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We propose a methodology to measure the cosmological spatial curvature by employing the de-
viation from statistical isotropy due to the Alcock-Paczyński effect of large scale galaxy clustering.
This approach has a higher degree of model independence than most other proposed methods, being
independent of calibration of standard candles, rulers, or clocks, of the power spectrum shape (and
thus also of the pre-recombination physics), of the galaxy bias, of the theory of gravity, of the dark
energy model and of the background cosmology in general. We find that a combined DESI-Euclid
galaxy survey can achieve ∆Ωk0 = 0.057 at 1σ C.L. in the redshift range z < 2 by combining
power-spectrum and bispectrum measurements.

I. INTRODUCTION

The spatial curvature Ωk0 has been one of the most in-
vestigated cosmological parameters over the last decades.
It is a standard degree of freedom of the Friedman-
Lemaître-Robertson-Walker metric, with a very impor-
tant role in our understanding of the universe. The pos-
sibility of a non-flat universe thus continues to captivate
both researchers and laymen.

The first strong observational constraints on flatness
came from the measurements of the first peak of the Cos-
mic Microwave Background (CMB) angular power spec-
trum [1]. Since then, high-resolution maps of the CMB
have continued to tighten these constraints and the cur-
rent best one comes from the Planck satellite. There
is, however, a strong debate on which are the current
most reliable measurements. The combination of temper-
ature, polarization and lensing yields Ωk0 = −0.0106 ±
0.0065 [2], consistent with flatness. But the CMB lensing
itself is too large to fit the standard ΛCDM model [3, 4].
Dropping lensing, one gets −0.095 < Ωk0 < −0.007 at
99% CL [5], favoring a closed universe. This disagree-
ment highlights the fact that CMB measurements are
always performed within a cosmological paradigm which
requires assuming a specific model for both the early and
late universes.

Curvature can also be measured through its effects on
the late-time universe. In particular, it affects measure-
ments of the luminosity (DL) and angular diameter (DA)
distances, of the expansion rate (H(z)) and of both weak
and strong lensing. A large number of works analyzed
combinations of these observables to constrain curvature
independently from the CMB. Several of these made use
of the so-called cosmic chronometers (CC) to infer H(z)
and constrained Ωk0 by combining H(z) with supernova
distances (SN) [6–12], with BAO [10, 12–14], or with lens-
ing [15]. The obtained uncertainties on Ωk0 are around

∼ 0.1 − 0.2. However, CC are based on modelling pas-
sively evolving galaxies, and their accuracy level is still
under debate [16]. Without CC, constraints on Ωk0 were
also obtained with precision ∼ 0.5 − 0.9 combining su-
pernova distances and lensing [17]. A promising av-
enue to avoid CC relies on measurements of the large-
scale structure (LSS) alone, since radial and transver-
sal correlations allow measurements of both DA(z) and
H(z). The recent DESI 2024 results using BAO alone
obtained Ωk0 = 0.065+0.068

−0.078 (0.087+0.100
−0.085) assuming the

ΛCDM (ow0waCDM) model [18].
Forecasts on Ωk0 have also been performed using weak-

lensing from Euclid or LSST [19]; intensity mapping [20];
supernovae and BAO [11]; standard sirens [21, 22] and
the clustering of standard candles [22, 23].

One important recent concern in the field has been
to push for model-independent measurements. Non-
parametric fits have been employed to mitigate late-time
modelling using Gaussian Processes [7, 11, 12, 24], poly-
nomial fits [9] or smoothing techniques [25]. Another
option is to use directly the measurements of DA and H
in different redshift bins [6, 26]. Here we follow the latter
approach.

