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Asymptotically flat galactic rotation curves in gravity theory
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Abstract

We present a new set of four-geometries exhibiting asymptotically flat galactic rotation curves.

These are found as explicit solutions to 5D vacuum Hilbert-Palatini theory, where the fifth dimen-

sion has vanishing proper length. In the emergent 4D dynamics, governed by the condition that the

Ricci scalar must vanish (upto a cosmological constant), these correspond to anisotropic effective

pressure. The enhancement in the deflection angle of a light ray penetrating the halo is obtained,

which could provide a realistic testing ground for the model as a purely geometric alternative to

‘dark matter’. For very large halo radii, the leading nonbaryonic contribution to the bending angle

is predicted to be 3πv2

2c2
(v being the asymptotic rotational velocity), a constant that is different

from the result for an isothermal CDM halo.
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I. INTRODUCTION

Perhaps, a dynamical explanation of asymptotically flat rotation curves in spiral galaxies

solely through spacetime geometry is far from being out of question. Despite the astonishing

success enjoyed by Einstein’s gravity theory within solar system scales, its apparent failure in

this context stems from the fact that the predicted Newtonian fall-off for the circular velocity

v(r) of a test particle at a radial distance r far away from the luminous mass distribution

happens to be contrary to what is in fact observed [1, 2].

While one could either continue exploring new forms of (‘dark’) matter in the energy-

momentum tensor of Einstein gravity or invoke arbitrary (geometric) modications of gravity

Lagrangian itself, we shall adopt a rather conservative outlook here. We shall be concerned

with the general question as to whether it is possible to construct a purely geometric theory

of gravity, where it must:

a) obey 4D general covariance, b) follow from a gravity action linear in curvature tensor

so that the field equations contain no higher than second order derivatives, c) involve no

matter-coupling, d) admit galactic spacetimes with asymptotically flat rotation curves as

explicit solutions and e) can reproduce Einstein gravity in vacuum or with some restriction

on the energy-momentum tensor in a suitable limit.

The quest for a modified theory of gravity towards an explanation of the asymptotic

behaviour of rotation curves has a long history though. For instance, MOND [3, 4] and

conformal gravity [5] represent two of the most extensively studied approaches in four di-

mensions. However, finding a generally covariant action principle with metric as the only

gravitational degree of freedom is not possible in the first case [6, 7]. In the latter, the issues

of defining the test mass through a conformally invariant geodesic equation and of obtaining

frame-independent results turn out to be quite subtle [8, 9]. Other approaches, such as

Braneworld gravity [10, 11] and f(R) or more generalized extensions of the action principle

[12] etc. have also been explored in this context. In any case, none of these proposals do

follow from the principles laid out in the previous paragraph.

Here, in this context, we focus on the recent formulation of five dimensional gravity

in vacuum based on an extra dimension of vanishing proper length [13, 14]. The four

dimensional effective theory is characterized by the vanishing of the Ricci scalar with torsion

(upto an effective cosmological constant). Restricting to the case of vanishing four-torsion,
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the most general static spherically symmetric solutions are obtained. Remarkably, we find

that the class where the metric exhibits a small deviation from the Newtonian form implies

asymptotically flat rotation curves. Interpreted in terms of an effective energy-momentum

tensor in the 4D emergent Einstein equation, these solutions are associated with anisotropic

effective pressure. The other (Newtonian) class reproduces a generalized version of Einstein-

Maxwell-(A)dS geometry, with a ‘charge’ that is purely geometric though.

Next, we study the deflection of light passing through the galactic spacetime solution so

obtained. Both cases, involving a finite and infinite halo radius respectively, are presented

along with testable results. We conclude with a summary and a few relevant remarks.

