ∥ξ∥4 µ2)

=
(α2 ∥ξ∥2 + ν) t0

1− e−(α2∥ξ∥2+ν) t0

(
1

(1 + ∥ξ∥4 µ2) t0
+

|β · ξ i|
(1 + ∥ξ∥4 µ2)(α2 ∥ξ∥2 + ν) t0

)
< 2

(
1

t0
+

√
n ∥β∥∞
µ2 ν t0

)
<

2

µ2

(
1

t0
+

√
n ∥β∥∞
ν t0

)
.

(27)



Finally, from the inequality (22), using the triangular inequality, the lemmas 2, 3, 4 and 5 hold that,

∣∣R3
µ(ξ)

∣∣ = ∣∣∣∣ Λ(ξ)

e(∥ξ∥
2µ2)/4

∣∣∣∣ ≤ |α2 ∥ξ∥2 + ν + β · ξ i| (α2 ∥ξ∥2 + ν) t0

(1− e−(α2∥ξ∥2+ν) t0) (e(∥ξ∥
2µ2)/4) (α2 ∥ξ∥2 + ν) t0

< 2

(
|α2 ∥ξ∥2 + ν + β · ξ i|

(e(∥ξ∥
2µ2)/4 (α2 ∥ξ∥2 + ν) t0

)
∥ξ∥2

1− e−∥ξ∥2
1− e−∥ξ∥2

∥ξ∥2

<
8

µ2

(
1

t0
+

∥β∥ ∥ξ∥
(α2 ∥ξ∥2 + ν) t0

)
1− e−∥ξ∥2

∥ξ∥2
<

8

µ2

[
1

t0
+

√
n ∥β∥∞

2 t0
√
α2 ν

]
.

(28)

To finish the proof of the lemma 8, all that remains is to combine the expressions (23)-(28).

Lemma 9. Let ξ ∈ Rn and 0 < µ < 1 then the following inequality holds

sup
∥ξ∥∈R

∣∣∣∣∣(1 + ∥ξ∥2)−p/2

(
1−

Ri
µ(ξ)

Λ(ξ)

)∣∣∣∣∣ ≤ max
{
µp, µ2

}
, i = 1, 2, 3, (29)

where Λ(ξ) and Ri
µ(ξ) are given by (11) and (15) respectively.

Proof. Let

Ωi(ξ) := (1 + ∥ξ∥2)−p/2

(
1−

Ri
µ(ξ)

Λ(ξ)

)
, i = 1, 2, 3.

Three cases are considered for the proof.

Case 1 (∥ξ∥ ≥ ∥ξ0∥ := 1
µ). So

Ωi(ξ) ≤ (1 + ∥ξ∥2)−p/2 ≤ ∥ξ∥−p ≤ ∥ξ0∥−p = µp, i = 1, 2, 3. (30)

Case 2 (∥ξ∥ < 1). So

Ω1(ξ) =
∥ξ∥2 µ2

1 + ∥ξ∥2 µ2
(1 + ∥ξ∥2)−p/2 ≤ ∥ξ∥2 µ2(1 + ∥ξ∥2)−p/2 ≤ µ2, (31)

Ω2(ξ) =
∥ξ∥4 µ2

1 + ∥ξ∥4 µ2
(1 + ∥ξ∥2)−p/2 ≤ ∥ξ∥4 µ2(1 + ∥ξ∥2)−p/2 ≤ µ2, (32)

Ω3(ξ) =

(
1− e

∥ξ∥2µ2
4

)
(1 + ∥ξ∥2)−p/2 ≤ 1− e

∥ξ∥2µ2
4 ≤ ∥ξ∥2 µ2

4
≤ µ2. (33)

Case 3 (1 ≤ ∥ξ∥ < ∥ξ0∥ := 1
µ). So

Ω1(ξ) =
∥ξ∥2 µ2

1 + ∥ξ∥2 µ2
(1 + ∥ξ∥2)−p/2 ≤ ∥ξ∥2−p µ2

1 + ∥ξ∥2 µ2
≤ ∥ξ∥2−p µ2, (34)

