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The migration of grain boundaries leads to grain growth in polycrystals and is one mechanism
of grain-boundary-mediated plasticity, especially in nanocrystalline metals. This migration is due
to the movement of dislocation-like defects, called disconnections, which couple to externally ap-
plied shear stresses. While this has been studied in detail in recent years, the active disconnection
mode was typically associated with specific macroscopic grain boundary parameters. We know,
however, that varying microscopic degrees of freedom can lead to different atomic structures with-
out changing the macroscopic parameters. These structures can transition into each other and are
called complexions. Here, we investigate [111] symmetric tilt boundaries in fcc metals, where two
complexions—dubbed domino and pearl—were observed before. We compare these two complexions
for two different misorientations: In Σ19b [111] (178) boundaries, both complexions exhibit the same
disconnection mode. The critical stress for nucleation and propagation of disconnections is neverthe-
less different for domino and pearl. At low temperatures, the Peierls-like barrier for disconnection
propagation dominates, while at higher temperatures the nucleation is the limiting factor. For Σ7
[111] (145) boundaries, we observed a larger difference. The domino and pearl complexions migrate
in different directions under the same boundary conditions. While both migration directions are
possible crystallographically, an analysis of the complexions’ structural motifs and the disconnec-
tion core structures reveals that the choice of disconnection mode and therefore migration direction
is directly due to the atomic structure of the grain boundary.

I. INTRODUCTION

Grain boundaries (GBs) influence mechanical proper-
ties of polycrystalline materials and GB engineering is
critical in materials design [1]. The motion of GBs is the
key factor in the microstructure evolution of poycrys-
talline materials [2, 3]. When subjected to shear stress,
GBs move and can account for part of the plastic de-
formation in nanocrystalline materials [4–7]. Some of the
GB-related deformation mechanisms discussed in the lit-
erature are GB sliding [8–11], grain rotation [12–16],
shear-coupled GB migration [17–35], diffusional creep
[6, 36], dislocation interaction at GBs [4, 6, 36, 37], and
enhanced partial dislocation activity [4, 6, 36, 37].

Shear coupling is the migration of GBs driven by shear
stress across the GB plane [20, 25, 38]. It can lead to com-
plex effects during grain growth in a polycrystal, such as
grain rotation, stress generation, and grain growth stag-
nation, which are all inter-related [16]. A shear coupling
factor β = v∥/v⊥ describes how a GB migrates: A rel-
ative shear velocity v∥ of the two grains parallel to the
GB is coupled directly to the GB migration velocity v⊥
normal to its plane [13, 20, 39, 40]. This factor β is influ-
enced by parameters such as temperature, bicrystallogra-
phy, and the type of the driving force [41]. The existing
models of conservative GB kinetics, such as the GB dis-
location model [13, 20], the shear migration geometrical
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model [25, 42], and GB disconnections [20, 38–40, 43, 44]
are used to explain the effect of GB geometry on shear-
coupled motion. Microscopically, shear-coupled motion
is caused by the movement of disconnections, which are
line defects at the GB [39, 40, 45, 46]. Disconnections
have dislocation character insofar that they have a Burg-
ers vector b, which couples to externally applied stress.
They also lead to a step of size h in the GB, which results
in the GB migration normal to its habit plane during dis-
connection nucleation and movement [38, 47]. The shear
coupling factor β arises directly from the coupling of b
to h. Consequently, the formation and migration of dis-
connections play a vital role in the kinetic properties of
GBs [48–52] and pre-existing mobile disconnections lead
to a reduced stress required for GB migration [53].

There are several possible disconnection modes (com-
binations of b and h) that can be activated during
shear-coupled motion. Prior works have considered the
choice of active mode based on macroscopic GB parame-
ters (bicrystallography), as well as magnitude of applied
stress and temperature [20, 33, 40, 41, 49, 51, 54, 55].
However, even GBs with the same macroscopic parame-
ters can exhibit different atomic structures due to the mi-
croscopic degrees of freedom. Such differences in atomic
GB structure and first-order transitions between them
were observed even in pure metallic materials [56–63].
These different structures can be treated as interface
phases, which can only exist in contact with the abut-
ting crystallites, and can be treated using a thermo-
dynamic framework [64–69]. They are called complex-
ions [70–73] or GB phases [74]. Complexion transitions,

ar
X

iv
:2

40
4.

13
12

6v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
9 

A
pr

 2
02

4

mailto:dehm@mpie.de
mailto:t.brink@mpie.de


2

then, are analogous to bulk phase transitions: The GB
structure, composition, and properties change discontin-
uously at critical values of thermodynamic parameters
such as temperature, pressure, and chemical potential
[68–70, 72–74]. Until now, there is only one study [75]
that reports that two complexions in Σ5 [001] (210) tilt
GBs have different signs of the shear coupling factor. This
emphasizes that complexions can affect the choice of ac-
tive shear-coupling mode, but it was not reported why
this occurs. Furthermore, that study only covers a single
GB and more evidence would be needed to reveal if this
is a common phenomenon or an exceptional case.

In this paper, we thus report on the shear-coupled mo-
tion of Σ19b [111] (178) and Σ7 [111] (145) symmetric
tilt GBs, which are of interest because they both have
two possible complexions, named domino and pearl [61–
63]. We find that the complexions of the Σ7 GB also ex-
hibit different shear-coupling factors β and explain how
the choice of β is due to their structural motifs. The
Σ19b complexions both have the same β, but vary in the
critical shear stress needed to activate the shear-coupled
motion, which we investigate in detail.

II. COMPUTATIONAL METHODS

We studied bicrystals with symmetric tilt GBs using
molecular dynamics (MD) simulations, which were per-
formed using LAMMPS [76, 77] with the embedded atom
method (EAM) potential of Mishin et al. [78]. This po-
tential reproduces some properties of Cu very well, com-
prising elastic constants, phonon frequencies, thermal ex-
pansion, intrinsic stacking fault energy, the coherent twin
boundary energy, and others. We used a time integration
step of 2 fs for all dynamics simulations.