II. FIELD EQUATIONS AND GALACTIC SPACETIME SOLUTIONS

The fundamental theory is defined by the following action principle:

L(ê, ŵ) =
1

L3
ǫµναβρǫIJKLM êIµê

J
ν ê

K
α R̂

LM
βρ (ŵ),

where L is the (fundamental) five-dimensional Planck-length and R̂ LM
βρ (ŵ) = ∂[βŵ

LM
ρ] +

ŵ LK
[β ŵ M

ρ]K is the field-strength. The internal metric is defined as ηIJ = [−1, 1, 1, 1, σ], where

σ = ±1 can take either of these values. The resulting field equations are given by:

ǫµναβρǫIJKLM êIµê
J
ν D̂α(ŵ)ê

K
β = 0, (1a)

ǫµναβρǫIJKLM êIµê
J
ν R̂

KL
αβ (ŵ) = 0, (1b)

where D̂µ is the gauge-covariant derivative with respect to the five dimensional connection

ŵ IJ
µ . For a vielbein of the form:

êIµ =





êia ≡ eia êiv = 0

ê5a = 0 ê55 = 0,





the full set of general solutions, already presented in [13], could be summarized as follows.

The connection equations are solved as:

ŵ IJ
v = 0, ŵ 4i

a = M ijeaj [M
kl = M lk], (2)

ŵ ij
a = w̄ ij

a (e) +K ij
a (3)
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where Mkl are arbitrary spacetime fields and K ij
a denote the four dimensional contortion

satisfying eajK
ij

a = 0. The vielbein equations of motion imply:

D̂vM
kl = 0, [δab δkl − eakebl]DaM

kl = 0,

eai e
b
jR

ij
ab (ŵ) = R̄(w̄) + eai e

b
j [D[a(w̄)K

ij

b] +K ik
[a K

j

b]k − σM i
kM

j
le

k
[ae

l
b]] = 0 (4)

where R̄(w̄) denotes the torsionless Ricci scalar depending only upon the tetrads eia through

w̄(e).

Here, we shall consider the simplest possible class of solutions to eq.(4) with trivial four-

torsion:

K ij
a = 0, M ij = ληij (5)

where ηij = diag[−1, 1, 1, 1] is the internal four-metric. The constant λ above defines the

effective cosmological constant χ = −12σλ2 in the 4D emergent field equation, obtained

from the last one among the set (4) as:

R̄(w̄) + χ = 0 (6)

The general solution to the above is: R̄ab(w̄) = t̄ab −
1
4
χgab, where t̄ab is an arbitrary sym-

metric traceless tensor subject to ∇at̄
ab = 0 owing to the Bianchi identities.

Next, we shall obtain the spherically symmetric static solutions to the equations of mo-

tion. Assuming the four-geometry to be of the standard form (G = 1 = c):

ds2 = −f(r)dt2 + g(r)dr2 + r2(dθ2 + sin2 θdφ2),

the equation of motion (6) translates to:

f ′′

f
−

f ′

2f

(

f ′

f
+

g′

g

)

+
2

r

(

f ′

f
−

g′

g

)

−
2

r2
(g − 1)− χg = 0. (7)

In the following, we shall consider two classes of vacuum solutions of this full nonlinear

equation above.

A) Newtonian solutions: f(r)g(r) = 1

In this case, the solution to eq.(7) is given by:

f(r) = 1 +
B1

r
+

B2

r2
+

χ

12
r2, (8)
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where B1,2 are arbitrary integration constants. This is a generalization of the Einstein-

Maxwell-(A)dS solution of Einstein’s theory, in the sense that the charge B2 could have

either sign [15]. Note that the associated (effective) pressure originates purely due to the

spacetime geometry in our case.

B) Non-Newtonian solutions: f(r)g(r) = 1 + δ(r) where |δ| << 1

To be specific, we parametrize the behaviour above as:

f(r)g(r) =
( r

R

)2α

, (9)

where R is some length scale and α << 1 is a small parameter to be interpreted later. The

explicit solution in this case reads:

f(r) =
( r

R

)2α
[

1

1 + α + α2
+

χr2

2(6 + 4α+ α2)

]

+ C1

( r

R

)γ+

+ C2

( r

R

)γ−

;

g−1(r) =
1

1 + α + α2
+

χr2

2(6 + 4α+ α2)
+ C1

( r

R

)γ+−2α

+ C2

( r

R

)γ−−2α

, (10)

where γ± = −(3−α)±(1+10α+α2)
1
2

2
and C1,2 are constants.

Asymptotically flat rotation curves

To understand the implications of the vacuum solutions (10), which have no analogue in

Einstein gravity with (at least) standard matter couplings, let us explore if these could be

used to model the galactic halo which is assumed to be spherically symmetric. In particu-

lar, the intriguing question is, if these exact solutions could reproduce the non-Newtonian

behaviour of rotation curves for spiral galaxies.