Ω2(ξ) =
∥ξ∥4 µ2

1 + ∥ξ∥4 µ2
(1 + ∥ξ∥2)−p/2 ≤ ∥ξ∥2−p µ2 ∥ξ∥2

1 + ∥ξ∥4 µ2
≤ ∥ξ∥2−p

∥ξ∥4 µ2
≤ ∥ξ∥2−p µ2, (35)

Ω3(ξ) =

(
1− e

∥ξ∥2µ2
4

)
(1 + ∥ξ∥2)−p/2 ≤ ∥ξ∥−p ∥ξ∥2 µ2

4
≤ ∥ξ∥2−p µ2. (36)



If 0 < p ≤ 2, you have

Ωi(ξ) ≤ ∥ξ∥2−p µ2 ≤ ∥ξ0∥2−p µ2 = µp, i = 1, 2, 3. (37)

If p > 2, follow that
Ωi(ξ) ≤ ∥ξ∥2−p µ2 ≤ µ2, i = 1, 2, 3. (38)

The expressions given by (30)-(38) are combined to obtain (29). This concludes the proof.

Remark 1. Notice that

lim
µ→0+

Ri
µ(ξ)

Λ(ξ)
= 1, i = 1, 2, 3.

3.2.2 Analytical bound of error

Now it is possible to obtain a bound for the error estimate.

Definition 3. The norm in Sobolev space Hp(Rn) for p > 0 is defined as

∥f∥Hp(Rn) :=

∫
Rn

|f̂ |2
(
1 + ∥ξ∥2

)p
dξ

1/2

. (39)

By means of the definition (39), a parameter choice rule is given for the proposed regularizations and an
analytical expression is found for the error bound of each estimation. This can be seen in the following result.

Theorem 4 (Analytical bound for the estimation error). Consider the inverse problem of determining the source
f(x) in (5). Let f i

δ,µ(x) with i = 1, 2, 3 be the regularization solutions given in (18). It is assumed that there exists
C ∈ R+ bounding the norm of f in Hp(Rn) for some 0 < p < ∞ (39). if chosen

µ2 =

(
δ

δM

)2/p+2

< 1, (40)

then there exist constants Ki (i = 1, 2, 3) independent of δ such that

∥f − f i
δ,µ∥L2(Rn) ≤ Ki max

{(
δ

δM

)2/p+2

,

(
δ

δM

)p/p+2
}
, i = 1, 2, 3.

Proof. ∥∥∥f̂(ξ)−Ri
µ(ξ) ŷ(ξ)

∥∥∥
L2(Rn)

=

∥∥∥∥∥f̂(ξ)
(
1−

Ri
µ(ξ)

Λ(ξ)

)
(1 + ∥ξ∥2)p/2

(1 + ∥ξ∥2)p/2

∥∥∥∥∥
L2(Rn)

,

rearranging

∥∥∥f̂(ξ)−Ri
µ(ξ) ŷ(ξ)

∥∥∥
L2(Rn)

≤ sup
∥ξ∥∈R

∣∣∣∣∣(1 + ∥ξ∥2)−p/2

(
1−

Ri
µ(ξ)

Λ(ξ)

)∣∣∣∣∣ ∥∥∥f̂(ξ)(1 + ∥ξ∥2)p/2
∥∥∥
L2(Rn)

.

We use the definition of the norm in the Sobolev space (Hp(Rn)) given by the expression (39),

∥∥∥f̂(ξ)−Ri
µ(ξ) ŷ(ξ)

∥∥∥
L2(Rn)

≤ sup
∥ξ∥∈R

∣∣∣∣∣(1 + ∥ξ∥2)−p/2

(
1−

Ri
µ(ξ)

Λ(ξ)

)∣∣∣∣∣ ∥f(ξ)∥Hp(Rn) . (41)



By the triangle inequality we have,∥∥∥f̂ − f̂ i
δ,µ

∥∥∥
L2(Rn)

≤
∥∥∥f̂ −Ri

µ(ξ) ŷ(ξ)
∥∥∥
L2(Rn)

+
∥∥∥Ri

µ(ξ) ŷ(ξ)− f̂ i
δ,µ

∥∥∥
L2(Rn)