The bicrystals for Σ19b [111] (178) symmetric tilt GBs
(misorientation of 46.83◦) were created by constructing
two fcc crystals with the desired crystallographic orien-
tations [532], [178], [111] in x, y, z directions for the
top crystal and [352], [718], [111] for the bottom crys-
tal [Fig. 1(a)]. Here, y is the GB normal and z the tilt
axis. The x and z directions were periodic and we used
open boundaries in y direction, allowing us to produce
differently-sized cells by repeating the unit cell along the
periodic directions. Similarly, the bicrystals for Σ7 [111]
(145) symmetric tilt GBs (misorientation of 38.21◦) were
created by constructing two fcc crystals with the desired
crystallographic orientations [321], [145], [111] in x, y, z
directions for the top crystal and [231], [415], [111] for
the bottom crystal (Table I).

The GB structures were formed by combining the two
crystallites, sampling the microscopic degrees of freedom
by displacing the top crystal, and minimizing the result in
molecular statics (γ-surface method). We did this until
the previously reported pearl and domino complexions
for both the GBs [61–63] were found (we evaluated that
structure, GB energy, and excess volume match). The
minimum energy GB structures for domino and pearl are

TABLE I. Symmetric Σ tilt GBs used to study shear coupled
GB motion.

CSL type Σ7 Σ19b
Misorientation 38.21◦ 46.83◦

Tilt axis [111] [111]
GB planes (145) (415) (178) (718)

visualized using OVITO [79] and are shown in Fig. 2.

The periodic unit cell dimensions of the Σ19b GB were
Lx = 11.142 Å and Lz = 6.261 Å. We used Ly ranging

from 385.317 Å to 5790.070 Å (see below). The periodic
unit cell dimensions of the Σ7 GB were Lx = 6.763 Å
and Lz = 6.261 Å, with Ly ranging from 210.487 Å to

1171.61 Å. These unit cells were used as building blocks
that can be repeated along the periodic x and z direc-
tions.

For the simulation of shear-coupled GB motion of
Σ19b, we used a simulation cell of size 222.814×385.317×
62.613 Å

3
(20 × 20 × 10 unit cells, resulting in 455,400

atoms) unless specified otherwise. For Σ7, a simulation

cell of size of 135.258× 210.487× 62.613 Å
3
(20× 18× 10

unit cells, resulting in 151,200 atoms) was used. We
started by using molecular statics simulations (T = 0K)
and applying a displacement on the top boundary in x
direction and keeping the bottom boundary fixed. Both
boundaries were the regions at the surfaces (in y direc-
tion). Each boundary region is with an extent of 55 Å
for the Σ19b GBs and an extent of 30 Å for the Σ7 GBs
(Fig. 2). To study GB migration in domino and pearl, the
shear displacement d was applied stepwise in increments
of 0.05 Å, while minimizing the system after every step.
We calculated the resulting shear stress by dividing the
reaction force at the boundary by the area Lx×Lz of the
top boundary.

Then, MD simulations were performed in the canoni-
cal ensemble (Nosé–Hoover thermostat at T = 100, 200,
300, 400, 500, 600K). At finite temperatures, the sys-
tem was scaled to obtain the correct lattice constant at
the desired temperature T and then equilibrated for 4 ns.
In this simulation procedure, we applied a velocity in x
direction to the top boundary, while keeping the bot-
tom boundary fixed (see Ref. [20] and Fig. 2). The top
boundary was allowed to move freely in y and z direc-
tion. Shear-coupled simulations were performed for shear
velocities in the range from 0.01m/s to 10m/s. We typ-
ically applied a constant shear velocity of 0.1m/s unless
otherwise noted. Shear stress was calculated as for the
molecular statics simulations.

Disconnection dipoles observed in both the complex-
ions during shear-coupled motion were constructed man-
ually to obtain disconnection formation and migration
energies. The disconnection dipoles were constructed for
different dipole widths δ (separation distance between the
two disconnections). This is similar to the construction
of disconnections as described in Refs. [80, 81]: Bicrys-
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FIG. 1. (a) Schematic of the bicrystallography of a Σ19b
[111] (178) symmetric tilt GB, marked as bicrystal A. Top
and bottom fcc crystals are joined in the indicated orienta-
tions, leading to a misorientation between the two crystals of
46.83◦. Similar GB construction followed for Σ7 [111] (145)
symmetric tilt GB (Table I). (b) Bicrystal B has a GB that is
moved by one migration step compared to bicrystal A. This
was achieved by moving the GB plane by a step height and
shifting the top crystal by the corresponding Burgers vector
before minimization. (c) Schematic of the construction of the
disconnection dipole with opposite Burgers vectors by assem-
bling a simulation cell from bicrystals A and B. By varying
the number of B unit cells, the dipole width δ between dis-
connections can be controlled. Periodic boundary conditions
were applied in x and z directions and open boundary condi-
tions in y direction.

tals A and B were generated such that they contain
the same complexion [Fig. 1(a)–(b)]. The GB in bicrys-
tal B was moved by one step height compared to A.

By replicating A and B and assembling them (e.g., as
AABBBAA), two disconnections with opposite Burgers
vectors appear at the junctions . . . AB. . . and . . . BA. . .
[Fig. 1(c)]. By varying the number of B unit cells, the
separation δ between disconnections can be controlled.
We calculated the energy of the disconnection dipoles in

simulation cells of sizes 1114.220 × Ly × 6.261 Å
3
(100

unit cells in x direction). To ensure convergence with Ly,

we used values from Ly = 964.490 Å (5.6× 105 atoms) to

5790.070 Å (3.4 × 106 atoms). We found that the dipole
energies converged at Ly = 1929.540 Å, corresponding to
100× 100× 1 unit cells with 1.1× 106 atoms (see Fig. S1
in the supplemental material (SM) [82]). For Σ7, we also
used 100× 100× 1 unit cells, resulting in simulation cells

of size 676.304×1171.61×6.261 Å
3
with 4.2×105 atoms.

