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Abstract—Studies on the social behaviors of bats show that
they have the ability to eavesdrop on the signals emitted by
conspecifics in their vicinity. They can fuse this “passive” data
with actively collected data from their own signals to get more
information about their environment, allowing them to fly and
hunt more efficiently and to avoid or cause jamming when
competing for prey. Acoustic sensors are capable of similar feats
but are generally used in only an active or passive capacity at
one time. Is there a benefit to using both active and passive
sensing simultaneously in the same array? In this work we
define a family of models for active, passive, and fused sensing
systems to measure range and bearing data from an environment
defined by point-based landmarks. These measurements are used
to solve the problem of simultaneous localization and mapping
(SLAM) with extended Kalman filter (EKF) and FastSLAM 2.0
approaches. Our results show agreement with previous findings.
Specifically, when active sensing is limited to a narrow angular
range, fused sensing can perform just as accurately if not better,
while also allowing the sensor to perceive more of the surrounding
environment.

Index Terms—Array Processing, Extended Kalman Filter,
FastSLAM 2.0, Multistatic sonar, SLAM.

I. INTRODUCTION

WHETHER robotic vehicles using acoustic sensors can
improve their simultaneous localization and mapping

(SLAM) capabilities by taking advantage of both signals cre-
ated by their own sensors (i.e. active sensing) and those created
by other vehicles (i.e. passive sensing) is an open question in
engineering. Research on collective behavior in bats suggests
they not only use echolocation but can also eavesdrop on
signals from other bats around them. They use this information
to both cause and avoid signal jamming from conspecifics
[1]–[3] and form temporary mobile networks which improve
prey localization [4]. Bats perform these feats with a relatively
simple set of “sensors” which consist of a single emitter, their
larynx, and two receivers, their ears. While a bat’s “hardware”
may seem simple enough, the key to the sophistication of their
abilities lies in the way they process the signals they create.
The ability to adapt their sensing to different environments
and prey [5], [6] and modulate the directionality [7], temporal
shape [8], and frequency [3] of their calls have inspired the
creation of biomimetic sensors that seek to harness these same
capabilities [9]–[11]. Outside of biomimetics, engineers have
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been able to match the performance of many of these systems
for years using large arrays of transducers and intelligently
designed algorithms [12]. This work seeks to continue and
improve upon previous research and results found in [13],
to find if modern sonar – using techniques inspired by the
eavesdropping of bats – can answer the question of whether
fusin active and passive sensing signals may benefit a sonar
application.

Just as bats may use active and passive sensing techniques,
all sensors for automated systems can generally be partitioned
into those two groups as well, each of which come with their
own benefits and challenges [14]. Passive sensors such as
cameras and microphones detect signals produced by other
sources in the environment, such as reflected light and direct
or echoed sound. While they generally do not have an ability to
detect distance directly from a single measurement, not having
to emit energy into the surrounding environment and having
generally longer effective ranges due to a single direction of
travel are typically beneficial [15]. Conversely, active sensors
such as lidar, radar, and active sonar emit energetic signals into
the environment and process return data. These returns allow
for estimation of range and bearing data and even identification
of objects in environments where a camera would be unable
to see [16]. However, active sensors require more power to
create signals and may need extra signal processing to avoid
jamming in multiagent systems [17].

While acoustic sensors are mainly used in underwater
applications, due to the ability of sound to travel very long
distances compared to the rapid attenuation of radio waves
and light [18], the low cost of acoustic sensors also make them
popular for in-air robotic applications and vehicle sensors [19],
[20]. These sensors are not without their challenges, mainly
due to the vast difference in the speed of sound compared to
the speed of light. In long distance or fast moving applications,
this leads to discrepancies in vehicle position between signal
emission and echo reception when using active sonar or being
tracked by passive sonar [21]. Some solutions to this issue
include incorporating the vehicle dynamics into the estimation
using Doppler shifts [22] or using synchronization to enable
one-way travel-time localization using a beacon and receiver
[23]. Further, the longer wavelengths of acoustic signals (as
compared to light) [15], [20] lead to difficulty in detecting
objects that are small relative to the given wavelength. In
addition, signals that reflect off surfaces at steep angles are
reflected specularly with most energy being spread away
from the sensor, leading to errors or misses in detection and
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Fig. 1. A workflow of how signals are modeled in the system.

estimation [24], [25]. Acoustic sensors also tend to be quite
directional. It can be difficult to detect signals outside of
the main response axis (MRA) when directivity is high, but
low directivity makes it difficult to estimate the bearing of
a return signal. This can be solved by using mechanically
scanned sensors [26], but most modern solutions make use of
static arrays to improve directivity and well studied electronic
steering methods to estimate bearing of echoes [12], [27],
rather than introduce the complexity of a dynamic sensor.

Inspired by the echolocation and eavesdropping abilities of
bats and the capabilities of sonar arrays to act as both active
and passive sensors, we use the problem of landmark-based
SLAM to investigate possible benefits of fusing these two
types of sensing. In short, SLAM deals with a robot building
a map of an unknown environment and localizing itself within
that environment. Two well studied solutions to this problem
are extended Kalman filtering (EKF)-SLAM and FastSLAM
2.0 [28], [29]. While not optimal, the EKF algorithm has been
shown to be very effective in solving the SLAM problem [30].
Using EKF also provides a direct link to benchmark results
against the previous data found in [13]. FastSLAM 2.0 has
also been shown to be effective and at times even better than
EKF-SLAM [31], though it is more complex to implement
and much more prone to inconsistency [32]. While these
algorithms are not the most advanced in terms of accuracy,
their long and well researched history is important for analysis
of this new technique and informing the future directions of
this work.

Previous research [13] shows that, when the angle of the
active sensor is narrow and measurement noise is low, there
is a benefit to being able to take advantage of both active
and passive sensing at the same time. Building on previous
work, this study introduces physics-based models of active,
passive, and fused acoustic sensing that benefit from improved
passive landmark initialization and use increased map size.
We compare the performance of fused sensing between two
well studied SLAM solutions, to analyze differences in regions
where fused sensing is effective. The rest of the paper is
organized as follows. Section II describes the models used
to simulate the system and obtain the measurement data
used in the SLAM algorithms. Section III briefly presents
the SLAM algorithms and goes in depth on landmark ini-
tialization. Sections V and VI present and discuss results
and data interpretation respectively, and Section VII provides
concluding remarks.

