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Nonlinear Coupling Coefficients in Multimode Fibers
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Abstract—We study the nonlinear coupling coefficients ap-
pearing in the Manakov equations for multimode fibers (MMF)
for space-division multiplexing operating in the two regimes of
strong coupling only within mode groups and strong coupling
also across mode groups. The analysis is mainly focused on
the trenchless parabolic graded-index MMFs, but considerations
on the step-index profile, and on the use of realistic trenches
and non-parabolic indices are given. Analytic results for the
Manakov nonlinearity coefficients are derived for the first time,
and validation is performed through a numerical approach.
We show that the coefficients are approximately independent
on the fiber core radius and refractive index difference, but
depend only on the number of guided modes. Values of nonlinear
coefficients are computed also for optimized and manufactured
MMFs described in the literature, and are placed within the
developed framework. The impact of a poor fiber design on the
achievable data rates of the MMF nonlinear channel is discussed
for a simple scenario.

Index Terms—Multimode fibers, space division multiplexing,
Manakov equation, nonlinear coupling, optical communications.

I. INTRODUCTION

N the field of space-division multiplexing (SDM) the most
Icommon fiber structures are multicore fibers (MCFs) and
multimode fibers (MMFs). Based on the level of linear coupling
among the fiber modes, two common operational regimes are
distinguished: the intra-modal group coupling regime (IMGCR)
and the strong coupling regime (SCR) [1]. In the IMGCR,
modes belonging to the same modal group are assumed to be
strongly-coupled, while modes of different groups are assumed
to be uncoupled, as for MMFs with sufficient phase-mismatch
among the modal groups as well as for weakly-coupled MCFs
(WC-MCFs) [2]]. In the SCR, all fiber modes are assumed
to be strongly coupled, as for randomly-coupled MCFs (RC-
MCFs)[3]], and for graded-index multimode fiber (GIMMF)
with suitable techniques to enhance coupling — e.g., using long
period fiber gratings [4], [S], [6]. In long-haul communications
it is often tried to achieve the SCR such that delay spread
and mode dependent loss accumulate at a slower pace with
transmission distance (e.g., ideally with the square-root of
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distance), compared to the case of partial coupling [7], [8],
[9]. The level of coupling can be directly controlled in MCFs
through, e.g., the separation of the cores [10], [L1], while it
is generally less straightforward to be tuned in MMFs. Hence,
MCFs are considered to be the preferred medium for long-haul
communications given their potential for smaller digital signal
processing (DSP) complexity thanks to a generally lower delay
spread, when compared to MMFs with same number of modes
(2], (31, [10].

In addition, MMF-based SDM systems tend to have a
stronger frequency-dependence in the delay spread, higher
mode-averaged attenuation and mode-dependent losses, due to
stronger Rayleigh scattering (because of the core’s doping) [1]],
(2], [13l.

However, several MMF system architectures have been under
investigation to reduce the delay spread, from optimized fiber
designs [[13]], [14]], to the introduction of intentional coupling
through, e.g., spinning during the manufacturing process [15],
to the use of gratings as mode couplers [4], [S]], [6] or of cyclic
modal permutation [3], [16l], or fiber spans with different sign of
modal delay [5], [1]. More importantly, MMFs can potentially
achieve a higher spatial-spectral efficiency than that of MCFs,
given their ability to support a larger number of spatial paths
[L3], [17] in the same cross-sectional area of a single mode
fiber (SMF), even above 1000, which had been speculated to be
potentially needed by 2035 [18]]. This is a strong motivation for
investigating MMFs for long distances and, thus, for bringing
into play the Kerr nonlinear response of silica fibers.

Kerr nonlinearity depends on the matrix of nonlinear
coupling coefficients y«, which in the SCR reduces to the
scalar yx which is sometimes assumed to scale as 1/M, where
M is the total number of modes [19]]. In such a case, under
certain conditions, spectral efficiency per mode would increase
with M [19]. However, as we showed in [20], the 1/M scaling
of vk is valid only for a particular fiber design strategy, that
is by increasing only the core radius.

In this paper we extend the study of [20] by providing the
analytic derivation of an approximate closed-form expression
for vk for both the SCR and the IMGCR for different GIMMF
design approaches. The analytic results require significantly
lower computational time than the current numerical approach,
and clarify the relation between vk and the fiber design
parameters. Furthermore, they free researchers who deal with,
e.g., the development of models for the nonlinear SDM channel,
like in [21], [22]], [23]], from the task of choosing a specific
fiber design and computing (or assuming) some values for yx.



However, the analytic formulas we derive hold formally only
for a trenchless GIMMF with parabolic grading, even though
some consideration about the validity of the present results to
realistic fiber designs are provided in Section [V] A relevant
contribution is the discovery that the scaling of the nonlinear
coefficient x does not depend on the design parameters, but
only on the number of guided modes. Hence, to minimize
vk it is enough to maximize the fundamental mode effective
area. We compare also our numerical and analytic results to
values of nonlinear coefficients computed for other optimized
fibers proposed in the literature, showing agreement with our
framework. We indicate the impact of our analysis to the rates
achievable in MMF-based SDM systems. Some considerations
for step-index multimode fibers (SIMMFs) are also provided.

The paper is organized as follows. Section [[I] reviews the
channel models for the SCR and IMGCR. Section [l reviews
the basics of fiber design. Section presents the main
numerical and analytic results about the nonlinear coupling
coefficients. Section [V] places relevant fibers described in
the literature within our framework. Section [VI] explains the
implication of this study on the achievable data rates for a

simple SDM scenario. Section collects some side remarks.

Section concludes the paper.

