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When subjected to quasiperiodic driving protocols, superconducting systems have been found to
harbor robust time-quasiperiodic Majorana modes, extending the concept beyond static and Floquet
systems. However, the presence of incommensurate driving frequencies results in dense energy
spectra, rendering conventional methods of defining topological invariants based on band structure
inadequate. In this work, we introduce a real-space topological invariant capable of identifying time-
quasiperiodic Majoranas by leveraging the system’s spectral localizer, which integrates information
from both Hamiltonian and position operators. Drawing insights from non-Hermitian physics, we
establish criteria for constructing the localizer and elucidate the robustness of this invariant in the
presence of dense spectra. Our numerical simulations, focusing on a Kitaev chain driven by two
incommensurate frequencies, validate the efficacy of our approach.

I. INTRODUCTION

The study of topological states under non-equilibrium
conditions, particularly under a time-dependent poten-
tial, has been extensively explored over the past decade
within the Floquet paradigm [1–4], with the external
drive being time-periodic. A notable development along
this line of inquiry involves its extension to the time-
quasiperiodic realm, in which quantum systems are sub-
jected to external drives characterized by multiple mu-
tually incommensurate frequencies [5]. This extension
allows for further control and manipulation of quantum
systems and brings about a bunch of new topological phe-
nomena, such as topological energy pumping due to the
nontrivial topology in synthetic dimensions [6–14].

Moreover, time-quasiperiodic drives can also be used to
generate nontrivial topology in physical dimensions with
protected boundary modes. As first explored in Ref. [15],
it was shown that a time-quasiperiodic Kitaev chain can
host multiple types of Majorana boundary modes. In
that work, the authors analyzed the quasienergy band
structure using the enlarged Hamiltonian in the multi-
frequency-extended space, which generalizes the Sambe
space in the Floquet case [16]. In particular, for the anal-
ysis a very small cutoff was chosen for the frequency-
domain truncation, so that one is able to identify all
the topological gaps opened at the intersection between
bands dressed by multiple of driving frequencies, when
periodic boundary condition (PBC) is assumed. Thus,
one expects to have the Majorana edge modes inside
these gaps when the system has an open boundary con-
dition (OBC).

∗ Corresponding author: yang.peng@csun.edu

As one increases the frequency cutoff, the spectrum
of the enlarged Hamiltonian becomes denser and denser.
Eventually, when one pushes the cutoff to infinity, one
should expect a completely dense spectrum, in which for
any eigenstate, there exists another one arbitrarily close
to it in energy. Due to the absence of gaps, one should
not expect to see any topological edge modes. Yet in the
numerical calculations of Ref. [15], when the frequency
cutoff was chosen large enough, the Majorana boundary
modes did appear, thanks to the frequency-space local-
ization, as explained by the authors.

Despite the existence of the Majorana modes, what
was not addressed in that work is how to define a topo-
logical invariant that detects these boundary modes em-
bedded in the dense spectrum. In the absence of gaps,
certainly the Bloch-band-based topological invariants for
the gapped band structures as in static and Floquet topo-
logical systems [17] would not be applicable.

In this work, we solve this problem by defining such
a topological invariant inspired by a recently developed
tool called spectral localizer [18–20], which has emerged
as a versatile tool for probing real-space topology in a
variety of materials with a gapless spectrum [21–26], in-
cluding disordered semimetals [22], as well as photonic
structures [25, 26]. Indeed, we are motivated by the fact
that the spectral localizer can detect topological edge
modes despite the presence of degenerate bulk bands, as
appeared in the above mentioned systems.

Given the above properties, we show that the spectral
localizer is able to detect the topologial boundary modes
in a time-quasiperiodic quantum system. We further
present a physical interpretation of the invariant derived
from the spectral localizer by making a connection to the
physics of non-Hermitian Hamiltonians, which effectively
describe dissipative systems [27]. Our work provides a
concrete physical interpretation for the abstract spectral
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localizer within the context of non-Hermitian quantum
systems. Particularly, we establish a criterion for select-
ing the free tuning parameter in defining the spectral
localizer, thereby making this technique more practical.

As an example, we shall consider the time-
quasiperiodic Kitaev chain with particle-hole symmetry
used in Ref. [15], and identify the local topological in-
variant. Furthermore, we show the local invariant can
be used to detect topological phase transitions associ-
ated with the emergence and disappearance of Majorana
edge modes, despite of the dense spectrum in the large
frequency truncation limit.

The rest of this manuscript is organized as follows.
In Sec. II, we provide a brief overview of the spectral
localizer. In Sec. III, we discuss how the spectral lo-
calizer formalism can be applied to time-quasi-periodic
systems and derive an appropriate local invariant. We
then demonstrate it as the topological invariant for non-
Hermitian matrices, and provide criterion for selecting
the free tuning parameter in defining the spectral lo-
calizer. Following that, we numerically study a quasi-
periodically driven Kitaev chain and demonstrate how
spectral localizer can be used to detect topological phase
transitions. We conclude with a discussion in Sec. V.