This late-time model-independence has the advantage
of being robust with respect to uncertainties related to
dark energy, which is important since there are hints of a
tension with late-universe data (e.g. [18, 27]). We remark
that model-independence however can also be extended
to the early universe, as we will discuss below, which
makes results also robust against non-standard early uni-
verse physics. In fact, the current Hubble tension has
sparked interest in more exotic early universe scenar-
ios as a possible explanation [28]. Extending model-
independence to the early universe means we do not
have to assume that P (k) has the ΛCDM shape, or is
parametrized by a restricted set of parameters, for in-
stance the Alcock-Paczyński (AP) parameters α∥, α⊥,
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plus the growth rate f and the normalization σ8 as in,
e.g., [29] where, moreover, the non-linear corrections were
evaluated only for the ΛCDM model. Thus, to the best of
our knowledge, no work so far has investigated the pos-
sibility of measuring the spatial curvature in the same
model-independent way that we propose in this paper.

In this work we employ the FreePower method [30–32].
FreePower extracts cosmological information in a purely
geometrical way through the AP effect by binning the
spectra in k-wavebands. The AP effect depends only on
the dimensionless expansion rate E and the dimensionless
comoving angular diameter distance LA

E(z) ≡ H(z)/H0 , LA(z) ≡ H0DA(z) . (1)

Instead of choosing a particular cosmological model, the
method leaves free to vary, in each redshift bin, the func-
tions f , E and LA together with all necessary nuisance
parameters. We take as data the one-loop power spec-
trum and tree-level bispectrum of galaxy clustering. Our
strategy is to use only the AP effect to constrain both
E and LA while ensuring that the clustering correlators
are written down in the most model-independent way
and all relevant parameters are marginalized over. We
adopt for the non-linear correlators the general expres-
sions derived in [33], which is based on general consider-
ations of symmetry rather than on specific models. Our
basic parameters are then 25 values of the linear P (ki)
in the k interval 0.01 − 0.25 h/Mpc, plus, for each red-
shift bin, f , E and LA, seven bias and bootstrap param-
eters, a smoothing velocity dispersion and a countert-
erm parameter, and finally three shot noises. In total,
we have 15 parameters for each redshift bin plus 25 k-
band parameters. We adopt two cut-off schemes: a more
“aggressive” one, which is our default scheme, in which
we take kmax = 0.25 h/Mpc for the power spectrum and
kB

max = 0.1 h/Mpc for the bispectrum; and a “conserva-
tive” one, in which the two cut-offs are 0.20 h/Mpc and
0.08 h/Mpc, respectively. We assume that f does not de-
pend on k in the interval here considered. This is not
a fundamental limitation, as we have shown in [31], but
it is a safe approximation in many models (e.g., massive
neutrinos induce a variation of f with k of less than 1% in
the viable range, see e.g. [34]). More details in Ref. [32].

Our approach addresses therefore both the issue of im-
proving accuracy (being more model-independent than
other approaches) and improving precision (employing
the information in the one-loop spectrum and in the bis-
pectrum). Another crucial advantage of the FreePower
approach is that we can derive constraints directly on the
dimensionless variables E and LA, and thus directly on
Ωk0. This is in contrast with using the popular combi-
nation CC and SN or standard sirens, which constrains
only the quantity Ωk0H2

0 , and thus requires either an ex-
tra probe to constrain H0 or an extrapolation of the H(z)
data to z → 0 to break the degeneracy.

z V 103 ng b1

[Gpc/h]3 [h/Mpc]3

0.1 0.263 118. 1.41
0.3 1.53 11.9 1.57

D
E

SI

0.5 3.33 1.14 1.74
0.7 5.15 1.07 1.15
0.9 7.22 1.54 1.26
1.1 8.61 0.891 1.34
1.3 9.66 0.521 1.42

E
uc

lid

1.5 10.4 0.274 1.5
1.7 11. 0.152 1.58
1.9 11.3 0.0899 1.66

TABLE I. Our forecast specifications and fiducials, based
on DESI and Euclid forecasts for the full surveys. We use
DESI BGS for z < 0.6, DESI ELG for 0.6 < z < 0.8 and
Euclid ELG for z > 0.8. For z < 0.6 we take values for the
bias parameters from the low-z BOSS results [35], while for
z > 0.6 we use the models in [36].

