
ar
X

iv
:2

40
4.

13
13

6v
1 

 [
m

at
h.

C
O

] 
 1

9 
A

pr
 2

02
4

Beyond the classification theorem of

Cameron, Goethals, Seidel, and Shult

Hricha Acharya∗ Zilin Jiang†

Abstract

In 1976, Cameron, Goethals, Seidel, and Shult classified all the graphs with smallest eigen-

value at least −2 by relating such graphs to root systems that occur in the classification of

semisimple Lie algebras. In this paper, extending their beautiful theorem, we give a com-

plete classification of all connected graphs with smallest eigenvalue in (−λ∗,−2), where λ∗ =

ρ1/2 + ρ−1/2 ≈ 2.01980, and ρ is the unique real root of x3 = x + 1. Our result is the first

classification of infinitely many connected graphs with their smallest eigenvalue in (−λ,−2) for

any constant λ > 2.

1 Introduction

A core problem in spectral graph theory is the characterization of graphs with limited eigenvalues.

In this paper, by eigenvalues of a graph G, we specifically mean those associated with its adjacency

matrix AG. We focus on graphs with eigenvalues bounded from below, and we denote by G(λ) the
family of graphs with smallest eigenvalue at least −λ. Since G(λ) is closed under disjoint union, it

is enough to characterize the connected graphs in G(λ).
The well-known fact that all the line graphs have smallest eigenvalue at least −2 prompted

a great deal of interest in the characterization of graphs in G(2). After Hoffman [7] constructed

generalized line graphs, the interest deepened as it became apparent that generalized line graphs

are not the only graphs in G(2). The ubiquitous Petersen graph, the Shrikhande graph, the Clebsch

graphs, the Schläfli graph, and the three Chang graphs were among the first exceptional graphs to

be identified. An important result in this direction is the complete enumeration of strongly regular

graphs in G(2) by Seidel [15].

In 1976, the characterization of graphs in G(2) culminated in a beautiful theorem of Cameron,

Goethals, Seidel, and Shult [3]. What is ingenious in their paper is the translation of the spectral
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n+ 3

Figure 1: E0, E1, E2 and En.

graph theoretic problem to one involving root systems, which have been used for the classification

of semisimple Lie algebras. Cameron et al. proved that apart from the generalized line graphs, there

are only finitely many other connected graphs in G(2), each of which is represented by a subset of

the E8 root system. We refer the reader to the monograph [6] for a comprehensive account of G(2).
Can we classify graphs with smallest eigenvalue beyond −2? In 1992, Bussemaker and Neu-

mair [2, Theorem 2.5] determined the smallest λ > 2 such that G(λ) \ G(2) consists of precisely

one connected graph, which is E6 defined in Figure 1. Recently, motivated by a discrete-geometric

question on spherical two-distance sets in [11], Jiang and Polyanskii proved [10, Theorem 2.10] that

the number of connected graphs in G(λ) \ G(2) is finite for every λ ∈ (2, λ∗). Here and throughout,

λ∗ := ρ1/2 + ρ−1/2 ≈ 2.0198008871,

where ρ is the unique real root of x3 = x+1. Despite its algebraic definition, the peculiar constant

λ∗ has a spectral graph theoretic interpretation.

Proposition 1 (Hoffman [8]). For every n ∈ N, define the graph En as in Figure 1. As n → ∞,

the largest eigenvalue of En increases to λ∗, or equivalently, the smallest eigenvalue of En decreases

to −λ∗.

The aforementioned finiteness result, together with Proposition 1, establishes λ∗ as the smallest

λ > 2 such that G(λ) \ G(2) contains infinitely many connected graphs. Naturally, the authors of

[10] raised the problem of finding all connected graphs in G(λ∗) \ G(2).
We completely classify all connected graphs in G(λ∗) \ G(2). We point out that the algebraic

integer −λ∗ is not totally real, hence it cannot be a graph eigenvalue. As a result, G(λ∗) \ G(2)
consists precisely of graphs with smallest eigenvalue in the open interval (−λ∗,−2).

In its weak form, our classification theorem says that every sufficiently large connected graph

in G(λ∗) \ G(2) looks more or less like the graph En for some sufficiently large n ∈ N. To be more

precise, we have the following characterization.

Definition 2 (Rooted graph and augmented path extension). A rooted graph FR is a graph F

equipped with a nonempty subset R of vertices, which we refer to as roots, and are depicted by

solid circles. Given a rooted graph FR and ℓ ∈ N, the augmented path extension (FR, ℓ, ) of the

rooted graph FR is obtained from the disjoint union of F and the rooted graph by adding a path

v0 . . . vℓ of length ℓ, connecting v0 to every vertex in R, and connecting vℓ to the two roots in .

See Figure 2 for a schematic drawing.
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RF

ℓ+ 3

Figure 2: The augmented path extension (FR, ℓ, ).

Theorem 3. There exists N ∈ N such that for every connected graph G on more than N vertices, if

the smallest eigenvalue of G is in (−λ∗,−2), then G is isomorphic to an augmented path extension

of a rooted graph.

We derive Theorem 3 using tools developed for forbidden subgraphs characterization in [10].

Since we rarely work with subgraphs that are not induced, we emphasize that all subgraphs are

induced throughout this paper.

The first part of our classification theorem is an explicit enumeration of 794 classes of augmented

path extensions in G(λ∗) \ G(2). We state the first part qualitatively as follows.

Definition 4 (Single-rooted graph and its line graph). A single-rooted graph Hr is a rooted graph

H with one single root r. The line graph of a single-rooted graph Hr, denoted by L(Hr), is the

rooted graph FR, where F is the line graph of H, and R is the set of edges incident to r in H.

Theorem 5. There exists a finite family F of rooted graphs such that

(a) every rooted graph in F is the line graph of a connected bipartite single-rooted graph,

(b) every connected augmented path extension with smallest eigenvalue in (−λ∗,−2) is an aug-

mented path extension of a rooted graph in F , and

(c) for every rooted graph FR in F , there exists ℓ0 ∈ {0, . . . , 6} such that the smallest eigenvalue

of (FR, ℓ, ) is in (−λ∗,−2) if and only if ℓ ≥ ℓ0.

A key ingredient in pinning down the augmented path extensions in G(λ∗)\G(2) is the following
linear-algebraic lemma. This lemma simplifies the task of determining whether an augmented path

extension belongs in G(λ∗) to a finite computation.

Lemma 6. For every rooted graph FR and ℓ ∈ N, the smallest eigenvalue of (FR, ℓ, ) is more than

−λ∗ if and only if the same holds for (FR, 0, ).

The second part of our classification theorem is an explicit enumeration of connected graphs in

G(λ∗) \ G(2) that are not augmented path extensions.

Definition 7 (Maverick graph). A maverick graph is a connected graph with smallest eigenvalue

in (−λ∗,−2) that is not an augmented path extension of any rooted graph.

Theorem 8. There are a total of 4752 maverick graphs with the following statistics.

3



order 9 10 11 12 13 14 15 16 17 18 19

# 13 629 1304 1237 775 408 221 107 42 13 3

As a consequence of Theorems 5 and 8, every relatively large graph in G(λ∗) \ G(2) can be

obtained from the line graph of a bipartite graph by adding a pedant edge.

Corollary 9. For every connected graph G on at least 18 vertices, if the smallest eigenvalue of G

is in (−λ∗,−2), then there exists a unique leaf v of G such that G−v is the line graph of a bipartite

graph.

Finally, we briefly explore graphs whose smallest eigenvalues are slightly beyond −λ∗. As it

turns out, Theorem 3 generalizes, whereas Theorem 5 does not.

Theorem 10. There exist λ > λ∗ and N ∈ N such that for every connected graph G on more than

N vertices, if the smallest eigenvalue of G is in (−λ,−2), then G is isomorphic to an augmented

path extension of a rooted graph.

