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Abstract

Clinical trials are pivotal in the drug discovery process to determine the safety and efficacy of a drug
candidate. The high failure rates of these trials are attributed to deficiencies in clinical model development
and protocol design. Improvements in the clinical drug design process could therefore yield significant
benefits for all stakeholders involved. This paper examines the current challenges faced in clinical trial
design and optimization, reviews established classical computational approaches, and introduces quantum
algorithms aimed at enhancing these processes. Specifically, the focus is on three critical aspects: clinical
trial simulations, site selection, and cohort identification. This study aims to provide a comprehensive
framework that leverages quantum computing to innovate and refine the efficiency and effectiveness of
clinical trials.

1 Introduction

The clinical trial design is a process that undergoes significant rigor from many stakeholders and is ultimately
aimed at proving both the safety and efficacy of a drug product across the target patient population that
is impacted by the disease. By starting with clearly defined study objectives, a protocol can be developed
which encompasses comprehensive criteria for how the trial should be executed while maximizing the safety
of patients and the quality of data collected. Without proper selection and exclusion criteria for patients,
the drug maker runs the risk of not completing the study or exhausting resources that could be better spent
in other areas such as downstream patient support programs and lower drug prices.

Patient cohort selection is one of the most important factors in the overall success of the trial such that
an event rate is achieved that is statistically significant. The event can either represent the disease state or
the treatment response or outcome. Adverse events and toxicity also must be tracked, and to be thorough
must represent a diverse population to validate that the drug has evidence that demonstrates its safety and
efficacy for all those it may be prescribed to for the intended use. Once the trial has design parameters it can
be optimized for the patients, investigators, and sites that can be selected in order to balance the cost of the
trial with a statistically significant outcome that supports a safe and effective claim that will be approved
by the FDA. In order to evaluate patients, a set of multi-modal clinical, demographic, and geographic data
is required to assess fit at an individual level.

Quantum computing is a new frontier in advanced computing technologies that offers immense potential
to enhance current classical computational methods. Based on the fundamentals of quantum mechanics [1,2],
quantum computing harnesses the power of entanglement, superposition and interference to manipulate quan-
tum bits (qubits) and perform computations on quantum computers. Mapping the computational problem to
a quantum computer, these principles allow quantum computers to perform certain computations potentially
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more efficiently. In particular, for certain classically intractable problems such as prime factorization [3],
unstructured database search [4], solving linear systems [5], computing topological invariants [6,7] and quan-
tum simulations [8], it has been proven theoretically that quantum computers provide speed ups in the
computations.

Our work proposes using quantum computational methods to improve the outcome of clinical trials. To
the best of our knowledge, this is the first comprehensive work that represents a first step on how to utilize
quantum computing for clinical trial design and optimization. For different components of each subproblem
we have identified, namely clinical trial simulation, cohort and site selection, we establish workflows with
quantum optimization and quantum machine learning methods that can potentially improve the clinical trial
design process (See Figure 1). In Section 2, we describe the general challenges faced in today’s clinical trial
design and optimization methods. Section 3 discusses widely used classical computational methods and par-
ticular challenges that these methods have. Section 4 provides a brief overview of quantum optimization and
quantum machine learning methods, and delves deeper into the proposed quantum algorithms for enhancing
clinical trial design. We conclude by discussing some future directions in the final section.

Figure 1: Protocol design is a crucial step for successfully optimizing the logistics of the trial. Using quantum
differential solvers can enhance our understanding of mechanistic properties of the drug. Once protocols are
set, this will inform the logistical optimization steps of the trial about how to select sites and how to identify
the correct cohort. We propose portfolio-based quantum optimization to determine the best set of trial sites
and quantum generative models to improve cohort identification.

2 Challenges in clinical trial design and optimization

Ninety-percent of drug candidates after they have entered clinical studies fail during trial phases I, II, III or
during the final drug approval stage [9]. Four main reasons for drug candidate failures in clinical trials have
been reported: “lack of clinical efficacy (40%–50%), unmanageable toxicity (30%), poor drug-like properties
(10%–15%), and lack of commercial needs and poor strategic planning (10%)” [9]. These are important
factors that often require drug candidates to move back to the early development stages.

As a small number of drug candidates are selected to advance to human trials, additional challenges
emerge about trial design and conduct. During these stages, the most common reasons for clinical trial
failures have been attributed to poor participant selection and recruitment. Since the early 2000s, different
studies have reported recruitment-attributed fail rates of approximately 30% [10, 11] including reports that
nearly 19% of trial-initiated sites never recruited any participant [12]. In order to improve trial success rates,
the FDA introduced new guidance specifically aimed at prospectively “selecting a subset of the population in
which the effect of the intervention can more readily be demonstrated” [13]. In parallel with cohort selection,
site selection plays an important role for the success of the clinical trials. As reported in [14], choosing the
optimal sites increase the chances of recruiting and retaining the target population. The location and easy
access to trial site can prevent long travel times for patients, reducing potential patient drop outs. Site
selection and cohort selection are two very important aspects of the clinical trial design process that needs
to be modeled and planned symbiotically.

While these challenges may seem separate in nature, we believe there are underlying threads that connect
them. Hence, we explore three overarching mechanisms that challenge the successful completion of trials

• by constraining the study data (e.g. inadequate samples or cohort size, lack of historical site data),
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• by introducing bias (e.g. imbalanced distributions, missing modalities in data),

• or by detecting study endpoints or outcomes related to clinical effectiveness (e.g. toxicity-efficacy,
optimal dosage and frequency).