II. REVIEW OF SPECTRAL LOCALIZER

In this section, we first briefly review the spectral lo-
calizer and its properties. From a mathematical per-
spective, the spectral localizer is a composite operator
that combines a number of incompatible observables and
determine whether they can be continued to commut-
ing without breaking the system’s symmetries. It is also
shown to be closely related to a system’s numerical K-
theory [18, 19]. Practically, the spectral localizer allows
one to probe a finite system’s real-space topology, and
has been shown to be more numerically efficient than
other real-space approaches, such as computing the Bott
index [22, 28]. Given these properties, the spectral local-
izer has been primarily used to detect boundary-localized
modes and probe non-trivial local topology in a variety
of materials and systems [21–26, 29–34].

For a system in d dimensions, the Hamiltonian H and
its position operators Xj=1,...,d are generally incompati-
ble, [H,Xj ] ̸= 0. The spectral localizer is constructed by
combining individual eigenvalue equations using a non-
trivial Clifford representation [35]. Namely, it is defined
as [18]:

Lx1,...xd,E (X1, X2, ..., Xd, H)

= κ

d∑
j=1

(Xj − xjI)⊗ Γj + (H − EI)⊗ Γd+1. (1)

Here κ > 0 is a scaling constant, and I is the identity
matrix with appropriate dimensions. The set of matri-

ces {Γ1,Γ2, ...,Γd+1} satisfies Γ†
j = Γj , ΓiΓj = −ΓjΓi,

Γ2
j = I. Unlike eigenvalue equations, however, here

x = (x1, x2, ..., xd) and E are inputs to the spectral lo-
calizer, and they dictate where in position-energy space
the localizer is probing. Moreover, x and E do not nec-
essarily have to be eigenvalues of (X1, X2, ..., Xd) and H.
Depending on the system’s symmetries, different prop-

erties of the spectral localizer can be used to determine if
the set of matrices {X1 − x1I, ..., Xd − xdI,H −EI} can
be continued to commuting. If there is obstruction to
that continuation, then the system exhibits non-trivial
topology at (x, E). Probing whether the continuation
is possible then allows us to define a local invariant that
classifies a system’s local topology [18, 21, 30]. Similar to
ones proposed in topological band theory [36], the local
invariant will be one of the three types: matrix signa-
ture (Z invariant), sign of determinant (Z2), or sign of
Pfaffian (Z2). In this work, we focus on 1D topological
superconductors in Class D with a Z2 invariant, which is
shown in later sections to be related to the the sign of
the determinant of one block of the localizer.

III. SPECTRAL LOCALIZER IN
TIME-QUASIPERIODIC SYSTEMS

A. Frequency-Domain Representation

Let us first review frequency-domain representation of
operators. This representation allows us to work with
a static Hamiltonian K instead of the original, time-
dependent Hamiltonian H(t), and therefore to use the
spectral localizer, which is defined for time-independent
Hamiltonians.
Consider first a time-periodic (Floquet) system with

period T , where the Hamiltonian H(t) satisfies H(t) =
H(t+T ). Denoting the system’s physical Hilbert space as
H, we may equivalently formulate the problem by intro-
ducing an enlarged Hilbert space, K = H⊗ L2(S1) (also
known as the Sambe space [16]). Here L2(S1) denotes
the space of square integrable T -periodic functions.
In the enlarged Hilbert space K, a time-periodic state

|ψ(t)⟩ can be represented as:

|ψ(t)⟩ =
∑
n

|ψn⟩e−inωt →
∑
n

|ψn⟩ ⊗ |n⟩, (2)

where |n⟩ is a state in the Fourier space of L2(S1). In-
tuitively, the time-periodic problem is mapped to a 1D
synthetic lattice, where the index n denotes the position
on that lattice. Similarly, the Hamiltonian H(t) and time
derivative operator −i∂t can be written as, respectively,∑

n hn⊗|n⟩ and −ωIH⊗ N̂ , where IH is the identity ma-

trix on the physical Hilbert space, N̂ :=
∑

n n|n⟩⟨n| is the
position operator on the frequency lattice, and ω = 2π/T
is the frequency. Therefore, in the enlarged space, the en-
larged Hamiltonian is represented by the following static
matrix K:

H(t)− i∂t → K := −ωIH ⊗ N̂ +
∑
n

hn ⊗ σn, (3)
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where we have also introduced σn :=
∑

m |n+m⟩⟨m| as
the operator that shifts all sites on the Floquet lattice by
distance n, namely σn|m⟩ = |n+m⟩.
As an example, consider a harmonically driven system,

H(t) = h0 + 2h1 cos(ωt). The non-trivial harmonics are

h0 and h1 = h†−1. In this representation, the enlarged
Hamiltonian is written explicitly as:

K =



. . .

h0 − ω h1 0

h†1 h0 h1
0 h†1 h0 + ω

. . .