Theorem 11. For every λ > λ∗, finite family F of rooted graphs and N ∈ N, there exists a

connected graph G on more than N vertices such that the smallest eigenvalue of G is in (−λ,−λ∗),

and G is not an augmented path extension of any rooted graph in F .

The rest of the paper is organized as follows. In Section 2, we prove Theorem 3, in Section 3,

we prove Lemma 6, and in Section 4, we prove Theorem 5. In Section 5, we explicitly describe

the family F of rooted graphs in Theorem 5, and in Section 6, we enumerate the maverick graphs

in Theorem 8. In Section 7, we explore a frequent pattern in maverick graphs, and we prove

Corollary 9. In Section 8, we prove Theorems 10 and 11, and we end the paper with open problems

in Section 9.

Part of our proofs are computer-assisted with validated numerics. We explain our computer-

aided proofs and how anyone can reproduce them independently. To expedite the identification of

computer-assisted proofs for readers, we employ a bespoke symbol at the conclusion of each such

proof. All our code is available as ancillary files in the arXiv version of this paper.

We deliberately craft our code without relying on third-party libraries, ensuring it can be

adapted across different programming languages. This approach also offers the significant advantage

that individuals interested in verifying our algorithms have the flexibility to use large language

models to translate our code written in Ruby into their programming language of choice, providing

a valuable starting point. It is important to note that while this translation serves as an efficient

initial step, further human refinement may be necessary to ensure the code fully captures the

nuances of our original implementations.

2 Forbidden subgraph characterization

The proof of Theorem 3 centers around the notion of generalized line graphs originally defined by

Hoffman [7]. Although we do not need their definition, for concreteness we nevertheless state the
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Figure 3: A graph Ĥ with petals and a schematic drawing of its line graph L(Ĥ).

alternative definition from [5].

Definition 12 (Graph with petals and generalized line graph). A graph with petals is a multigraph

Ĥ obtained from a graph by adding pedant double edges. A generalized line graph L(Ĥ) is the

line graph of a graph Ĥ with petals where two vertices of L(Ĥ) are adjacent if and only if the

corresponding edges in Ĥ have exactly one vertex in common. See Figure 3 for a schematic

drawing.

We need the following properties — just like line graphs, all the generalized line graphs are in

G(2), and they have a finite forbidden subgraph characterization.

Theorem 13 (Theorem 2.1 of Hoffman [9]). The smallest eigenvalue of a generalized line graph is

at least −2.

Theorem 14 (Cvetković, Doob, and Simić [4, 5], and Rao, Singhi, and Vijayan [13]). There are

31 minimal forbidden subgraphs, one of which is E2 defined in Figure 1, for the family D∞ of

generalized line graphs.

To prove Theorem 3, the strategy is to forbid specific subgraphs, including all the minimal

forbidden subgraphs for D∞ except E2, in every sufficiently large connected graph in G(λ∗) \ G(2).
To that end, we recall from [10] the following ways to extend a given graph.

Definition 15 (Path extension, clique extension, and path-clique extension). Given a graph rooted

graph FR, ℓ ∈ N, and m ∈ N
+,

(a) the path extension (FR, ℓ) is obtained from F by adding a path v0 . . . vℓ of length ℓ, and

connecting v0 to every vertex in R;1

(b) the path-clique extension (FR, ℓ,Km) is further obtained from (FR, ℓ) by adding a clique of

order m, and connecting every vertex in the clique to vℓ.

(c) the clique extension (FR,Km) is obtained from F by adding a clique of order m, and connect-

ing every vertex in the clique to every vertex in R.

1The path of length 0 is simply a single vertex.
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To forbid a subgraph F in every sufficiently large connected graph in G(λ), it is necessary that

no sufficiently large path extension of F is in G(λ). This condition turns out to be sufficient when

λ ≥ 2. Hereafter, we denote the smallest eigenvalue of a graph G by λ1(G).

Lemma 16. Suppose that F is a graph and λ ≥ 2. If limℓ→∞ λ1(FR, ℓ) < −λ for every nonempty

vertex subset R of F , then there exists N ∈ N such that F is never a subgraph of any connected

graph on more than N vertices with smallest eigenvalue at least −λ.

For the proof of Lemma 16, we need the following three results. The first two results auto-

matically extend the inequality condition on path extensions to path-clique extensions and clique

extensions.

Lemma 17 (Lemma 2.15 of Jiang and Polyanskii [10]). For every rooted graph FR and λ ≥ 2,

if limℓ→∞ λ1(FR, ℓ) < −λ, then there exists m ∈ N
+ such that λ1(FR, ℓ,Km) < −λ for every

ℓ ∈ N.

Lemma 18. For every rooted graph FR and λ ≥ 2, if limℓ→∞ λ1(FR, ℓ) < −λ, then there exists

m ∈ N
+ such that λ1(FR,Km) < −λ.

Proof. Pick ℓ ∈ N
+ such that λ1(FR, ℓ) < −λ. Set λ′ := −λ1(FR, ℓ). Let v0 . . . vℓ be the path

added to F to obtain (FR, ℓ), where the vertex v0 is connected to every vertex in R, and let

x : V (F ) ∪ {v0, . . . , vℓ} → R be an eigenvector of (FR, ℓ) associated with −λ′. We abuse notation

and write xi in place of xvi for i ∈ {0, . . . , ℓ}. Define x̃ : V (F ) ∪ V (Km) → R by

x̃v =







xv if v ∈ V (F );

x0/m if v ∈ V (Km).

We claim that
∑

v∈V (F ) x
2
v > 0. Indeed, assume for the contradiction that xv = 0 for v ∈ V (F ).

Using −λ′xi =
∑

u∼vi
xu for i ∈ {0, . . . , ℓ}, where the sum is taken over all vertices u that are

adjacent to vi in (FR, ℓ), we obtain that

(AP + λ′I)









x0
...

xℓ









= 0

where P denotes the path v0 . . . vℓ. Since λ1(P ) > −2 > −λ′, the matrix AP + λ′I is positive

definite, which contradicts with the assumption that x is a nonzero vector.

Because
∑

v∈V (F ) x
2
v > 0, clearly x̃ is a nonzero vector. We compute

x̃
⊺
x̃ =

∑

v∈V (F )

x2v +m(x0/m)2.

6



Moreover we can compute x̃
⊺A(FR,Km)x̃ as follows

x̃
⊺A(FR,Km)x̃ =

∑

u,v∈V (FR,0): u∼v

xuxv +m(m− 1)(x0/m)2.

Since x is an eigenvector of (FR, ℓ) associated with −λ′, we obtain that

∑

u,v∈V (FR,0): u∼v

xuxv + x0x1 =
∑

v∈V (FR,0)

xv
∑

u∼v

xu = −λ′
∑

v∈V (F )

x2v − λ′x20.

Thus x̃⊺A(FR,Km)x̃ can be simplified to

x̃
⊺A(FR,Km)x̃ = −λ′

∑

v∈V (F )

x2v − λ′x20 − x0x1 +m(m− 1)(x0/m)2.

The Rayleigh principle says that λ1(FR,Km) is at most

−λ′
∑

v∈V (F ) x
2
v − λ′x20 − x0x1 +m(m− 1)(x0/m)2
∑

v∈V (F ) x
2
v +m(x0/m)2

,

which, as m → ∞, approaches

−λ′ − (λ′ − 2)x20 + x0(x0 + x1)
∑

v∈V (F ) x
2
v

Here we used the claim that the denominator in the limit is positive.