The energy of the resulting disconnection dipole is

Edipole =
E1 − E0

Lz
, (1)

where E0 is the energy of a system with a GB but no
disconnection, E1 is the energy of the same system with
a disconnection dipole, and Lz is the width of the system
along the disconnection lines. The dipole energy consists
of core energies for each disconnection and an elastic in-
teraction energy [40, 53, 83, 84]:

Edipole = 2Ecore + Eelastic. (2)

Sometimes the core energy is split into a core and step
energy, where the energy cost of the GB step is consid-
ered separately. Here, we will consider the core and step
energy in terms of a single core energy. The elastic inter-
action energy is [84]

Eelastic = Kb2 ln

(
δ

δc

)
, (3)

where K is the energy coefficient describing the
anisotropic crystal elasticity [84] and δc is the discon-
nection core size. Eqs. 2 and 3 can be simplified by a
mathematical trick: we can “hide” the core energies by
defining δ0 = δc exp(−2Ecore/(Kb2)) and writing

Edipole = Kb2 ln

(
δ

δ0

)
. (4)

The length δ0 is now an effective core size without di-
rect physical meaning, but Eq. 4 can be fitted directly to
the dipole energies obtained by molecular statics simula-
tions without knowledge of Ecore. With periodic bound-
ary conditions along the x and z directions in a bicrystal
simulation, the energy of pair of disconnections is given
by [29, 40, 50]

Edipole = Kb2 ln

(
sin(πδ/Lx)

sin(πδ0/Lx)

)
, (5)

taking into account the image interactions. When Lx is
infinite, Eq. 5 reduces to Eq. 4. In our simulations of the
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Σ19b GBs, we considered the periodic case with a simu-
lation box size of 1114.220 Å×Ly×6.261 Å. We varied Ly

to verify that there are no size effects for Ly ≥ 1929.540 Å
(Fig. S1, Tables S1 and S2 in the SM [82]).

The energy of the disconnection dipole is maximum at
the disconnection dipole width δ∗ = Lx/2, and its value
is

E∗
dipole ≈ Kb2 ln

(
Lx

πδ0

)
(6)

for periodic boundary conditions and δ0/Lx ≪ 1.
Finally, in order to obtain the barriers for the migration

of the disconnections themselves, the minimum energy
path for a change of the disconnection dipole width δ was
obtained by nudged elastic band (NEB) method calcula-
tions [85, 86]. The spring constants for the parallel and

perpendicular nudging forces were both 1.0 eV/Å
2
. The

minimization scheme used was quickmin [87]. The ini-
tial and final states of the minimum energy path are the
GB structures with disconnection dipole widths δ vary-
ing by 11.142 Å and 6.763 Å for Σ19b and Σ7, respectively
(equivalent to a CSL periodicity vector and thus the dis-
tance between two local minima for the disconnections).
The saddle point observed along the minimum energy
path is the required disconnection migration barrier (dif-
ference in minimum and maximum energy observed along
minimum energy path).

Raw data for all simulations and analyses is available
in the companion dataset [88].

III. RESULTS AND DISCUSSION

A. Shear coupling factor

We investigated Σ19b [111] (178) and Σ7 [111] (145)
symmetric tilt GBs in copper, which each exhibit both
a pearl and a domino complexion (Fig. 2). These two
complexions in the Σ19b GB can each be thought of as
consisting of two alternating motifs, designated L and R
[Fig. 2(a)–(b)]. We simulated their shear-coupled motion
by applying a shear displacement d. The result for the
applied shear velocity v∥ = 0.1m/s after a simulation
time of 20 ns at 300K is shown in Fig. 2(c)–(d). Before
the simulations, atoms in a vertical line were marked
in yellow. This fiducial line highlights the atomic dis-
placements: The GB has moved in positive y direction
[Fig. 2(c)–(d)] from its original position (dashed line),
while the material was sheared in positive x direction.
The macroscopically applied displacement thus couples
to the GB migration. The slope of the fiducial line pro-
vides the ratio of GB migration distance to sliding and is
therefore equivalent to the inverse of the shear coupling
factor [13, 20, 39, 40]

βΣ19b =
v∥

v⊥
= 0.865, (7)

where v∥ is the shear velocity applied to the system and
v⊥ the velocity of GB migration. A more exact calcula-
tion method for β is provided in Appendix A. We note
that both complexions exhibit the same value of βΣ19b.
For the Σ7 GBs, we also find domino and pearl struc-

tures [Fig. 2(e)–(f)], but with some differences to the
Σ19b GBs. The domino complexion also consists of two
alternating motifs, but they partially overlap. We there-
fore designate these motifs as lower-case l and r. The
pearl complexion, however, only has a single motif per
unit cell (here designated p). The results of the shear-
coupling simulations are shown in Fig. 2(g)–(h). We note
that the two complexions migrate in opposite directions
under the same applied boundary conditions and obtain
(see also Appendix A)

βpearl
Σ7 = +0.692 and (8)

βdomino
Σ7 = −1.734. (9)

To understand this, we need to look more closely at the
GB migration mechanism.

B. Origin of the active disconnection modes

It is known that line defects with dislocation charac-
ter can exist on GBs [38–40, 45–47]. These are called
secondary GB dislocations or disconnections and possess
both a Burgers vector b (leading to the dislocation char-
acter) and a step height h. Disconnections can only exist
on and move along the GB, where they also introduce
a step of the GB plane. Similar to a bulk dislocation,
the structure of the GB on both sides of the disconnec-
tion is undisturbed. Thus, the Burgers vectors must be
a displacement shift complete (DSC) vector. The DSC
vectors can be obtained from the dichromatic pattern,
i.e., by plotting the crystal lattices of both crystallites on
top of each other (Fig. 3). The figure contains some ex-
ample Burgers vectors, using the notation bi/j [89]. The
vector starts on a crystallographic plane i parallel to the
GB plane and ends on plane j. The integers i and j cor-
respond to the distance of the plane from a coincidence
site, i.e., vector b−1/1 in Fig. 3(a) starts one plane below
the coincidence site (i = −1) and ends one plane above
(j = 1).
Since the glide plane of the active disconnections needs

to be equal to the GB plane, the shortest possible Burg-
ers vector for Σ19b is b−15/−15 = b4/4 = [0.586, 0, 0] Å
[Fig. 3(a)]. The possible step heights are obtained by
moving the top crystal by this shortest Burgers vector.
The new resulting coincidence sites nearest to the origi-
nal coincidence site position (gray circle) along ⟨178⟩ are
marked with a red circle and a black circle, respectively
[Fig. 3(b)]. The differences in the original and new co-
incident site positions along ⟨178⟩ result in step heights
(GB migration distance) h1 = 0.677 Å (4× h0) and h2 =

−2.535 Å (−15 × h0), with unit step height h0 = a/2
|178| .