II. SYSTEM MODELS

To provide a simulation that is more faithful to real acoustic
performance, we chose to model the transducer performance,
signal propagation, and range and bearing estimation. In
previous work [13], sensing bearings and ranges were set as
predefined geometric shapes and the passive sensing range
was considered a static radius around the vehicle. While this
may capture the main response for cameras and lidar, the
performance of a single sonar transducer or, even more so,
an array, is defined by a beampattern which is a function of
their design and array geometry [12]. Further, whether or not a
vehicle can sense an echo off a nearby landmark is not only a
matter of the vehicle-to-landmark distance and angle, but also
a matter of the distance between the landmark and a sound
source in the environment that may enconify it. A workflow
of the simulation can be seen in Fig. 1 and the models are
discussed in detail below.

A. Emitter Modeling
The receiving arrays and emitters of the system are modeled

using MATLAB’s Phased Array System Toolbox [33]. Simu-
lating the behavior of the transducer system was of interest as,
unlike in [13], sonar transducers do not have discrete cutoffs
in bearing and range where they can no longer operate and
the noise of measurements cannot be assumed to be constant
throughout the effective range of the sensor. Realistically, these
transducers have beam patterns with a main response axis
(MRA) that can be physically or electronically steered for
estimating range and bearing measurements, and multiple side
lobes that leak energy when emitting or can confound bearing
estimations when receiving signals in the presence of other
noise [12].

We define two emitters that ensonify the environment, one
on a static beacon and the other on a mobile vehicle. The
two emitters are each initially modeled as isotropic projectors
with frequencies of 30 kHz and 35 kHz respectively, so that
the signals can be distinguished from one another. While
the beacon emission beampattern remains isotropic for all
simulations, the vehicle emitter is further backbaffled, meaning
it only emits in a 180◦ arc towards the vehicle’s direction
of motion, and its directionality is finally adjusted using the
piston model from [7]

p(ϕitrue , f) =
abs[2J1(2π

f
c )a sin(ϕitrue)]

(2π f
c )a sinϕitrue

(1)

Here, p(ϕitrue , f) is the pressure ratio between the MRA
of the vehicle emitter and the actual bearing angle between
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Fig. 2. Half of the beampattern created by piston model (1) where 0◦ is the
MRA of the emitter. Response is given as a linear ratio to improve readability.

the vehicle’s direction of travel and a landmark in the domain
which is ensonified at a given frequency, where ϕitrue

is the
actual angle of the landmark relative to the vehicle. While f is
the frequency of the emitter signal, c is the speed of sound in
air at standard temperature and pressure, J1 is the first order
Bessel function of the first kind, and a is the radius of the
emitter (i.e. the piston). The larger a is, the narrower the MRA
of the emitter becomes and more side lobes are introduced
to the beam pattern. The effect of the emitter radius on the
beampattern of the emitted signal can be seen in Fig. 2. In
this work, the determining factor of the emitter opening angle
is considered to be the half-power beamwidth (HPBW) [12],
whichh is the beamwidth at which half the maximum power
(0.5 in Fig. 2) is achieved.

B. Signal Propagation

The acoustic signals are modeled as plane waves that travel
along rays directly from an emitter to a receiver [15], [34].
While only signals from the vehicle’s emitter experience loss
from the piston model (1), all emitted signals also experience
spreading, atmospheric, and reflection losses. Spreading losses
in decibels are calculated using the spherical spreading equa-
tion:

β = rfactor20 log10
d

rfactor
, (2)

where d is the distance the signal has traveled from the source
and rfactor takes a value of 1 if the signal only travels in one
direction, or 2 if the signal has two way travel back to the
source, as it does in the case of active sensing. Atmospheric
losses are calculated using a formula from [35], which in the
case of standard temperature and atmospheric pressure (STP)
has the form:

α = 8.686f2

(
1.84× 10−11+

6.1424× 10−6 frO
f2
rO + f2

+

1.5552× 10−6 frN
f2
rN + f2

)
, (3)

where α is the loss factor, f is the frequency of the emitted
signal, frN is the relaxation frequency of nitrogen, and frO

is the relaxation frequency of oxygen at STP. Finally, the
landmarks in the environment are modeled as small spheres
with a target strength calculated using:

I(γLM ) =
rLM

2
sin(γLM )+

1

2πk
cot

(γLM

2

)2

sin (rLMk sin (γLM )), (4)

where γLM is the angle of the reflection with 180◦ being
directly back towards the direction of the emitter, I(γLM )
is the intensity of the reflected signal, rLM is the radius
of the target, and k = 2πf/c is the wavenumber of the
reflected signal. The intensity is converted to decibels using
10 log10(I(γLM )/I(180◦)). It is of note that the Doppler
effect of the moving vehicle on the frequencies it receives
are also modeled, but the movement of the vehicle is not fast
enough for it to make an appreciable difference.

C. Receiving Array

Receiving arrays are modeled as 4 sets of 10 element
uniform line arrays (ULA) arranged as a square with the
“front” array orthogonal to the vehicle’s direction of motion.
The number of elements for each array was chosen to balance
directionality, and therefore bearing measurement accuracy,
and what could feasibly fit on a small size robot. Each element
of the array was modeled as a backbaffled isotropic receiver
and their spacing was designed to be half the wavelength of the
frequency of the highest signal to be measured, which is the
beacon signal in our case. This spacing was chosen to avoid
the introduction of grating lobes when electronically steering
the MRA of the arrays to their limits of ±80◦ [12]

D. Signal Detection and Processing

After all losses are applied to each echo, the time series
of data is passed to a receiver preamp, an object in the
phased array toolbox, which adds a gain and noise to the
data. Each of the four ULAs has its own time series the
length of the timestep, that is further partitioned into individual
snapshots of data using a matched filter, to find sections of
time where echoes are present. Each snapshot may contain a
single signal, or multiple signals if the echoes from different
landmarks happen to overlap in time. Using these snapshots
provides numerous benefits to the analysis of the signal data:
it enables the system to more easily calculate the spectrum
of each echo to determine whether the signal came from the
vehicle itself (an “active” echo) or the beacon (a “passive”
echo), the flight time for actively sensed echoes can be more
easily calculated using a phase shift beamformer [12], and
obfuscation of signals arriving at different times but from the
same bearing is more easily avoided.