II. SPATIAL CURVATURE CONSTRAINTS

We applied the FreePower method to produce Fisher
matrix forecasts for a joint DESI and Euclid dataset. The
DESI survey [37, 38] is a ground telescope which will
produce a spectroscopic map covering 14000 deg2 of the
sky, covering the range z = (0−1.6) with a combination of
BGS, LRG and ELG galaxies [39]. The Euclid survey is
a space telescope, launched in 2023, that will map 15000
deg2 of the sky [40], covering the range z = [0.8−2.0]. We
adopted redshift bins of width ∆z = 0.2 centered on the
redshifts listed in the tables, and assume negligible cross-
bin correlations. We used DESI specifications (only for
BGS and low-redshift ELG in order to be conservative)
for the bins with z ≤ 0.8 and Euclid for 0.8 ≤ z ≤
2.0. The main details of the surveys and the fiducial
parameters are displayed in Table I. This is similar to
what was considered in [41]; the main difference with
respect to [32] is the inclusion of the low-z DESI bins.

As mentioned above, the AP effect distorts the
wavenumber k and the cosine angle µ in a way that de-
pends only on h ≡ E/Er and l ≡ LA/LA,r, where the
subscript r refers to the (arbitrary) reference cosmolog-
ical value adopted to convert distances and angles into
k, µ, such that µ = µrh/α and k = αkr, where [42–44]

α = l−1
√

µ2
r(h2l2 − 1) + 1 . (2)

Once we marginalize over all the other parameters, we
see that we can measure h(z), l(z) down to 2–3% in sev-
eral redshift bins in the aggressive case, as we show in
Table II. The marginalized Fisher matrix for h, l is the
main input for the next section.

The spatial curvature is related to E(z) = H(z)/H0
and to the dimensionless comoving angular diameter dis-
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z ∆f/f ∆h/h ∆l/l

0.1 0.072 0.038 0.024
0.3 0.052 0.023 0.015
0.5 0.044 0.019 0.013
0.7 0.034 0.022 0.018
0.9 0.031 0.019 0.016
1.1 0.03 0.018 0.015
1.3 0.032 0.019 0.015
1.5 0.039 0.021 0.017
1.7 0.049 0.025 0.02
1.9 0.063 0.031 0.026

TABLE II. Fully marginalized relative error forecast for all
redshift bins, (see [32] for a full description). Here and in
then rest of this work we report 1σ uncertainties.

tance LA(z) by a relation that in our h, l variables reads

Ωk0 =
(
h(∂zl)ErLA,r + hl

)2 − 1
l2L2

A,r

, (3)

where ∂z means derivative with respect to z. Notice that
in terms of E(z) and LA(z), Ωk0 is independent of H0,
as we discussed previously. Also, the expression above
is valid for both open and closed curvature. Therefore,
once we measure E, LA, we can also measure Ωk0.

We need then to propagate the constraints on h, l from
each bin, including their correlation, to Ωk0. Since Ωk0
depends in a non-linear way on the variables h, l, we
choose to propagate the errors numerically. We generate
105 random values of h, l in nB redshift bins i = 1, ..., nB

from a Gaussian multivariate distribution with means 1
in each bin and covariance given by the inverse of our
marginalized Fisher matrix for h, l. Then we discretize
Eq. (3)

Ωk,i =

[
hi

(li+1−li−1)
2∆z Er(zi)LA,r(zi) + hili

]2
− 1

l2
i LA,r(zi)2 , (4)

where ∆z is the bin size, and from every set of hi, li
with i = 2, ..nB − 1 we produce a value of Ωk,i. The
j−th value corresponding to the i-th bins is denoted as
Ωk,(i,j). These values are correlated. Then we estimate
the (nB − 2) × (nB − 2) covariance matrix of Ωk,(i,j):

CΩk,(i,n) =
〈
Ωk,(i,j)Ωk,(n,m)

〉
j,m

. (5)