Recall that λ′ = −λ1(FR, ℓ) > λ ≥ 2. It suffices to show that x0(x0 +x1) ≥ 0. In fact, we prove

inductively that xi(xi + xi+1) ≥ 0 for i ∈ {ℓ− 1, . . . , 0}. The base case where i = ℓ − 1 follows

immediately from −λ′xℓ = xℓ−1 and λ′ > 2. For the inductive step, using −λ′xi+1 = xi + xi+2 and

λ′ > 2, we obtain

xi+1(xi+1 + xi+2) = xi+1(xi+1 − λ′xi+1 − xi) = −(λ′ − 2)x2i+1 − (xi + xi+1)xi+1

≤ −(xi + xi+1)xi+1 = −(xi + xi+1)
2 + xi(xi + xi+1) ≤ xi(xi + xi+1),

which implies that xi(xi + xi+1) ≥ 0 by the inductive hypothesis.

The third result shows that forbidding a star and an extension family of F effectively forbids

F itself in every sufficiently large connected graph. Denote by Sk the star on k + 1 vertices.

Definition 19 (Extension family). Given a graph F and ℓ,m ∈ N+, the extension family X (F, ℓ,m)

of F consists of the path-extension (FR, ℓ), the path-clique extension (FR, ℓ0,Km), and the clique

extension (FR,Km), where R ranges over the nonempty vertex subsets of F , and ℓ0 ranges over

{0, . . . , ℓ− 1}.

Lemma 20 (Lemma 2.6 of Jiang and Polyanskii [10]). For every graph F and k, ℓ,m ∈ N
+, there

exists N ∈ N such that for every connected graph G on more than N vertices, if no member in

{Sk} ∪ X (F, ℓ,m) is a subgraph of G, then neither is F .
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Figure 4: Four 8-vertex graphs F with two vertices v6 and v7 such that F − {v6, v7} is isomorphic

to E2, and both F − v6 and F − v7 are isomorphic to E3.

We now have all of the ingredients needed to establish Lemma 16.

Proof of Lemma 16. Choose ℓ ∈ N
+ such that λ1(FR, ℓ) < −λ for every nonempty R ⊆ V (F ).

According to Lemmas 17 and 18, choosem ∈ N
+ such that λ1(FR, ℓ0,Km) < −λ for every nonempty

R ⊆ V (F ) and every ℓ0 ∈ N, and λ1(FR,Km) < −λ for every nonempty R ⊆ V (F ).

Suppose that G is a graph with λ1(G) > −λ. The choice of ℓ and m ensures that no member in

X (F, ℓ,m) is a subgraph of G. Furthermore, the star Sk, whose smallest eigenvalue is −
√
k, cannot

be a subgraph of G for any k ∈ N
+ satisfying

√
k > λ. Finally we apply Lemma 20 to obtain the

desired N ∈ N.

With Lemma 16 at our disposal, we return to forbidding certain subgraphs in every sufficiently

large connected graph in G(λ∗) \ G(2). The following computation ensures that E2 occurs as a

subgraph in every sufficiently large connected graph in G(λ∗) \ G(2).

Lemma 21 (Lemma 2.14 of Jiang and Polyanskii [10]). For every minimal forbidden subgraph F for

the family D∞ of generalized line graphs, if F is not isomorphic to E2, then limℓ→∞ λ1(FR, ℓ) < −λ∗

for every nonempty vertex subset R of F .

In addition, we further forbid small supergraphs of E2 through the following computation, which

is proved under computer assistance in Appendix A.

Proposition 22. For every connected graph F that contains E2 as a subgraph, if F is a 7-vertex

graph that is not isomorphic to E3, or F is an 8-vertex graph in Figure 4, then limℓ→∞ λ1(FR, ℓ) <

−95/47 for every nonempty vertex subset R of F .

Proof of Theorem 3. Combining Lemmas 16 and 21, we obtain N1 ∈ N such that for every minimal

forbidden subgraph F for D∞, if F is not isomorphic to E2, then F is not a subgraph of any

connected graph on more than N1 vertices with smallest eigenvalue more than −λ∗. Combining

Lemma 16 and Proposition 22, we obtain N2 ∈ N such that for every connected graph F that

contains E2 as a subgraph, if F is a 7-vertex graph that is not isomorphic to E3, or F is an 8-vertex

graph in Figure 4, then F is not a subgraph of any connected graph on more than N2 vertices with

smallest eigenvalue more than −λ∗. Here, we use the fact that λ∗ ≈ 2.01980 < 2.02127 ≈ 95/47.

Suppose that G is a connected graph on more than N := max(N1, N2) vertices with smallest

eigenvalue in (−λ∗,−2). Observe from Theorem 13 that G is not a generalized line graph. Thus G

8



R SF G

ℓ+ 1

Figure 5: The path augmentation (FR, ℓ,GS).

contains a subgraph E that is a minimal forbidden subgraph for D∞. The choice of N1 forces E to

be isomorphic to E2. The choice of N2 ensures that G[V (E) ∪ {v}] is isomorphic to E3 for every

vertex v at distance 1 from E in G, and moreover, such a vertex v is unique. In particular, G is an

augmented path extension of a rooted graph.

3 The linear-algebraic lemma

We generalize Lemma 6 to a class of graphs that encapsulates both augmented path extensions and

path-clique extensions.

Definition 23 (Path augmentation). Given two rooted graphs FR and GS and ℓ ∈ N, the path

augmentation (FR, ℓ,GS) of FR and GS is obtained from the disjoint union of F and G by adding

a path v0 . . . vℓ of length ℓ, connecting v0 to every vertex in R, and connecting vℓ to every vertex

in S. See Figure 5 for a schematic drawing.

Lemma 24. Suppose that GS is a rooted graph. If λ = − limℓ→∞ λ1(GS , ℓ), and λ1(G) > −λ, then

the following holds. For every rooted graph FR and ℓ ∈ N, the smallest eigenvalue of (FR, ℓ,GS) is

more than −λ if and only if the same holds for (FR, 0, GS).

Proof of Lemma 6. Take GS = in Lemma 24, and observe that ( , ℓ) is just Eℓ. Lemma 6 follows

immediately from Proposition 1.

To provide additional context for Lemma 24, we discuss the behavior of the smallest eigenvalue of

the path augmentation (FR, ℓ,GS) as ℓ → ∞. The following result follows from [1, Proposition 3.5].

We provide a self-contained proof here.

Lemma 25. For every rooted graphs FR and GS,

lim
ℓ→∞

λ1(FR, ℓ,GS) = min

(

lim
ℓ→∞

λ1(FR, ℓ), lim
ℓ→∞

λ1(GS , ℓ)

)

.

Proof. Set λFR
= limℓ→∞ λ1(FR, ℓ) and λGS

= limℓ→∞ λ1(GS , ℓ). Since both (FR, ℓ) and (GS , ℓ)

are subgraphs of (FR, ℓ,GS), clearly lim supℓ→∞ λ1(FR, ℓ,GS) ≤ min(λFR
, λGS

).

To see the reverse, let v0 . . . vℓ be the path added to the disjoint union of F and G to obtain

(FR, ℓ,GS), and let x : V (FR, ℓ,GS) → R be a unit eigenvector associated with λ1(FR, ℓ,GS). We

9



abuse notation and write xi in place of xvi . Choose k ∈ {0, . . . , ℓ− 1} such that xkxk+1 reaches the

minimum in absolute value. In particular, using the inequality |xixi+1| ≤ (x2i + x2i+1)/2, we obtain

|xkxk+1| ≤
1

ℓ

ℓ−1
∑

i=0

|xixi+1| ≤
1

ℓ

ℓ
∑

i=0

x2i ≤
1

ℓ
.

Notice that removing the edge vkvk+1 disconnects (FR, ℓ,GS) into subgraphs F ′ := (FR, k) and

G′ := (GS , ℓ − k − 1). Let x1 and x2 be the restrictions of x to V (F ′) and V (G′) respectively.