II. BASICS OF CHANNEL MODELING

A common nonlinear propagation equation for the SCR is
the following Manakov equation [24]], [19]
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where A = [Ay,...,Ay]|" is the column vector of modal
envelopes (T is the transpose operator), M is the total number
of modes (i.e., including polarizations), and L [A] is the linear
operator accounting for all linear effects, in particular strong
mode-coupling and dispersion. The last term of Eq. (I) is Kerr
nonlinear effect, which depends on two coefficients that in the
weak-guidance approximation (which is commonly assumed to
hold for fibers for modern optical communications [25[]) can
be computed as [19]
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where N is the number of spatial modes (so that N = M/2),
and
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is the intermodal effective area between spatial modes F', and
F', [19, Eq.60]. The working wavelength is A\g = 1550 nm,
wo = 2me/Ag is the working angular frequency, ko = ?\—g is

the wavenumber in vacuum, the nonlinear refractive index is

Aap = “

Ny = 2.6 -1072°m?W~!, and c is the light-speed in vacuum.

For the IMGCR, a common nonlinear propagation equation
is the following Manakov equation [19, Eq.54]
Mg
LA =7 fanl Ab|®As ®)
b=1

0A,
0z

where A, is the N,-dimensional vector obtained by stacking
only the modal amplitudes of the a-th modal group, IV, is the
number of spatial modes of the z-th modal-group, M, is the
total number of modal groups, and this time L [A] accounts for
the linear effects of the IMGCR. Note that, conversely to Eq. (II])
Eq. (5) contains multiple nonlinear coupling coefficients, which
in the weak-guidance can be computed as [[19, Eq.61-63]
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with I, being the set of indices of the modes (including
polarizations) which belong to group z. Note that the various
Kqp can be grouped in the matrix . In case of a single group
of degenerate modes, Eq. (6) reduces to Eq. (3).

As a side remark, some MMF systems might not strictly
operate in either of the two considered regimes, SCR and
IMGCR, but rather in an intermediate coupling regime [26]],
[27], [28]], whose study is however outside the scope of this
paper.

Throughout the paper we present and compare three methods
for computing nonlinear coupling coefficients. The first method
consists in numerically computing the modal profiles for the
fiber geometry of interest with a mode solver, and then carrying
out the numerical integration of Eq. (4) to get x with Eq. (6).
The second method consists in exploiting an analytic closed-
form expression for Eq. (6) derived later in this work. The
third method consists in fitting the results obtained with the
first one. In the following we will refer to the first method
as the exact numerical method, to the second as the analytic
method, and to the third as the fitted formula.

III. BASICS OF FIBER DESIGN

Designing a MMF essentially consists in selecting the
refractive index profile n(p) of the fiber, where p is the radial
coordinate. Common profiles, that are the ones which we
consider, are the parabolic graded-index (GI) and the step-
index (SI), which are defined respectively as [29, Eq.2.78]
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where A = (., — n?.4)/(2n2,.) is the refractive index

difference, neore is the maximum value of n(p) in the core,
Nelaa 1s the constant value of n(p) in the cladding, and R is
the core radius.

In case advanced refractive index profiles (like the non-
parabolic graded-index) or trenches were employed, which
is not done here, few more geometrical parameters would



have to be taken into account. Some considerations about the
extension of the presented results to non-parabolic GI profiles
with trenches are given in Section

The total number of guided modes M depends on n(p)
and on the normalized frequency V' = ko RNA, where
NA = /n2,, —n?,, is the so-called numerical aperture
(29 Eq.2.80]. For a GIMMF, an approximate relation between
V and M is [29, Eq.2.81]
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while for a SIMMEF it holds [29, Eq.2.61]
2
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Observe that, even though M is formally a positive integer, it
will be sometimes treated here as a positive real number for
simplicity of notation.

The design of a MMF aims at minimizing several detrimental
effects like modal delays, mode-dependent losses, and coupling
losses (in particular bend losses) [30], [31], [[13]], while guiding
a specific number of modes. It is known that increasing A
tends to increase the modal delays, and the mode-averaged and
relative Rayleigh scattering of the different modes, which influ-
ence the mode-averaged attenuation and the mode-dependent
losss (MDLs)[13]. However, a higher A better confines the
modal profiles, reducing the bend losses [32]]. Increasing R
is a straightforward approach to increase M, but it is hard to
support more than approximately 200 modes without increasing
A (beyond a conventional ~ 0.5%). Hence, it is in general
helpful to tune both R and A when designing a fiber for a
specific M [30], [13]. As such, it is of interest to study the
scaling of v« in the general scenario where both R and A are
varied.

We set nclaq ~ 1.444, as for a pure silica cladding at
1550 nm, for the design of fibers employed later for numerical
analysis. Even though the actual fiber material is not relevant
for our single-frequency study, in practice values of n(p) higher
than n.q (e.g., for the core) can be achieved with germanium
doping, while lower values (e.g., for trenches) can be obtained
with fluorine doping [33].

Given a fiber supporting M modes, it has always been chosen
for the numerical results of this paper the highest possible V'
before reaching the cutoff frequency V. of the subsequent
modal group, so that the guided modes exhibit the strongest
confinement [34], [30], [13]. All numerical results have been
obtained with the linearly polarized (LP) mode solver described
in [35], based on [36]], and valid under the assumption of weak-
guidance. The choice of modal basis is irrelevant for vk, as long
as the modes of a modal group of a certain basis are obtained
through a unitary transformation of (quasi)-degenerate vector
modes [37], [38]. The cutoff frequencies V. for the various
modes have been computed with the implicit method in [39,
Eq.6] for GIMMFs, and as zeros of Bessel functions of the
first-kind for SIMMFs [40l p.320], assuming weak-guidance in
both cases. For GIMMFs, we considered only fibers supporting
M = My (M4 + 1) modes, where M, is the total number of
modal groups, with the generic i-th modal group consisting

Table I: Parameters for relevant GIMMFs in Fig

M A(%) R(um) A (um?) s s (1/W/km)
2 0.41 6.6 86 8/9 1.1
2 0.0072 50 4071 8/9 0.023
42 5.0 6.8 21 0.26 1.3
182 0.43 50 574 0.13 0.024
2352 5.0 50 161 0.037 0.024

of 27 modes (including polarizations), as customary in the
literature.