The step height h1 is significantly smaller than the next
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FIG. 2. Atomic structures of the (a) domino and (b) pearl complexions of Σ19b [111] (178) symmetric tilt GBs in our computer
model. Both complexions consist of two repeating structural units (. . . LRLRLR. . . ). Shear coupling simulations for 20 ns with
a shear velocity of 0.1m/s at 300K lead to a migration distance on the order of 2 nm in the positive y direction for both (c)
domino and (d) pearl. Atomic structures of the (e) domino and (f) pearl complexions of Σ7 [111] (145) symmetric tilt GB
in our computer model. Domino consist of two repeating overlapped structural units (. . . lrlrlr. . . ). Pearl instead consist of a
single repeating structural unit (. . . ppp. . . ). Shear coupling simulations for 16 ns lead to a migration distance on the order of
0.8 nm in the negative y direction and 2.1 nm in the positive y direction for (g) domino and (h) pearl, respectively. The red
and blue atoms belong to the GBs, the gray atoms are fcc atoms, and the brown atoms represent the boundary. Shear-coupled
GB motion is highlighted by the yellow fiducial mark, which exhibits a slope (equivalent to β−1) in the region traversed by the
GB. The initial GB positions are indicated by the dashed lines.

possible value, leading to the lowest step energy and thus
the lowest Ecore out of all possible step heights. The only
disconnection mode, which appears for both domino and
pearl, is thus (b, h) = ([0.586, 0, 0] Å, 0.677 Å), resulting
in β = bx/h = 0.865 as obtained in the previous section.

For Σ7, likewise, the shortest possible Burgers vector
along the GB plane is b−2/−2 = b5/5 = [0.966, 0, 0] Å

[Fig. 3(c)]. We obtain two step heights h1 = −0.557 Å
(−2 × h0) and h2 = 1.395 Å (5 × h0), with unit step

height h0 = a/2
|145| [indicated by red and blue circles in

Fig. 3(d)]. This would mean that only the mode with h1

should be active, having the lowest step energy.

To investigate why the pearl complexion in Σ7 GBs
nonetheless exhibits a step height of h2, we constructed
disconnection dipoles of all modes that were observed in
the shear-coupling simulations and minimized the sim-
ulation cells with molecular statics [see Methods and

Fig. 1(c)]. This leads to a pair of opposite disconnec-
tions, namely (b, h) and (−b,−h) with separation δ. Fig-
ure 4 shows the structure of the disconnection cores for
Σ19b and Σ7 of the active modes. We verified that we
obtained the desired defects by making a Burgers circuit
around them [32, 90, 91] (black atoms, see Figs. S2 and
S3 in the SM [82] for details on the calculation of the
Burgers vector and step height). When trying to con-
struct the modes with step height h2 for Σ7 domino
and h1 for Σ7 pearl (i.e., the modes that were not ob-
served), these disconnections were unstable and disso-
ciated into the favored disconnection mode plus an ad-
ditional step (Fig. 5). The active disconnection modes
thus have a lower core energy and favorable core struc-
ture, compensating for the higher step height h2 that
occurs for the pearl complexion. As a result, domino
has the mode (b, h) = ([0.966, 0, 0] Å,−0.557 Å), result-
ing in β = bx/h = −1.734, while pearl has the mode
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(a) (c)

(d)(b)
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FIG. 3. Dichromatic patterns of the bicrystals. Gray and black symbols represent the atoms from the two different grains.
Circle, triangle, and square indicate different layers along z (ABC stacking sequence). (a) Dichromatic pattern of the Σ19b [111]
(178) symmetric tilt GB in the xy plane. Four DSC vectors bi/j of low magnitude are marked by arrows, where i and j indicate
the starting and ending plane as counted from the coincidence site. The equivalent DSC vectors b4/4 = b−15/−15 are marked
with red and black arrows and lie within the (178) GB plane. They are therefore the shortest possible Burgers vectors occurring
during conservative shear-coupling (no climb). (b) Pattern after moving the top crystal by b4/4. If we imagine—without loss
of generality—that the original GB plane passed through the coincidence site marked by a gray circle, the new GB plane must
also pass through a coincidence site (red circle or black circle), because the GB structure must be equivalent before and after a
disconnection has moved through the GB. Possible new GB planes therefore move in ⟨178⟩ direction by step heights of either
h1 (observed in both domino and pearl) or h2 (not observed). At the same time, the new coincidence sites are also shifted along
the ⟨532⟩ (x) direction. This shift can be interpreted as a shift of the atomic strucure of the GB to the left or right. For h1, this
shift s1x corresponds to approximately half a unit cell, while for h2 the shift s2x is very small. (c) Dichromatic pattern of the
Σ7 [111] (145) symmetric tilt GB in the xy plane. The DSC vectors b5/5 = b−2/−2 (red and blue arrow) lie within the (145)
GB plane and are thus the relevant Burgers vectors for shear coupling. (d) Pattern after moving the top crystal by b5/5. We

similarly find the pairs h1/s
1
x and h2/s

2
x for possible new GB planes. For Σ7, however, both were observed: h1/s

1
x for domino

and h2/s
2
x for pearl.
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for (a) domino and (b) pearl of Σ19b. On the left, the discon-
nection is b = [0.586, 0, 0] Å, h = 0.677, with structural units
. . . LRLLRL. . . . On the right, we have the opposite discon-
nection (b = [−0.586, 0, 0] Å, h = −0.677) with structural
units . . . RLRRLR. . . . The disconnection core is therefore
equivalent to a shift of the structural motifs by half a unit
cell. (c) The same is observed for the domino complexion in
Σ7 (b = ±[0.966, 0, 0] Å, h = ∓0.557). (d) For pearl, how-
ever, there is no such shift in the motifs, and the . . . pppp. . .
structural pattern is uninterrupted in the disconnection cores
(b = ±[0.966, 0, 0] Å, h = ±1.394). The three dots between
the images indicate that the dipole width δ is greater than
shown here and the GB between the two disconnections is
elided. Burgers circuits are drawn around the disconnections
(black atoms) to verify the disconnection mode obtained after
minimization.
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disconnection dipole

...

...

b = [-0.966,0,0] Å 
h =-2 ho =-0.557 Å 

FIG. 5. Construction of the non-active disconnection dipoles
for Σ7 domino and pearl. When attempting to introduce
the disconnection mode (b, h) = ([0.966, 0, 0] Å, 1.394 Å) for
domino (a) and ([0.966, 0, 0] Å,−0.557 Å) for pearl (b), the
disconnections dissociate instead into the disconnections from
Fig. 4(c)–(d) and a step to compensate the difference towards
the imposed, unfavorable step height. This indicates that the
disconnection modes that were not observed during our shear-
coupling simulations are not stable (even in molecular statics)
due to their high core energy. Thus the structurally feasible
disconnections in Fig. 4(c)–(d) control the GB migration.