Finally, we bound the smallest eigenvalue of (FR, ℓ,GS) as follows:

λ1(FR, ℓ,GS) = x
⊺A(FR,ℓ,GS)x = x

⊺

1AF ′x1 + 2xkxk+1+

+ x
⊺

2AG′x2 ≥ λFR
x
⊺

1x1 − 2/ℓ+ λGS
x
⊺

2x2 ≥ min(λFR
, λGS

)− 2/ℓ,

which implies that lim infℓ→∞ λ1(FR, ℓ,GS) ≥ min(λFR
, λGS

).

Example. Consider the two cases where FR ∈ { , } and GS = . In both cases, because

limℓ→∞ λ1(FR, ℓ) = −2 and limℓ→∞ λ1(GS , ℓ) = −λ∗, according to Lemma 25, λ1(FR, ℓ,GS) ap-

proaches −λ∗ as ℓ → ∞. Interestingly, the smallest eigenvalue approaches −λ∗ in different ways —

λ1( , ℓ, ) approaches −λ∗ from below, whereas λ1( , ℓ, ) approaches from above. Lemma 24 rules

out other ways λ1(FR, ℓ,GS) could approach its limit.

We devote the rest of the section to the proof of Lemma 24. Denote by Ev,v the unit matrix

where the (v, v)-entry with value 1 is the only nonzero entry. We first characterize limℓ→∞ λ1(GS , ℓ).

Lemma 26. Suppose that GS is a rooted graph. Let v0 be the vertex in V (GS , 0) \ V (G). If

λ = − limℓ→∞ λ1(GS , ℓ), then the set of x ≥ 2, for which the matrix

A(GS ,0) + xI −
(

x/2−
√

x2/4− 1
)

Ev0,v0 (1)

is positive semidefinite, is equal to [λ,∞), and moreover, the above matrix is singular when x = λ.

Proof. Denote by Pℓ the path of length ℓ. Since limℓ→∞ λ1(Pℓ) = −2, clearly λ ≥ 2. Let x ≥ 2 be

chosen later, and for every n ∈ N
+, set dn := det

(

APn−1
+ xI

)

. Use Laplace expansion, one can

derive the linear recurrence dn+2 = xdn+1 − dn with the initial conditions d0 = 1 and d1 = x. It

follows from the classical theory of linear recurrence that limℓ→∞ dℓ−1/dℓ = x/2 −
√

x2/4− 1.

Claim. For every ℓ ∈ N
+, the matrix A(GS ,ℓ) + xI is positive semidefinite if and only if A(GS ,0) +

xI − (dℓ−1/dℓ)Ev0,v0 is positive semidefinite.

Proof of Claim. We partition the matrix A(GS ,ℓ) + xI into the following blocks:

(

A(GS ,0) + xI B

B⊺ C

)

,

10



Since C = APℓ−1
+ xI, and λ1(Pℓ−1) > −2 ≥ −x, the block C is positive definite. Therefore, the

above block matrix is positive semidefinite if and only if the Schur complement A(GS ,0) + xI −
BC−1B⊺ of C is positive semidefinite. Let v1 be the vertex in V (GS , 1) \ V (GS , 0). Since the only

nonzero entry of B is its (v0, v1) entry, the matrix BC−1B⊺ simplifies to (C−1)v1,v1Ev0,v0 . Cramer’s

rule yields (C−1)v1,v1 = detC ′/detC, where C ′ is obtained from C by removing the v1-th row and

column. To finish the proof of the claim, note that detC ′ = dℓ−1 and detC = dℓ. ♦

First, we consider the case where x ≥ λ. The claim implies that A(GS ,0) + xI − (dℓ−1/dℓ)Ev0,v0

is positive semidefinite. Sending ℓ to ∞, we know that the matrix in (1) is positive semidefinite

when x ≥ λ. Next, we consider the case where x ∈ [2, λ). The claim implies that A(GS ,0) + xI −
(dℓ−1/dℓ)Ev0,v0 is not positive semidefinite for sufficiently large ℓ. Sending ℓ to ∞, we know that

the matrix in (1) not is positive semidefinite when x ∈ [2, λ). Finally, assume for the sake of

contradiction that the matrix in (1) is positive definite when x = λ. We can then decrease x

slightly so that the matrix in (1) is still positive definite, which yields a contradiction.

We adopt the convention that the path extension (GS ,−1) is just the graph G.

Corollary 27. Suppose that GS is a rooted graph. If λ = − limℓ→∞ λ1(GS , ℓ), then for every ℓ ∈ N,

the matrix

A(GS ,ℓ) + λI −
(

λ/2 −
√

λ2/4− 1
)

Evℓ,vℓ

is singular, where vℓ is the vertex in V (GS , ℓ) \ V (GS , ℓ− 1).

Proof. We prove by induction on ℓ. Lemma 26 implies the base case where ℓ = 0. For the inductive

step, suppose that ℓ ∈ N
+. Let r be the vertex in V (GS , ℓ−1)\V (GS , ℓ−2). Define the single-rooted

graph Hr by H = (GS , ℓ− 1). Note that (Hr,m) = (GS , ℓ+m), and so limm→∞ λ1(Hr,m) = −λ.

Apply the base case to Hr, we know that A(Hr ,0) + λI − (λ/2 −
√

λ2/4− 1)Evℓ,vℓ is singular.

Now we obtain a simple matrix criterion to decide whether λ1(FR, ℓ,GS) > limℓ→∞ λ1(GS , ℓ),

from which Lemma 24 follows immediately.

Lemma 28. Suppose that GS is a rooted graph. If λ = − limℓ→∞ λ1(GS , ℓ), and λ1(G) > −λ,

then the following holds. For every rooted graphs FR and ℓ ∈ N, the smallest eigenvalue of the path

augmentation (FR, ℓ,GS) is more than −λ if and only if the matrix

A(FR,0) + λI −
(

λ/2 +
√

λ2/4− 1
)

Ev0,v0

is positive definite, where v0 is the vertex in V (FR, 0) \ V (F ).

Proof. We claim that λ1(GS , ℓ−1) > −λ. Assume for the sake of contradiction that λ1(GS , ℓ−1) =

−λ. Let x : V (GS , ℓ − 1) → R be an eigenvector of (GS , ℓ − 1) associated with −λ. Let v0 . . . vℓ

be the path of length ℓ that is added to G to obtain (GS , ℓ). We extend x to x̃ : V (GS , ℓ) → R

by setting x̃vℓ = 0. Since x̃
⊺A(GS ,ℓ)x̃ = −λx̃⊺

x̃, and λ1(GS , ℓ) = −λ, the nonzero vector x̃ is an
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Figure 6: The claw graph C and the diamond graph D.

eigenvector of (GS , ℓ). Using −λxvi =
∑

u∼vi
xu for i ∈ {ℓ, . . . , 1}, one can then prove by induction

that xvi = 0 for i ∈ {ℓ, . . . , 0}. Therefore the vector x restricted to V (G) is an eigenvector of G

associated with −λ, which contradicts with the assumption that λ(G) > −λ.

Coming back to the proof of the lemma, we partition the matrix A(FR,ℓ,GS)+λI into the following

blocks:
(

A(FR,0) + λI B

B⊺ C

)

.

Since C = A(GS ,ℓ−1) + λI, and λ1(GS , ℓ− 1) > −λ from the claim, the block C is positive definite.

Therefore, the above block matrix is positive definite if and only if the Schur complement A(FR,0)+

λI − BC−1B⊺ of C is positive definite. Since the only nonzero row of B is its v0-th row, say Bv0 ,

the matrix BC−1B⊺ simplifies to
(

Bv0C
−1B⊺

v0

)

Ev0,v0 .