For each of these mechanisms there is a range of contributing factors that may be cohort-specific (e.g.
patient identification, insufficient participants), operational (e.g. inadequate site selection, resources and
costs) or a combination of both. In this section and the following sections, we expand and detail these
mechanisms and their impact on trial outcomes. These factors may arise during different stages of trial
design and conduct, which we address in this work in three areas: clinical trial simulations, site selection
and cohort identification.

2.1 Clinical trial simulations

The journey of drug development is notably long and expensive, often spanning 10 years and necessitating
an investment of over $1-2 billion, with the rate of success lingering below 7%, due to the complexity of the
pre-clinical and clinical trials essential for validating safety and efficacy [15–17]. Factors contributing to this
scenario include the inadequate consideration of biophysical and physiological characteristics of molecules in
initial protocol definitions, leading to disparities between in vitro experiments and in vivo studies [18, 19],
and between disease models in animals and humans [20]. Furthermore, the preliminary stage calculations
for dosage and the mechanism of action often fall short in accurately foreseeing efficacy and toxicity in
humans [20], compounded by less than optimal event rates and high dropout rates in clinical trials. To
mitigate these challenges, it is important to predict the effects of drugs on specific subpopulations, segmented
by genomic and epigenetic profiles [21]. The development of sophisticated models that can accurately predict
efficacy and toxicity, particularly by evaluating the mechanism of action in human pharmacokinetics and
pharmacodynamics (PBPK/PD), is important. A precise determination of drug dosages and regimens that
take into account the full spectrum of human physiology and potential interactions with other drugs is crucial
for enhancing the drug development paradigm.

Optimizing clinical trials presently leans more towards an empirical approach rather than a rigorous
scientific method. Establishing a robust scientific foundation for the design and optimization of the protocol,
along with cohort/site selection, requires the identification and collection of sufficient data points. These
data points should provide insights necessary for informed protocol design.

1. Understanding pharmacokinetics, pharmacodynamics and pharmacogenomics – Designing a clinical
trial with real people for a new molecule requires a thorough understanding of how a body would
process that drug, and how the drug would impact the body. There is, thus, an underlying requirement
to consider the pharmacokinetics (what happens to the molecule as it passes through the human body)
and pharmacodynamics (what happens to the body as the molecule passes through it) properties related
to the molecule in question for the condition(s) in question. Furthermore, understanding the genomic
and epigenetic influence on underlying patient physiology based properties, and their interplay with
the drug molecule characteristics is critical, as this serves as the basis for designing the trial protocol
and the criteria for site and cohort selection.

2. Understanding dosage and mechanism of action - without proper prediction algorithms to identify the
correct dosage and the mechanism of action at a preclinical stage, it is not viable to construct a true
predictor of the efficacy toxicity in real humans. Preclinical efficacy data is not an accurate predictor of
efficacy in clinical trials. There are biological discrepancies between in vitro and in vivo, and between
disease in animal and humans. Consequently designing clinical trial protocols based on in vitro and in
vivo data can result in lower event rates, and higher drop out rates.

2.2 Site Selection

Adequate site selection is one of the most critical steps for the successful completion of a trial [22]. An
appropriate trial site must be equipped with necessary study-specific infrastructure and resources, such as
staff and equipment, as well as provide access to a catchment area that enables the selection and recruitment
of an adequate number of participants. Trials may also be conducted across multiple locations to ensure that
a more representative sample of the population can be studied and, in some cases, expanding to additional
sites may also help counteract trial delays and bottlenecks [22].

Site-specific characteristics are therefore important and can contribute to serious downstream bottlenecks
for the timely conduct and completion of trials. Examples of cohort-specific characteristics include a non-
homogeneous, diverse population within a site’s catchment area, and operational-specific characteristics
include quality electronic records and available data capture infrastructure, domain-specific expert trialists,
equipment or laboratories.

The majority of industry experts select a trial site based on three dimensions [22]: (1) Knowledge about
the site (e.g. experience in conducting trials, site success rates, therapeutic specialization); (2) Patient access
(e.g. recruitment performance or access to required patient population); and (3) Working culture (e.g. known
investigators’ interest and commitment to driving studies).

3



Site selection should also take into account geographical considerations that are specific to the site location
such as an increased incidence of certain diseases, particular exposures to environmental factors, possible
burdens for patient participation and retention, or regulatory requirements. Overall, existing approaches
and algorithms to rank the most adequate sites for a trial require modelling these complex and diverse
criteria involving both cohort-specific as well as operational-specific characteristics. Successful methods
must cope with limited data availability and site-specific biases, which further make comparisons across sites
a non-trivial challenge.

2.3 Cohort Identification

Identifying the relevant inclusion and exclusion criteria so that patient selection can occur adequately at
different clinical sites is a challenging task. For instance, if the eligibility criteria are too strict, even though
they can satisfy clinical concerns, this can create barriers to trial enrolment and recruitment [23, 24]. In
addition, when the criteria are narrowly defined, they can prevent trial results from being generalized [25].
Furthermore, trials do not often include certain population groups based on age [26], gender [27], and ethnicity
[28]. As a result, new regulation from the US Food and Drug Administration (FDA) requires adequate
representation of the population in clinical trials [29], which requires the modification of the exclusion and
inclusion criteria and protocols to balance clinical concern with adequate sample size and representation.
However, currently there is a lack of consensus on how to remove specific criteria [30].