IV. SCALING OF THE NONLINEAR COUPLING
COEFFICIENTS WITH INDEX DIFFERENCE AND CORE
RADIUS

We start from the SCR in Section for which the scalar
vk is used, followed by the IMGCR case in Section [[V-B
for which the matrix vk has to be considered. The analysis

is mainly carried out for GIMMFs; some considerations on
SIMMFs are provided in Section [[V-C|

A. Strong-Coupling Regime

In order to understand the scaling of v~ in a generic scenario
where both R and A are varied, we firstly consider cases in
which only one of the two parameters is varied, while the
other is held fixed. In doing so, we also find bounds on &,
as it will be clear later. In particular, we start from a baseline
GIMMEF with core radius R = Raismr and refractive index
A = Agismr- Then, a first design option is to increase only
R from Rgismr to Rmax (fixed A), and then increase A from
Agismr to Apax (fixed R). Starting from the same baseline
GIMMF, another design option is to increase only A from
Agismr t0 Apax, and then increase only R from Rgismr up
to Rpax. A final approach, which serves to derive a bound
on vk for large mode area fibers (LMAs), consists in starting
from a baseline fiber with R = Rpyax and A = Ay, g1, and
then increasing A up to Ay ax.

We chose Raismr = 6.6 um and Agisyr = 0.41%, so
that A1 ~ 86 um?, similarly to a standard SMF [41]. We
set Apax = 5%, Rmax = 50um, and Ay, a1 = 0.0072%.
Extreme A and R values are considered for maximum general-
ization. A higher A, would tend to break the weak-guidance
approximation, and would not be practical since modal delays
and mode-dependent losses would be too high [13]]. The value
of R,ax Was bound by fixing a 125 um diameter cladding as for
SMFs for device backward compatibility [42], and mechanical
reliability [[10], [42], [L13].

The results of the approach in terms of vy~ have been plotted
in Fig[l] which presents the bounds and the set of achievable
values for yx. For convenience these have been summarised
in Table [I] for relevant fibers, with their design parameters.

In the following section we analyse in more detail individual
parts of the aforementioned approach, to derive approximate
closed-form expressions for v, x, and k.

1) Scaling with the Core Radius: To study the dependence
of vk on R, we consider the set of GIMMFs with increasing M,
obtained by increasing R from Rgismr to Riax, While keeping
A fixed to either A = A, or A = Agismr. We recently
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Figure 1: Scaling of v~ with M for different GIMMF designs.

Markers indicate numerical results with the approach explained in
the text. The dashed lines are the proposed theoretical trends: cyan is
Eq. (I6) with R = Rgismr; magenta is Eq. (T4) with A = Apax;
green is Eq. with A = Acismr; violet is Eq. (T6) with R =
Rmax-

proposed the following approximate closed-form expressions
for the fundamental mode effective area and the Manakov
nonlinearity coefficient [20]
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Eq. (I2) has been derived through the Gaussian approximation
for the fundamental mode, as detailed in Appendix [A] The
comparison between the exact numerical result for .4;; and
the approximate formula Eq. (I2) is visible in Fig. 2] for the
cases A = Apax and A = AgismF.-

Eq. (T3) was obtained in [20] by fitting the exact numerical
results, while in Appendix [C] we derive analytic results for
K, through the infinite parabolic profile approximation. In
particular, the analytic derivation yields the values of x reported
in Table [[] for any GIMMF up to 32 modal groups (1056
modes), regardless of whether R and/or A are varied. The
agreement between the numerical results and the fitted formula

12)

(13)

is visible in Fig.[3] for the cases A = Apax and A = Agismr.

The agreement between the numerical and the analytic results
is visible in Fig. [

Eq. (I2) and Eq. (13), with the help of Eq. (@), lead to
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whose agreement with the numerical results is visible in Fig[T]
for the cases A = Aax and A = AgismE-

Observe that due to the approximations involved in obtaining
Eq. (T4) (in particular due to Eq. (I0) and the neglect of the
last two terms of Eq. (2Z) in Appendix [A] which are quite
rough for M low), the accuracy for M = 2, i.e., the SMF case,
is quite bad. A better approximation in this case is Eq. (I6).

The intuition behind the trend vk o« 1/M is that two
effects act in the same direction. Firstly, the fundamental mode
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Figure 2: Scaling of A:; with M for different GIMMF designs.
Markers indicate numerical results. The dashed lines are the proposed
theoretical trends: cyan is Eq. (I3) with R = Raismr; magenta is
Eq. (I2) with A = Anax; green is Eq. (I2) with A = Acismr;
violet is Eq. (T3) with R = Riax.
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Figure 3: Scaling of x with M for different GIMMF designs. Markers
indicate numerical results. The dashed line is the proposed
fitted formula Eq. (T3).

effective area A;1, which is a measure of how much a mode
spreads over a cross-section of the fiber, increases with R. Thus,
~ reduces as 1/.A11, as exemplified by the modal profiles for
three different fibers in Fig[5] Secondly, the inclusion of a
larger number of modes with a greater effective area Ay into
the averaging procedure to compute « [19]], lowers &.

2) Scaling with the Index Difference: To study the depen-
dence of vk on A, we considered the set of GIMMFs with
increasing M, obtained by increasing A from Agigmp (or
from Apin,g1) 10 Apax, fixed R. We recently proposed the
following approximate closed-form expressions [20]]

TR?
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Table II: Analytic values of « for strongly-coupled GIMMFs with increasing number of guided modes.