The errors on Ωk0 for each bin are in Table III, while
in Fig. 1 we show the distribution for some redshift
bins. Since the distribution is well approximated by a
Gaussian, we can safely interpret the errors in the ta-
ble in the usual Gaussian way, i.e. as 68% confidence
regions. The variance of Ωk0 is obtained by projecting
the (nB − 2) × (nB − 2) Fisher matrix F = C−1

Ωk0
onto a

z FreePower FreePower ΛCDM
CV limit +Ωk0

0.3 0.769 0.735 0.250
0.5 0.365 0.325 0.140
0.7 0.244 0.207 0.110
0.9 0.240 0.198 0.097
1.1 0.205 0.161 0.090
1.3 0.218 0.143 0.089
1.5 0.263 0.134 0.095
1.7 0.351 0.129 0.110

combined 0.0572 0.0335 0.033

TABLE III. Forecast uncertainties on Ωk0 for each bin (and
combined). We also show the constraints for the standard
full-shape approach assuming ΛCDM.

z=0.3

z=1.1

z=1.7

all bins

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

Ωk0

FIG. 1. Numerical distribution of Ωk0 for two redshift bins.
The dashed curves are Gaussian fits. The continuous thicker
red curve is the likelihood when combining all bins.

single Ωk0. The result is simply

σ2
Ωk0

=
( ∑

i,j

Fij

)−1
. (6)

Finally, we obtain

σΩk0 = 0.057 (7)

at 68% for the aggressive specifications, and σΩk0 = 0.075
for the conservative ones. If only the power spectrum is
employed, then we get 0.094. If one artificially takes the
limit of infinite galaxy number density, then the cosmic-
variance limited value of 0.033 can be reached. These
results, and the comparison with ΛCDM, are in Table IV.
Let us remark that these results are not prior-dominated,
that is, the priors for each parameter have been chosen
to be much wider than the final constraints.

How do these numbers compare with other methods
with some degree of model independence? Forecasts
for Euclid data using the standard full-shape approach,
which assumes a parametrized shape of P (k), and as-
suming linear theory was valid up to (an optimistic)
kmax = 0.20h/Mpc were performed in [6]. They found
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method combined σΩk0

FreePower P+B 0.057
FreePower conservative P+B 0.075
FreePower CV limit P+B 0.033
FreePower only P 0.094
ΛCDM full shape P+B 0.033
ΛCDM full shape only P 0.037
ΛCDM full shape P+B+CMB 0.0021

TABLE IV. Results combining all redshift bins. Note that
CMB can only be added by considering a model for both
early and late times. P stands for using the power spectrum
alone while P+B adds also the bispectrum. CV limit denotes
the cosmic variance limit, i.e. ng → ∞.

σ(Ωk0) around 0.1−0.2 in 13 redshift bins, which if com-
bined would result in σ(Ωk0) = 0.033. A forecast for
Euclid + DESI was performed in [11] using the radial
BAO scale combined with Nancy Roman SN, resulting
in σ(Ωk0) = 0.026, but this assumes the BAO scale does
not evolve. Forecasts for 21cm intensity mapping for HI-
RAX combining with the CMB distance scale were also
performed in [20], resulting in σ(Ωk0) = 0.0085 for an
agnostic binned w(z) dark-energy model. Of course, as-
suming both an early and late-time model allows tighter
constraints. For instance, the same HIRAX+CMB con-
straints shrink to σ(Ωk0) = 0.0028 assuming wCDM.
Other methods also become very precise. Assuming the
ΛCDM model, using the clustering of Einstein Telescope
bright sirens and DESI BGS, σ(Ωk0) = 0.018 was fore-
cast by [22], while combining upcoming CMB with Eu-
clid BAO and weak-lensing could yield σ(Ωk0) = 0.0018
(degrading to 0.0088 for the wCDM model) [19].

We emphasize that, in contrast with our approach,
all these constraints have been obtained either assum-
ing specific parametrizations, or the reliability, accuracy
and correct calibration in general of standard candles and
clocks. For CC in particular, this requires assuming the
reliability and robustness of stellar population synthesis
models, which form the basis of the method, and that all
CC systematic effects can be kept under control.