The circular velocity v2(r) = rf ′

2f
[16] of a massive test particle moving in this geometry

(at the equatorial plane θ = π
2
), under the practical assumption that the effect of the

cosmological constant is negligible within the halo (χ ≈ 0), is found to be:

v2(r) =
α

1+α+α2 +
1
2
C1γ+

(

r
R

)γ+−2α
+ 1

2
C2γ−

(

r
R

)γ−−2α

1
1+α+α2 + C1

(

r
R

)γ+−2α
+ C2

(

r
R

)γ−−2α

Noting that γ+ = −1 + 3α + o(α2), γ− = −2 − 2α + o(α2), the expression above implies:

v2(r) → α as r → ∞. This corresponds precisely to an asymptotically flat rotation curve,

where the small parameter α in the halo metric should be interpreted as the limiting rotation

velocity of the test particle at the flat region.
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Effective density, pressure and the mass function

It is worthwhile studying what the solution (10) implies from the perspective of an emer-

gent 4D Einstein gravity. Defining an energy-momentum tensor in an effective sense as

R̄ab −
1
2
gabR̄ = T

(eff)
ab , we find the effective density and pressures as:

8πρ(eff) =
α(1 + α)

1 + α + α2

1

r2
− (1 + γ+ − 2α)

C1

R2

( r

R

)−2+γ+−2α

− (1 + γ− − 2α)
C2

R2

( r

R

)−2+γ−−2α

,

8πP (eff)
r =

α(1− α)

1 + α + α2

1

r2
+ (1 + γ+)

C1

R2

( r

R

)−2+γ+−2α

+ (1 + γ−)
C2

R2

( r

R

)−2+γ−−2α

,

8πP
(eff)
θ =

α2

1 + α + α2

1

r2
− (1 + γ+ − α)

C1

R2

( r

R

)−2+γ+−2α

− (1 + γ− − α)
C2

R2

( r

R

)−2+γ−−2α

= 8πP
(eff)
φ (11)

Thus, the halo metric corresponds to anisotropic (effective) pressure. In fact, it could be

shown in this context that a solution with asymptotically flat rotation curve cannot exhibit

an isotropic (effective) pressure, since the (Schwarzschild) metric (8) with B2 = 0 turns out

to be the unique solution of eq.(7) under the demand Pr = Pθ = Pφ.

If we define a spatially averaged pressure as P̄ = 1
3
(Pr + Pθ + Pφ), then we find: P̄ = 1

3
ρ.

This equation of state correctly captures the traceless nature of T
(eff)
ab . The effective mass

function is obtained below by integrating the density over 3-space:

m(r) =
α(1 + α)

2(1 + α + α2)
r −

C1R

2

( r

R

)1+γ+−2α

−
C2R

2

( r

R

)1+γ−−2α

+ m0, (12)

where the constant m0 depends on the lowest value of r till which the solution (10) is

acceptable. Since the metric must be joined to some interior solution at this small radius,

the apparent divergence of m(r) at r = 0 is not relevant. Note that the second and third

terms go as rα and r−1−4α respectively (upto o(α2)), leaving the linear term as the leading

one at sufficiently large distances. This precisely reflects the behaviour expected for flat

rotation curves.
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III. OBSERVATIONAL PREDICTIONS: DEFLECTION OF LIGHT

In reality, the galactic halo does not extend to infinity. It would be more practical to join

the halo metric to an asymptotically flat geometry, such that both these metrics are vacuum

solutions to the fundamental equations of motion (6). We choose the vacuum metric beyond

the halo to be Schwarzschild, obtained by setting B1 = −2M, B2 = 0 = χ in (8) where M

is the total mass enclosed within the halo radius RH .