 . (4)

The quasi-energies can then be obtained by diagonalizing
K. Note that the structure of K immediately implies
that the quasi-energies are only defined modulo ω in the
Floquet system. In practice, we have to truncate K to a
finite number of sectors, and we will denote the cutoff as
M .

The above discussion on Floquet systems generalizes
easily to time-quasiperiodic systems, whereH(t) depends
on s mutually incommensurate frequencies. In this case,
the emergent synthetic lattice |n⟩ will be s-dimensional,
and the static Hamiltonian K will take a form similar to
that in Eq. (3), with its sectors being:

Kn,m = Hn−m − δn,mn · ω, (5)

where n,m ∈ Zs, and ω = (ω1, ω2, ..., ωs) the vector of
frequencies.

As a concrete example, for a system driven by two mu-
tually irrational frequencies ω1 and ω2, the static Hamil-
tonian K is:

K = −ω1 IH ⊗ N̂ (1) ⊗ I(2) − ω2 IH ⊗ I(1) ⊗ N̂ (2)

+
∑
n

h(1)n ⊗ σ(1)
n ⊗ I(2) +

∑
n

h(2)n ⊗ I(1) ⊗ σ(2)
n , (6)

where the superscript denotes operators from the corre-
sponding drive. Again from the first two terms, we see
that quasi-energies in this system is only defined modulo
n1ω1 + n2ω2, where n1, n2 ∈ Z.

B. Real-Space Topological Invariant

Similar to Majoranas in static systems, in 1D time-
quasiperiodic Majoranas are also protected by particle-
hole symmetry (Class D). In this section, we will identify
the local invariant for such systems.

With only one spatial dimension, we have a single po-
sition operator X, which acts trivially on the frequency
lattice spanned by |n⟩. We construct the spectral local-

izer composing of operators K and X

Lx,ϵ(X,K) = κ(X − xI)⊗ σx + (K − ϵI)⊗ σy

=

(
0 κ(X − xI)− i(K − ϵI)

κ(X − xI) + i(K − ϵI) 0

)
.

(7)

Here x and ϵ are parameters with dimensions of position
and energy, σx,y are the Pauli x and y matrices satisfying
the Clifford algebra, and κ > 0 is a scaling constant.
It was stated in previous works that while the allowed
values of κ spans a wide range, it should be chosen below
some critical value κc [19, 20]. However, the meaning of
κc was not clearly stated, and the appropriate values of κ
were chosen only empirically [37]. In Sec. III C, we shall
present the meaning for this κc in our system.
In Class D, there is a particle-hole symmetry realized

by a unitary matrix Vc with VcV
∗
c = 1 that transforms the

enlarged Hamiltonian as Vc(K − ϵ̄I)∗V −1
c = −(K − ϵ̄I).

Here ϵ̄ can be any particle-hole symmetric quasi-energies
of the form ϵ̄ = l · ω with l a s-dimensional vector con-
sisted of integers and half integers. Given multiple in-
equivalent particle-hole symmetric quasi-energies, multi-
ple types of Majorana can be obtained [15], and thus we
need to detect Majoranas at different quasi-energies.

Because of the particle-hole symmetry, the spectral lo-
calizer is also particle-hole symmetric at ϵ = ϵ̄

(Vc ⊗ σz)L
∗
x,ϵ̄ (Vc ⊗ σz)

−1 = −Lx,ϵ̄. (8)

Moreover, Lx,ϵ has an additional chiral symmetry intro-
duced by the particular Clifford representation,

(I ⊗ σz)Lx,ϵ (I ⊗ σz)
−1 = −Lx,ϵ. (9)

Given these symmetries, for each pair (x, ϵ̄), the spec-
tral localizer is a Hermitian matrix describing an effec-
tive 0D system in Class BDI, and is classified by a Z2

invariant [38]. To see this, we use the fact that via a
basis transformation, K − ϵ̄I can always be brought into
a pure imaginary form whereas X − xI is purely real. In
this basis, we can define the topological invariant for Lx,ϵ̄

Cx,ϵ̄ = sign (det (κ(X − xI) + i(K − ϵ̄I))) . (10)

Note that the matrix κ(X−xI)+ i(K− ϵ̄I) is real, which
guarantees the determinant to be real. This invariant is
in agreement with, and a generalization of, its counter-
part in static, particle-hole symmetric systems, in which
the invariant is only defined at ϵ̄ = 0 [18, 30].
Next, we introduce this basis transformation explicitly.