There are noticeable race, ethnicity and gender disparities in populations participating in clinical trials.
This causes issues such as the lack of generalization of data emanating from trials and lack of information
on the effectiveness of drugs in certain population groups [31]. In many cases, the implementation of current
guidelines on clinical trial design is sub-optimal in the population at large, but especially among ethnic
minority groups, women, people living in rural communities, uninsured or under-insured individuals, lower
education and income, and in general individuals in vulnerable socio-economical conditions [32]. Clinical
trials lack diversity due to historical limitations, but also due to their early geo-spatially restricted origins [33]
as well as the multiple barriers to participation which disproportionately affect certain population groups
more than others [34]. Thus, equity is an important factor in clinical trial design to improve generalizability,
misclassification of drugs, targeted personalized treatment, and reduce implicit bias.

To further enhance the personalization of treatment, reducing disparities, and lowering the number of
enrolled required patients, enrichment methods like prognostic and predictive strategies have been pro-
posed to overcome several deficiencies in current cohort identification and recruitment processes. Prognostic
enrichment refers to the targeted recruitment of patients with certain diseases outcome and progression. Al-
ternatively, another process known as predictive enrichment refers to the recruitment of patient population
with the potential for maximum positive response to the trialed therapy or drugs. Such a method will help
to reduce the number of patients required for the intervention group, while prognostic enrichment will help
to enhance the power of the study. In practice, these two methods have been used as complements to each
other since they can benefit trials for personalized medicine treatment where a prediction of treatment’s
efficacy is intricately linked to the disease progression like sepsis [35, 36]. However, the task of predicting
disease progression, as well as treatment outcome using using patients’ genome-to-exposome profile [37] is a
scientifically challenging task.

From a technical perspective, the cohort identification process has relied on expert knowledge to select the
criteria based on physicians’ clinical expertise [38] in conjunction with manual queries in patients’ medical
records. However, this can potentially result in bias in identifying the eligibility criteria [39], as well as slowing
down the recruitment process. As a result, many computational methods like AI/machine learning (ML)
models have been proposed to enhance the criteria selection process, to complement the clinical expertise
and experience of the trial investigator [40]. Despite major benefits that have been demonstrated by applying
ML models to cohort selection, many challenges still remain. Most prominently is the heterogeneous nature
of biomedical and healthcare datasets. Specifically, electronic health record (EHR) are known to have
several data quality issues from medical codes, sparse or missing data, as well as the differences in how
medical data is recorded when comparing records between sites [41]. In addition, new personalized medical
treatments targeting specific biomarkers will also require other data types in conjunction with EHRs like
omics data [42], making the application of data driven techniques, such as machine learning, challenging
due to the heterogeneous nature of different data types [43]. Furthermore, for rare disease cases, it can be
difficult to obtain datasets with the appropriate sample sizes, thus making it difficult to train robust machine
learning models [44]. An emerging approach to tackle sample size limitations is the use of uncontrolled trials
where synthetic control arms (SCA) may be used. Unlike traditional RCTs, in uncontrolled trials, only the
treatment arm needs to be recruited and the controls may be generated using existing data (e.g., EHRs)
or synthetically generated data based on the trial protocol. ML can support this task by automatically
generating synthetic control arms to supplement single arm treatment-only trials. However, this approach
may have unique challenges with regards to generalizability, interpretation, and statistical methodology [45].

Finally, a potential concern for the application of machine learning techniques in clinical trials is the lack
of explainability due to their black-box nature. For instance, ML models have been proven to be effective to
predict the personalized advantage index (PAI), which is a measurement of the optimal treatment within a
patient cohort [46] with psychiatric conditions. However, the potential drawback of using machine learning
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to predict PAI values is the lack of exaplainability in the decision making process of the model. As a result,
it is imperative that explainability should be built into the model to inform the decision outcome [47], thus
satisfying regulatory concern as well as enabling cross validation/confirmation by clinicians conducting the
trials.

3 Classical computational methods in clinical trial design and op-
timization

3.1 Clinical trial simulations

In computational clinical trials, the key challenge is to effectively simulate the outcomes of clinical trials using
computational models [48]. The goal is to predict drug efficacy, side effects, and outcomes without conducting
physical trials, which has the potential to lower costs, save time, and address ethical concerns inherent in
conventional trials [49]. This process utilizes a range of techniques, including advanced algorithms [50],
statistical methods [51], machine learning, and various simulation approaches such as patient virtualization
and pharmacokinetic/pharmacodynamic (PK/PD) modeling. The focus is on virtual rather than physical
simulations, to accurately forecast outcomes as they would occur in the real world.

The modeling of pharmacokinetics and pharmacodynamics plays an important role in evaluating drug
safety and efficacy, confronting the challenges posed by biological complexity and the extensive data required.
As these trials progress, there is a need to enhance the accuracy and efficiency of these models. Overcoming
these obstacles requires advancements in computational methodologies and robust datasets.

PBPK is a powerful modeling technique that requires computational tools to solve ordinary differential
equations. These equations describes the movement of the drug between the different tissues/organs in the
biological systems. PBPK modeling represents a mechanistic approach that integrates 2 important compo-
nents : (1) drug-dependent component that includes properties specific to the drug and (2) drug-independent
component that includes biological system properties, study protocol and formulation properties. A third
component related to both the drug and the biological system, allows for a priori simulation of drug con-
centration–time profiles. Such predictions are of high pharmacological value because they enable estimating
drug exposure not only in plasma but also at the site of action, which may be difficult or impossible to
measure experimentally [52].