Since the term involving C2 in the halo metric (10) has the fastest fall-off, it is reasonable

to assume C2 = 0 (along with χ = 0) in what follows next. Demanding continuity at the

boundary of the halo fixes the two constants C1 and R as:

C1 = −
2M

RH

+
α(1 + α)

1 + α+ α2
, R = RH (13)

From the null geodesic equation obeyed by a light ray at the equatorial plane (θ = π
2
)

of the halo, the angular distance covered in going from the radial distance (r0) at closest

approach from the centre of the halo to infinity is given by [16]:

∆φ =

∫

∞

r0

dr
dφ

dr
=

∫

∞

r0

dr

r

[

E2

L2

r2

fg
−

1

g

]−
1

2

= ∆φ1 +∆φ2 (14)

where E,L are the conserved quantities associated with the t and φ motions, respectively,

satisfying E2

L2 = f(r0)
r2
0

= f(r∗)
r2
∗

(r∗ denotes the distance at closest approach in the Schwarzschild

geometry). The last line in (14) reflects the fact that the integral is to be evaluated in two

parts, for the two regions r0 ≤ r ≤ RH and RH ≤ r < ∞, respectively. Under the weak-field

approximation, we have the condition: r0 ≈ (1− α+ 2M
r∗
)
1

2 r∗, which is equivalent to r0 ≈ r∗

for r0 >> M (2M being the Schwarzschild radius of the mass within the halo) at the leading

order. The total angle of deflection of the ray is then given by: δ = |2∆φ− π|.

Next, using the identity:

E2

L2

r2

fg
−

1

g
=

1

1 + α + α2

[

(

r

r0

)2−2α

− 1

]

×






1 + (1 + α + α2)C1

( r

R

)−1+α

(

r
r0

)2−2α

+
(

r
r0

)1−α

+ 1
(

r
r0

)1−α

+ 1






, (15)
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the result for ∆φ for the passage of the light ray within the halo becomes:

∆φ1 ≈

∫ RH

r0

dr

r
(1 + α)

1

2

[

(

r

r0

)2−2α

− 1

]−
1

2

×






1−

(1 + α + α2)C1

2

( r

R

)−1+α

(

r
r0

)2−2α

+
(

r
r0

)1−α

+ 1
(

r
r0

)1−α

+ 1







=
(1 + α + α2)

1

2

1− α
tan−1

[

(

RH

r0

)2−2α

− 1

]
1

2

−
(1 + α + α2)

3

2C1

2(1− α)

[

(

RH

r0

)2−2α

− 1

]
1

2 2
(

RH

r0

)1−α

+ 1
(

RH

r0

)1−α

+ 1
, (16)

In writing the first line above, we have used the weak-field approximation for the term

involving C1, since such a limit is applicable to galactic spacetimes. The remaining contri-

bution to the deflection from the halo boundary to infinity, upon using the expansion for a

weak Schwarzschild potential (2M
r

<< 1), is evaluated as:

∆φ2 ≈

∫

∞

RH

dr

r

(

r2

r2
∗

− 1

)−
1

2
[

1 +
M

r
+

Mr

r∗(r + r∗)

]

=
π

2
+

2M

r∗
− tan−1

[

(

RH

r∗

)2

− 1

]
1

2

−
M

RH

[

(

RH

r∗

)2

− 1

]
1

2
(

2RH

r∗
+ 1

RH

r∗
+ 1

)

, (17)

As a result, the total deflection angle upon using the expression for C1 reads:

δ =
4M

r∗
+

2(1 + α+ α2)
1

2

1− α
tan−1

[

(

RH

r0

)2−2α

− 1

]
1

2

+
(1 + α + α2)

3

2

(1− α)

(

2M

RH

−
α(1 + α)

1 + α+ α2

)

×

[

(

RH

r0

)2−2α

− 1

]
1

2 2
(

RH

r0

)1−α

+ 1
(

RH

r0

)1−α

+ 1

− 2 tan−1

[

(

RH

r∗

)2

− 1

]
1

2

−
2M

RH

[

(

RH

r∗

)2

− 1

]
1

2
(

2RH

r∗
+ 1

RH

r∗
+ 1

)

(18)

Note that for r0 = r∗ = RH , which implies that the light ray passes only through the

Schwarzschild geometry without entering the halo, we recover the standard result: δ = 4M
r∗
.