M 2 6 12 20 30 42 56 72

K 8/9 40/63 56/117 8/21 88/279  104/387  40/171  136/657
M 90 110 132 156 182 210 240 272

K 152/819  56/333  184/1197 200/1413  8/61  232/1899 248/2169  88/819
M 306 342 380 420 462 506 552 600

k  280/2763 296/3087 104/1143 328/3789 344/4167  40/507  376/4977 392/5409
M 650 702 756 812 870 930 992 1056

k  136/1953 424/6327 440/6813 152/2439 472/7839 488/8379  56/993  520/9513
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Figure 4: Comparison between the numerical results (crosses, same
as Fig.[3), the fitted formula Eq. (I3) (dashed line), and the analytic
results (circles, from Table @

Figure 5: Intensity profiles of the fundamental modes of a set of
fibers with increasing R, fixed A, and, hence, increasing .A11.The
white line indicates the core boundary.

The derivation of Eq. (I3) follows a similar approach to Eq. (12)
and is given in Appendix [B| The expression for x is the same
as in Section[[V-AT] since, as proved in Appendix [C| x depends
on M and not on R or on A alone. Hence, the analytic values
for  are again the ones in Table [[I} displayed in Fig. {]

The comparison between the exact numerical results and the
approximate formulas is visible in Fig. 2] for .A;; and in Fig. 3]
for k, for the cases R = Rgismr and R = Ryax.

The previous formulas, with the help of Eq. (), lead to
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where we stress that all the parameters (including R) are con-
stant in this scenario. The comparison between the numerical
results and Eq. (I6) is given in Fig[T|for the cases R = Rgismr
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Figure 6: Intensity profiles of the fundamental modes of a set of
fibers with increasing A, fixed R, and, hence, decreasing .A;1. The
white line indicates the core boundary.

and R = Ry ax, Where it can be seen that v« remains nearly
constant as A is scaled.

The intuition behind the (quasi-)constant behavior of vx in
this scenario is that two effects balance each other out. The
first is that A;; reduces with A, since the modes are more
confined in the core, as exemplified by the modal profiles for
three different fibers in Fig@ Thus, v o« 1/Ay; increases. On
the other hand, s decreases with M for the same qualitative
reason as in the previous section.

It is worth mentioning that Eq. (I4) and Eq. (I6) are in fact
valid for any GIMMEF, also when both A and R are let free.
Nevertheless, Eq. (I6) is best suited for the case of fixing A
and varying R, in particular for small M, since its derivation
does not involve the approximation Eq. (I0). The disadvantage
is that the link between v« and M becomes hidden behind R
for Eq. (I6) and behind NA for Eq. (I4), in case both R and
A are varied together.

Finally, observe from Fig[l] that the scaling of vy« with M
is not simply 1/M, but depends on the strategy to increase M
— subject to the consideration of the linear effects (e.g., modal
dispersion) [30], [13]. The yx o< 1/M scaling is possible only
for M < 200. A design strategy with poor v~ roll-off with
M, as for fixed R, may lead to enhanced nonlinearities, as
discussed in Section [V1l

B. Intra-Modal Group Coupling Regime

In the case of the IMGCR, the nonlinear coupling coefficients
form a symmetric square matrix vk — whose size matches the
number of mode groups. To find a closed-form expression
for that, we can approximate again y and k separately. The
7 coefficient can be expressed through Eq. (12)-Eq. (T3) as
before. In Appendix [C] we derived the analytic kg, reported
in Table [T for a GIMMF up to the first 10 groups (110
polarization modes), regardless of whether R and/or A are
varied. The analytic k45 for a GIMMEF up to the first 32 groups
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Figure 7: Comparison between the analytic x and the fitted surface
Eq. @ for a GIMMF up to 32 modal groups.
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Figure 8: Average absolute relative error between the exact and the
analytic & for each GIMMF of Fig. [T up to 32 groups. The SMF
case is not displayed as the error is 0. Markers as in Fig. m

(1056 polarization modes) are provided in [43]]. In addition,
we propose the following simple relation obtained by fitting
the exact numerical and the analytic results
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Fig. [7] displays the analytic result of Table [[TT] and the fitted
formula Eq. (I7). The relative error between the exact and the
analytic k for each fiber of Fig. [[]up to 32 groups, computed
as average of the absolute element-wise difference between the
exact k and the analytic one, is reported in Fig. [8] The average
error is around 7% for a 6-modes GIMMFs, and reduces to
below 0.5% for a 1056-modes GIMMFs.

Similarly to the case of SCR, the fitted formula is worse
for the lower order groups of a certain fiber, and thus also for
fibers with few modal groups, as visible in Fig.[7] In particular,
for the SMF case, Eq. yields 7/(4v/2) while Eq.
yields 4/3, both being quite far apart with respect to the exact
and analytic 8/9 value.

Finally, observe that within our approximations the &
matrices do not depend on the number of fiber modes, such
that for any two GIMMFs with M; and M, modes respectively,
and Ms > M, k for the M;-modes fiber is a submatrix of
the xk for the Ms-modes fiber. Hence, the data in Table are
valid for the kg of the first 10 modal groups of any GIMMEF,
and the ones in [43] for the first 32 modal groups.

Table III: Analytic values of kg, for a GIMMF up to 10 modal
groups. The analytic k4, for a GIMMF up to the first 32 groups
(1056 modes) are provided in [43].

a1 2 3 4 5 6 7 8 9 10|
18 2 4 1 4 2 4 1 4 2
9 3 9 3 15 9 21 6 27 15
2|2 & 4 1 4 2 4 1 4 2
3 15 9 3 15 9 21 6 27 15
3|4 4 8 1 4 2 4 1 4 2
9 9 21 3 15 9 21 6 27 15
41 1 1 8 4 2 4 1 4 2
3 3 3 27 15 9 21 6 27 15
5|4 4 4 4 8 2 4 1 4 2
15 15 15 15 33 9 21 6 27 15
62 2 2 2 2 8 4 1 4 2
9 9 9 9 9 39 21 6 27 15
Tl4 &£ 4 4 4 4 8 1 4 2
21 21 21 21 21 21 45 6 27 15
g/ 1 1 1 1 1 1 1 8 4 2
6 6 6 6 6 6 6 51 27 15
9| &£ 4 4 4 4 4 4 4 8 2
27 27 27 27 27 27 27 27 57 15
0]2 2 2 2 2 2 2 2 2 8
15 15 15 15 15 15 15 15 15 63

C. Step-Index Fibers

Even though employing SIMMFs for long-haul communica-
tions might be even more challenging than utilizing GIMMFs
due to a larger delay spread [10] and a non-uniform spacing
of cutoff frequencies, scaling trends are derived here for the
sake of completeness.