The key insight is to find a basis in which Vc is an iden-
tity operator so that (K − ϵ̄I) = −(K − ϵ̄I)∗ is purely
imaginary (and antisymmetric). To this end, we define
the transformation matrix

W =
1√
2

(
Ix iIx
Ix −iIx

)
, (11)
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where Ix is the identity matrix in real space. For particle-
hole symmetry centered at quasi-energy ϵ̄ = l ·ω, we can
further define the following matrix in frequency domain:

ρn,m =
1√
2



1 n = m < l

−i n = m > l√
2 n = m = l

i n = −m < l

1 n = −m > l

. (12)

where vectors are ranked by comparing their indices,
starting from the first one. One can then check that
the following matrix after basis transformation

(W ⊗ ρ)†K(W ⊗ ρ)− ϵ̄I (13)

is purely imaginary. On the other hand, since the trans-
formation matrix W ⊗ ρ acts trivially on the spatial di-
mension, X−xI is unchanged under the transformation,
i.e., it remains real and diagonal.

To detect topologically protected boundary modes,
such as the Majorana modes in the time-quasiperiodic
topological superconductor introduced above, we need to
examine the invariant Cx,ϵ̄ at fixed ϵ̄, which is determined
by the type of time-quasiperiodic Majoranas we are in-
terested in, and vary the position argument x. For small
κ and x inside the bulk, Cx,ϵ̄ will take the value of the
bulk topological invariant obtained from the topological
band theory in a periodic system [18, 30]. When x is near
the boundary, Cx,ϵ̄ = 1 is trivial. Thus, the real space
signature for the existence of a Majorana at quasienergy
ϵ̄ is the jump from 1 to −1 for Cx,ϵ̄ as x is varied from
the boundary into the bulk.

C. Interpretation from non-Hermitian Physics

The invariant of the spectral localizer Lx,ϵ̄ defined in
Eq. (10) involves the non-Hermitian Parity-Time (PT)-
symmetric real matrix Mx(κ) = κ(X − xI) + i(K − ϵ̄I),
where the PT symmetry is simply the complex conjuga-
tion. It is known that there are two types of eigenvalues
of a PT-symmetric matrix: the PT-preserving ones (real)
and the PT-breaking ones (complex) [39]. Note that the
PT-breaking eigenvalues must appear as complex conju-
gate pairs E,E∗ ∈ C.

Now, let us look at the matrix Mx(κ) in our problem.
At κ = 0, Mx(0) = i(K − ϵ̄I) is simply the enlarged
Hamiltonian multiplied by the imaginary unit. Because
of the particle-hole symmetry around ϵ̄, the eigenvalues of
Mx(0) are on the imaginary axis and appear in conjuga-
tion pairs as±iϵn corresponding to non-Majorana modes,
and zero corresponding to possible Majoranas. Hence,
the topologically trivial bulk states can be regarded as
the PT-breaking states, whereas the Majoranas are the
PT-preserving states.

As κ increases from zero, all PT-breaking eigenvalues
must move in pairs with the same real part, ±iϵn →

Γn ± iϵ′n. Note that the invariant in Eq. (10) can be
written as the sign of the product of all eigenvalues of
Mx(κ). Since the PT-breaking eigenvalues appear as
complex conjugation pairs, their product is always real
and positive. We thus conclude Cx,ϵ̄ = 1 is trivial if there
are no Majoranas i.e. no PT-preserving states.
However, if at κ = 0 the system has two Majoranas at

the left and right boundary, their eigenvalues can move
independently along the real axis (0, 0) → (δL, δR) as κ is
increased [39]. Since the product of all other eigenvalues
is real and positive, the invariant can be written as

Cx,ϵ̄ = sign(δLδR). (14)

For small κ, based on perturbation theory we have δL,R ≃
κ⟨ψL,R|(X − xI)|ψL,R⟩, where |ψL,R⟩ denotes the Majo-
rana mode at the left and right boundary respectively. If
x is chosen near either boundary, the matrix X − xI is
either positive or negative semidefinite, which produces
the same sign for δL and δR and gives Cx,ϵ̄ = 1. How-
ever, if x is chosen deep inside the bulk, ⟨ψL|X − xI|ψL⟩
is negative, while ⟨ψR|X−xI|ψR⟩ is positive, which gives
opposite signs for δL and δR, and leads to Cx,ϵ̄ = −1.
The connection to non-Hermitian systems also explains

why the hyperparameter κ cannot be too large when con-
structing the spectral localizer [18, 30]. This can be un-
derstood from the spectrum of the matrix Mx(κ). As κ
is increased, all our above statements remain true, un-
til an exceptional point is reached when κ = κc, where
the matrix Mx(κc) becomes non-diagonalizable through
the coalescence of pairs of eigenvalues and eigenvectors
[40, 41]. For κ > κc, Mx(κ) no longer hosts PT-
preserving modes, indicating that it is topologically dif-
ferent from Mx(0) ≡ iK, which has Majoranas as PT-
preserving modes. Thus, the criterion for selecting κ is
that no exceptional point should be met as κ is increased
from zero.