It suffices to verify that Bv0C
−1B⊺

v0 = λ/2 +
√

λ2/4− 1. Notice that the block matrix

(

λ/2 +
√

λ2/4− 1 Bv0

B⊺

v0 C

)

is precisely the matrix in Corollary 27, and so it is singular. Since the block C is non-singular, its

Schur complement λ/2 +
√

λ2/4− 1−Bv0C
−1B⊺

v0 must be zero.

Proof of Lemma 24. Simply notice that the matrix criterion in Lemma 28 is independent from ℓ.

4 Characterization of the rooted graphs

Consider an augmented path extension of a rooted graph FR in G(λ∗) \ G(2). Clearly, (FR, 0) is

connected, and furthermore Lemma 6 implies that λ1(FR, 0, ) > −λ∗.

To characterize such rooted graphs FR, we need the following sufficient condition for line graphs,

which is an immediate consequence of [14, Theorem 4]. The claw graph and the diamond graph

are defined in Figure 6.

Theorem 29 (Theorem 4 of van Rooij and Wilf [14]). Every graph that contains neither the claw

graph nor the diamond graph as a subgraph is a line graph.

The following computation, together with Lemma 6, roughly speaking, enables us to forbid

certain subgraphs in the rooted graph FR.
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Figure 7: The rooted graphs in Proposition 30.

Proposition 30. For every rooted graph FR in Figure 7, the smallest eigenvalue of (FR, 0, ) is

less than −λ∗.

Proof. We shall prove that λ1(FR, 0, ) < −101/50 = −2.02. Our computation is straightforward.

We label the rooted graphs in Figure 7 by K2C, S3, K3, C5, C7, P7, P9, K7. For each rooted

graph FR, we output the determinant of A(FR,0, )+(101/50)I, which turns out to be negative. Our

code is available as the ancillary file forb rooted graphs.rb in the arXiv version of the paper.

Lemma 31. For every rooted graph FR, if (FR, 0) is connected and λ1(FR, 0, ) > −λ∗, then there

exists a connected bipartite single-rooted graph Hr such that

(a) FR is the line graph of Hr,

(b) every vertex of H is at most 8 from r as long as r is not a leaf of H,

(c) and the maximum degree of H is at most 7.

Proof. Suppose that FR is a rooted graph such that (FR, 0) is connected and λ1(FR, 0, ) > −λ∗.

Let K2, S3, K3, C5, C7, P7, P9 and K7 be the eight rooted graphs defined in Figure 7.

We first prove that the claw graph C is not a subgraph of (FR, 1). Assume for the sake of

contradiction that C is a subgraph of (FR, 1). Then C is also a subgraph of (FR, 2). Let v2 be

the vertex in V (FR, 2) \ V (FR, 1), and let v2u1 . . . uℓ be a shortest path (possibly of length 0) from

v2 to a vertex uℓ at distance 1 from C in (FR, 2). Label the vertices of C as in Figure 6, and let

S ⊆ {0, 1, 2, 3} be the nonempty subset of vertices of C that are adjacent to uℓ in (FR, 2). Notice

that the augmented path extension (FR, 2, ) contains

(K2, ℓ+ 1, ) when S = {0} ;
(K2, ℓ+ 2, ) when |S| = 1 and 0 6∈ S;

(S3, ℓ, ) when |S ∩ {1, 2, 3}| = 1 and 0 ∈ S;

(K2, ℓ, ) when |S ∩ {1, 2, 3}| ≥ 2,

13



as a subgraph, which yields a contradiction in view of Lemma 6 and Proposition 30.

We next prove that the diamond graph D is not a subgraph of (FR, 1). Assume for the sake of

contradiction that D is a subgraph of (FR, 1). Let v1 be the vertex in V (FR, 1) \ V (FR, 0), and let

v1u1 . . . uℓ be a shortest path (possibly of length 0) from v1 to a vertex uℓ at distance 1 from D.

Label the vertices of D as in Figure 6, and let S ⊆ {0, 1, 2, 3} be the nonempty subset of vertices of

D that are adjacent to uℓ in (FR, 1). Notice that the augmented path extension (FR, 1, ) contains

(K2, ℓ+ 1, ) when S = {0} or S = {2} ;
(K3, ℓ+ 1, ) when S = {1} or S = {3} ;

(K2, ℓ, ) when S ⊇ {1, 3} ;
(K3, ℓ, ) when |S| ≥ 2 and S 6⊇ {1, 3} ,

as a subgraph, which yields a contradiction in view of Lemma 6 and Proposition 30.

At this point, Theorem 29 implies that there exists a graph H ′ such that (FR, 1) is the line graph

of H ′. Let v0 be the vertex in V (FR, 0) \V (F ), and let v1 be the vertex in V (FR, 1) \V (FR, 0). We

identify the two vertices v0 and v1 of (FR, 1) with two edges e0 and e1 of H ′. Since v0v1 is an edge

of (FR, 1), the edges e0 and e1 shares a common vertex in H ′. Let r, u0, u1 be the vertices of H ′

such that e0 = ru0 and e1 = u0u1. Since v1 is a leaf of (FR, 1) and v0v1 is a pedant edge of (FR, 1),

we deduce that u1 is a leaf of H ′, and u0 is a leaf of H ′ − u1. Let H = H ′ − {u0, u1}. Clearly FR

is the line graph of Hr. Since (FR, 1) is connected, so are H ′ and H.

To finish the proof of (a), we need to further show that H is bipartite. Assume for the sake of

contradiction that H contains an odd cycle Ck of length k as a subgraph that is not necessarily

induced. Take a shortest path P of length ℓ between r and Ck. Notice that the edges in P and Ck

induce the following graph as a subgraph of (FR, 0, ):

(K3, ℓ, ) when k = 3;

(C5, ℓ, ) when k = 5;

(C7, ℓ, ) when k = 7;

(P7, ℓ, ) when k ≥ 9,

which yields a contradiction in view of Lemma 6 and Proposition 30.

We are left to prove (b) and (c). Assume for the sake of contradiction that r is not a leaf of

H, and there exists a vertex u9 at distance 9 from r in H. Take a shortest path P := ru1 . . . u9

between r and u9. Since r is not a leaf of H, we can choose a neighbor of r, say u0, in H that is

not on P . Notice that these edges ru0, ru1, u1u2, . . . , u8u9 in H induce (P9, 0, ) as a subgraph of

(FR, 0, ), which yields a contradiction in view of Proposition 30. Lastly, assume for the sake of

contradiction that there exists a vertex u with degree at least 8 in H. Take a shortest path P of

length ℓ between r and u in H. We can choose neighbors of u, say u1, . . . , u7, in H that is not on
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P . Notice that the edges of P together with the edges uu1, . . . , uu7 induce (K7, ℓ, ) as a subgraph

of (FR, 0, ), which yields a contradiction in view of Lemma 6 and Proposition 30.

We need one more ingredient on augmented path extensions that are not in G(2).

Lemma 32. For every rooted graph FR and every ℓ ∈ N, if the smallest eigenvalue of (FR, ℓ, ) is

less than −2, then the same holds for (FR, ℓ+ 1, ).

Proof. Let v0 . . . vℓ be the path of length ℓ added to the disjoint union of F and the rooted graph

to obtain (FR, ℓ, ), and let v−1v0 . . . vℓ be the corresponding path of length ℓ + 1 to obtain

(FR, ℓ+ 1, ). Suppose that λ1(FR, ℓ, ) < −2. We can pick a nonzero vector x : V (FR, ℓ, ) → R

such that x⊺A(FR,ℓ, )x < −2x⊺
x. Define the vector x̃ : V (FR, ℓ+ 1, ) → R by

x̃v =



















−xv if v ∈ V (F );

−xv0 if v = v−1;

xv otherwise.