The same approach as the one devised to study GIMMFs
is employed here for SIMMFs. The chosen starting point is a
fiber with Rgismr = 4.1 pm and AgisMp = 0.32%, to mimic
a SSMF with A4;; = 85 um [41]]. The other relevant parameters
are Rpax = 50 um, Apin st = 0.0034%, and Apax = 5%. In
Fig. ] the exact numerical results and the respective fitting is
shown for SIMMFs. From the figure, it still holds that

{ 1/M, if R is varied fixed A
YK X

e . (18)
if A is varied fixed R

const,
but with less accuracy than for GIMMFs. The scaling of
Aj1 and k with number of modes when varying R and A
is displayed in Fig. [I0] and in Fig. [T} including the semi-
analytic approximation of .4;; reported in Appendix [E] Given
the lower interest in SIMMFs for long-haul communications
compared to GIMMFs, we do not provide an analytic result
for x, even though a more quantitative discussion is carried
out in Appendix

V. OPTIMIZED AND MANUFACTURED FIBERS

In Fig. [I2] the vk values for different optimized and/or
manufactured GIMMFs described in the literature have been
reported against the developed framework, assuming to operate
in the SCR. Such fibers have been emulated based on the
available information in the respective references, which did
not always include all the necessary data about the refractive
index profile. Hence, some little discrepancies between the
actual vk and the one computed by us are possible.

Nevertheless, the consistency between the vx computed for
the fibers in the literature and our framework supports the
validity of our investigation. In particular, the optimized fibers
lie within the foreseen boundaries, and the approximate trends
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with fitted prefactors.
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for yx (ox 1/M with R, and const with A), are verified again.
Similar considerations hold for A4;; and k.

It should be noted that the optimized and manufactured
fibers in general exploit more advanced index profiles, which
would formally require an extension to the analysis in this
paper for a proper comparison. At the same time, we verified
that the x computed (through the exact numerical method) for
the literature fibers, which exploit trenches and grading indices
slightly different from 2, are close to the x of the trenchless
parabolic GIMMFs. In addition, a quantitative reasoning based
on the Gaussian approximation for the effective area of a
generic GI profile suggests that for realistic slightly non-
parabolic GIs & deviates by at most 10% from the parabolic
case, see Appendix [F}

The fiber data used for the plots of the paper, including the
fibers emulated from the literature, and additional data like the
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Figure 11: Scaling of x with M for different SIMMF designs.

intermodal effective areas A,; have been provided in [43]].

VI. CONSIDERATIONS ON DATA RATES

The ultimate throughput limit of an SDM system in the
SCR depends on Kerr nonlinearity, which depends also on
~vk. In order to study the impact of the scaling of v+ with
M on the data rates of GIMMF systems, let us consider the
perturbation model developed in [23]. The model assumes
a strongly-coupled SDM fiber with only mode-independent
chromatic-dispersion (CD) and Kerr nonlinearity as distortions.
No other linear effects like modal delay or MDL are included.
Ideal distributed amplification able to perfectly compensate
the fiber loss is assumed. Circularly-symmetric complex
Gaussian modulation is considered. Digital back-propagation
is potentially applied on the channel under test, so that CD and
self-phase modulation (SPM) are removed. The mean phase
noise is also removed. In such case, the achievable information
rate in terms of bit/s/Hz/mode for an additive white Gaussian
noise (AWGN) receiver can be computed as

R(M, P) = log, (1 + (19)

)
% +o%u
where P is the transmit power per channel per mode, Nasg
is the amplified spontaneous emission (ASE) noise flat power
spectral density (PSD) over a band B = 1/T', T is the symbol
time, and o3 is the variance of the equivalent nonlinear inter-
ference noise. It holds 0% = (v&)? (2 M? + m M + no) P3,
where 7, for z € {0,1,2} are coefficients whose computation
is described in [23]).

Neglecting 7y (realistic for M < 1000) and 7y (rendered
negligible for M > 10 since 1y = 17 in our setup [23]), and
fixing the power per mode P, it follows that the scaling of
the nonlinear interference 0%, and thus of the data rate per
mode, depends on (y£)?-(n; M). In particular, if v scales with
number of modes faster than 1/ v/'M, the data rate increases
with the number of modes. This would imply that a MMF could
achieve a higher data rate than a bundle of SMFs with same
total number of modes, fixed the same power per mode. This
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is depicted in Fig. (13| for a) the best-case scenario yx = 1/M
and for b) the (approximate) limiting one yx = 1/v/M; 1o
and 7, were not neglected in Fig. [I3] and the parameter setup
of [23, Table I-II] was used. The different data rate scaling
trends in Fig. and Fig. highlights the importance of
designing a fiber keeping into account nonlinearity and, hence,
~vk. Note that similar conclusions could be reached with other

perturbation models in the literature like the ones in [19], [21].

It is worth mentioning that SDM systems are investigated in
the literature for very different transmission scenarios which
might not correspond to the one presented in this section. In
particular, the data rate per mode with fixed the power per
mode might not be the relevant metric in all situations. Thus,
the example discussed above is meant as an application of the
vk study rather than a general statement on the usefulness of
SDM systems.