([0.966, 0, 0] Å, 1.395 Å), resulting in β = 0.692, as also
observed in the previous section.
Why are these specific core structures energetically fa-

vorable and why is there no difference in Σ19b? An an-
swer can be found by referring back to the dichromatic
patterns in Fig. 3. The vector between two equivalent
positions in the dichromatic pattern before and after ap-
plying a Burgers vector b possesses both a vertical (h)
and a horizontal component (sx). The former is of course
the step height, but the latter also has a physical meaning
and is not identical to the Burgers vector b. The com-
ponent sx determines how the atomic motifs on the GB
shift along the x direction, i.e., along the GB. For the
active modes in Σ19b and Σ7 domino, sx corresponds to
approximately half the unit cell. These structures also
contain two motifs in our nomenclature (L/R and l/r).
The disconnection core thus, e.g., results in a shift from
. . . lrlrlr. . . to . . . lrllrl. . . (cf. Fig. 4). When forcing the
Σ7 domino complexion to assume the other step height,
which is connected to sx ∼ 0, it would have to retain the
order . . . lrlrlr. . . for its motifs at the disconnection core.
Figure 5(a) shows that this seems to be energetically and
structurally very unfavorable, so that the lr defect disso-
ciates into an ll and an rr defect. In Σ7 pearl, on the other
hand, we only marked a single structural motif p in our
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unit cell. We can see from Figs. 4(d) and 5(b) that pearl
indeed prefers the . . . pppp. . . ordering and that splitting
the p-motif would be connected to an energy cost. Thus
pearl migrates with the mode h2, where s2x ∼ 0, which
leads to a low-energy disconnection core structure.

These results show that not all crystallographically
possible disconnection modes actually exist. Indeed, for
the same macroscopic GB parameters and for the same
boundary conditions of our shear-coupling simulations,
the atomic structure of both the complexions as well as
the disconnection cores determine which of these modes
will be active in a given complexion.

C. Critical stress of GB migration

While the Σ19b complexions exhibit the same shear-
coupling factor, it is nevertheless of interest if the critical
shear stress required for GB migration differs. In molec-
ular statics simulations, displacement was imposed and
the GB migration velocity v⊥ only depends on the ap-
plied shear velocity v∥ and β. In reality, it is often the
case that a given stress is applied, so a relevant figure
of merit is the critical stress τc required to start GB mi-
gration. This can be obtained by monitoring the reaction
forces at the boundary where the shear is applied. We
started with deformation in molecular statics (T = 0K).
As the displacement d increases, the shear stress τ in-
creases linearly in the elastic regime until stress drops
occur (Fig. 6). This saw-tooth behavior is similar to ear-
lier reported simulation studies [20, 22, 23, 29]. We note
that the residual displacement ds after unloading at the
first stress drop (dotted lines) together with the GB mi-
gration distance h after a single migration event [92] can
also be used to calculate β = ds/h. We obtain the same
values as earlier within the expected error bounds. Con-
tinuing the unloading simulations to negative displace-
ments until the first stress drop and then reversing the
loading direction again leads to the expected hysteresis.
The results for positive and negative displacement direc-
tions are symmetric.

For Σ19b only a single disconnection mode was ob-
served in all cases. However, we obtained different criti-
cal shear stresses τc for pearl (1.117GPa) and domino
(0.849GPa), meaning that the complexions affect the
activation barrier of the shear-coupled motion. In con-
trast, the differences in critical shear stress of the Σ7
complexions are expected due to the different discon-
nection modes. We find τc = 0.434GPa for pearl and
1.405GPa for domino. We also find that there is an ad-
ditional, small stress drop when reversing the displace-
ment direction for the pearl complexion (critical shear
stress τsc = 0.18GPa). The reason is that two degener-
ate states of the pearl complexion exist [63]. These are
slightly sheared either to the left or to the right [63]. Their
degeneracy disappears under applied shear stress, mean-
ing that depending on the direction of the applied dis-
placement, either one or the other state is stabilized. This
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FIG. 6. (a) Shear stress response to displacement at 0 K plot-
ted for domino and pearl of Σ19b GBs. Each shear stress drop
observed corresponds to a unit step GB migration. The maxi-
mum shear stress is the critical shear stress τc required for GB
migration. In inset, the residual displacement ds ≈ 0.550 Å is
the shear obtained for GB migration by a unit step for both
domino and pearl. The migration normal to the GB plane
from the initial position obtained from atomistic simulations
is 0.647 Å and 0.686 Å for domino and pearl, respectively. (b)
The same for Σ7 GBs, with ds ≈ 1 Å and migration distances
of −0.490 Å (domino) and 1.401 Å (pearl). When switching
the displacement direction, a transition between degenerate
microstates of the pearl complexion occurs at τsc (see inset).

only affects simulations where the displacement direction
is switched and does not influence the shear-coupled mo-
tion otherwise, which is why we do not further discuss
this effect.
In order to understand the differences in the critical

shear stress, we first obtained an estimate of the relative
formation energies of the disconnection dipoles. We use
the differences in dipole energy as discussed in Sec. II,
Eq. 5, for domino and pearl as an indicator of this. The



9

(a)

(b)

 Σ19b [111] (178)

200 300 400 500 600 700 800 900

Dipole length (Å)

100

105

110

115

120

125

130

E
d

ip
o
le

(m
e
V

/Å
) 

Domino

PearlΣ19b GB

540 550 560 570 580

Dipole length (Å)

114

116

118

120

122

124

126

128

E
d

ip
o
le

(m
e
V

/Å
) 

Domino

Pearl
Σ19b GB

Emig

Δδ =
 11.142 Å  

FIG. 7. (a) The formation energies Edipole of disconnec-
tions for different dipole widths δ of the disconnection mode
(b, h) = ([0.586, 0, 0] Å, 0.677 Å) are plotted for domino and
pearl complexions of Σ19b GBs. (b) Zoom of the gray area in
(a). The energies of dipoles during their migration (thick lines)
were obtained by NEB between the indicated local minima
(squares and circles). The difference in disconnection widths
of local minima taken for NEB study is given by ∆δ. The dis-
connection migration barrier Emig is highlighted by red and
blue arrows for domino and pearl.