PBPK models simulate the concentration–time profile of a drug in a species by integrating the physico-
chemical properties of the compound with the physiology of the species. Being mechanistic, PBPK models
can be used to simulate and to predict the next set of data and to plan the next experiment.

Simulated clinical trials using PBPK population modeling of these complex clinical scenarios need to be
fully explored. [53]. Many reviews emphasized the significance of PBPK modeling for personalized medicine.
[54–56]. These models have the potential to guide physicians in prescribing the right dosing regimen [21,57]
as these models utilize the relationship between the drug dose, physiology and plasma concentration, which
helps determine dosing regimen within a target therapeutic window [58]. Such models can be used to design
more inclusive clinical trials, by conducting in silico simulations across diverse population groups to evaluate
patient risk and benefits, and providing dosage guidance [59].

PK/PD modeling can optimize the design of clinical trials, guide the dose and regimen that should be
tested further, help evaluate proof of mechanism in humans, anticipate the effect in certain subpopulations,
and better predict drug-drug interactions; all of these effects could lead to a more efficient drug development
process. Because of certain peculiarities of immunotherapies, such as PK and PD characteristics, PK/PD
modeling could be particularly relevant and thus have an important impact on decision making during the
development of these agents.

By looking at the disease behavior patterns, we can actually classify the drug candidates based on their
potency and based on the tissue exposure. One can also predict drug - drug interaction, and use that to
determine the dosage and frequency regimen before initiating trial design.

3.2 Site Selection

Clinical trial site selection is a complex process that requires both quantitative and qualitative analysis of
multiple factors [60]. While the focus of this work is on adequate site selection for clinical trials, similar
problems occur when selecting optimal sites in other industries such as renewable energy sites [61], landfill
sites [62] or facility sites [63], and we observe similar computational methods employed to analyze the relevant
factors for optimal site selection. In the case of clinical trials, some of these factors can be more generic
while the other are trial-specific. Depending on the scope, the overall goals and the logistics of the particular
trial, sites are selected to maximize a successful outcome. Viewed this way, site selection can be seen as
an optimization problem over multiple parameters or a machine learning problem where we would like to
understand most significant features to train a model for predicting best sites.

When selecting appropriate sites for clinical trials, most classical methods rely on historical trial data from
the candidate sites and their catchment population. Site-specific data may be collected, for example, from
publicly available databases such as ClinicalTrials.gov, through Contract Research Organizations (CROs),
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or from proprietary data sets. Cohort or patient-specific information may be collected from electronic
health records (EHRs), databases of geographical distribution statistics of disease and patient demographic
characteristics. When available, this information can be used by trialists to rank trial sites that are more
likely to be successful in recruiting participants and completing the trial.

Ranking based approaches may use statistical summaries [64, 65] and portfolio optimization [66]. The
latter is a constrained utility-maximization problem where an optimal portfolio (i.e. a trial site and its
characteristics) is selected from a pool of considered portfolios (i.e. candidate trial sites) according to an
objective (i.e. successful trial completion or successful trial participant recruitment).

Additionally, machine learning based approaches have also been used to select ideal trial sites. Tradition-
ally, site selection has been conducted by experts with heuristics or rules [67]. However, rule-based methods
are extremely costly, time-consuming and dependent on existing trialists’ expert knowledge. More recently,
methods to predict which sites should be selected and to match sites with clinical trials by efficiently using
machine learning for site selection have been attracting attention [68,69]. For example, a method that intro-
duces constraints to ensure the diversity of patients to be enrolled in a ranking-based method [70] has been
developed and can be easily implemented [71].

Knowledge graph based methods have been used to create novel representations and perform analy-
ses using embeddings and graph learning models [72, 73]. Although these are promising approaches, both
graph-based and non-graph-based neural networks require large amounts of training data to achieve model
accuracy performance. However, site-specific and patient-specific data are heterogeneous, sparse, and are
often missing, which further add obstacles to current classical methods.

3.3 Cohort Identification

Eligibility criteria are identified to select patients for clinical trials by the investigators at the trial sites.
Currently there are different techniques which have been used to recruit participants for trials. Specifically,
the traditional methods of cohort selections have been rule-based methods, which can be time intensive.
Furthermore, longer cohort selection process can negatively impact on the timeliness of the clinical trial.
Consequently, researchers have taken advantage of data-driven techniques like machine learning algorithms
to speed up the screening of participants in clinical trials based on inclusion-exclusion criteria. In this
section, we will review exiting statistical, optimization, and machine learning methods which have been used
to screen patients based on eligibility criteria. In addition, more advanced applications of machine learning
to identify relevant subgroups for personalized medicine treatments, as well as the emergence of generative
models to generate synthetic data will also be reviewed.

3.3.1 Rule based approach

The traditional methods of cohort selections have used rule-base methods. Those rules are often crafted
to satisfy specific criteria for a clinical trial or specific types of trials. Longer cohort selection time makes
negative impact on the timeliness of the clinical trial. Crafting those rules takes a lot of time and efforts
including medical experts, yet it has less relevance to future clinical trials cohort selection. Also, although
candidates are suitable to clinical trial criteria, it is harder to predict their length of stay (LOS) or discover
risk factors of LOS in advance using the rule based approach. The candidates’ prolonged LOS and the
finding the risk factors of LOS are key factors for successful cohort selection.