Clearly, x̃⊺A(FR,ℓ+1, )x̃ = x
⊺A(FR,ℓ, )x− 2x2v0 and x̃

⊺
x̃ = x

⊺
x+ x2v0 . In particular, x̃ is a nonzero

vector that satisfies x̃⊺A(FR,ℓ+1, )x̃ < −2x̃⊺
x̃, which implies that λ1(FR, ℓ + 1, ) < −2 according

to the Rayleigh principle.

We are in the position to establish the qualitative version of the second part of our classification

theorem.

Proof of Theorem 5. Let the family H consist of the connected bipartite single-rooted graphs Hr

such that r is not a leaf of H, and λ1(L(Hr), 0, ) > −λ∗. To satisfy (a), let the family F consist

of the line graphs of the single-rooted graphs in H. The family H includes the trivial single-rooted

graph K1, of which the line graph is the null graph K0, whose augmented path extension (K0, ℓ, )

is simply Eℓ.

Lemma 31 implies that every rooted graph Hr in H has radius at most 8 and maximum degree

at most 7, and so both H and F are finite.

For (b), consider a connected augmented path extension (FR, ℓ, ) with smallest eigenvalue in

(−λ∗,−2). Without loss of generality, we may assume that either FR = K0 or |R| ≥ 2. The former

case is trivial because FR is the line graph of the single-rooted graph K1 ∈ H. For the latter case

where |R| ≥ 2, since (FR, 0) is connected and λ1(FR, 0, ) > −λ∗ via Lemma 6, Lemma 31 provides

Hr ∈ H such that FR is the line graph of Hr.

For (c), consider a rooted graph FR in F . By definition, λ1(FR, 0, ) > −λ∗, and so the smallest

eigenvalue of (FR, ℓ, ) is more than −λ∗ via Lemma 6 for every ℓ ∈ N. Note that the augmented

path extension (FR, 6, ) contains E6 as a subgraph, whose smallest eigenvalue is less than −2.

Let ℓ0 ∈ N be the smallest ℓ ∈ N such that λ1(FR, ℓ, ) < −2. In particular, ℓ0 ≤ 6. In view of

Lemma 32, we know that λ1(FR, ℓ, ) < −2 if and only if ℓ ≥ ℓ0.
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5 Enumeration of the rooted graphs

The proof of Theorem 5 on Page 15 has already characterized the members of H. In this section,

we enumerate all members of H, and describe them concisely by their maximal members.

Definition 33. Given two single-rooted graphs Hr and H ′
s, we say that Hr is a general subgraph

of H ′
s if there exists an injective graph homomorphism from H to H ′ that maps r to s.

The enumeration of H is achieved by a computer search. To supplement Theorem 5(c), we also

output for each Hr ∈ H the smallest value of ℓ0 ∈ {0, . . . , 6} for which λ1(L(Hr), ℓ0, ) ∈ (−λ∗,−2).

Theorem 34. Let the family H consist the connected bipartite single-rooted graphs Hr such that r

is not a leaf of H, and λ1(L(Hr), 0, ) > −λ∗. Let H∗ be the subfamily of H that consists members

that are maximal under general subgraphs.

(a) For every general subgraph Hr of a member in H∗, if H is connected, and r is not a leaf of

H, then Hr is in H.

(b) There are a total of 794 members of H with the following statistics.2

size 0 2 3 4 5 6 7 8 9 10 11 12 13 14

# 1 1 2 6 14 42 107 190 194 136 68 27 4 2

(c) There are a total of 48 members of H∗, which are listed in Figure 8.

Proof. For (a), consider a general subgraph Hr of H ′
s ∈ H. Since (L(Hr), 0, ) is a subgraph of

(L(H ′
s), 0, ), we know that λ1(L(Hr), 0, ) > −λ∗.

To enumerate the members in H, notice that for every member Hr ∈ H, except the trivial

single-rooted graph K1, there exists a sequence of members H
(2)
r , . . . ,H

(n)
r = Hr of H such that,

H
(2)
r is , and H(i+1) is obtained from H(i) by adding an edge, which is incident to at least one

vertex of H(i), for every i ∈ {2, . . . , n− 1}. This allows us to search for more non-trivial members

of H by adding a new edge to the existing ones.

We store members of H in the hash dict based on their size, and store those that are maximal

under general subgraphs in the array maximal. At the start, dict[0] consists of the trivial singled-

rooted graph K1, dict[2] consists of , and m increases from 2.

Whenever dict[m] is nonempty, we iterate through members of dict[m]. For each Hr in

dict[n], we carry out the following steps.

(i) We add a new edge toHr in every possible way to obtain new connected bipartite single-rooted

graphs H ′
r.

2The size of a graph is the number of its edges.
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Figure 8: Single-rooted graphs of H that are maximal under general subgraphs.
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(ii) We admit those H ′
r with λ1(L(H

′
r), 0, ) > −λ∗ to dict[m+1] (cf. Sections 5.1 and 5.2).

(iii) We append Hr to maximal when no H ′
r was admitted to dict[m+1].

For each Hr in dict, we output Hr as a string of the form u[1]u[2]...u[2e-1]u[2e] which

lists the edges u[1]u[2],...,u[2e-1]u[2e] of Hr, and we designate r to represent the root of Hr

in the string. We also output the smallest value of ℓ0 ∈ {0, . . . , 6} such that λ1(L(Hr), ℓ0, ) < −2

(cf. Section 5.3). Finally, we output the maximal single-rooted graphs stored in maximal.

Our code and its output are available as the ancillary files enum rooted graphs.rb and

enum rooted graphs.txt in the arXiv version of the paper.

For the rest of this section, we share further details of our implementation.

5.1 Positive definiteness of AG′ + λ∗I

Before we admit a single-rooted graph H ′
r to dict[m+1], we need to check whether AG′ + λ∗I is

positive definite, where G′ = (L(H ′
r), 0, ). Since H ′

r is obtained from Hr in dict[m] by adding

a new edge, the graph G := (L(Hr), 0, ) can be obtained from G′ be removing a vertex. Since

AG + λ∗I is already positive definite, according to Sylvester’s criterion, it suffices to check whether

the determinant of AG′ + λ∗I is positive. To avoid the irrational number λ∗, we use two rational

approximations λ∗
− and λ∗

+:

2.0198008850 ≈ 18259/9040 =: λ∗
− < λ∗ < λ∗

+ := 91499/45301 ≈ 2.0198008874,

One of the following two cases might happen.

Case 1: det(AG′ + λ∗
−I) > 0. Since AG + λ∗

−I is positive definite, so is AG′ + λ∗
−I according to

Sylvester’s criterion. In this case, we can assert that AG′ + λ∗I is positive definite.

Case 2: det(AG′ + λ∗
+I) < 0. Since the matrix AG′ + λ∗

+I is not positive definite, we can assert

that AG′ + λ∗I is not positive definite either.

Otherwise, we raise an exception, which never occurs for all graphs encountered throughout the

computer search.

5.2 Hash function of single-rooted graphs

When we admit a single-rooted graph H ′
s to dict[m+1], we need to check whether it is isomorphic

to an existing member of dict[m+1]. To efficiently detect isomorphic duplicates, we maintain a

hash table @hash of existing members of dict[m+1] using the following hash function.

For a bipartite single-rooted graph Hr, its hash value is a triple [dr, dA, dB], where dr is the

degree of r in H, dA is the degree sequence of the vertices in the part that contains r, and dB is
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the degree sequence of the vertices in the part that does not contain r. Clearly, when two bipartite

single-rooted graphs are isomorphic, their hash values are equal.

This allows us to test isomorphism between H ′
s and any existing member of dict[m+1] by

examining only the members of @hash[hv], where hv is the hash value of H ′
s.