VII. SIDE REMARKS ON WEAK-GUIDANCE

Since the weak-guidance approximation for which LP modes
exist is typically assumed in the literature for fibers with A <
1% [36, p.38] [40, p.20], it might have been the case that
such approximation did not hold for the MMFs considered in
this paper for which A € [1%, 5%)]. Thus, the accuracy of the
numerical results has been checked for some points of Fig[I}
including some for which A = 5%, generating the vector-modal

profiles with the mode solver described in [35] based on [51].

For the fibers we tested, we observed a maximum discrepancy
between the elements of k computed with a scalar and with a
vector mode solver below 2% (and much lower in terms of & in
the SCR), justifying the adoption of the scalar solver, which is
computationally less expensive. The number of guided modes
for each generated fiber in the weak-guidance has also been
compared against the number of guided vector-modes without
such assumption [52], finding negligible discrepancies.

VIII. CONCLUSIONS

We have investigated the scaling of the nonlinear coupling
coefficients vk and vk, appearing in the Manakov equations
for the SCR and the IMGCR, respectively, with the number
of modes M supported by GIMMFs and SIMMFs. Analytic

expressions have been derived and validated against numerical
results, and provide a significantly quicker tool to compute yx
and yk. Our analysis also indicates that x is approximately
independent on the fiber design parameters R and A, but
it depends only on the number of guided modes. Thus,
maximizing the fundamental mode effective area minimizes
the elements of . Values of nonlinear coupling coefficients
have been computed for optimized and manufactured GIMMFs
in the literature and placed within the developed framework.

Our analytic expressions can be used, e.g., in nonlinear SDM
channel models [21], [22], [23]. Thus, contributing towards
the assessment of the feasibility of a future long-haul SDM
communication system.

APPENDIX A
CLOSED-FORM EXPRESSION FOR THE FUNDAMENTAL
EFFECTIVE AREA OF GIMMFS: VARYING THE CORE
RADIUS

In order to obtain an approximate analytic expression for
Ai1 when varying only R, let the fundamental mode be
approximated with a Gaussian function as [40, Eq.15-2] [53}
Eq.2.2.38] [29, Eq.2.74]

2
ooxp (2)
To

where ¢ > 0 is some scaling factor, p is the radial coordinate,
ro is the so-called spot-size. Then, the fundamental mode
effective area becomes [53, p.32]

(20)

Ay =7 (1)

The parameter 7o can be related to V through different
approaches. An empirically-fitted formula is [54, Eq.11]

To A B C

R \/‘7 + V15 + Ve
with A = /2, B ~ 0.372, and C = 26.773. For the case of
a parabolic GIMMEF, the last two terms are relevant only for
low values of V' (and thus M). Hence, we neglect them for
the sake of simplicity. A similar relation can be obtained with
a variational approach, through which it has been shown that,

(22)
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Figure 13: Comparison between the achievable data rates computed with Eq. when vk o< 1/M (13al), and when vx o 1/v/M (13b)),

within the perturbation model and the assumptions of [23].

for the infinite parabolic refractive index profile, [40, Table
14-2]
To 1
Do —
RV
A similar dependence has been obtained for the Gaussian
refractive index profile [40, Table 15-2].
From Eq. ZI) and Eq. (22), it turns out that

(23)

Al ~ 11— 24)

%
Substituting Eq. (T0) in Eq. (24), exploiting the definition
of V, and remembering that A is fixed (i.e., M changes only
because of R), yields
1 2
~ — | 4V M
A~ <NAk0>
APPENDIX B
CLOSED-FORM EXPRESSION FOR THE FUNDAMENTAL
EFFECTIVE AREA OF GIMMFS: VARYING THE REFRACTIVE
INDEX DIFFERENCE

The approximate closed formula for .4;; when R is fixed
can be retrieved with the same Gaussian approach employed
in Appendix [A] With the help of Eq. (24) and Eq. (I0),
remembering that this time R is fixed and A varies, it is
found that

TR?A% 1

2 VM

APPENDIX C
ANALYTIC EXPRESSION FOR THE MANAKOV
NONLINEARITY COEFFICIENT OF GIMMEFS

A =

In this section we derive approximate analytic results for
the generic nonlinearity coefficient x,g of the matrix & for
GIMMFs. We remind that x reduces to the scalar x in case of
a single group of strongly-coupled modes.

In order to derive an approximate analytic expression for x4
for GIMMFs, the infinite parabolic profile approximation can be
exploited, which provides relatively simple analytic expressions
for the modal profiles, while for the actual parabolic profile
of Eq. (8) the analytic expression would be more complicated,

involving the Whittaker functions of the first kind [40, Sec. 14-
8]. This approach is commonly employed to obtain closed-form
expressions for relevant quantities of GIMMFs like propagation
constants and their relative cutoff values [53| Sec.11.2.2], modal
profiles, and nonlinear coefficients [55]. The approximation
consists in assuming that the refractive index profile is parabolic
everywhere, not only in the core. That is, it assumes that Eq. (8)
holds also for p > R. The approximation is reasonable for low-
order modes and large enough core radius R [53| Sec.11.2.2],
even though we exploit it for all modes and core radii later.
The modal profiles are then [40, Table 14-2][55]
(25)

Foyn(p,0) = Fp i (p)Pr ()

where p and m are two integers, p is the radial coordinate, ¢
is the azimuth coordinate, and [55]]

- o —‘% p2
Fumle) = 47 e ey (%) oo

Po 0
where L} is a generalized Laguerre polynomial. The quantity
F,m(p) accounts for the radial dependence of the modal profile
with

|
Am = -

P\ 7 (p+m) @7
R
Po = W (28)
1
Ny = ingkngA (29)

The coefficient A}" has been chosen to fulfill the following
orthonormality condition among the modes [55, Eq.5]

2m 0o
/ / PF s i (0, ©)Fpm (P, @) dp dip = Gy O
o Jo (30)
The L} are the generalized Laguerre polynomials which
can be expressed in different ways. A handy approach for us
is [56, Eq.18.59]