dipole energy depends on the system size Lx and dipole
width δ, wherefore we constructed several dipoles with
different δ as described above. (An exploration of the
influence of Lx is provided in Fig. S4 in the SM [82].
The results follow the expectations from the theory in
Eq. 6.). Note that this is effectively a 2D model of dipole
formation as parallel disconnection lines instead of dis-
connection loops [40]. We found that the critical shear
stress is not affected by the thickness of our samples up
to the maximum investigated thickness of 12 nm (Fig. S5
in the SM [82]), which means that the present samples
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FIG. 8. The formation energies Edipole of disconnections
in Σ7 GBs for two different dipole widths δ are plot-
ted for (a) domino with the disconnection mode (b, h) =
([0.966, 0, 0] Å,−0.557 Å) and (b) pearl with the disconnection
mode ([0.966, 0, 0] Å, 1.394 Å). The energies of dipoles during
their migration (thick lines) were obtained by NEB between
the indicated local minima (squares and circles). The differ-
ence in disconnection widths of local minima taken for NEB
study is given by ∆δ. The disconnection migration barrier
Emig is highlighted by red and blue arrows for domino and
pearl.

are still thin enough that the 2D model applies to our
simulations. We will discuss the implications for experi-
mental samples and thick systems later, but for now use
the present results at the very least as a qualitative indi-
cator.

The data points (circles and squares) in Fig. 7(a) show
the results for Σ19b. While the dipole energy depends on
δ, the difference between domino and pearl is approx-
imately constant and disconnection dipoles in domino
complexions have a consistently higher energy. This con-
tradicts our findings that the critical stress to move Σ19b
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TABLE II. Disconnection dipole parameters obtained from
fitting Eq. (5) to Edipole from the simulations. We list the sys-
tem size Ly, the parameter K describing anisotropic crystal
elasticity, the effective disconnection core size δ0, the dipole
energy E∗

dipole for δ = Lx/2, and the Peierls barrier Emig, each
for the domino and pearl complexions. The dipole energy dif-

ferences ∆E∗
dipole = E* domino

dipole − E* pearl
dipole are also listed.

CSL type Σ7 Σ19b

Ly (Å) 1171.61 1929.540

Kdomino (meV/Å3) 79.214 77.462

δdomino
0 (Å) 5.082 3.540

E* domino
dipole (meV/Å) 277.015 120.027

Edomino
mig (meV/Å) 3.430 1.083

Ly (Å) 1170.29 1929.540

Kpearl (meV/Å3) 79.214 76.822

δpearl0 (Å) 92.652 4.067

E* pearl
dipole (meV/Å) 64.634 115.460

Epearl
mig (meV/Å) 0.532 7.618

∆E∗
dipole (meV/Å) 212.381 4.567

pearl GBs is higher. In contrast, the data for Σ7 GBs in
Fig. 8 is in accordance with our earlier results: The dipole
energy and critical shear stress for domino complexions
is much higher than for pearl complexions. The lines con-
necting the data points represent fits of Eq. 5, parameters
are listed in Table II. The resulting parameters are com-
parable to those in previous studies, see Appendix C for
details. We also note that the parameter K, which repre-
sents the anisotropic elastic response of the material, can
be calculated analytically from the stiffness tensor of the
crystals [84, 93–95]. Following the methods of Eshelby et

al. [93] and Stroh [95], we obtained K = 76.7meV/Å
3

for both Σ19b and Σ7 GBs, in rough accordance with
the fitted values.

Apart from the dipole formation, disconnections also
need to move in order to facilitate GB migration. In
analogy to bulk dislocations, there is also a Peierls bar-
rier Emig for disconnections, requiring a critical Peierls–
Nabarro stress τmig to move [50, 51, 53, 83, 96, 97]. The
atomic configuration at the saddle point of this barrier
is not stable and can therefore not be explored with sim-
ple molecular statics calculations. The minimum energy
path for the migration of a disconnection along the GB,
extending the dipole width by the distance ∆δ between
two minima, was calculated using NEB (thick lines in
Figs. 7 and 8). For Σ19b we find that Emig is much

higher for pearl (7.6meV/Å) as compared to domino
(1.1meV/Å), leading to a steeper energy landscape dur-
ing disconnection migration and a high τmig. For Σ7 GBs,

Emig is higher for domino (3.430meV/Å) than for pearl

(0.532meV/Å). This means that the difference between
critical shear stresses in Σ19b GBs is dominated by the
Peierls barrier, at least at low temperatures. Both the
formation and Peierls barrier of domino in Σ7 GBs are

much higher than for pearl, making this case much more
straightforward.
We could not find conclusive structural reasons for

the large differences in Σ19b GBs, where all complex-
ions share the same active disconnection mode. An in-
vestigation of atomic displacements during GB migration
did not reveal any obvious differences between pearl and
domino that could be responsible for higher migration
barriers (Appendix B). A possible explanation could be
the generally higher GB excess volume of domino com-
pared to pearl [63]: With more available free volume, the
barriers for atomic rearrangement might be lower. How-
ever, due to the limited available data, this remains a
hypothesis.
These simulations are of course probing an idealized

case. In reality, in thicker systems, GB migration pro-
ceeds through the formation of islands of atoms or discon-
nection loops [40, 98, 99], most likely nucleated hetero-
geneously at defects [99]. The results of Sec. III B should
not be affected by this, since they are intrinsic to the
structure of the complexions and their crystallography
and not due to the exact nucleation process. The energy
barriers and critical stresses calculated in the present sec-
tion, on the other hand, represent theoretical values. We
nevertheless argue that they are useful because they can
give qualitative insights into the influence of complexions
on GB properties, such as GB migration.