5.3 Positive semidefiniteness of AG + 2I

When we calculate the smallest ℓ0, according to Sylvester’s criterion, checking whether AG + 2I is

positive semidefinite involves checking whether all principal minors of AG+2I are nonnegative. To

make this subroutine more efficient, we need the following fact.

Theorem 35 (Theorem 2.5 of Bussemaker and Neumair [2]). There is no graph whose smallest

eigenvalue is in (λ1(E6),−2), where λ1(E6) ≈ −2.006594.

Corollary 36. For every graph G, the matrix AG + 2I is positive semidefinite if and only if the

matrix AG + (305/152)I is positive definite.

Proof. Since λ1(E6) < −305/152 < −2, the smallest eigenvalue of G is at least −2 if and only if it

is more than −305/152.

In our implementation, we assert that AG + 2I is positive semidefinite if and only if all the

leading principal minors of AG + (305/152)I are positive.

6 Enumeration of the maverick graphs

We need the following technical result on the generation of maverick graphs.

Definition 37 (Witness). Given a graph G, a quadruple (u0, u1, u2, uc) of distinct vertices is a

witness for an augmented path extension if u0u1, u1u2 and u0uc are the only edges of G that are

not in G− {u1, u2, uc}.

Remark. As the name suggests, a graph G has a witness for an augmented path extension if and

only if G is an augmented path extension of a rooted graph.

Lemma 38. For every maverick graph M on n vertices, there exists a sequence K2 = G2, . . . , Gn =

M of connected graphs satisfying the following three properties.

(i) For every i ∈ {3, . . . , n}, λ1(Gi) > −λ∗, and there exists vi ∈ V (Gi) such that Gi−1 = Gi− vi.

(ii) If n ≥ 10, then λ1(G10) < −2.

(iii) If n ≥ 11 and G10 has a unique witness for an augmented path extension, then G11 is not an

augmented path extension.
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The proof requires the following fact about graphs with smallest eigenvalue less than −2 that

are minimal under subgraphs.

Theorem 39 (Kumar, Rao and Singhi [12]). Every minimal forbidden subgraph for the family G(2)
of graphs with smallest eigenvalue at least −2 has at most 10 vertices.

Proof of Lemma 38. Suppose M is a maverick graph on n vertices. Since M is connected, M is

not a null graph, and λ1(M) > −λ∗, the case where n ≤ 9 is trivial. Hereafter, we may assume

that n ≥ 10. Theorem 39 provides a connected subgraph G10 of M on 10 vertices such that

λ1(G10) < −2. We can then easily build the other connected graphs in the sequence using G10.

In the case where n ≥ 11 and G10 has a unique witness, say (u0, u1, u2, uc), of an augmented path

extension, since M is not an augmented path extension, there exists a vertex v11 ∈ V (M) \V (G10)

that is adjacent to at least of one of u1, u2 and uc in M . We can specifically choose G11 =

M [V (G10)∪{v11}]. Assume for the sake of contradiction that G11 to have a witness (u′0, u
′
1, u

′
2, u

′
c).

It must be the case that u′0 = u0, u
′
1 = uc, u

′
2 = v11, u

′
c 6∈ {u0, u1, u2, uc}, and u0u1, u1u2, u0uc,

ucv11 and u0u
′
c are the only edges of G that are not in G− {u1, u2, uc, u′c}. Thus G10 has another

witness (u0, u1, u2, u
′
c), which contradicts the uniqueness of the witness (u0, u1, u2, uc) for G10.

The enumeration of all maverick graphs is achieved by a computer search.

Proof of Theorem 8. To enumerate the maverick graphs, we store the graphs that can possibly

occur in a sequence described by Lemma 38 in the hash dict based on their order. At the start,

dict[2] consists of a single graph K2 and n increases from 2.

Whenever dict[n] is nonempty, we iterate through members of dict[n]. For each G in

dict[n], we carry out the following five steps.

(i) We connect a new vertex to a nonempty vertex subset S of G in every possible way to obtain

new graphs G′ = (GS , 0). See Section 6.1 for a more efficient implementation.

(ii) We store those G′ with λ1(G
′) > −λ∗ in a temporary array candidates.

(iii) In view of Lemma 38(ii), when n = 9, we remove G′ from candidates when λ1(G
′) < −2.

(iv) In view of Lemma 38(iii), when n = 10, we remove G′ from candidates when G has a

unique witness for an augmented path extension, and G′ is an augmented path extension (cf.

Section 6.2).

(v) We merge candidates into dict[n+1] (cf. Section 6.3).

We append the maverick graphs among the members in dict[n] to the array mavericks. To

select the maverick graphs, we reject members of dict[n] with smallest eigenvalue at least −2

when n = 2,...,9, and we always reject augmented path extensions in dict[n].
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Our program terminates at n = 20 because dict[20] is empty. Our code and its output are

available as the ancillary files enum maverick graphs.rb and enum maverick graphs.txt in the

arXiv version of the paper.

Remark. On a MacBook Pro equipped with an Apple M1 Pro chip and 16 GB of memory, the

program initially completed its task in under 25 minutes. With the assistance of ChatGPT 4.0,

we rewrote the code in Julia, a dynamically typed programming language designed for high per-

formance, enabling it to finish in under 8 minutes on the same machine. The code is available as

enum maverick graphs.jl in the arXiv version of the paper.

We reuse the techniques discussed in Sections 5.1 and 5.3 to check positive definiteness and

positive semidefiniteness of matrices. We share additional details of our implementation below.

6.1 Adding a new vertex

To accelerate the generation of graphs, we capitalize on the computation done for G in dict[n]

based on the following observation. Suppose that G is a graph such that λ1(G) > −λ∗. Let

S = {S ⊆ V (G) : λ1(GS , 0) > −λ∗}. For every S ∈ S, and every U ⊆ V (G′), where G′ = (GS , 0),

note that λ1(G
′
U , 0) > −λ∗ implies that λ1(GU∩V (G), 0) > −λ∗, which is equivalent to U∩V (G) ∈ S.

In other words, when we connect a new vertex to a nonempty subset U of G′ = (GS , 0) with S ∈ S,
we only need to iterate through U with U ∩ V (G) ∈ S.

To keep track of the set S defined for G, we add an attribute @possible subets, a list of

distinct nonempty vertex subsets of G, to each graph G. For the graph K2 in dict[2], its

@possible subsets consists of all the nonempty vertex subsets of K2. For each G in dict[n],

instead of connecting a new vertex, say v′, to a nonempty vertex subset S of G in every possible

way, we connect v′ to S for every S in @possible subsets of G. To obtain @possible subsets of

the graphs obtained from G, we initially set new possible subsets to be the list with a single ver-

tex subset {v′}. For each S in @possible subsets of G, check whether λ1(GS , 0) > −λ∗, and if so,

we append both S and S ∪ {v′} to new possible subsets, and we append (GS , 0) to candidates.

Finally, we set @possible subsets of each graph G′ in candidates as new possible subsets.

6.2 Finding witnesses

Given a graph G, to find its witnesses for an augmented path extension, we iterate through all

edges u1u2 of G with d(u1) = 2 and d(u2) = 1, check whether the vertex u0, that is, the other

neighbor of u1, is adjacent to a leaf uc, and we output all quadruples (u0, u1, u2, uc).

6.3 Hash function of graphs and generalized degrees

When we add a graph G in candidates to dict[n+1], we need to check whether it is isomorphic

to an existing member of dict[n+1]. To that end, we maintain a hash table @hash of existing
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Figure 9: The twisted path extension (FR, ℓ, ).

members of dict[n+1] using the following hash function.