D. Effects due to Dense Spectrum

One complication in time-quasiperiodic systems is the
dense energy spectrum when one extends the frequency
truncation limit to infinity. This can lead to a vanish-
ing “localizer gap” [21], which is defined as the smallest
eigenvalue (in modulus) of Lx,ϵ̄ at each (x, ϵ̄). For our sys-
tem, the localizer gap at each x is equal to the smallest
singular value of matrix Mx(κ), namely min[σs(Mx(κ))],
where σs(·) denotes the singular value spectrum of a ma-
trix.

To analyze the localizer gap of Mx(κ), it is useful
to consider the eigenvalues of Mx(κ), which is different
from its singular values. If we denote the smallest eigen-
value of Mx(κ) in absolute value as ϵmin ∈ C, then we
have in general min[σs(Mx(κ))] ≤ |ϵmin|. This means
whenever ϵmin = 0, the localizer gap vanishes. Con-
versely, vanishing localizer gap implies 0 ∈ σs(Mx(κ))
and det(Mx(κ)) = 0, thereby forcing ϵmin = 0. ϵmin
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can therefore be regarded as an alternative to the local-
izer gap, given that the localizer gap closes if and only
if ϵmin = 0, where the invariant Cx,ϵ̄ is no longer well
defined.

One advantage of analyzing the eigenvalues of Mx(κ)
is that they are related at different spatial locations x,
because Mx(κ) = Mx=0(κ) − κxI. In other words, the
eigenvalues of Mx(κ) at generic x can be obtained from
the ones at x = 0 together with an additional shift −κx.
Without loss of generality, let us choose the coordinate
system such that the left boundary is at the origin x = 0,
and sites along the chain are located at integer coordi-
nates x = 0, 1, . . . , N−1. This means the position opera-
tor X has eigenvalues 0, 1, . . . , N − 1 and is thus positive
semidefinite. We can denote eigenvalues of Mx=0(κ) as
Γn ± i(ϵn +m ·ω) and δL,R + im ·ω, with Γn, δL,R ≥ 0,
corresponding to PT-breaking states and PT-preserving
states, respectively. Here the term m · ω takes into ac-
count the time-quasiperiodicity represented in frequency
domin [15].

In the limit of large frequency truncation limit , m ·ω
can approach any real value by choosing sufficiently
large (in magnitude) integers in the integer-valued vec-
tor m. Therefore, the imaginary parts of eigenvalues of
Mx=0(κ), namely ϵn +m · ω and m · ω, are dense in R
(can be made arbitrarily close to any real number). Par-
ticularly, these imaginary parts can approach zero. This
implies

ϵmin = min
n;j=L,R

(|Γn − κx|, |δj − κx|). (15)

As x increases from 0, κx may become equal to a partic-
ular Γn or δj , and hence lead to ϵmin = 0 and vanishing
localizer gap. Since the number of distinct real part of
eigenvalues Γn and δj is linear in L (in contrast to the
dense imaginary part), there is only a finite number of
spatial locations x > 0 where the localizer gap and ϵmin

vanish.
The above analysis shows that despite the dense spec-

trum of K, the invariant Cx,ϵ̄ is undefined only at a finite
number of points (a measure zero set). Moreover, to cal-
culate the ϵmin, we only need to get the distinct real part
of the eigenvalues of M(κ). Numerically, as shown in
Appendix B, the real part easily converges with a small
frequency-domain truncation.

The next question is: can we still use Cx,ϵ̄ to detect
Majoranas by sweeping x when there is a finite number of
x where Cx,ϵ̄ is not well-defined? To answer this question,
we first note that vanishing localizer gap/ϵmin does not
necessarily imply a change in Cx,ϵ̄. In particular, the
invariant does not change if the gap closing is due to
a pair of PT-breaking eigenvalues going through zero,
namely Γn = κx for some n. This is because the product
of this pair of eigenvalues remains positive, before and
after closing. The invariant Cx,ϵ̄ only changes if a PT-
preserving eigenvalue goes through zero, namely δj = κx
for j = L or R. Hence, in spite of many points of localizer
gap closing, the transition between 1 and −1 in Cx,ϵ̄ only

happens when the gap closing is due to δL or δR crossing
κx. The usage of the spectral localizer is therefore still
valid.

IV. NUMERICAL EXAMPLE: DRIVEN KITAEV
CHAIN

A. Quasi-Periodic Majoranas

To illustrate the ideas introduced previously, as an ex-
ample we shall take the quasiperiodically driven Kitaev
chain [15], which is known to host multiple types of time-
quasiperiodic Majoranas.
The Hamiltonian for this driven Kitaev chain has the

following form

H(t) = HK + V (ω1t) + V (ω2t), (16)

where

HK = −µ
N∑
j=1

c†jcj −
N−1∑
j=1

[(Jc†jcj+1 + i∆cjcj+1) + h.c.]