3.3.2 Machine learning

Using machine learning algorithms, researchers can not only classify, cluster, predict more suitable candidates
but also have ability to predict their length of stay or discover risk factors or group for LOS. Those were
hidden factors that may have not been defined as a rule. Many studies that utilized machine learning
methods have been tested on electronic health records (EHRs). However due to the complexity of EHR
dataset, multiple ML models need to be tested to maximize the prediction outcome. For example, Segura-
Bedma et al. [74] applied different deep learning methods to select robust cohort selection. Similarly, Chen et
al. [75] used four machine learning models – Neural Network (NN), random forest, histogram-based gradient
boosting, and k-nearest neighbor to identify patients at high risk for prolonged LOS following primary total
hip arthroplasty. Other researchers leveraged NLP (Natural Language Processing) and used bag of words
document representation model, which considers the text as an unordered set of words, for 13 classifiers
and other pattern matching approach. To select the candidate, the authors investigated four different
classification methods - support vector machine, logistic regression, näıve Bayesian classifier, and gradient
tree boosting [76]. More advanced development in ML model like transformer-based approach designed
specifically for EHR [77] has shown promising results in performance with potential for generalization.

In addition to typical ML models and advanced transformer model, generative models like the generative
adversarial network (GAN) [78] has also shown promising applications to generate synthetic data [79, 80].
In clinical trials, synthetic data can be used to create synthetic patients, with statistical properties of real
patients but are not linked them, thus maintaining patients’ privacy and confidentiality. These synthetic
patients can also act as a synthetic control arm, in conjunction with the real patients in the intervention
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group. As a result, the usage of the synthetic control group can reduce the number of participants needed
to be recruited in a trial, thus speeding up the trial process and reducing the budget requirement.

GAN structure consists of a generator and a discriminator [81]. The generator’s role is to generate
synthetic data, while the discriminator plays the role of a classifier to distinguish between fake and real data.
These two models compete against each other, thus resulting in a Nash equilibrium whereby the quality
of the synthetic data produced by the generator can resemble the real data. However, GAN requires the
usage of pseudo-random number generator to inject noise to the generator, thus potentially resulting in large
computation time, and potential statistical bias in the model.

Another challenge for current ML techniques is how to embed and train models that can process multi-
model data to improve the selection of eligibility criteria. The multi-modal dataset typically involves different
data formats such as EHR, which typically represented as tabular data (e.g., age, demographics), image
data (e.g., x-rays, magnetic resonance imaging, pathology slides), time-series data (e.g., pulse oximetry,
ultra-sounds, wearable sensors), structured sequence data (e.g., genomics, proteomics, metabo-lomics) and
unstructured sequence data (e.g., notes, forms, written reports, video) among other sources [82]. Fusion
strategies have been proposed as a solution to ingest and train machine learning models for multi-model
dataset, depending on the stage or methods of the data fusion, it is called early fusion or late fusion or joint
fusion [43,83]. This includes combining features from the relevant data, extracting the relevant features from
dataset and aggregating them, or applying assemble learning models for different data modalities [82].

3.3.3 Personalized treatment, genomics, and equity

Cohort selection is not just restricted to rule-based and machine learning aspects. Trial participants are also
chosen for the trial based on their underlying similarities stemming from genomics. In some cases, patients
might have the same tissue-of-origin diagnosis, or genomic alterations. In recent years, due to advancement
in genomics technology and subsequently, better understanding of the biological underpinnings of complex
diseases, there is a consensus that complex diseases such as cancer, cardiovascular disease, neurological
diseases need customization to an individual for optimal therapy. Hence, next-generation trials need to be
patient-centered rather than drug-centered [84].

Trials modeled around specific biomarkers for certain drugs treating heterogeneous complex diseases aim
to match patients with specific interventions based on their molecular characteristics. Single and multiple
integral biomarker trials classified as basket, umbrella, and adaptive trials have been proposed as novel
approaches for clinical trial design for personalized treatment. Basket trials group patients with same
molecular abnormality regardless of disease outcome; umbrella trial design tests multiple drugs targeting a
common pathway, but in genetically distinct subgroups; while adaptive trails allow for adjustments to the
design mid-course based on feedback from the targeted cohort [85]. These biomarker-driven approaches also
necessitate understanding of genetic diversity with respect to drug target identification. Machine learning
models and natural language processing techniques as described above can help identify individuals with
a high likelihood of responding positively to a specific treatment, as well as survey social determinants of
health that could impact trial participation and outcomes. For instance, ensemble machine learning model
has been used to predict the treatment outcome of patients with type 2 diabetes given DPP-4 inhibitors in
comparison to conventional therapy [86].

Extending specific biomarker oriented trials to increase clinical trial efficiency, another way is to selec-
tively enroll participants based on clinical and biological characteristics [87]. Lately, polygenic risk scores
(PRS) which take into effect the cumulative impact of many genetic variants across the genome to compute
potential genetic predisposition or risk of a disease have been considered for cohort identification [88]. It was
observed in post hoc analyses of clinical trials that healthy individuals with highest PRS for cardiovascular
disease demonstrated the greatest benefit when randomized to statin or placebo to prevent cardiovascular
disease, with a 44% relative risk reduction versus 24% in the remainder of participants [89, 90]. Beyond
post hoc analyses, PRS can also be used to understand the presence of racial disparities in large biobanks
which are used to identify cohorts in clinical trials [91]. However, PRS are known to suffer from lack of
generalizability and loss of predictive power in non-European populations due to the predominant focus of
genome-wide association studies on European populations [92]. Recent studies have shown that even with
a small number of non-European participants predictive power of PRS increases in underrepresented popu-
lations [93]. Machine learning methods are often applied to improve generalizability of PRS across diverse
cohorts for complex diseases [94–96].