L(p) = bi(n,m)p' 31)
=0



where

p—|—m>1

by(n,m) = (~1)' (p AE (32)

With simple algebraic passages it is possible to derive the
following expression which can speed up the numerical
implementation

)=
(i+1)(m+i+1)

bi(p, m) (33)

bip1(p,m

The expression of the polarization and azimuth dependence
P, () appearing in Eq. depends on the chosen modal
basis. Note that, in case of the LP modes, to draw a link with the
classic notation, the mode F',, ,,, corresponds to LP,, 1[40,
p-308]. In case of vector modes, within weak-guidance, the
expressions for the polarization vectors p,, () are [57, Eq.1]

p>0
Ty () =eos (@@ +sin ()T
TEop+1(p) = sin (p)& — cos (¢)g
m>1,p>0
EHY, 1 ,11(p) = cos (mp)& + sin (mep)g (35)
EH}, 1 p41(p) = sin (me)@ — cos (mep)g
m=>1p>0
HES, 1 pia(9) = cos (mp)d —sin(mg)y 50
HES, |1 :1(9) = sin (mg)& + cos (mp)g

Note that all modal bases obtained as a unitary transformation
of (quasi-)degenerate vector modes lead to the same vyrqog [37],
[38]]. Hence, in principle the LP and vector modal basis are
equivalent. However, we adopt the vector modes since they
simplify the calculations later on.

Starting from Eqs. [} @] and [7] the generic nonlinearity
coefficient x,3 can be computed as

4 1
Rab = 3 BN T 5ug)? ZZAH L)
aGIa belg
where we exploited the orthonormality so that
Jo S FalPdady = [ [T F|? dedy = 1,
and we defined
00 2
Du=[ [ AFJPIFIPdd 68
o Jo
where a stands for the pair of modal indices (p, m) and

b stands for (s,v). Hence, we now derive a closed-form
expression for Dgp.

Note that Eq. (6) has been originally derived for LP modes
only, while for vector modes a (slightly) more complex
expression is normally used [19, Eq.56]. We show in Appendix
that Eq. (6) holds also for vector modes (within weak-

guidance) and hence we are allowed to consider Eq. (38) for
vector modes as wellﬂ Then,

Dus / / D B (0)Pr (2 2| Eu(0)
= 4T m 2 ~sv 2
. / DB (DI Fvn ()12 o

where we made use of ||p,,(¢)||? = ||p,()||* = 1, thanks to
our choice of modal basis.

Substituting Eq. (26) into Eq. (39)
L[ 22 02

Dab - Cab/ pp2m+2ve Lgb ()
0 Po

2 2
p p p
(2 ) oy v (2 )dap 0
v (pﬁ) (Po) (/)3) P

AmAr \? .
= 27 <W) and C, is a short-hand
notation for Cpmsv We perform the change of variable u = 02,
so that du = 2pdp, which yields

e U U
D — C Tmuv 7O"U4Lm (7) Lm (7)
ab ab/o U € » \) r \)

U U
LY (f) L (7) 41
S )\ S )\ du ( )
A?YLAU 2
W > Tm

P, ()| *dedp

(39)

ol m‘b
[

where Cppsp =

where Cyp = ~ab/2 =7 (

and A\ = p2. We now follow similar steps to [58] to retrieve
a closed-form expression for the previous formula. Plugging

Eq. (31) into Eq. @]I), it is obtained

Dab = Cabzzzzbz(p7 m)bj(p7 m)

i=0 j=0 k=0 1=0

bk(s,v)bl(s,v))\E_Tm”/ T du (42)
0

=m+uv, o = p3/2,

where € = ¢ + j + k + | 4 Tinp. With the change of variable
T = ou, the integral fooo e~ 7“uf du becomes

a*<f+1>/ e "rfdr = o (e 4+ 1) = o~ el (43)
0

where the last passage holds only for integer values of ¢,
and where I'(e + 1) Jo e 2 dx is the well-known

gamma function. Observe also that Cb)\E*T"WJ*(EH) =
o (apacy '

s

P325+1

ab U 5erT . Then, Eq. 1) becomes
2
AT AY)T
Dab: ( E 23) Dab
Po

(44)

el
25+1

(45)

m)bi (s, v)bi(s,v)

ISince employing vector modes, it is enough to account for one mode per
LP group, where an LP group consists of either 2 modes (for the LPg;, modes
(with z € {1,2,...})), or 4 modes. Indeed, D,; depends only on the norm
of the modes, which is the same for all vector modes within the same LP
modal group (while this is not the case for the LP modes of a certain LP
modal group). Hence, the later symbolic calculations are speeded up. Note
that when only one vector mode per LP mode is employed, a suitable scaling
factor within the summation of (37) is needed.



Inserting Eq. (44) in Eq , we obtain

4 m v
Rap = —~ (2N +6ab Z Z A A ab

acl, belg

(46)

where we used A1 = 2mpg [55.

Notice from Eq. (#6) that ks does not depend on R or
A, but just on the number of modes, and it is expressed only
in terms of ratios of integers. Hence, k.3 can be computed
exactly (within the infinite parabolic approximation) with, e.g.,
the help of a software with symbolic computation capabilities,
as we did. To know which set of modal indices I, corresponds
to a certain modal group, the approach in [39] is helpful. The
analytic values of x in the SCR for up to 32 modal groups are
reported in Table [lIl For the IMGCR the analytic values are
reported in Table [III] for up to 10 modal groups (110 modes),
and in [43] for up to 32 modal groups (1056 modes).