. (42)

From the inequalities (41)-(42) together with the definition of the regularized source (17) in frequency space,
we obtain,∥∥∥f̂ − f̂ i

δ,µ

∥∥∥
L2(Rn)

≤ sup
∥ξ∥∈R

∣∣∣∣∣(1 + ∥ξ∥2)−p/2

(
1−

Ri
µ(ξ)

Λ(ξ)

)∣∣∣∣∣ ∥f∥Hp(Rn) + sup
∥ξ∥∈R

∣∣Ri
µ(ξ)

∣∣ ∥ŷ − ŷδ∥L2(Rn) , (43)

Parseval’s identity [61] is used in (43), the fact that C bounds f in norm Hp(Rn) and the assumption that the error
in the data is bounded (∥y − yδ∥L2(Rn) = ∥ŷ − ŷδ∥L2(Rn) ≤ δ), then

∥∥f − f i
δ,µ

∥∥
L2(Rn)

=
∥∥∥f̂ − f̂ i

δ,µ

∥∥∥
L2(Rn)

≤ C sup
∥ξ∥∈R

∣∣∣∣∣(1 + ∥ξ∥2)−p/2

(
1−

Ri
µ(ξ)

Λ(ξ)

)∣∣∣∣∣+ δ sup
∥ξ∥∈R

∣∣Ri
µ(ξ)

∣∣ . (44)

By virtue of the lemmas 8, 9, the expression (44) can be rewritten as,∥∥f − f i
δ,µ

∥∥
L2(Rn)

≤ C max
{
µ2, µp

}
+

δ

µ2
Mi, (45)

where Mi with i = 1, 2, 3 is given by the equations (19), (20) and (21). It is used in the equation (45) µ2 =(
δ

δM

)2/p+2

(40) and it is obtained,

∥∥f − f i
δ,µ

∥∥
L2(Rn)

≤ C max

{(
δ

δM

)2/p+2

,

(
δ

δM

)p/p+2
}

+ δM Mi

(
δ

δM

)p/p+2

,

equivalently ∥∥f − f i
δ,µ

∥∥
L2(Rn)

≤ Ki max

{(
δ

δM

)2/p+2

,

(
δ

δM

)p/p+2
}
, (46)

where Ki = C + δM Mi with i = 1, 2, 3. This concludes the proof.

Remark 2. Note that the bound (46) satisfies

∥f − f i
δ,µ∥L2(Rn) −→ 0 if δ −→ 0,

which means that the estimate (f i
δ,µ) converges to the source function (f ) when the noise in the data (δ) tends to 0.

Remark 3. Note that the case p = ∞ is not included in the hypotheses of the 4 theorem, the reason is that in this
case,

∥f − f i
δ,µ∥L2(Rn) =

∥∥∥f̂ − f̂ i
δ,µ

∥∥∥
L2(Rn)

≤ Ki < C ↛ 0.

Remark 4. Note that the bound obtained for the regularization error (46) is of Hölder type and only depends on
the smoothness of the source and the parameters of the mathematical model.

Note 3. A case of special interest in the bibliography is for p = 2. In this the expression (46) is reduced to:

∥∥f − f i
δ,µ

∥∥
L2(Rn)

≤ Ki

√
δ

δM
.



3.3 Numerical examples

We consider concrete examples of the estimation of the source f in Rn for n = 1, 2, 3. For each of the exam-
ples discussed in this section, different values are chosen for the parameters of the source identification problem
(α2,β, ν, t0). In addition, to simulate the noise in the data, a set of values of standard deviation ϵ. The space is
discretized into a uniform n-dimensional mesh and a data set {yδ1 , ..., yδN } is obtained from the evaluation of the
solution u(x, t) at a fixed time instant given t0 and adding noise, that is,

yδi = y(xi) + ηi, i = 1, ..., N, xi ∈ G,

where G is a uniform discretization on Rn chosen and ηi, i = 1, ..., N are realizations of the normally distributed
random variable η with mean 0 and deviation ϵ. By denoting yi = y(xi), i = 1, .., N and taking into account the
noise level δ satisfying (4), the error

y − yδ = (y1 − yδ1 , ..., yN − yδN ) = (η1, ..., ηN )

It is numerically calculated using the Simpson integration method. This calculation allows obtaining an approxi-
mate value of the error y − yδ that directly depends of the noise. It can be seen that the noise level δ is a function
of the standard deviation ϵ, that is, δ = δ(ϵ).