Evidently, the presence of the halo leads to an enhancement in the deflection compared to

the Schwarzschild bending. This effect is characterized completely by the ratio RH

r0
≈ RH

r∗
,

given the asymptotic rotation velocity. For C1 = 0, reflecting a scenario where the light ray
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enters only the outer region of the halo where the rotation velocity becomes flat, the total

deflection reads:

δ =
4M

r∗
+

2(1 + α + α2)
1

2

1− α
tan−1

[

(

RH

r0

)2−2α

− 1

]
1

2

− 2 tan−1

[

(

RH

r∗

)2

− 1

]
1

2

−
2M

RH

[

(

RH

r∗

)2

− 1

]
1

2
(

2RH

r∗
+ 1

RH

r∗
+ 1

)

(19)

We observe that upon using r0 = r∗ this matches the o(α) result presented in ref.[16], which

considers only the asymptotic part of halo geometry.

Infinitely extended halo

Next, we consider the limit of very large galactic halo radii preserving the earlier assump-

tions. Using the fact that α << 1 (the rotational velocities being nonrelativistic), the term

involving C1 in the halo metric (10) may be identified as the baryonic mass term with a

small radial variation:

m(r) ≈ −
C1R

2

( r

R

)α

(20)

Next, using the general expression (14) for ∆φ along with the identity (15) and performing

the integration from r0 to infinity for the halo metric, we obtain the deflection angle in this

case as:

δ ≈

[

(1 + α)
1

2

1− α
− 1

]

π +
4(1 + α)

3

2m(r0)

(1− α)r0
≈

4m(r0)

r0
+

3

2
πα+

10αm(r0)

r0
, (21)

ignoring o(α2) corrections. Thus, for a very large halo radius, the model predicts a constant

leading correction 3
2
πα to the Einsteinian bending encoded by the first term. Notably, this

value is lesser than the nonbaryonic contribution (2πα) predicted for a singular isothermal

halo within cold ‘dark matter’ model [17].

To emphasize, the results in (18) and (21) make the formulation here amenable to lensing

observations, and also to comparisons with standard ‘dark matter’ scenarios as well as with

other extra dimensional formulations such as the Braneworld model [18].
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IV. CONCLUSIONS

We have shown that asymptotically flat rotation curves emerge as exact dynamical solu-

tions of a purely geometric theory, which reflects a number of attractive features compared

to some other gravitational alternatives to ‘dark matter’. This theory is based on a re-

cent formulation of five dimensional gravity, where the fifth dimension has vanishing proper

length. This property is encoded through a degenerate vielbein (with one zero eigenvalue).

Among the static spherically symmetric solutions, the ones corresponding to asymptot-

ically flat rotation curves are associated with anisotropic effective pressure. Though in a

different context, the possibility of ‘dark matter’ models with nontrivial stresses have been

considered in the literature [19]. We note that the spatially averaged equation of state is

P̄
ρ
= 1

3
. The Newtonian class, on the other hand, corresponds to the generalized Einstein-

Maxwell-de Sitter geometries as the unique solution, providing a connect with Einstein

gravity in presence of a traceless energy-momentum tensor with cosmological constant.

We observe that the associated effective density within the halo, apart from the r−2

behaviour required for the flatness of rotation curves at sufficiently large distance, also

exhibits r−3 and r−4 contributions (upto relativistic corrections) which should dominate

at scales significantly smaller than the halo radii. These encode the substructure of the

rotation curves. Notably, these resemble the large distance behaviour of two well-known

density profiles motivated from CDM simulation results, e.g. NFW (r−3) [20] and Hernquist

(r−4) [21], respectively. A deeper study in this regard could be pursued elsewhere.

Finally, we obtain the deflection angle of a light ray as it passes through the halo metric

joined to an asymptotically flat spacetime. The correction with respect to the standard

Schwarzschild result is obtained as a function of α = v2

c2
and r0

RH

, the ratio of the distance

of closest approach to the halo radius. Since α could be determined empirically from the

rotation curve, this provides the hope that lensing observations for a given r0
RH

could be

used to test the model set up here. In the case of very large halo radii, we obtain the

leading correction to the Einstein bending to be 3
2
πα. This provides an intriguing contrast

with the predicted value for the standard CDM halo modelled as an isothermal sphere.

Furthermore, the full correction including the subleading ones could be used to distinguish

this formulation of five-dimensional gravity built upon a noninvertible vielbein from other

existing extra dimensional scenarios, in particular from those which could lead to similar 4D

10



emergent theories.
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