D. Temperature effects

In addition to the molecular statics simulations, we
also repeated the analysis of shear coupling factor and
critical stress at finite temperatures with MD simula-
tions. We found the shear coupling factor to be inde-
pendent of both applied shear velocity and temperature
(Fig. S6 in the SM [82] shows this for the example of
Σ19b). For temperatures up to T = 600K, we averaged
the critical stress over several migration events (which are
each equal to a stress drop), each time recording the max-
imum of the stress curve. At 700K and above, the Σ19b
domino phase transitions into pearl within the first few
migration events, making it impossible to extract mean-
ingful data. (The domino complexion is metastable over
the whole temperature range [61], but the higher tem-
peratures accelerate its transition to pearl even within
the short simulation timescale). We thus restricted all
simulations to the lower temperatures.
The results for Σ19b are shown in Fig. 9(a). Interest-

ingly, the critical stress of pearl is only higher than that
of domino up to a point between 100K and 200K. If we
compare the Peierls barrier Emig to the absolute forma-
tion energy Edipole, however, we notice that the former is
quite small (Fig. 7). Only due to its steepness, is it con-
nected to a high stress. It is conceivable that the thermal
energy would be sufficient to help overcome this small
barrier, so that in the end only the formation energy mat-
ters. We tested this by starting with systems that already
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FIG. 9. The critical shear stress τc for GB migration as a
function of temperature. (a) For Σ19b, at temperatures of
around 200K and above, the critical stress τc of pearl drops
below the one for domino. (b) For Σ7, the critical stress τc of
pearl migration is always below domino.

have a disconnection dipole of width δ∗ = Lx/2 inserted
before applying shear. We can thus probe only τmig, the
critical stress for disconnection migration. Figure 10(a)
shows that domino has τmig ≈ 0GPa, while pearl has
τmig ≈ 0.5GPa for Σ19b. The difference in critical shear
stress τc for GB migration (Fig. 6) is roughly 0.27GPa,
which is smaller. That is not surprising, since there is also
a higher stress connected to the nucleation of domino.
With increasing T , however, the disconnection migration
barrier can be overcome more and more easily, resulting
in τmig ≈ 0GPa for both domino and pearl already at
T = 200K [Fig. 10(b)–(d)]. This can explain the temper-
ature dependence: It is easier to nucleate disconnections
in the pearl complexion, but at low temperatures these
disconnections have to cross high barriers to move. These
barriers, however, are only high compared to domino and
can be overcome with thermal energy. At room temper-

ature and above, pearl GBs are easier to migrate since
the GB migration is limited by defect nucleation.
For Σ7, the critical stresses are shown in Fig. 9(b).

Contrary to Σ19b, the temperature dependence of the
critical stress is straightforward to understand: Domino
complexions always have higher formation and Peierls
barriers for disconnection dipoles than pearl and thus
exhibit a higher τc. The obtained values are in all cases
of similar magnitude as other GBs in fcc metals (see Ap-
pendix C).

IV. CONCLUSION

We investigated elementary mechanisms of shear-
coupled GB motion of two complexions, namely, domino
and pearl in Cu [111] tilt GBs. It is known from previ-
ous literature that several disconnection modes can exist
for the same GB, leading, e.g., to opposite migration di-
rections under the same applied shear. Which mode is
active, however, could not be predicted. In this work, we
show that the selection of the disconnection mode, identi-
fied by a Burgers vector and step height, depends on the
complexion. In Σ19b GBs, the pearl and domino com-
plexions exhibit the same modes, while in Σ7 GBs these
complexions migrate in opposite directions. The selec-
tion of the active mode is a result of the structural mo-
tifs of the complexions, which dictate the core structures
of the disconnections. We found that the combination
of structural GB motifs in the disconnection core lead
to significantly different core structures, some of which
are energetically unstable, thereby selecting the active
mode as the energetically favorable core structure. Even
if the complexions exhibit the same mode (here in the
Σ19b GBs), their different atomic structures also affect
the critical shear stress required to move the GBs, at least
in our model setup with symmetric, defect-free GBs.
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Appendix A: Shear coupling factor of complexions

To more accurately calculate β, we can record the dis-
placement ux of the atoms and plot it as a function of the
atomic position normal to the GB (Fig. 11). The slope
can be obtained by linear regression and corresponds di-
rectly to β. Here, the shear coupling factor is obtained
for simulations at 300K after 20 ns in Σ19b GBs, shown
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FIG. 10. (a)–(c) Shear stress–displacement curves of Σ19b [111] (178) GBs with pre-existing disconnection dipoles of width
δ∗ = Lx/2. The shear stress response to displacement at temperatures (a) 0K, (b) 100K, and (c) 200K is plotted. The critical
stress τmig for disconnection migration is indicated by the horizontal dotted lines. (d) It reduces with increasing temperature,
dropping to close to zero at 200K and above for both domino and pearl.

in Fig. 2(a)–(b), and after 16 ns in Σ7 GBs, shown in
Fig. 2(c)–(d).

Appendix B: Atomic shuffling during GB migration

The simulations of perfect complexions go through a
cycle of nucleating, propagating and annihilating the dis-
connections. For Σ19b, we seem to observe the same dis-
connection mode for domino and pearl (same β), the
differences in shear stress required to move the discon-
nection can also be due to the differences in the atomic
shuffling during GB migration for both the complexions
[55, 101]. The atomic shuffling during GB migration for
both the complexions was observed after 20 shear stress
drops in the molecular statics calculations (correspond-
ing to n = 20 unit steps of GB migration). The mean

GB plane moved a total distance of nh = 13.540 Å along
y and the shear displacement 20ds = n|b| = 11.720 Å
along x for both the complexions. In Fig. 12, the initial
positions of the atoms in the top and bottom grain be-
fore GB migration are plotted in black and their final
positions after migration are marked in red and blue for
domino and pearl, respectively. At first glance, we can see
that the dichromatic pattern appears in the traversed re-
gion. This is as expected, due to the rearrangement of
atoms in this regions from the crystallography of the top
crystal (black, before) to the one of the bottom crystal
(red/blue, after) [98, 102]. On closer inspection, it can
be seen that there are no true coincidence sites, which
is a result of the microscopic degrees of freedom of the
GB: The dichromatic pattern is always plotted such that
coincidence sites exist, but in reality the top crystal can
always be translated arbitrarily against the bottom crys-
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FIG. 11. Atomic displacements ux as a function of the atom’s position along the y axis. Note that y = 0 corresponds to the
initial GB position. The shear coupling factor β is the slope (red and blue lines) of these graphs and was obtained by linear
regression (Eq. 7). Result for simulations at 300K for Σ19b GBs after 20 ns with (a) domino and (b) pearl complexions and for
Σ7 GBs after 16 ns with (c) domino and (d) pearl complexions are shown. The regions belonging to the bottom crystal (left
part of the graph with zero displacement) and the regions belonging to the top crystal (right part of the graph with ux = d)
are strain-free (constant displacement), while the region traversed by the GB was sheared. The arrows indicate the direction
of GB migration; note that for domino in Σ7 (c), the bottom crystal shrinks, while it grows in all other cases (a)–(b), (d).

tal [63, 69, 103]. Furthermore, a more complex pattern
arises above/below the traversed region. It appears that
atoms do not directly jump from their initial to their final
position during one GB migration step.