In practice, the maximum tolerance value for the error in the data δM given in (4) is obtained from the calibra-
tion, instrumentation and measurement errors of the instruments used to perform the measurements. Here, to make
sure that the regularization parameter is less than 1, it is chosen as the maximum value of δ plus one unit. That is
to say,

δM = 1 +max{δ1, ..., δN}.

Then {ŷδ1 , ..., ŷδN } is calculated using the FFT transform (Fast Fourier Transform) [62] and get the regu-
larization solutions f i

δ,µ with i = 1, 2, 3 given in (18) using the anti-fast Fourier transform [7, 62], where the
regularization parameter µ is chosen according to (40), that is to say,

µ2 =

(
δ

δM

)2/p+2

.

For each of the examples considered, the results of the estimated sources without regularization and those obtained
after using the regularization methods presented in this article are graphed. An error table is also included for
each example. These tables consider the relative errors made, in the estimation, by each one of the regularization
operators used to address the ill-posed problem. The disturbances used for the construction of the tables are
{ϵ1; ...; ϵ5} = {10−1, 10−2, 10−3; 10−4; 10−5}, these were chosen based on the values of the solution.

Note 4. The reader may notice that in some examples the p considered for the recovery does not correspond to the
space Hp(Rn) to which the source belongs, since f is not in that Hilbert space. These examples were included to
show that recovery is reasonable even in those cases.

3.3.1 Examples 1D

In this subsection, three examples of estimation of one-dimensional sources with different characteristics are dis-
cussed.

Example 1. For this example, the following parameters are considered α2 = 2 × 10−5; β = 1 × 10−5; ν =1;
N = 1001 and t0 = 5. Also, the perturbation values used are ϵ ∈ {0.2; 0.15; 0.1;0.05}. Finally, the source to
estimate in this case is:



f(x) =



−1, −10 ≤ x < −5,

1, −5 ≤ x < 0,

−1, 0 ≤ x < 5,

1, 5 ≤ x ≤ 10,

0, in another case.

(47)

The source (47) retrieved in example 1 is of interest in signal theory. This type of function turns out to be a
common example in [48, 50] source retrieval problems. This is mainly due to the fact that as it is a discontinuous
function, the Gibbs [7, 62] phenomenon can appear. This phenomenon indicates that when a Fourier series function
is developed and it is not continuous in the considered region, it is possible that there is not a good precision in the
neighborhoods of the discontinuities.

As can be seen in the graphs of figure 1, the regularization operators used smooth the inverse operator making
the recovery stable. As expected, the estimation improves for smaller values of perturbation ϵ. In addition, no
significant differences between the different operators are noticeable at first glance, although the operator R3

µ
seems to have a better performance in the neighborhoods of discontinuity points.
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Figure 1: Example 1: Non-regularized font with t0 = 5 (top-left); Regularized sources with t0 = 5 and p = 1,
using R1

µ (top-right), R2
µ (bottom-left), R3

µ (bottom-right) for different noise levels.

The table 1 includes the relative estimation errors that also show the goodness of the methods used. As noted,
for this example, the operator R3

µ performs better. For example, for the case ϵ = 10−3, the relative error of the



estimate of the regularized source with R1
µ is 2.74%, with R2

µ is 8.08% and with R3
µ it is 1.15%.

Relative errors

ϵ ∥f − f1
δ,µ∥/ ∥f∥ ∥f − f2

δ,µ∥/ ∥f∥ ∥f − f3
δ,µ∥/ ∥f∥

10−1 0.1310 0.1472 0.1137
10−2 0.0888 0.1217 0.0706
10−3 0.0549 0.0996 0.0365
10−4 0.0274 0.0808 0.0115
10−5 0.0090 0.0635 0.0026

Table 1: Example 1: Relative estimation errors for t0 = 1 and p = 1.