Finally, in Fig. 2, we show how the uncertainty on
Ωk0 decreases with an increasing power spectrum cut-
off (keeping the bispectrum cut-off at 0.1 h/Mpc). The
sensitivity to kmax is relatively weak.

III. DISCUSSION

We presented a methodology to measure the late-time
cosmic spatial curvature that is independent of calibra-
tion of standard candles, clocks, or rulers, of the cos-
mological background, and of the power spectrum shape
and growth. This model-independent approach makes
use of the statistical isotropy of the Universe embedded
in the linear and non-linear power spectrum and bispec-
trum of galaxy clustering. We find that a combination of

0.14 0.16 0.18 0.20 0.22 0.24 0.26
0.056

0.058

0.060

0.062

0.064

0.066

0.068

kmax

σ
Ω
k0

FIG. 2. Scaling of σΩk0 versus kmax for the spectrum (keep-
ing fixed to kmax = 0.10h/Mpc the bispectrum value). The
bigger yellow dot represents our reference value. The method
has only a weak sensitivity to kmax values.

the DESI and Euclid surveys can constrain Ωk0 to within
0.057, a level competitive with several other less model-
independent methods.

One can further improve these constraints in a number
of ways, e.g. by adding other redshift bins or larger sky
areas, or combining different tracers of structure.

One can also consider external constraints on H, D
from standard candles or cosmic chronometers. We
tested adding strong external priors for either distance or
expansion constraints. We find that FreePower benefits
the most from the former: external distance data could
improve precision by a factor of almost three. However
this comes at the cost of assuming these independently
measured distances are free of biases and systematic ef-
fects in general.
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Appendix: Constraints on Ωk0 assuming ΛCDM

The results shown in this letter are obtained using the
FreePower method where the linear power spectrum is
not fixed by cosmology, while standard LSS analyses usu-
ally assume a specific model, ΛCDM, [35, 46–51], or its
generalizations, e.g. see [52–54]. We perform a Fisher
analysis using the same specifications and fiducial val-
ues listed in Table I adopting ΛCDM plus a non-zero
Ωk0. We use the code PyBird [55] (https://github.

http://feynarts.de/cuba
http://feynarts.de/cuba
https://github.com/pierrexyz/pybird
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com/pierrexyz/pybird), re-adapted to match the bias-
ing scheme of FreePower. We vary simultaneously the
cosmology, the bias and the small scales parameters.

It has been observed that, at the scales considered,
the one-loop power spectrum and the tree-level bispec-
trum are not very sensitive to some of the EFT param-
eters, such as the non-linear bias(es), the counterterms
and the shot noise, that are usually fixed or marginalized,
see [35, 50]. For this reason we fix the third order bias, the
next-to-next-to-leading order counterterm and the scale
dependent shot noise [55], while we leave free to vary all
the other bias parameters (a total of seven) in each red-
shift bin. We consider the monopole and quadrupole of
the two statistics, neglecting the correlation among dif-
ferent redshift bins as this effect has been shown to be

negligible [56].
The results of this ΛCDM forecast are reported in

Tables III–IV. Adding the bispectrum does not signifi-
cantly improve the constraints on the curvature parame-
ter: with P alone we obtain σΩk0 = 0.037 (0.073) at 68%
(95%) CL while with P +B we have σΩk0 = 0.033 (0.065)
at 68% (95%) CL. These results are in line with the analy-
sis performed in [57], and analogous analyses have shown
that the bispectrum is essential to constrain the non-
linear biases but adds little information about cosmology
compared to the P only case [48]. Furthermore, if we in-
clude Planck CMB data [2] we obtain σΩk0 = 0.0021, ten
times better than LSS alone. This results illustrate how,
assuming a particular model, the combination of LSS and
CMB data is capable of breaking important degeneracies
among the cosmological parameters.
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