Hence, we also analyzed the atomic displacements of
perfect Σ19 GB complexions during a single step of GB
migration. A simulation cell of size 11.142 × 192.291 ×
6.261 Å

3
(1 × 10 × 1 units cells, 1137 atoms) was used

for this. We only considered atoms that were not iden-
tified as fcc atoms either before or after the GB mi-
gration step, utilizing the polyhedral template match-
ing structure identification method [100] as implemented
in OVITO [79]. The results are shown in Fig. 13. The
jump vectors are symmetric around |b|/2 = 0.586 Å/2 =
0.293 Å in x direction. The average of all jumps has to

be |b|/2 because the displacement for atoms with y co-
ordinates below the GB has to be zero, while the dis-
placement above the GB has to be |b|. The additional
symmetry of the jump vectors is due to the symmetry of
the GB. The atomic displacements during a single GB
migration step do not correspond to DSC vectors. In our
simulations, atoms thus transition from one crystallite to
the GB region and only then to the second crystallite
during GB migration. The non-DSC nature of the jump
vectors is due to the internal degrees of freedom for the
atomic positions of the domino and pearl complexions.

We furthermore probed the effort required to effect
those jumps by calculating the L2-norm of a combined
vector of the displacement components for the GB atoms
i as

√∑n
i=1 (x

2
i + y2i + z2i ). The atomic jump lengths are
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FIG. 12. Atom positions in (a) domino and (b) pearl of
Σ19b GBs before (black) and after (red/blue) shear-coupled
GB motion. These images are after n = 20 unit steps of
GB migration, which correspond to a GB migration dis-
tance of nh = 13.540 Å along y and a shear displacement
n|b| = 20ds = 11.720 Å along x. In the traversed region, an
image similar to the dichromatic pattern appears due to over-
laying atoms from before the migration, which belong to the
top crystal, and after the migration, which now belong to the
bottom crystal. An additional offset between the atoms in the
pattern is due to the microscopic degrees of freedom, i.e., the
top and bottom crystal are shifted against each other depend-
ing on the complexion. Furthermore, the pattern at the start
and end of the migration region is somewhat smeared out, in-
dicating that the atomic jumps during the GB migration do
not necessarily go from the initial to the final position, but
can also occupy intermediary positions.
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FIG. 13. Displacements of the atoms in the GB during a
single GB migration step in Σ19b GBs, plotted by (a) ux and
uy components and (b) ux and uz components. Here, we define
GB atoms as those atoms that were not identified as fcc either
before or after the migration event by the polyhedral template
matching method [100] in OVITO [79]. The displacements
are symmetric around |b|/2 = 0.293 Å in x direction, but do
not correspond to DSC vectors. This indicates that the jumps
during one migration step go to intermediate positions, before
arriving at their final environment in the defect-free crystal
after several migration steps.

evaluated to be 3.018 Å for domino and 2.877 Å for pearl.
The difference in jump lengths is small and seems to be
unlikely to explain the differences in τc for the two com-
plexions. It is therefore necessary to calculate the ex-
act energy cost of introducing the disconnections as in
Sec. III C.

Appendix C: Shear coupled motion in other GBs of
fcc metals in literature

The energy of disconnections depends on both their
core energy and their system-size-dependent elastic in-
teraction energy, and is therefore best described by the
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parameters K and δ0 (see Eqs. 2–6).

Here, K encodes the elasticity of the crystal lattice
and δ0 the properties of the disconnection core. Only a
limited number of studies list such values, and for cop-
per GBs we just found Ref. [29], in which a Σ13 [001]
(320) symmetric tilt GB is simulated. They obtained

a value of K = 30.468meV/Å
3
[29], whereas we found

K = 76.822meV/Å
3
for Σ19b and K = 79.214meV/Å

3

for Σ7. The difference could be a result of the anisotropy
of copper and the different GB planes. The ratio ofK val-
ues for orientations along the ⟨111⟩ and ⟨100⟩ directions
is 2.517, which is consistent with the ratio of anisotropic
Young’s moduli for orientations along the ⟨111⟩ and ⟨100⟩
directions being 2.893 [104, 105]. The paper reported
Ecore = 5.3meV/Å and δc = 3.615 Å [29]. The latter
was chosen arbitrarily and we therefore combined these
values into δ0 = 2.556 Å (see Eq. 4 and surrounding dis-
cussion), which is of the same order of magnitude as our
values of δ0 = 3.8–4.4 Å obtained in Σ19b GBs and quite
lower than values δ0 = 5.082–92.652 Å obtained in Σ7
GBs (Table II). The migration barrier Emig was reported

as 5.2 ± 0.4meV/Å [29], which is in the same range as

our values of Emig = 1.1–7.6meV/Å of Σ19 GB and

Emig = 0.532–3.430meV/Å of Σ7 GB.
Previously, the critical shear stress τc for GB migration

was calculated for various GBs in fcc metals. Values lie
in the range of 1–4GPa [29, 52, 75, 106]. At 0K, shear
stress in Σ13 [001] (320) and Σ17 [001] (410) symmetric
tilt Cu GBs is observed to be 1.4GPa and 2.1GPa, re-
spectively [29, 52]. Likewise, shear stress in the Σ41 [001]
(540) Al GB is noted to be 2.85GPa [106]. This is in
the same range as our 0K values, which are 1.117GPa
and 0.849GPa for pearl and domino respectively. Shear
stress as a function of temperature is reported for com-
plexions in Cu Σ5 [001] (210) GB [75]. At 500K, shear
stress is observed to be ≈ 0.95GPa and ≈ 0.58GPa for
split kite and filled kite complexions, respectively. At the
same temperature, the critical shear stress in this study is
≈ 0.5GPa and ≈ 0.4GPa, respectively. The shear stress
difference between the complexions are irrespective of the
activation of different disconnection modes. In Cu, the
complexions split kites and filled kites of Σ5 is similar to
domino and pearl of Σ7 in having different disconnection
modes contrary to domino and pearl of Σ19 GB having
the same disconnection mode.
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