After snapshots are selected for each ULA, the spectrum
of each is analyzed to find whether it contains only active or
passive echoes or both. If the snapshot is determined to include
active echoes then both range and bearing measurements
must be estimated. This is done by first using a beamscan
algorithm which electronically forms a conventional beam and
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scans it across bearings of interest [12]. Each bearing scanned
produces a single power value and the peaks of these powers
suggests a possible arrival direction of an echo. Each peak over
a set threshold is selected as a possible bearing measurement
and a beamformer is used to calculate the time series of the
signal in these selected directions. The beamformer amplifies
signals coming from the selected direction while reducing
signals in other directions, dependent on the beampattern of
the array. If an echo is in fact coming from the chosen
direction, then its time of arrival can be determined, which
means both range and bearing measurements of the echo are
available.

In the case of a passive only simulation, only a bearing
measurement is of interest as we do not assume the timing
of the beacon emission is known. It has been shown that it
is possible for the beacon and vehicle to be synchronized so
the vehicle can know when the beacon emits [23], but these
techniques are outside the scope of this paper. If both active
and passive echoes are available, the same algorithms are run
and the simulated array beampattern is changed based on the
signals present in a given snapshot, as the beampattern is a
function of the array geometry and signal frequency [12].

It must be noted that a beamscan algorithm was chosen over
numerous optimal and adaptive beamforming algorithms such
as those found in [12], [36], [37], many of which are available
in the phased array MATLAB toolbox, as we were interested
in investigating the limits of the SLAM algorithms with regard
to measurement accuracy. Using the most straightforward
implementation of these systems and not trying to create
the most accurate measurement system possible for these
situations can give us a better idea of baseline performance.

Based on the above, there are multiple measurements cor-
responding to each array’s local coordinate system spanning
from ±160◦. These are rotated to the vehicle’s local coordinate
system and repeated measurements are averaged. These final
measurements, which span a full 360◦, are passed to the
SLAM algorithms to be used for estimation.

E. Estimation Models

The motion model for this system, presented in [38], is
described as “the kinematic model for the trajectory of the
front wheel of a bicycle subject to rolling motion constraints
(i.e., assuming zero wheel slip)”, with the form:

xk= f(xk−1,uk) =

xvk−1
+ Vk∆t cos(θvk−1

+ γk)
yvk−1

+ Vk∆t sin(θvk−1
+ γk)

θvk−1
+ Vk∆t

B sin(γk)

 , (5)

where, over time ∆t = k − (k − 1) the control values
uk = [Vk, γk]

T , speed and steering angle respectively, are
kept constant and B is the wheelbase between the front and
rear axles. Additive noise νk = [νVk

, νγk
]T is sampled from

the Gaussian distribution N (0, Q), where the process noise
covariance matrix has the form Q = diag[σV , σγ ] and is added
directly to uk. Here, diag[·] denotes an appropriately-sized
diagonal matrix with the argument on the diagonal.

We use two vehicle-to-landmark measurement models to
calculate predicted measurements, which are dependent on

whether the signal being received is considered an active or
passive measurement. Active measurements in two dimensions
provide range and bearing data from the currently estimated
vehicle state x̂ = [x̂v, ŷv, θv] to the respective landmark
m̂i = [x̂i, ŷi]

T and the measurement model for a landmark
i is given by:

z̄acti = hact
i (x̂, m̂i) =


√
(x̂i − x̂v)2 + (ŷi − ŷv)2

tan−1( ŷi−ŷv

x̂i−x̂v
)− θ̂v

ĉi

+ ωk,

(6)
where a bar over a value indicates the predicted value. Passive
measurements in two dimensions only provide bearing data
from the current position to m̂i and therefore have the form:

z̄pasi = hpas
i (x̂, m̂i) =

[
tan−1( ŷi−ŷv

x̂i−x̂v
)− θ̂v

ĉi

]
+ ωk. (7)

The general measurement vector of a landmark i is of
the form zi = [di, ϕi, ci]

T, with the vehicle-to-landmark
range and bearing measurement being di and ϕi respectively
and the measured landmark identification being ci. Additive
measurement noise ω = [ωd, ωϕ, ωc]

T is sampled from the
Gaussian distribution N (0, R), where the measurement noise
covariance matrix has the form R = diag[σd, σϕ, σc]. Readers
should note, for passive measurements, the range measurement
and noise is not considered. For the rest of the paper unless
explicitly stated, z̄ will represent predicted measurements for
both active and passive cases.

III. SLAM ALGORITHMS

We implemented two landmark-based SLAM algorithms,
EKF-SLAM and FastSLAM 2.0, to analyze the measurement
data simulated from the model above. Both of these solutions
were chosen due to their maturity, while also allowing us to
compare the performance of two solutions that have different
strengths and weaknesses [31], [39].