By incorporating machine learning algorithms into response-adaptive randomization designs, trials can
achieve better performance than traditional designs, resulting in more ethical and appropriate clinical tri-
als [97].

4 Quantum computational methods in clinical trial design and
optimization

In this section, we briefly discuss some quantum algorithms that are relevant for this work and present
our perspective on how to utilize quantum computational methods for enhancing clinical trial design and
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optimization. For a more in-depth discussion of quantum computing, especially in the context of healthcare
and life sciences, the reader is referred to Sections 1 and 2 of [98].

4.1 Quantum Optimization and Quantum Machine Learning Algorithms

In general, optimization problems aim to find the global minima/maxima of an objective function. As the
parameter space for the problem increases, searching for this global extremum point becomes harder and
more costly for classical methods. Quantum optimization methods [99–101] have been proposed, studied
and implemented with the goal of achieving a speed-up over the classical optimization techniques. For
near-term implementations of quantum optimization algorithms, a common method is using variational
quantum algorithms [102]. These are quantum-classical hybrid algorithms that can efficiently explore the
high-dimensional Hilbert space to find the optimal solution. To that end, a trial quantum state is prepared
and appropriate mapping of the problem Hamiltonian is set up. Classical optimizer updates the quantum
state in every iteration of this pipeline until a solution state is recovered. The work [103] provides a rigorous
and detailed analysis of the current landscape for quantum optimization algorithms, their complexity and
potential for certain optimization problems such as maximum independent set (MIS), knapsack/market share
problem, sports timetabling problems and several others.

Quantum machine learning (QML) [104–107] is another growing field within quantum computing with the
potential to improve data analysis. In a typical machine learning scheme, an algorithm is designed to learn
the structure of the data, and identify patterns for various prediction and inference tasks. These learning
algorithms are usually considered under three main categories, supervised machine learning, unsupervised
machine learning and reinforcement learning. While data is labeled in supervised ML for the training of
the model, in unsupervised learning the algorithm finds the patterns in the data and learns them. In
reinforcement learning, the training is done on a reward/punishment basis. Despite there being no general
and complete QML theory, all these machine learning schemes have counterparts in QML. For example,
quantum neural networks (QNN) [108] can be used for computer vision tasks for labeled data or solve a
MAXCUT problem on a graph by learning the distances as an unsupervised learning model [109]. A more
in-depth look into the field of QML can be found in [107] with a main focus on QNNs and quantum kernel
methods.

Figure 2: Table lists some of the problem classes within optimization and machine learning problems, along
with some commonly used examples of quantum algorithms for optimization and machine learning.

In general, it is an ongoing and active research area to map the quantum algorithms to various use cases
and identify how and where quantum computing can improve the existing computational methods. This
interest has led quantum computing research to find a large variety of applications in various fields ranging
from molecular chemistry and molecular simulation [110–120], material sciences [121], encryption [122,123],
search and optimization [124, 125], protein structure prediction and drug discovery [126, 127], cell-centric
therapeutics [98], financial optimization [128], computational pathology [129], causal discovery [130], and
other potential applications in health and medicine [131].

4.2 Clinical trial simulations

The limitation of the PBPK models originate from the uncertainty in regard to the degree of accuracy and
reliability of its input. The reduced confidence in input data is understandable since accuracy of PBPK
models comes from the quality of its input parameters. Therefore, if the incorporated data contain errors,
inconsistencies or miscalculations, the resulting simulations may not truly represent in vivo conditions and
performance. Inaccuracies in input data may originate from a variety of reasons such as the high inher-
ent variability of biological systems [132, 133] Another challenge of PBPK models is severe lack of detailed
databases for physiological parameters, particularly for certain subpopulations. Consequently, much of the
input data must be obtained from multiple sources. [134] Finally, a deficiency of information regarding human
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physiology/anatomy and information related to drug metabolism and active transport leads to poor predic-
tion of the observed data [132]. Clinical trials necessitate the use of high-quality data [135, 136], typically
characterized by a limited dataset size. QML algorithms have demonstrated effectiveness in scenarios with
few data, as evidenced by various studies [137,138]. To bridge the gap between the necessity for high-quality
data in clinical trials and the demonstrated effectiveness QML algorithms in scenarios with limited datasets,
it is essential to find efficient embeddings that can accurately translate classical data characteristics into
quantum-compatible formats. Specific metrics for analyzing the classical data and its corresponding feature
map can be adopted [138–143], allowing for the potential of QML algorithms to be more effectively realized
for these specialized applications.

A mechanistic understanding of PK processes and a deeper knowledge of these specialized physiologies is
key for improving confidence in specialized PBPK models and therefore achieving the ultimate goal of person-
alized medicine [144]. Integrating systems biology (target expression) with PBPK and Pharmacodynamics
modeling will further increase the usefulness and adoption of PBPK modeling. This is even more relevant
in personalized medicine where individual patient outcomes can be improved by delivering the personalized
optimal dose at the right time [145–147]. The use of imaging techniques for tissue partitioning to eliminate
the uncertainty related to predicted tissue-to unbound plasma partition coefficients (Kp), key set of param-
eters used to characterize the distribution or “movement” of drugs into different tissues in the body [148].
The development of more stable and viable in vitro systems is also important [149], as is development of
competitive binding assay for highly bound compounds [150].