Example 2. For this example, the following parameters are considered α2 = 1; β = 0; ν =0; N = 1001 and
t0 = 0.1. Furthermore, the perturbation values used are ϵ ∈ {0.01; 0.007; 0.003;0.001}. Finally, the source to
estimate in this case is:

f(x) =


(
−x3

4 + 3x
2

)
e

−x2

4 , −10 ≤ x ≤ 10,

0, in another case.
(48)

The source (48) recovered in example 2 is of interest in heat transfer problems. See for example, [53]. This type
of function turns out to be a common example in source recovery problems in heat transfer processes [48, 50]. The
example 2 is interesting, since this type of sources have already been recovered by means of different approaches
in simpler problems where it is used, instead of the full parabolic equation, the heat equation where only diffusion
is taken into account [32, 34, 35].

Table 2 includes the relative estimation errors that also show the goodness of the methods used. As noted,
for this example, the operator R2

µ performs better. For example, for the case ϵ = 10−3, the relative error of the
estimate of the regularized source with R1

µ is 5.89%, with R2
µ is 4.82% and with R3

µ it is 6.48%.
As it can be seen in the graphs of figure 2, the regularization operators used, again, smooth the inverse operator

making the recovery stable. In this case, the stabilization effect is much more noticeable to the naked eye (because
smaller values of disturbances were considered); due to this and for comparative purposes, a smaller scale was
taken for the sources retrieved with the regularization operators. Once again it can be seen that the estimation
improves for smaller values of disturbance ϵ. Also, no significant differences between the different operators are
noticeable to the naked eye, although the operator R2

µ seems to have, in this example, a better overall performance.

Relative errors

ϵ ∥f − f1
δ,µ∥/ ∥f∥ ∥f − f2

δ,µ∥/ ∥f∥ ∥f − f3
δ,µ∥/ ∥f∥

10−1 0.8387 0.6170 0.9686
10−2 0.1746 0.1074 0.1822
10−3 0.0589 0.0482 0.0648
10−4 0.0474 0.0471 0.0489
10−5 0.0365 0.0321 0.0389

Table 2: Example 2: Relative estimation errors for t0 = 1 and p = 1.
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Figure 2: Ejemplo 2: Non-regularized font with t0 = 0.1 (top-left); Regularized sources with t0 = 0.1 and p = 2,
using R1

µ (top-right), R2
µ (bottom-left), R3

µ (bottom-right) for different noise levels.

Example 3. For this example, the following parameters are considered α2 = 2; β = 0; ν = 1; N = 1001 and
t0 = 0.2. Furthermore, the perturbation values used are ϵ ∈ {0.004; 0.003; 0.002;0.0001}. Finally, the source to
estimate in this case is:

f(x) =


x+ 1, −1 ≤ x < 0,

−x+ 1, 0 ≤ x ≤ 1,

0, in another case.

(49)

The source (49) that is recovered in the example 3 is of interest in various problems with different characteris-
tics due to the particularities that this function presents. Although it is a continuous function, it has a point where it
is not differentiable. Recovery is often difficult at these points. Because of this, this type of function also turns out
to be a common example in source recovery problems, both in signal theory and in heat transfer problems [48, 50].

Table 3 includes the relative estimation errors that again show the benefits of using the methods presented in
this article. As noted, for this example, the R2

µ operator performs better. For example, for the case ϵ = 10−3,
the relative error of the estimate of the regularized source with R1

µ is 5.35%, with R2
µ is 2.28% and with R3

µ it is
3.73%.



Relative errors

ϵ ∥f − f1
δ,µ∥/ ∥f∥ ∥f − f2

δ,µ∥/ ∥f∥ ∥f − f3
δ,µ∥/ ∥f∥

10−1 0.9157 0.3027 0.6716
10−2 0.1607 0.0353 0.1772
10−3 0.0535 0.0228 0.0373
10−4 0.0478 0.0221 0.0309
10−5 0.0239 0.0187 0.0277

Table 3: Example 3: Relative estimation errors for t0 = 1 and p = 1.