A. EKF-SLAM

EKF-SLAM is one of the most common and mature
algorithms used to solve SLAM problems, with countless
summaries and explanations to be found in literature, see [28],
[30], [40]. The state of the estimated map is a joint random
state-vector, X, composed of the estimated vehicle state and
landmark states

X̂ = [x̂v, ŷv, θ̂v, x̂1, ŷ1, ĉ1, ..., x̂N , ŷN , ĉN ]T =

[
x̂
m̂

]
(8)

The vehicle’s 2-D planar coordinates and global bearing x̂ at
timestep k are given as x̂v, ŷv , and θ̂v respectively, while the
stationary map parameters, m̂ = [x̂1, ŷ1, ĉ1, ..., x̂N , ŷN , ĉN ]T ,
are a given landmark’s 2-D coordinates and landmark number.
The landmark numbers ĉi, i = 1, . . . , N are assigned in
order of their initialization on the map. To complete the
Gaussian a posteriori probability density approximation of X̂,
a covariance matrix is also defined as:

P =

[
Pxx Pxm
Pmx Pmm

]
. (9)
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The recursive procedure of the EKF algorithm can be sum-
marized by two general steps. The first step is prediction,
where the zero noise motion model of the system (5) is used
to propagate the current vehicle state and the calculation of
the a priori covariance matrix is:

P̄xx = FPxxF
T + UQUT

P̄ T
mx = P̄xm = FPxm

, (10)

with F = ∂f/∂x|(x̂k,uk) and U = ∂f/∂u|(x̂k,uk). The second
step is a correction conditioned on the landmark measurements
at the current time step, which can be completed as a batch
or individually. For a given landmark i, the calculations are as
follows:

Ki = P̄HT
i (HiP̄HT

i +R)−1

P̂ = (I −Ki Hi)P̄

X̂ = X̄+Ki(zi − z̄i)

, (11)

where Ki is the Kalman gain and Hi = ∂h/∂X|(X̄). Full
descriptions and derivations of the EKF-SLAM algorithm can
be found in sources such as [28], [30], [41].

B. FASTSLAM 2.0

FastSLAM 2.0 is almost as well studied as EKF-SLAM
[28], [40] but is built upon a different set of foundational
algorithms and assumptions [29], [42]. For this algorithm,
the estimated map is a set of [Y[1],Y[j], ...Y[Npart]] particles
where each particle has the form:

Y[j] = ⟨ x̂[j], {m̂[j]
1 , P̂

[j]
1 }, ..., {m̂[j]

N , P̂
[j]
N }⟩. (12)

Here, the vehicle’s 2-D coordinates and global bearing are
given as the first element, in the same form as in the EKF-
SLAM case. Each successive element is a given landmark’s
2-D coordinates m̂

[j]
i = (x̂

[j]
i , ŷ

[j]
i ) and covariance matrix

P
[j]
i , in order of initialization on the map. FastSLAM 2.0 also

follows a recursive prediction and correction procedure with
the addition of a resampling step.

During the prediction step, the vehicle state estimate is
sampled from the a posteriori distribution:

x̂
[j]
k ∼ p(x̂k|x̂[j]

k−1, uk, zk). (13)

Due to the inclusion of the measurement vector zk, the
derivation of this proposal distribution is rather complex so
only a brief summary will be given here, while a full derivation
can be found in [28]. The proposal distribution is Gaussian and
is calculated for particle [j] and landmark i as:

Ri = R+Hm,iP
[j]
i HT

m,i

P̂
[j]
xv = [HT

xv
R−1

i Hxv +Q−1]−1

X
[j]
xv = P̂

[j]
xvH

T
xv
R−1

j (zk − z̄k) + x̂[j]

. (14)

Here, Ri is the measurement information matrix and the
Jacobians Hm,i = ∂h/∂(x̂i, ŷi)|x̂[j]

i ,ŷ
[j]
i

and Hxv = ∂h/∂x|(x̂)
are with respect to the landmark and vehicle states respectively.
Once all measurements have been incorporated, the new vehi-
cle state estimation for particle [j] is sampled from proposal
distribution, x̂[j] = N (X

[j]
xv , P̂

[j]
xv ).

Now, each measurement is incorporated again for the cor-
rection step. Landmarks that have been initialized in the map

and have been measured this time step are corrected with their
own EKF following the calculations outlined above (11). All
other initialized landmarks are updated with a copy of their
mean and covariance from the previous timestep.

The final step of FastSLAM 2.0 is to resample the par-
ticles. If resampling were to be ignored, the filter would
eventually tend towards only one particle having substantial
weight nullifying the usefulness of the filter. Conversely,
every resample leads to entire uncertainty histories and map
estimations being erased [43]. In this work the particles are
resampled using stratified resampling [44], once the number
of effective particles is below a threshold defined as:

Neff = 1/
∑

w2 < Threshold, (15)

where w is the weight of each particle and Neff describes the
variance of the particle weights.

Two key details of SLAM which have not yet been dis-
cussed are landmark initialization and data association. For this
work, we assumed known data association of measurements.
While there are numerous ways to relax this assumption
[28], [45], [46], it simplifies our abilities to compare the
different sensing approaches and SLAM algorithms. Landmark
initialization for active, passive, and fused measurements is
discussed in the next section.

C. Landmark Initialization

While using active sensing, each landmark measurement
provides both range and bearing data, so (6) can be solved
with a single measurement. This means, when a new landmark
i is measured, it can be initialized into the map for both EKF-
SLAM (8) and FastSLAM 2.0 (12) by its position relative to
the current vehicle state using:x̂i

ŷi
ĉi

 =

x̂v

ŷv
0

+

di cos(ϕi + θ̂v)

di sin(ϕi + θ̂v)
ci

 . (16)

Here, i is the landmark’s identifier which starts at 1 and
is incremented with each new landmark seen, and ·̂ is the
estimated value of a state. During bistatic or passive sensing,
the ability to measure the distance of an echo is lost, due to
ignorance of the original emission time. This lack of knowl-
edge means a single measurement no longer provides enough
information to completely initialize a landmark’s position.
There are three main groups of solutions to this problem:
delayed, undelayed, and concurrent. Delayed solutions use
multiple measurements and separate temporary maps and
filters to estimate the range of measured landmarks, until their
covariance is low enough to be fully initialized in the main
map [45], [47], [48]. Weaknesses of these solutions include
a sensitivity to low parallax measurements and divergence
if landmarks are initialized too quickly. To avoid building
extra uncertainty while waiting for landmarks to initialize,
undelayed solutions use techniques such as inverse depth
paramaterization [49], multiple hypotheses [50], or take ad-
vantage of the Gaussian definition of landmark positions and
initialize the landmark as a conic ray [51]. These solutions
avoid many of the negatives of delayed initialization but can
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lead to multiplicative or additive increases in map size. A
concurrent solution, such as derived in [52], uses two kinds
of representations for whether a landmark is in the delayed
or undelayed stage of estimation, but comes with its own
complexities in system implementation.