(17)
is the Hamiltonian for a static Kitaev chain [42], where

cj(c
†
j) is the annihilation (creation) operator on site j, J

is the nearest-neighbor hopping amplitude, µ the onsite
potential, and ∆ the static pairing potential. The term

V (ωt) = −i∆′
N−1∑
j=1

(e−iωtcjcj+1 − eiωtc†j+1c
†
j) (18)

describes a time-periodic pairing term at frequency ω,
with amplitude ∆′. Here, we include two independent
dynamic pairing potential at two incommensurate fre-
quencies, ω1 and ω2.
In Appendix A, we review the condition for the ex-

istence of different time-quasiperiodic Majoranas in this
model. It turns out that in terms of system’s param-
eters, Majorana modes at quasi-energy ω1/2, ω2/2, and
(ω1+ω2)/2 disappear when ω1, ω2, and ω1+ω2 exceed the
bandwidth 2J + µ, respectively. On the other hand, the
zero mode should always survive, as long as |µ| < 2|J |,
independent of ω1 and ω2.

B. Numerical Results

We numerically study the quasi-periodically driven Ki-
taev chain described by Eq. (16), using the spectral lo-
calizer Lx,ϵ̄ as defined in Eq. (7) and the local invariant
Cx,ϵ̄ defined in Eq. (10).

First, we show the behavior of the local invariant Cx,ϵ̄

and the localizer gap, min(σs(M)), in the presence and
absence of Majorana modes. For concreteness, we have
focused on the Majorana mode at quasi-energy ω2/2 by
setting ϵ̄ = ω2/2. As shown in Fig. 1(a, b), the local
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FIG. 1. (a, b) Local invariant Cx,ϵ̄ along the chain in the
presence and absence of Majorana modes. The bulk invariant
is non-trivial when topological edge modes are present. (c,
d) localizer gap min(σs(M)) in the presence and absence of
Majoranas. Inset of (c): localizer gap zoomed-in around the
system boundary. The location of localizer gap closing in (c)
coincides with that of invariant change in (a). (e): Distinct
real part of the eigenvalues of M(κ). The Majorana modes
(δj−κx) and a few bulk states (Γn−κx) are shown in red and
blue, respectively. The black dashed line is at y = 0. Intersec-
tions with it indicates vanishing (Γn, δj)−κx. Only the Majo-
rana crossings correspond to invariant changes. (f): Real part
of eigenvalues of M(κ) in an energy window (−ω2/2, ω2/2).
While the imaginary part of the spectrum is dense, the real
part is not. The parameters used across all panels are: J/ω1 =
0.5, µ/ω1 = 1,∆/ω1 = 0.05,∆′/ω1 = 0.05, κ = 0.4, N = 100.
The frequency ratio is ω2/ω1 = (

√
5 + 1)/2 (a, c, e, f),

ω2/ω1 = 5(
√
5 + 1)/2 (b, d). The frequency domain is trun-

cated to a 9× 8 lattice.

invariant becomes non-trivial in the bulk when the sys-
tem hosts Majorana edge modes. On the other hand,
when Majoranas are absent (specifically, for ω2 exceed-
ing the bandwidth 2J + µ; see Appendix A), the invari-
ant remains trivial along the chain. This correspondence
between the existence (absence) of topological boundary
modes and nontrivial (trivial) bulk invariants has also
been observed in other systems using the spectral local-
izer approach, such as anomalous Floquet topological in-
sulators [34] and nonlinear topological materials [38].

The localizer gap behaves similarly, as shown in Fig. 1
(c, d). In the presence of Majoranas, the localizer gap

indeed closes near the boundary, while it remains open
when the system is topologically trivial. The location of
the gap closing coincides with that of invariant change
shown in Fig. 1(a). Importantly, we would like to note
that the appearance of a constant localizer gap in the
bulk is merely an artifact of finite sampling of x: namely,
we have sampled x densely around the boundary and
chosen x on site in the bulk to single out the effects of
Majorana edge modes. If we were to sample the bulk
as densely, we would have expected many closings due
to topologically trivial states. However, such crossings
always occur in pair and therefore do not affect the local
invariant, as discussed in Sec. IIID.

To further support our analysis in Sec. III C and
IIID, we have also analyzed the spectrum of Mx(κ). In
Fig. 1(e), we show the real part of a few eigenvalues of
Mx(κ) along the chain, i.e., (Γn, δj)− κx for both δL, δR
and a few bulk states Γn. Compared to the local invari-
ant shown in Fig. 1(a), it is clear that only the Majorana
crossings at δj − κx = 0 change the local invariant. On
the other hand, while there is an extensive number of
crossings at Γn − κx = 0 due to bulk states, the local
invariant is not affected, as such crossings always occur
in pairs. In Fig. 1(f) we show (Γn, δj)−κx for all Γn and
δj in an energy window (−ω2/2, ω2/2). In the limit of
large frequency-domain truncation, while the imaginary
part of M ’s spectrum becomes dense, the real part of
the spectrum remains unchanged. Therefore, despite the
dense spectrum, ϵmin still serves as a useful alternative
to the localizer gap. For the behavior of the localizer gap
and ϵmin in the limit of an infinite frequency lattice, see
Appendix. B.