As can be seen in the graphs of figure3, the regularization operators used, again, smooth the inverse operator
making the recovery stable. In this case the stabilization effect, too, is more noticeable to the naked eye than in
the example 1. This is because small values of perturbations were considered in order to be able to compare the
regularization solutions with the non-regularized ones (which, again, presented many fluctuations). Due to this
reason and for comparative purposes, a smaller scale was taken for the sources retrieved with the regularization
operators. Once again it can be seen that the estimation improves for smaller values of disturbance ϵ. Furthermore,
no significant differences between the different operators are noticeable to the naked eye, although the operator R2

µ
clearly provides a better estimate.
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Figure 3: Ejemplo 3: Non-regularized font with t0 = 0.2 (top-left); Regularized sources with t0 = 0.2 and p = 4,
using R1

µ (top-right), R2
µ (bottom-left), R3

µ (bottom-right) for different noise levels.



3.3.2 Examples 2D

Here are two examples of two-dimensional estimation with different characteristics. In order to visualize more
clearly the improvements obtained with the regularization operators, not only the recovered sources will be graphed,
but also contour lines will be made. These schemes will allow direct comparisons to be made on the sources ob-
tained with the different regularization strategies.

Example 4. For this example, the following parameters are considered α2 = 0.2; β = (0, 0); ν = 0.99; N =
1001× 1001; t0 = 1 and ϵ = 0.025. Finally, the source to estimate in this case is:

f(x, y) =

{
cos
( x

20

)
cos
( y

20

)
, −40 ≤ x, y ≤ 40,

0, in another case.
(50)

The source (50) that is recovered in the example 4 is of interest in various problems with different char-
acteristics due to the particularities that this function presents. Its graph is a surface, smooth, continuous and
differentiable.

As can be seen in the graphs of figure 4, the regularization operators used, again, smooth the inverse operator
making the recovery stable. No significant differences between the different operators are noticeable with the
naked eye, although if the level curves are visualized and compared, the operator R2

µ provides a better estimate.
Table 4 includes the relative estimation errors that once again show the good performance obtained with the

methods introduced in this article. As noted, for this example, the operator R2
µ performs better overall. For

example, for the case ϵ = 10−2, the relative error of the estimate of the source regularized with R1
µ is 1.18%, with

R2
µ is 0.67% and with R3

µ it is 1.41%.

Relative errors

ϵ ∥f − f1
δ,µ∥/ ∥f∥ ∥f − f2

δ,µ∥/ ∥f∥ ∥f − f3
δ,µ∥/ ∥f∥

10−1 0.0846 0.0583 0.0989
10−2 0.0118 0.0067 0.0141
10−3 0.0029 0.0011 0.0045
10−4 0.0008 0.0004 0.0013
10−5 0.0004 0.0003 0.0004

Table 4: Example 4: Relative estimation errors for t0 = 1 and p = 1.

Example 5. For this example, the following parameters are considered α2 = 1; β = (0, 0); ν = 1; N =
1001× 1001; t0 = 0.4 and ϵ = 0.05. Finally, the source to estimate in this case is:

f(x, y) =



10 + x− y, −10 ≤ x ≤ 0, 0 ≤ y ≤ 10 + x,

10 + x+ y, −10 ≤ x ≤ 0, −10− x ≤ y ≤ 0,

10− x− y, 0 ≤ x ≤ 10, 0 ≤ y ≤ 10− x,

10− x+ y, 0 ≤ x ≤ 10, −10 + x ≤ y ≤ 0,

0, in another case.

(51)
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Figure 4: Example 4: Fonts and contour lines. Not regularized with t0 = 1 (First row); regularized with t0 = 1
and p = 1, using R1

µ (second row), R2
µ (third row), R3

µ (fourth row) for ϵ = 0.025.



Figure 5: Example 5: Fonts and contour lines. Not regularized with t0 = 0.4 (First row); regularized with t0 = 0.4
and p = 0.6, using R1

µ (second row), R2
µ (third row), R3

µ (fourth row) for ϵ = 0.05.