As our map is quite large in size for our vehicle speed and
sensor accuracy and the number of landmarks is rather sparse,
we have decided to implement the undelayed initialization
technique used in [51]. This solution takes advantage of the
Gaussian foundation of the EKF and acts as an approxi-
mation to a Gaussian Sum Filter (GSF) [53], which only
additively grows the map size depending on a set of design
assumptions. By defining a minimum and maximum sensor
range [smin, smax] and the conditions s1 − σ1 = smin and
sNg + σNg >= smax, an initial landmark range hypothesis
and total number of hypotheses can be defined by:

s1 = (1− α)−1smin

σ1 = αs1

Ng = 1 + ceil
[
logβ(

1−α
1+α

smax

smin
)
]. (17)

Here, s1 and σ1 are the mean and standard deviation of the first
range hypothesis of a new landmark and α = σ/s is a constant
which should be kept below 30% [54]. Ng defines the total
number of Gaussians that will make up the range estimate with
β controlling the distance between each successive mean. Each
successive distribution hypothesis is calculated by looping
through sj = βsj−1 and σj = αsj−1 until j = Ng . After
all hypotheses are calculated, the final result is a conic ray
that points in the direction of the bearing estimate, the map
vector and covariance matrix grow by Ng rows and columns,
and the landmark becomes partially initialized.

To mitigate inconsistency of the filter over repeated mea-
surements and decide which hypotheses to eventually prune,
each hypothesis in the ray is initially weighted with a normal-
ized Aggregated Likelihood (AL).

Λ = [Λ1, ...,ΛNg
],Λj = 1/Ng (18)

For each new measurement of a landmark, the weight of a
hypothesis j is updated and normalized using:

λj = exp(−0.5(zj − z̄j)S
−1
j (zj − z̄j)

T/
√
2π|Sj |

ρj = (λj)
n/

∑N
i=1(λj)

n
, (19)

where λj is the likelihood of a hypothesis j given a measure-
ment zj , ρj is the normalized weight, Sj = HiP̄HT

i +R, and
n is a measure of how much to weight more likely hypotheses
of less likely ones. A method the authors of [51] call Federated
Information Sharing is used to update the map and mitigate
inconsistency of the filter. This method is derived from the
Federated Filter which applies the Principle of Measurement
Reproduction [55], [56], which says the the correction of a
random variable by a set of measurement tuples {z;Rj} is
equivalent to the unique correction by {z;R} if

R−1 =
∑

R−1
j . (20)

By dividing the measurement covariance matrix R by the
weight of each hypothesis ρj when it is time to run the
correction step of the map, the magnitude of the change in

the uncertainty covariance of the vehicle and current landmark
states due to less likely hypotheses is reduced.

To prune the least likely estimates, a threshold is defined
by the current number of hypotheses N and a variable τ that
is analogous to the probability that a likely estimate will be
pruned. After the AL of each hypothesis is updated using
Λ+
j = Λjλj , the new value is compared to the threshold and

is discarded if it is too small, that is, if,

Λj < τ/N. (21)

After all but one of the hypotheses is pruned, the landmark is
characterized as fully initialized.

As each landmark is defined by a Gaussian distribution, we
were able to adapt the above technique for FastSLAM 2.0. The
steps of the initialization and map updates stay the same as
before, but each particle now has Ng estimates for each new
landmark that must be updated and pruned using the same
steps as described above. With the increase in new landmark
hypotheses, each particle now has the form:

Y[j] = ⟨ x[j], {[m̂[j]
1,1, ..., m̂

[j]
1,Ng

]T, [P
[j]
1,1, ..., P

[j]
1,Ng

]}, ...
{[m̂[j]

N,1, ..., m̂
[j]
N,Ng

]T, [P
[j]
N,1, ..., P

[j]
N,Ng

]}⟩
.

(22)
To the best of our knowledge, this is the first time this

ray initialization technique has been used in FastSLAM 2.0.
Hence, an optimal solution of how to handle particles having
different numbers of estimates for the same landmark has not
been investigated yet. We choose to allow the particles to
behave independently for the entire simulation, meaning each
particle that has more than one state estimate for a landmark
goes through the pruning steps of the algorithm until it has
collapsed to a single estimate or an active measurement is
taken. The effectiveness of retaining all of this information,
compared to dropping unlikely hypotheses after a certain
number of particles have pruned them, is still an open question.

During simulation using the fused sensing model, both
techniques discussed above are used. If a landmark returns
both an active and passive signal, the measured bearings are
averaged so that no information is fully lost. For a landmark
that has been fully initialized as a single Gaussian or set
of particles, active and passive measurements are directly
applied to the landmark estimate according to their respective
measurement model (6),(7). If a landmark is actively measured
while still partially realized, all but the heaviest weighted
hypothesis is kept, the measured range is taken as the true
range, and the bearing and correspondence are updated as
usual.

IV. SIMULATION SETUP

Simulations are run for the two SLAM algorithms (EKF
and FastSLAM 2.0), three sensing strategies (active, passive,
and fused), and 12 emitter HPBWs distributed logarithmically
in the range [180◦, 11◦] (or [2.5, 25] mm according to 1) for
active and fused sensing. These HPBWs do not apply to the
passive sensing strategy as it uses no directional emitter oper-
ated by the vehicle. A logarithmic distribution of beamwidths
was chosen as opposed to a linear distribution as in [13], as this
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Fig. 3. A snapshot of a sample simulation with randomly placed landmarks
shown as black circles. The vehicle’s current position and its true path are
illustrated by the blue square and dashed line, while the beacon, which is also
considered a landmark, is illustrated by the red star.

previous work suggested the fused sensing technique was most
effective at narrow opening angles. A total of NMC = 115
Monte-Carlo iterations were performed for each combination
of algorithm, sensing strategy, and HPBW (i.e., experimental
combinations).