APPENDIX D
INTERMODAL EFFECTIVE AREA FOR VECTOR MODES
In this section we prove the claim made in Appendix |C| that
Eq. (6) holds not only for the LP modal basis as per [19], but
for vector modes [341{36] as well. For a generic basis of real
modes in the weakly guiding regime, the nonlinear coupling
coefficients vr4p, can be computed as 19, Eq. 55]

-3

B aela bely NEN,

wong

Ia
cZ2 (Mo + &w ’

Yhap = (47)

where
L, = l/m/|\aHnFm2+2wr FylPdrdy  (48)

Consider two pairs of modes {F,, F,/} with polarizations

{Pu(9), Par ()} (where p, (i) is orthogonal to p,, (¢)), and
{F%, Fy } with polarizations {p, (), pp ()} (Where p, () is
orthogonal to py, (¢)). In order to obtain Eq. (6) from Eq. (47),

we need to prove that [19, Eq.57]

4 0o 0o
Iab +Ia’b+1ab’ +Ia’b’ = g/ / HFGH2||FbH2d1’dy

(49)
To do so, it is enough to show that
Inap = I1,ap/2 (50
V{n, h}, where
ha=[ [ IRy 5D
and o oo
ha=[ [ IFcFPwy 6

Given the separability of the radial and the azimuth dependence,
i.e., the radial dependence can be factored out from the previous
integrals, in the following we focus only on the azimuth
dependence.

Let us consider

(53)
(54)

P, = cos (lp)& + sin (Ip)F
Py, = cos (mp)& — sin (mep)g

which corresponds to the polarizations of EHj,, (and TMj ;)
and HE? . respectively. It immediately follows that I 4, =

m,p?
27, while

b= [ Ipe il
fAThmawwnﬂnw>—mna@smommfdw
= /0 277( cos (Ip)? cos (mep) *+sin () sin (mep)”
— 2cos (1) sin (1) cos (mep) sin (mig) ) dip
_ /O% i (1+ cos (21)) (1 + cos (2m))

+ 1 (1 —cos (2lp)) (1 — cos (2mep)) +

4
— 5 eos (1 = m)g) + cos (1 +m)g)]
os (1 — m)g) — cos (1 -+ m)g)] dip

m)e)

= /027r [% — i(cos(Z(l —
—cos (2(1 + m)go))} de

=T

which proves Eq. (50) for the considered two pairs of mode.
For all the other choices of a pair (p,,p,) (i.e., for any other
pair of vector modes), the same result can be proven with
similar steps as the ones above.

APPENDIX E
CLOSED-FORM EXPRESSIONS FOR THE NONLINEAR
COEFFICIENTS FOR STEP-INDEX FIBERS

The derivation of closed-form expressions for the nonlinear
coupling coefficients in SIMMFs has few differences compared
to GIMMFs. Firstly, the dependence of v on R and on A is
not the same as for GIMMFs. This is because for a SIMMEF,
instead of Eq. (22)), the fitted relation for the spot-size of the
Gaussian approximation is [59, Eq.8]

To B C

R-AT Y T E

where A = 0.65, B = 1.619, C = 2.879, and we have verified
the last term to be negligible in our case.

The variational approach formula for a SIMMEF yields [40,
Table 15-2]

(55)

1
R x VlogV

which, however, we have verified to be less accurate than
Eq. (53). Hence, when R is varied fixed A, with the help of

Egs. 1)), (53) and it is found that

AN B\’
A =7 <NA]€0) 2M (A—l— (2]\4)075> 67

If A is varied, while keeping R fixed, then

<
[=)

(56)

Ay ~ TR (A + (58)



As a side note, Ay increases slower than in a GIMMF when
R is fixed, and decreases slower when A is fixed, due to the
different relations between 7o and V.

We observed the numerical results to agree well with the theo-

2
retical scaling laws M - (A + W) and (A + W) ,
see Fig@2but for slightly different proportionality factors than

m g_NAko -2 and TR2.

he decrease of x with M is numerically found to be
essentially constant (thus weaker than 1/ VM for GIMMFs),
see Fig[lT] even though we did not provide an analytic
derivation of k as for GIMMFs. Ideally, it would be possible
to consider the weakly guiding analytic expressions for the
modal profiles of SIMMFs, which depend on Bessel functions
[40, Table 14-6], and follow a procedure analogous to the
one for GIMMFs in Appendix [C] For this purpose, formulas
for integrals involving squares of Bessels functions (and their
products) given in [60, p.431] and in [61, Eq.14] could be
useful.

APPENDIX F
NONLINEARITY COEFFICIENT FOR NON-PARABOLIC
GRADED INDEX FIBERS

The deviations in vk in case of non-parabolic GIMMF
could be ideally studied with a similar approach to the one
in Section That is, by independently approximating -y
(or, equivalently, A1) and k. Strictly speaking, it would be
necessary to recompute also the cutoff frequencies and, hence,
a substitute relation for Eq. (I0). However, given the grading
exponent g = 2 + 4, with 6 € [-10%, +10%)] (conservative
realistic range [31]]), it can be safely assumed that Eq. (I0) is
almost untouched.

Concerning «, an analytic derivation in the sense of Appendix
[C]would be quite involved because of the non-trivial expressions
of the modal profiles. Extensive computations with the exact
numerical method could be carried out to fit a relation similar
to Eq. which relates x5 to M. However, we do not expect
significant changes in view of a little §, as confirmed by Fig.
where it is clear that the values of « for fibers in the literature
(which in general do not have a parabolic graded index) are
close to the ones of parabolic GIMMFs.

For A;1, it is possible to exploit the Gaussian approximation
for a generic GI profile [54, Eq.11]. Then, with the same
procedure as in Appendices [A| and |B| for a generic power-law
GI profile with grading exponent g = 2 + 9, neglecting the
last two terms of the Gaussian approximation for ro/R [54,
Eq.11], it holds

7 VTS
A2

ToWo
0) =
() ¢ 2mR?
where 2= (3(1 4 1(2 %00
Then, the ratio between v x of Eq. (59) and the parabolic
case of Eq. (I6) is given by

vk (6 = 0) A?
For V € [1,100], which covers the whole range of Fig[12} and
d € [-10%, +10%)], it has been numerically observed that the

maximum excursion of € is £10%.

(59)

(60)
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