Now that we have established the correspondence be-
tween topological edge modes and bulk invariants, we
wish to use it in reverse: namely, by probing whether
the bulk invariant is non-trivial, we wish to determine
if the system hosts Majorana edge modes. To this end,
we simulate the driven Kitaev chain at different driv-
ing frequencies. For each pair of frequencies (ω1, ω2) and
each Majorana mode (ϵ̄ = 0, ω1/2, ω2/2, (ω1+ω2)/2), we
compute the localizer invariant, Eq. (10), at the center
of the chain, i.e. we use x = N/2, where N is the length
of the chain. If the local invariant is trivial (C = 1),
then the corresponding Majorana mode is absent; if non-
trivial (C = −1), then the system hosts Majoranas at
the particular quasi-energy ϵ̄. Note that for each set of
frequencies, we only need to compute the invariant at
one location. Furthermore, since the matrix Mx(κ) is in
general sparse, there are readily available algorithms to
efficiently compute the sign of its determinant (for exam-
ple, using LU factorization).

Using the bulk invariant, we have compiled two phase
diagrams, as shown in Fig. 2. Results from the spectral
localizer approach indeed match our expectations, vali-
dating our real-space invariant for a time-quasiperiodic
system. When ω1, ω2, and (ω1+ω2)/2 exceed the system
bandwidth 2J + µ, their corresponding Majorana modes
vanish. In contrast, the Majorana with zero quasi-energy
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FIG. 2. Phase diagrams of co-exisiting Majorana modes from
probing bulk local invariant. The red line in (a) indicates we
are not considering cases where ω1 ≃ ω2. The parameters
used are µ/J = 1,∆/J = 0.1,∆′/J = 0.05, κ = 0.001, N =
60.

always survives, regardless of the frequencies. Note that
the red line in the lower-left square of Fig. 2(a) indi-
cates that we are not considering cases where ω1 ≃ ω2.
Indeed, for such frequencies, the synthetic electric field
−→ω = (ω1, ω2) is almost diagonal. The perpendicular di-
rection, along which the energy is almost conserved, is
thus also nearly diagonal (in the (1,−1) direction) and
periodic. Therefore, the quasi-periodic localization ar-
guement of Ref. [15] is no longer valid, and the time-
quasiperiodic Majoranas are not stable.

V. CONCLUSION AND OUTLOOK

In this work, by exploiting a recently developed tool
called spectral localizer, we defined a real-space topolog-
ical invariant at position x as Cx,ϵ̄ = sign(det(Mx(κ))),
with non-Hermitian matrix Mx(κ) = κ(X − xI) + i(K −
ϵ̄I) and hyperparameter κ, for time-quasiperiodic Ma-
joranas at quasienergy ϵ̄ in a superconducting system
driven at multiple incommensurate frequencies. Using
the theory of PT-symmetric non-Hermitian matrices to
analyze Mx(κ), we provided detailed physical under-
standing of this invariant by analyzing the eigenvalues
of Mx(κ). We were able to interpret the maximal hy-

perparameter κc beyond which our approach is invalid
as the exceptional point for Mx(κ). Furthermore, we
showed that despite the dense spectrum of frequency-
space enlarged Hamiltonian K for the time-quasiperiodic
system, the invariat Cx,ϵ̄ only depends on th e real part
of the eigenvalues of M(κ), which only takes a finite
number (linear in system size) of distinct values. We
illustrated this approach numerically by studying a time-
quasiperiodic driven Kitaev chain model.
In the future, we shall generalize this approach to other

systems with dense spectrum, such as the gapless topo-
logical space-time crystals mentioned in Ref. [43]. An-
other direction is to construct real-space invariant for
interacting many-body systems, where the spectral lo-
calizer is not defined yet. However, our non-Hermitian
matrix construction may provide some hints. Finally,
we notice that for small κ, the matrix −iMx(κ) =
(K − ϵ̄I)− iκ(X − xI) is essentially a Hamiltonian with
a small non-Hermitian perturbation, which can be re-
garded as an effective Hamiltonian for the short-time
dynamics in a open quantum system described by the
Lindblad master equation [27]. It would be interesting to
explore the possibility of designing dissipative protocols
for a driven Kitaev chain (or the Jordan-Wigner equiv-
alent transverse-field Ising model) to measure the local
topological invariant in experiments.
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Appendix A: Driven Kitaev Chain

Under periodic boundary conditions, we may write the
Hamiltonian Eq. (16) in momentum space as

H =
∑
k

Ψ†
k [HK(k) + V(k, ω1t) + V(k, ω2t)] Ψk, (A1)

where

HK(k) = τzξk + τx∆sin k (A2)