As we include no object avoidance algorithm, the path of
the vehicle is first simulated according to (5) with process
noise covariance Q = diag([0.12, 0.032]) and a timestep of
∆t = 0.125 s and the beacon is placed at a random bearing 15
m from the center of the map, which does not interfere with the
path of the vehicle. Around these paths, a set of N = 50 point
landmarks is randomly distributed with a minimum spacing
of at least 3 m and a maximum range of 25 m from the
center of the map. A minimum spacing of 0.5 m between each
landmark, the beacon, and path of the vehicle is imposed to
avoid the system echoes returning before the emitter finishes
emitting the signal, a scenario that would be avoided using
vehicle control in practical applications. A map is randomly
generated for each Monte-Carlo iteration and shared across
all experimental combinations. An example of a randomly
generated map can be seen in Fig. (3). When the simulation
begins, the vehicle is propagated to its next true state x, and
after 4 timesteps or 0.5 s, both the vehicle and beacon emit
and the simulation of signal propagation and measurement
estimation described in Section II begins. The total length of
simulation is 187.5 s, the length of time it would take the
vehicle to complete around 3 circles in the map in the absence
of process noise.

After the simulation of the vehicle and its measurement
are complete, this data is fed to the SLAM algorithms. Both
algorithms were tuned with a measurement noise covariance of
R = diag[0.22, 0.152, 12] and given an initial state matching
the vehicle’s initial state and and initial error covariance
of P0 = diag[0.052, 0.052, 0.04362]. Each FastSLAM 2.0
simulation was run with 100 particles which were resampled
once the number of effective particles fell below 75% (15).

V. RESULTS

A. Metrics

To determine performance between the experimental com-
binations, a total of we use four main metrics: consistency of
the filters (Section V-B), accuracy of vehicle state estimation
(Section V-C), accuracy of the final map estimation (Section
V-D), and number of landmarks initialized (Section V-E).

The consistency of each algorithm and sensing strategy
is evaluated using the normalized estimation error squared
(NEES) at each time step k:

ϵk = (x̂k − xk)
TP−1

k ((x̂k − xk)). (23)

If the filter is consistent, then the state error will have an
expected value of zero E[x̂k − xk] = 0 and the true error
covariance will match the covariance calculated by the filter
E[(x̂k − xk)(x̂k − xk)

T] = Pk. Knowing ϵk is the sum
of squares of independent, standard normal variables, if the
above is true, ϵk will be sampled from a chi-square (χ2)
distribution with an expected value equal to the number of
states of the vehicle pose E[ϵk] = Nx = 3 [43]. We average
over the number of iterations and consider the average NEES
(ANEES):

ϵ̄k =
1

NMC

NMC∑
i=1

ϵik . (24)

Here, the value NMC ϵ̄k is χ2 distributed with NMCNx

degrees of freedom. A 1−C = 95% probability concentration
region for this distribution [ϵ1, ϵ2] can be found using:

ϵ1 =
χ2
NMCNx

(C/2)

NMC
; and ϵ2 =

χ2
NMCNx

(1−C/2)

NMC
. (25)

When the ANEES is in this region, the filter can be considered
to be consistent but, if it is higher or lower than the bounds
of this region, the filter is considered over confident or under
confident respectively.

In this work, ANEES is also used to determine if an
iteration of a filter has diverged and is therefore not meaningful
for analysis. For the EKF-SLAM algorithm, a maximum
value of maxk{ϵk} = 50 was chosen which excluded 8 of
the 115 Monte-Carlo iterations, while a maximum value of
maxk{ϵk} = 2, 750 was chosen for FastSLAM 2.0 which
excluded 15 iterations. This value may seem extreme in the
second case, but it is well known that FastSLAM 2.0 quickly
becomes more over confident than EKF-SLAM and that the
ANEES for both algorithms continues to rise over time [32],
[38].

The accuracy of the vehicle localization is analyzed us-
ing the root mean square error (RMSE) of the true model
compared to the estimated position for each timestep k and
averaged over the length of the simulations NT :

RMSEv =

√∑NT

k=1(x̂vk
− xvk)

2 + (ŷvk − yvk)
2

NT
(26)

This same value is calculated for the error in the robot’s
bearing (θ̂vk − θvk)

2 and is presented in appendix A.
The accuracy of the map building for both algorithms is

analyzed in a similar way, by estimating the RMSE of the
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TABLE I
SIMULATION PARAMETERS

Variable Symbol Value
Control timestep ∆t 0.125 s

Measurement timestep - 0.5 s
Number of timesteps NT 1500
Length of simulation T 187.5 s
Number of landmarks N 50
Number of iterations NMC 115

Vehicle speed V 0.75 m/s
Turning angle γ 0.027 rad

Vehicle wheel base - 0.2 m
std. of vehicle speed σV 0.1 m
std. of turning angle σγ 0.03 rad

Emitter HPBW - logspace([11, 180]◦)
std. of range measurement noise σd 0.2 m

std. of bearing measurement noise σϕ 0.15 rad
std. of data association σc 1

Simulated array elements - 10
Array sampling frequency - 200 kHz

FastSLAM particles - 100
Resampling threshold - 75
Initial state covariance P0 diag[0.052, 0.052, 0.04362]

Passive init. range covariance factor α 0.3
Passive init. ray density β 3

Range bounds [smin, smax] [0.5, 20] m
Number Gaussian hypotheses Ng 4

true landmark positions compared to the estimated positions
of fully initialized landmarks, averaged over the number of
fully realized landmarks Nmf :

RMSEm =

√∑Nmf

i=1 [(x̂i − xi)2 + (ŷi − yi)2]

Nmf
(27)

While calculating RMSE, only fully initialized landmarks are
considered, as the comparison must be made to some true
value.

Finally, to help evaluate how effectively the vehicle can scan
its surroundings, the number of landmarks that the vehicle is
able to fully and partially initialize is analyzed.

We note that, as the directivity, and therefore HPBW, is
determined by the simulated radius of the emitter (1), the
displayed emitter HPBWs in the result figures are rounded
approximations and not exact values. This makes the data
presentation more clear. Exact values can be found in appendix
B.