The source (51) retrieved in example 5 is of interest because it is a non-differentiable surface. This type of
surfaces can be approximated badly in environments close to the points of non-differentiability.

As can be seen in the graphs of figure 5, once again, the regularization operators used, smooth the inverse
operator making the recovery stable. No significant differences between the different operators are noticeable at



first glance, although if the level curves are visualized and compared, once again, the operator R2
µ provides a better

estimate, more effectively stabilizing the solution of the ill-posed problem.
Table 5 includes the relative estimation errors that once again show the good performance obtained with

the methods introduced in this paper. As observed, for this example, the operator R2
µ presents a better general

performance, since it achieves a better stabilization of the solution. For example, for the case ϵ = 10−2, the
relative error of the estimate of the regularized source with R1

µ is 1.21%, with R2
µ is 0.38% and with R3

µ it is
1.65%.

Relative errors

ϵ ∥f − f1
δ,µ∥/ ∥f∥ ∥f − f2

δ,µ∥/ ∥f∥ ∥f − f3
δ,µ∥/ ∥f∥

10−1 0.0442 0.0193 0.0491
10−2 0.0121 0.0038 0.0165
10−3 0.0056 0.0025 0.0096
10−4 0.0043 0.0013 0.0079
10−5 0.0027 0.0009 0.0054

Table 5: Example 5: Relative estimation errors for t0 = 1 and p = 1.

3.3.3 Examples 3D

An example of three-dimensional estimation is now addressed. Since in this case the source is a scalar function
with domain in R3, 4 dimensions are required to be able to plot it, because of this, only the cuts with the coordinate
axes will be plotted. That is, the graphs of the retrieved sources will be analyzed when one of the variables is
null. In addition, to visualize more clearly the improvements obtained with the different regularization operators
introduced and studied in this article, contour diagrams will be made for each of the cuts considered and for each
regularization.

Example 6. For this example, the following parameters are considered α2 = 0.4; β = (1,−0.5,−0.5); ν =
0.997; N = 129× 129× 129; t0 = 3 and ϵ = 0.035. Finally, the source to estimate in this case is:

f(x, y, z) =

sin

(
x+ y + z

20

)
, −2π ≤ x, y, z ≤ 2π,

0, in another case.
(52)

The source (52) that is recovered in the example 6 is of interest in various problems with different character-
istics due to the particularities that this function presents. It is a function, smooth, continuous and differentiable;
moreover, it is symmetric with respect to the three coordinates.

Relative errors

ϵ ∥f − f1
δ,µ∥/ ∥f∥ ∥f − f2

δ,µ∥/ ∥f∥ ∥f − f3
δ,µ∥/ ∥f∥

10−1 0.0740 0.0365 0.0904
10−2 0.0115 0.0037 0.0127
10−3 0.0089 0.0007 0.0093
10−4 0.0017 0.0006 0.0089
10−5 0.0014 0.0005 0.0053

Table 6: Example 6: Relative estimation errors for t0 = 1 and p = 1.



Figure 6: Example 6: Sources and contour lines with (x = 0). Not regularized with t0 = 3 (First row); regularized
with t0 = 3 and p = 3, using R1

µ (second row), R2
µ (third row), R3

µ (fourth row) for ϵ = 0.035.



Figure 7: Example 6: Sources and contour lines with (y = 0). Not regularized with t0 = 3 (First row); regularized
with t0 = 3 and p = 3, using R1

µ (second row), R2
µ (third row), R3

µ (fourth row) for ϵ = 0.035.



Figure 8: Example 6: Sources and contour lines with (z = 0). Not regularized with t0 = 3 (First row); regularized
with t0 = 3 and p = 3, using R1

µ (second row), R2
µ (third row), R3

µ (fourth row) for ϵ = 0.035.



Table 6 includes the relative estimation errors that once again show the good performance obtained with the
methods introduced in this article. As noted, in this example, the R2

µ operator performs better overall. For example,
for the case ϵ = 10−2, the relative error of the estimate of the regularized source with R1

µ is 1.15%, with R2
µ is

0.37% and with R3
µ it is 9.04%.