V(k, ωt) = τx∆
′ sin keiωtσz . (A3)

Here Ψ†
k = (c†k, c−k) is the Nambu spinor, ck =∑N

j=1 cje
−ikj/

√
N is the annihilation operator in k space,

τx,y,z are Pauli matrices for Nambu space, and ξk =
−J cos(k)− µ/2 is the normal state dispersion.
It has been shown in Ref. [15] that the above system

hosts four quasi-periodic Majoranas at quasi-energies 0,
ω1/2, ω2/2, and (ω1 + ω2)/2. Since quasi-energy is only
defined modulo n1ω1 + n2ω2 in this system, under the
particle-hole transformation, any state with one of the
four quasi-energies is mapped to itself i.e. they are all
particle-hole symmetric.
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The robustness of quasi-periodic Majoranas may at
first seem surprising. Indeed, since ω1 and ω2 are mu-
tually irrational, n1ω1+n2ω2 can approach any value for
sufficiently large |n1|, |n2|, and the dense quasi-energy
spectrum would naively imply mixing between the Ma-
joranas and bulk states under local perturbation. Inter-
estingly, despite the absence of a spectrum gap, quasi-
periodic Majoranas are stable due to localization in the
drive-induced synthetic dimensions. In fact, Ref. [15] has
shown that the Majoranas are robust even in the presence
of temporal disorder and rational driving frequencies.

One may also understand the robustness of dynamical
Majoranas from the system’s quasi-energy band struc-
ture. In the absence of static and dynamic pairing po-
tentials ∆ = ∆′ = 0, the quasi-energy bands of the sys-
tem take the form ϵn1,n2,e/h(k) = ±ξk+n1ω1+n2ω2. For
appropriate parameters, there can be at most four spe-
cial quasi-momenta kj , j ∈ {0, 1, 2, 3}, where the quasi-
energy bands cross. Namely, the four special momenta
satisfy

ϵn1,n2,e(k0) = ϵn1,n2,h(k0)

ϵn1,n2,e(k1) = ϵn1+1,n2,h(k1)

ϵn1,n2,e(k2) = ϵn1,n2+1,h(k2)

ϵn1,n2,e(k3) = ϵn1+1,n2+1,h(k3). (A4)

Reinstating ∆,∆′ ̸= 0 opens up topological gaps at these
momenta. These gaps protect the Majorana modes at
quasi-energies 0, ω1/2, ω2/2, (ω1 + ω2)/2, respectively.
Depending on the driving frequencies, the system can

host different numbers of co-existing Majoranas and
therefore be in different topological phases. The dis-
appearance of Majorana modes at large frequencies is
dictated by conditions in Eq. (A4): when frequencies ex-
ceed the normal state bandwidth, there can no longer be
quasi-energy band crossings. In turn, no topological gap
opens up, and Majoranas lose their robustness and dis-
appear. In terms of the system’s parameters, Majorana
modes at ω1/2, ω2/2, and (ω1 + ω2)/2 vanish when ω1,
ω2, and ω1 + ω2 exceed the bandwidth 2J + µ, respec-
tively. On the other hand, the zero mode should always
survive as long as |µ| < 2|J |.

Appendix B: Effects of Finite Frequency Truncation

In this Appendix, we show the robustness of the lo-
calizer gap and ϵmin against truncation in the frequency
domain.

For concreteness, we have again focused on the ϵ̄ =
ω2/2 mode. Therefore, when we truncate the frequency

lattice to Nmax sectors, we restrict to −Nmax, ... , Nmax

harmonics of ω1 and −Nmax + 1, ... , Nmax harmonics of
ω2 i.e. we are truncating the infinite frequency lattice to
a (2Nmax + 1)× (2Nmax) lattice.
In Figs. 3 and 4, we show the localizer gap and ϵmin

for different Nmax. Note first that vanishing ϵmin coin-
cides with vanishing localizer gap (at x = 1), as we had

FIG. 3. The localizer gap min(σs(M)) along a chain for differ-
ent number of frequency sectors M . The gap is independent
of the cutoff and converges to a finite value. Parameter used
are J/ω1 = 0.5, µ/ω1 = 1,∆/ω1 = 0.05,∆′/ω1 = 0.05, κ =
0.4, N = 40, ω2/ω1 = (

√
5 + 1)/2. We have focused on the

ϵ̄ = ω2/2 mode.

FIG. 4. Same parameters as Fig. 3, except for the quantity
of interest is ϵmin, as defined in Eq. (15).

expected. In the limit of a dense spectrum Nmax → ∞,
both ϵmin and the localizer gap remain nonzero, indi-
cating that a dense spectrum does not pose an issue,
as discussed in Sec. IIID. Furthermore, both quantities
converge easily for small cutoff Nmax, showing our results
only require a small frequency truncation.
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