B. Filter Consistency

Figs. 4 and 5, show the average NEES (ANEES) for all
Monte-Carlo iterations for EKF-SLAM and FastSLAM 2.0
respectively. It is immediately apparent from the magnitude
attained by the ANEES that the EKF-SLAM algorithm is much
more consistent than the FastSLAM 2.0 algorithm. Also, we
notice a periodic pattern in the amplitude of the ANEES for all
experimental combinations and a general increase in maximum
amplitude over time. The periodicity coincides with the noisy
circular vehicle path, with low ANEES occurring when the
vehicle is close to its starting position. These continuous loop
closures reduce uncertainty in the entire map and lead to
the general increase in maximum ANEES we observe as the
vehicle is far from its starting position.

Fig. 4. Normalized estimation error squared (NEES) for EKF-SLAM
averaged over 107 Monte-Carlo iterations.

With 107 Monte-Carlo iterations usable according to the
limit described in (25), we consider our EKF-SLAM algorithm
consistent for NEES values in the interval [2.55, 3.48]. Look-
ing at Fig. 4, we see the active strategy stays closer to an ideal
level of confidence for a longer period of time compared to
the passive strategy which becomes more overconfident after
the first loop closure. The fused strategy has aspects of both
others, remaining more consistent for longer periods of time
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Fig. 5. Normalized estimation error squared (NEES) for FastSLAM 2.0
averaged over 100 Monte-Carlo iterations.

while also being more confident in general by the end of
the simulation. A trend towards greater consistency is also
apparent as the HPBW of the emitter decreases in the fused
sensing case.

With 100 Monte-Carlo iterations usable according to the
limit described in (25), we consider the FastSLAM 2.0 algo-
rithm consistent for NEES values in the interval [2.54, 3.50].
The FastSLAM 2.0 ANEES results in Fig. 5 share some
similarities with the EKF-SLAM results, such as the cyclical
nature of the active and passive strategies and an increase
in ANEES over time, but the confidence of the FastSLAM
2.0 algorithm is much higher, which is to be expected [32],
[38]. Results for the ANEES of the fused sensing strategy
seem to be anomalous, with maximum ANEES extending far
past the maximum values of the other sensing strategies. We
believe this is due to the bearing-only landmark initialization
technique not originally being created for FastSLAM 2.0. A
different weighting strategy for landmark hypotheses may need
to be employed to further limit the magnitude of changes in
robot pose uncertainty.

C. Vehicle Localization Accuracy

Figs. 6 and 7 show the time averaged RMSE of the position
of the vehicle in the map for EKF-SLAM and FastSLAM 2.0
respectively (bearing RMSE figures can be found in appendix
A1). Both estimation algorithms follow the same general
trends. Passive sensing has a greater mean and standard
deviation in RMSE than both the active and fused strategies
at any point, and the variance in performance of fused and
passive sensing is generally greater than that of active sensing.
Overall, EKF-SLAM has lower mean RMSE and variance than
FastSLAM 2.0 for all experimental combinations. We also can
see that, as HPBW decreases, the performance of fused sensing

approaches the performance of passive sensing. This is to be
expected, as the limit of the HPBW approaching zero for fused
sensing is the passive sensing strategy

Notably in Fig. 6, for HPBWs less than approximately 42◦,
vehicle localization using fused sensing shows an improve-
ment over active sensing on average, although this improve-
ment never reaches statistical significance. This is opposed to
FastSLAM 2.0 where fused sensing never improves upon the
performance of active sensing when estimating robot position,
though the wide variance of fused sensing RMSE means that
the performance of active alone is not significantly better.

D. Landmark Localization Accuracy

To analyze the performance of the landmark position estima-
tion, figs. 8 and 9,representing EKF-SLAM and FastSLAM 2.0
respectively, show the RMSE of only the landmarks that were
seen by all sensing strategies for a given Monte-Carlo iteration.
While the average performance of fused sensing never outper-
forms that of the active strategy, it is within approximately
one standard deviation of the mean most of the time. In these
figures, we can also observe the expected dependence of fused
sensing performance on both active and passive accuracy. We
notice, as HPBW decreases, the fused sensing RMSE tends to
follow the general trend of passive sensing while its magnitude
is decreased by the RMSE of active sensing. Again, the RMSE
of fused and passive estimations will approach each other as
HPBW approaches zero due to the limit described previously.

E. Number of landmarks initialized

TABLE II
COMPARING FULLY INITIALIZED LANDMARKS TO THE TOTAL NUMBER

OF SENSED LANDMARKS (µ± 1σ)

HPBW EKF-SLAM FastSLAM 2.0
Fully Total Fully Total

180◦ 37.7± 2.9 43.7± 2.6 39.3± 2.8 43.7± 2.4
33◦ 31.9± 3.3 40.8± 3.2 32.6± 3.3 40.7± 3.1
11◦ 30.0± 3.3 40.1± 3.2 30.5± 3.2 40.2± 3.1

Passive (0◦) 26.6± 3.3 39.5± 3.4 22.1± 4.9 39.4± 3.3

Figs. 10 and 11, EKF- and FastSLAM 2.0 respectively,
show the average number and standard deviation (µ± 1σ) of
fully initialized landmarks across all HPBWs and for passive
sensing. Table II lists data for a selection of HPBWs for
EKF- and FastSLAM 2.0 for both fully initialized and partially
initialized landmarks. Actively initialized landmarks are not
present in Table II as they are automatically fully initialized
due to range and bearing measurements.

A clear trend towards fewer landmarks being initialized
as the HPBW decreases can be seen for both SLAM algo-
rithms when active sensing is used. When passive sensing is
implemented, an increase in the number of fully initialized
landmarks that is quite significant in the case of EKF-SLAM
is present, whereas FastSLAM 2.0 has a standard deviation
that is larger than any other experimental combination. We can
also see that the total number of landmarks seen by passive
sensing is greater than any time active sensing is used, and
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Fig. 6. RMSE of vehicle position for EKF-SLAM averaged over the entire time of a single iteration. The marked lines represent the mean of the data, the
highlighted section is one standard deviation from the mean, and all individual markers are iterations whose time averaged RMSE lie above said one standard
deviation.