Figure 3: Schematic Representation of the PBPK Model Development and Estimation Workflow for Clinical
Trials: The process begins with the construction of the model, incorporating drug properties and biological
system attributes. It proceeds with data preprocessing, including feature selection, dimensionality reduction
and topological data analysis. The final phase involves model estimation, leveraging quantum computational
techniques such as quantum differential equation solvers, QSVMs, QNNs, and QGNNs, leading to the for-
mulation of the model.

PBPK models often require solving systems of ordinary differential equations (ODEs), a task that de-
mands considerable computational resources, particularly for drug interaction simulations within intricate
physiological contexts. Quantum computing has been identified as a promising solution for accelerating
both linear [5] and non-linear [151–153] equations. Quantum differential equation solvers offer the potential
to simulate PBPK models by solving differential equations that represent the non-linear and time-varying
behaviour of drugs in the body. Furthermore, their ability to handle large-scale models, where the body is
divided into several compartments, such as the liver, kidneys, lungs, and other organs appears very promis-
ing. Nonetheless, the deployment of such quantum algorithms is constrained by the current state of quantum
hardware, which is yet to reach the necessary level of advancement. During this transitional phase, variational
algorithms [102] for quantum machine learning and quantum kernel methods emerge as more viable options
for the existing quantum hardware, albeit with caution [107, 154, 155]. Besides the algorithms discussed in
Section 4, research [156] has shown that integrating trainable parameters within data-encoding Hamiltonians
could significantly improve the model’s flexibility and forecasting precision. This strategy might allow for
the fine-tuning of model frequencies for PBPK by enhancing the representation of complex drug distribution
and metabolism processes. Additionally, the recent development of a spectral method which introduces an
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efficient technique for solving differential equations in high-dimensional spaces [157,158] by utilising a robust
set of fitting polynomials, providing substantial expressiveness.

4.3 Site Selection

Selecting sites for a clinical trial can be formulated as an optimization problem. A straightforward approach
is first determining which sites are feasible for the trial, followed by ranking the “best” sites according to its
features and assigned weighted scores. The features are usually site specific historical performance data, and
based on the final ranking of the sites, certain tiers are constructed to make a decision. These tiers can reflect
the risks associated with the sites, namely the expense, enrollment rate and availability of expert PIs. A novel
portfolio-based optimization approach is presented in [64] as an improvement over the traditional approach.
This more flexible model is designed to accommodate the study goals of the trial. Instead of ranking the sites
and making a selection based on this ranking, portfolio-based optimization creates a portfolio of sites where
the overall weight of the sites is optimal. This allows the model to consider “what if” scenarios, trial specific
constraints such as multiple sites in a country or preferred sites. A similar approach can be taken using
quantum optimization algorithms. In particular, the problem formulation as a mixed-integer programming
(MIP) can be mapped to a quantum setting. Interestingly, it is also possible to map the financial portfolio
optimization quantum algorithm in [159] to clinical trial site selection setting. In this one-to-one mapping
of the problem, we have the usual binary decision variables xi ∈ {0, 1} to determine if the sites are selected
in the portfolio or not. The quantum optimization can be set as:

min
x∈{0,1}n

qxTΣx−RTx

subject to:ATx = S

where R ∈ Rn is the expected enrollment rate for trial sites, Σ ∈ Rn×n is the covariance between trial
sites, q > 0 captures the risk that the trial design can specify which may be informed by trial specific
constraints, A ∈ Rn×n declares the trial constraints and S denotes the number of sites to be selected in
each portfolio. This optimization problem can be solved using either a Variational Quantum Eigensolver
(VQE) or a Quantum Approximate Optimization Algorithm (QAOA) in near-term quantum computers. In
principal, the ground state of the Hamiltonian returns the selection of a portfolio of sites. In the case of
a high-dimensional parameter space where one considers all the sites in a country, or if the optimization
problem exhibits non-convex behavior, we expect the quantum portfolio optimization method to perform
well. For fault-tolerant quantum computers, it is shown in [159] that the proposed algorithm can solve the
portfolio optimization in poly(log(N)) run time compared to classical poly(N), where N is the total number
of sites in our mapping.

Another important bottleneck for site selection tasks is the availability of historical performance data from
the potential trial sites. While some publicly available data can be used to identify sites, these are usually
limited and can lack crucial information for optimal site selection. This can potentially create unwanted
bias in the site selection process, impacting the cohort selection and the successful completion of the trial.
As reported in [65], missing modalities in the data can impact the site selection process. Quantum kernel
methods [160] that map the feature space to a higher dimensional space to classify the data have been used in
various QML applications. In particular, the work [161] demonstrates some significant results for QSVM for
electronic health records (EHR) data and constructs a framework for empirical quantum advantage (EQA).
The data they use is of similar nature to clinical trial site data, in the sense that samples are limited with
high dimensional feature space. In this setting, we propose to use QSVM [162] for classifying the sites into
feasible/not feasible classes. In particular, we expect quantum to provide utility where the sample-feature
ratio is low with a high terrain ruggedness index as defined in [161]. This can potentially help overcome the
bias towards selecting the same sites for running clinical trials, analyze the outcome of trials at new sites
and provide access to more diverse cohorts.