As can be seen in the graphs of the figures 6, 7, 8 the regularization operators used, again, smooth the inverse
operator making the recovery in each cut with the coordinate axes stable. In principle, notable differences between
the recovery of each cut are not appreciated; since they are all estimated with the same order of fluctuation. On the
other hand, no significant differences between the approximations with the different regularization operators are
noticeable at first glance. If the level curves are carefully observed, for each cut with the coordinate axes, it is seen
that, once again, the operator R2

µ yields better results.

3.4 Discussion of results

The numerical examples carried out show that the three regularization operators, introduced in this article, are
useful to solve the problem of lack of stability in the source estimation solution. Any of the three operators studied
smooth out the inverse operator making the recovery stable. This fact is independent of the general characteristics
of the function to be determined, since the results are good, even for discontinuous and non-differentiable sources.

However, in general terms the operator R2
µ yielded better results and allowed estimating the source with the

lowest relative error, for the different disturbances considered. Particularly the operator R3
µ offered a better perfor-

mance when the source to be estimated is a discontinuous function.

4 Conclusions

This paper deals with the inverse problem of identifying the source in a complete parabolic equation from noisy
measurements. An analytical solution to the estimation problem is given and shown that the problem is ill-posed
since said solution is not stable. In order to address this drawback, three families of regularization operators
specifically designed to compensate for the instability factor in the inverse operator are defined. Besides, a choice
rule is included for the regularization parameters that is based on the level of data noise and the smoothness of the
source to be identified. It is shown that for the proposed parameter choice rule the methods are stable. A bound is
obtained for the estimation errors that turn out to be optimal since they are of Hölder type.

Several numerical examples of recovering sources that belong to different spaces of Hilbert are included. It
is observed that in all of them a good performance of the adopted regularization approaches is obtained. On the
other hand, the sources recovered by means of the inverse operator are compared with those obtained using the
regularization operators and it is concluded that the proposed regularization methods offer greater precision in the
estimation of the sources considered.

References:

[1] R. Bird, Transport phenomena. Wiley, New York (2002). https://doi.org/10.1115/1.1424298
[2] K. Hangos, I. Cameron, Process modelling and model analysis. Academic Press, Cambridge (2001).

https://doi.org/10.1016/s1874-5970(01)x8001-6
[3] G.F. Umbricht, D. Rubio, C. El Hasi, Solución analı́tica de un problema de transferencia de energı́a térmica
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e Industrial 8 (2021), pp. 679–682. https://asamaci.org.ar/wp-content/uploads/2021/
07/MACI-Vol-8-2021.pdf

[4] H. Pennes, Analysis of tissue and arterial blood temperature in the resting human forearm. Journal of Applied
Physiology 1(2) (1948), pp. 93–122. http://dx.doi.org/10.1152/jappl.1948.1.2.93

[5] H.A. Basha, F.S. El Habel, Analytical solution of the one-dimensional time-dependent transport equation.
Water Resources Research 29(9) (1993), pp. 3209–3214. https://doi.org/10.1029/93WR01038

https://doi.org/10.1115/1.1424298
https://doi.org/10.1016/s1874-5970(01)x8001-6
https://asamaci.org.ar/wp-content/uploads/2021/07/MACI-Vol-8-2021.pdf
https://asamaci.org.ar/wp-content/uploads/2021/07/MACI-Vol-8-2021.pdf
http://dx.doi.org/10.1152/jappl.1948.1.2.93
https://doi.org/10.1029/93WR01038


[6] O.M. Alifanov, F.A. Artyukhin, Regularized numerical solution of nonlinear inverse heat con-
duction problem. Journal of Engineering Physics and Thermophysics 29(1) (1975), pp. 934–938.
https://doi.org/10.1007/bf00860643

[7] L. Eldén, F. Berntsson, T. Reginska, Wavelet and Fourier methods for solving the sideways
heat equation. SIAM Journal on Scientific Computing 21(6) (2000), pp. 2187–2205. http:
//dx.doi.org/10.1137/S1064827597331394

[8] G.F. Umbricht, Estimación de la fuente en una ecuación de Poisson: mediante un método de regularización.
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