Fig. 7. RMSE of vehicle position for FastSLAM 2.0 averaged over the entire time of a single iteration. The marked lines represent the mean of the data, the
highlighted section is one standard deviation from the mean, and all individual markers are iterations whose time averaged RMSE lie above said one standard
deviation.

that the means differ by at least one standard deviation for
HPBWs less than 65◦.

When both strategies are combined in the fused sensing
case, influences of both strategies can be observed. The
trend in fewer landmarks being initialized compared to active
sensing is lessened but still present, and the difference in the
number of fully initialized landmarks becomes more signif-
icant as the HPBW decreases. Looking at Table II, we also
see a trend of decreasing average of fully and total initialized
landmarks with an increase in the standard deviation. This is
to be expected due to fused and passive sensing becoming
equivalent when HPBW is zero.

VI. DISCUSSION

Previous work investigating fused acoustic sensing found
that it is mainly beneficial in terms of reduced error and un-
certainty when active sensing is limited to narrow angles and in
cases where bearing measurement noise is low (σϕ = [0.1, 0.2]

rad) [13]. Our results cannot be exactly compared to this work,
as it assumed a standard deviation of range noise σd = 0.01
m, while our simulated sensor system has a larger value of
σd = 0.2 m, but our results are consistent with the findings,
at least when comparing the EKF-SLAM results.

We have found that EKF results are better than the results
from FastSLAM 2.0 in almost every category except for the
number of fully and partially initialized landmarks, where
results are very similar. As stated previously, FastSLAM 2.0
is known to quickly become overconfident and the continuous
loop closures experienced in this system lead to a loss in
particle diversity that heavily reduces performance. Further,
the bearing-only landmark technique used greatly reduces
the speed of each prediction and update due to the multiple
weighting calculations introduced for each landmark hypoth-
esis. This quick degradation along with a relatively inaccurate
sensor may be the cause of the relatively poor performance
we observe.
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Fig. 8. RMSE of final positions for EKF-SLAM where only landmarks seen
by each sensing strategy were included in the calculation. The marked lines
represent the mean of the data and the highlighted sections are ± one standard
deviation from the mean.

Fig. 9. RMSE of final positions for FastSLAM 2.0 where only landmarks
seen by each sensing strategy were included in the calculation. The marked
lines represent the mean of the data and the highlighted sections are ± one
standard deviation from the mean.

Using an EKF algorithm seems to be the most promising
for future work, as fused sensing has at least comparable
if not better performance to active sensing when looking at
number of landmarks fully initialized and the localization of
the robot in its map. Even considering the accuracy of the
map generated by the robot presented in fig. 8, we see that
while not as accurate on average, the standard deviations of
fused and active sensing begin to overlap more as the emitter
HPBW decreases. This leads us to a promising conclusion that
a more accurate sensor could further improve the performance
of fused sensing to at least match the abilities of active sensing
when localizing landmarks.

VII. CONCLUSION

In summary, our simulations are consistent with previous
work that fused sensing can prove just as useful or better
than active sensing in low noise environments. We also found

Fig. 10. Average number of fully initialized landmarks for active, passive,
and fused sensing with EKF-SLAM. Error bars are one standard deviation
from the mean.

Fig. 11. Average number of fully initialized landmarks for active, passive,
and fused sensing with FastSLAM 2.0. Error bars are one standard deviation
from the mean.

that a system using a strictly FastSLAM 2.0 approach may
not be very promising due to its difficulty in implementation
and errors in estimation that are greater than those of the
more straightforward EKF-SLAM. The performance of fused
sensing when data association is not known and the static
beacon is a moving vehicle itself is still of interest. This
future direction comes with its own challenges but this paper
continues to support an interesting path of research into how
acoustic sensing may be used for collaborative navigation in
teams of robots.
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Fig. 12. EKF-SLAM: RMSE of vehicle bearing averaged over the entire time of a single iteration. The marked lines represent the mean of the data, the
highlighted section is one standard deviation from the mean, and all individual markers are iterations whose time averaged RMSE lie above said one standard
deviation.

Fig. 13. FastSLAM 2.0: RMSE of vehicle bearing averaged over the entire time of a single iteration. The marked lines represent the mean of the data, the
highlighted section is one standard deviation from the mean, and all individual markers are iterations whose time averaged RMSE lie above said one standard
deviation.

APPENDIX A
TIME AVERAGED ROBOT BEARING RMSE

In Figs. 12 and 13, we see many of the same trends
discussed in Section V.C of the main body of the paper. EKF-
SLAM is again more accurate when localizing the vehicle
for all strategies and HPBWs. When using EKF-SLAM, the
average RMSE of bearing estimation for fused sensing is less
than active only for all HPBWs. This is compared to the fused
sensing strategy only becoming more accurate after a HPBW
of around 42◦ when estimating position.

APPENDIX B
LIST OF PRECISE HALF-POWER BANDWIDTHS

In all results figures, the HPBWs of the emitter have
been rounded to the nearest whole number to improve data
display and understanding. As the values are based on
the simulated radius of the emitter 1, which are logarith-
mically spread between the values of [2.5, 25] mm, when

converted to degree values they may seem arbitrarily cho-
sen. Here is a more precise list of the values in degrees:
[11.4, 14.2, 17.6, 21.8, 26.8, 33.2, 41.6, 51.4, 64.8, 83,
108.6, 180].

REFERENCES

[1] C. Chiu, W. Xian, and C. F. Moss, “Flying in silence: echolocating bats
cease vocalizing to avoid sonar jamming,” Proceedings of the National
Academy of Sciences, vol. 105, no. 35, pp. 13 116–13 121, 2008.

[2] A. J. Corcoran and W. E. Conner, “Bats jamming bats: food competition
through sonar interference,” Science, vol. 346, no. 6210, pp. 745–747,
2014.

[3] M. E. Bates, S. A. Stamper, and J. A. Simmons, “Jamming avoidance
response of big brown bats in target detection,” Journal of Experimental
Biology, vol. 211, no. 1, pp. 106–113, 2008.
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