4.4 Cohort Identification

Machine learning algorithms have shown promise for different aspects of cohort identification and selection,
as well as aiding several enrichment strategies like prognostic and predictive enrichment to lower the failure
rate and the required number of participants need to be recruited for clinical trials. However, a potential
challenge of applying machine learning techniques to identify the cohorts based on the eligibility criteria
is the diverse nature of the dataset. Classically several strategies have been developed known as fusion
techniques to process diverse dataset like EHR, genomics, proteomics, and longitudinal data [43]. Quantum
feature map can potentially present a pathway to embed different biomedical data types more efficiently
to train different quantum machine learning models ranging from supervised (e.g. QSVM [161, 163, 164]),
and unsupervised methods (e.g. quantum neural network [165]). A potential development within the field of
quantum-encoding that can impact cohort selection is the research of a universal feature map that can encode
various data types ranging from images, EHR and gene expression to identify sub-population that has the
highest positive response to certain clinical treatments. Such an advancement can provide unique benefits
in predictive/prognosis enrichment strategy for high value trials like oncology [166], immunotherapy [167]
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Figure 4: After the site-related data is collected and processed, we propose two approaches that utilize
quantum computing. Portfolio-based optimization maps the problem with site-specific parameters and trial-
specific constraints to select the best portfolio of sites. If the historical site performance data is limited, we
propose in parallel, one can set a QSVC to classify which sites are feasible.

or cardiovascular diseases [168] since the usage of multimodal data (EHR, diagnostic imaging, multi-omics)
can enhance the accuracy of ML models in predicting the efficacy of the treatments .

Quantum feature map is a unique method to map classical data into the complex Hilbert space, which
in theory can represent correlation between variables in complex dataset that is hard to simulate classically
[169, 170]. Specifically, some feature maps involve constructing different forms of parameterized quantum
circuits which encode the classical feature values. It has been shown that by encoding classical data in certain
quantum circuit structure, this can induce correlation that does not exist in the dataset, but mimicking the
behaviour of certain quantum states, thus potentially informing the performance of certain quantum machine
learning algorithms in downstream applications like classification or regression [171].

Another promising application of the quantum machine learning comes in the form of equivariant quantum
neural network [172,173]. Equivariant quantum neural networks (EQNNs), also known as geometric quantum
machine learning (GQML), is a class of quantum neural networks where the design of the quantum circuits
contain the symmetries of the original dataset through the process of inductive bias [174]. Specifically,
the quantum circuits are constructed based on the symmetry groups of the original datasets. EQNNs are
designed to solve certain challenges of quantum neural networks such as barren plateau and excessive local
minima, inhibiting their applications for different datasets [175]. For biomedical dataset, it is expected that
EQNNs can have important impact due to the various symmetries that intrinsically exist in different data
modalities. For instance, medical images are known to contain symmetries like translation equivariance,
rotation and reflection [176], while sing-cell transcriptomics can contain unique local and global symmetrical
structures [177]. As a result, EQNNs can be used to classify multi-model dataset to identify the right
populations for clinical trials based on certain eligibility criteria.

In addition to the usage QNNs for machine learning task like classification, a class of QNN known
as quantum generative adversarial neural network (QGAN) has gained significant interest due to their
unique advantages. Quantum GAN has been proposed as an alternative to overcome many disadvantages of
classical GAN. For instance, it has been proved that QGAN will require less training data to produce robust
model [178]. There are many different implementation of the QGAN such as hybrid model with quantum
generator and classical discriminator, as well as a full quantum version with QNNs acting as generator
and discriminator. In the fully quantum settings, the quantum GAN exhibits a unique advantage with the
optimization between the generator and discriminator is a linear programming optimization, with a convex
state-space as described by the Kakutani fixed-point theorem [179]. In practice, full quantum GAN has
been used to produce simple synthetic images based on the MNIST dataset [180], while hybrid versions
with quantum generator and classical discriminator have been used to synthesize random distributions [181].
As a result, by using either a hybrid QGAN or a full quantum version, these setups can generate complex
distribution mimicking the distribution from real patient biomedical data with much lower training data,
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acting as synthetic control arm for clinical trial. The usage of QGAN can potentially benefit rare disease
trial since the training data for the generative model tends to be small due to complex nature of the disease.

Figure 5: Overview of the cohort identification process with multi-modal data, and applications of quantum
machine learning for classification and generative model in the cohort identification process.

5 Prospect of quantum computing in clinical trial design and op-
timization

Our work proposes various quantum algorithms to improve the outcome of clinical trials, and discusses in
depth how practitioners of the field can utilize these new computational tools. By simulating the drug
properties more accurately, we can determine the trial protocol that can ensure a successful outcome. Fur-
thermore, optimizing the procedures of site selection and cohort identification based on the protocol design,
we can reduce the cost of the clinical trials and prevent adverse events. As quantum computing technology
matures, we see utility-scale quantum experiments displaying real promise to advance our computational
capabilities [182]. In parallel with that, more efficient quantum error correction methods [183] bring the
arrival of fault-tolerant quantum computers closer than expected. Without a doubt, quantum computing
will play an important role to advance science in the next decade, and this work explores the potential of
quantum computing to enhance clinical trial outcomes.
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[111] Arseny Kovyrshin, Mårten Skogh, Lars Tornberg, Anders Broo, Stefano Mensa, Emre Sahin, Ben-
jamin CB Symons, Jason Crain, and Ivano Tavernelli. Nonadiabatic nuclear–electron dynamics: a
quantum computing approach. The Journal of Physical Chemistry Letters, 14(31):7065–7072, 2023.

[112] Anton Nykänen, Aaron Miller, Walter Talarico, Stefan Knecht, Arseny Kovyrshin, Mårten Skogh, Lars
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