For a vertex v of a graph G, the generalized degree of v in G is the pair [dv, dw], where dv

is the degree of v in G, and dw is the size of the neighborhood of v (that is, the subgraph of G

induced by all vertices adjacent to v). The hash value of a graph G is then the sorted sequence

of generalized degrees. Clearly, when two graphs are isomorphic, their hash values are equal, and

moreover, the generalized degree of a vertex is preserved under isomorphism.

This allows us to test isomorphism between G and any existing member of dict[n+1] by

examining only the members of @hash[hv], where hv is the hash value of G. In addition, when

we attempt to build an isomorphism between G and a member G′ of @hash[hv], we only map a

vertex of G to a vertex of G′ that has the same generalized degree.

7 Twisted maverick graphs

A visual examination of the maverick graphs reveals that a notable portion of them look alike.

Definition 40 (Twisted path extension and twisted maverick graph). Given a rooted graph FR

and ℓ ∈ N, the twisted path extension of the rooted graph FR is the path augmentation (FR, ℓ, ).

See Figure 9 for a schematic drawing. Given a graph G, a quadruple (u0, u1, u2, uc) of distinct

vertices is a witness for a twisted path extension if u0u1, u0u2, u1u2 and u0uc are the only edges of

G that are not in G− {u1, u2, uc}. A maverick graph is twisted if it is a twisted path extension of

a rooted graph.

A direct computer screening of the maverick graphs produced in Section 6 reveals that roughly

a quarter of them are twisted.

Theorem 41. There are a total of 1161 twisted maverick graphs with the following statistics.

order 10 11 12 13 14 15 16 17 18 19

# 48 133 220 236 210 162 96 40 13 3

Proof. For each maverick graph, we find its witnesses for a twisted path extension as follows: we

iterate through all edges u1u2 of G with d(u1) = d(u2) = 2, check whether u1 and u2 shares

a common neighbor, if so, check whether the common neighbor, say u0, is adjacent to a leaf

uc, and output all quadruples (u0, u1, u2, uc). Once a witness is found for a maverick graph, we

assert that it is twisted. As it turns out, every maverick graph that is twisted has a unique

witness. Our code and its output are available as the ancillary files enum twisted mavericks.rb

and enum twisted mavericks.txt in the arXiv version of the paper.
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For the proof of Corollary 9, we need the following connection between twisted path extensions

and augmented path extensions.

Proposition 42. For every rooted graph FR and ℓ ∈ N, if λ1(FR, ℓ, ) ≤ −2, then λ1(FR, ℓ, ) ≤
λ1(FR, ℓ, ).

Proof. Let λ > 1 to be chosen later, and let v0 be the vertex in V (FR, ℓ) \V (FR, ℓ− 1). In the case

where ℓ = 0, instead let v0 be the vertex in V (FR, ℓ) \ V (FR). Denote by Ev0,v0 the unit matrix

where the (v0, v0)-entry with value 1 is the only nonzero entry.

We claim that λ1(FR, ℓ, ) ≥ −λ if and only if

A(FR,ℓ) + λI −
(

2λ− 2

λ2 − 1
+

1

λ

)

Ev0,v0 (2)

is positive semidefinite. Indeed, we partition the matrix A(FR,ℓ, ) + λI into blocks:

(

A(FR,ℓ) B

B⊺ C

)

Since C = A + λI and λ > 1, the block C is positive definite. Therefore, the Schur complement

A(FR,ℓ) + λI − BC−1B⊺ of C is positive semidefinite. Since the only nonzero row of B is its v0-th

row, say Bv0 , the matrix BC−1B⊺ simplifies to Bv0C
−1B⊺

v0Ev0,v0 . We then compute directly:

Bv0C
−1B⊺

v0 =







1

1

1







⊺





λ 1

1 λ

λ







−1





1

1

1






=

2λ− 2

λ2 − 1
+

1

λ
.

Similarly, we can prove that λ1(FR, ℓ, ) ≥ −λ if and only if

A(FR,ℓ) + λI −
(

λ

λ2 − 1
+

1

λ

)

Ev0,v0 (3)

is positive semidefinite. Finally, take λ = −λ1(FR, ℓ, ) ≥ 2, and observe that the matrix in (3)

minus the matrix in (2) is equal to the matrix (λ− 2)/(λ2 − 1)Ev0,v0 , which is positive semidefinite.

Proof of Corollary 9. Suppose that G is a connected graph on at least 18 vertices such that λ1(G) ∈
(−λ∗,−2). In view of Theorems 8 and 41, G is either an augmented path extension or a twisted

maverick graph. We break the rest of the proof into two cases.

Case 1: G is an augmented path extension. In view of Lemmas 6 and 31, there exists a connected

bipartite single-rooted graph Hr and ℓ ∈ N such that G is (L(Hr), ℓ, ). Let (u0, u1, u2, uc) be the

witness for the augmented path extension. Clearly uc is a leaf of G, and G−uc is the path extension

(L(Hr), ℓ + 2), which is the line graph of the bipartite graph (Hr, ℓ+ 3). We are left to prove the
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n+ 2

Figure 10: E′
0, E

′
1, E

′
2 and E′

n.

uniqueness of such a leaf. We claim that there exists a neighbor of u0 in G − {u1, u2, uc}, that is

not a leaf of G. Assume for the sake of contradiction that every neighbor of u0 in G−{u1, u2, uc} is

a leaf of G. In this case, ℓ = 0 and FR is a null graph with more than one vertex, which contradicts

with the connectedness of Hr. Let u−1 be such a neighbor of u0. Then {u−1, u0, u1, uc} induces a

star S3 with 3 leaves in G. Since a line graph cannot contain S3 as a subgraph, and uc is the only

leaf of G in {u−1, u0, u1, uc}, we have to remove uc from G to obtain a line graph.

Case 2: G is a twisted maverick graph (FR, ℓ, ). In view of Proposition 42, λ1(FR, ℓ, ) > −λ∗.

By Lemmas 6 and 31, there exists a connected bipartite single-rooted graph Hr such that FR is

L(Hr). Let (u0, u1, u2, uc) be the witness for the twisted path extension. Clearly uc is a leaf of G,

and G − uc is the graph (L(Hr), ℓ, ), which is the line graph of the bipartite graph (Hr, ℓ + 1, )

The proof for the uniqueness of such a leaf follows exactly that of the previous case.

Remark. The order 18 in Corollary 9 is the smallest possible because of the two maverick graphs

of order 17 that are not twisted — each has a unique leaf, and its removal results in a graph that

contains the star S3 as a subgraph.

8 Beyond the classification theorem of G(λ∗) \ G(2)

In this section, we explore graphs whose smallest eigenvalues are slightly below −λ∗. To see why

Theorem 3 generalizes beyond −λ∗, notice that in the process of deriving Theorem 3 in Section 2,

the constant λ∗ plays an essential role only in Lemma 21. In [10, Appendix A], Jiang and Polyanskii

already noted that λ∗ ≈ 2.01980 can be replaced with 101/50 = 2.02 in Lemma 21. To obtain the

best constant, we define the following graphs, and compute the limit of their smallest eigenvalues.

Proposition 43. For every n ∈ N, define the graph E′
n as the path extension ( , n) in Figure 10.

The smallest eigenvalue of E′
n decreases to −λ′, where

λ′ := γ + 1/γ ≈ 2.02124

and γ is the unique positive root of x4 + x3 = x2 + 2.
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Figure 11: The rooted graph E′
2.

Proof. Using Lemma 26, we know that the matrix












r 1 1 1

1 x 1 0

1 1 x 0

1 0 0 x













is singular when x = λ′, where r = x/2 +
√

x2/4− 1. Substituting x by r + 1/r, the determinant

of the above matrix is equal to r4 − r2 + 2r + 2/r − 2/r2 − 3, which factors into (r4 + r3 − r2 −
2)(r2 − r + 1)/r2. Since γ is the unique positive root of r4 + r3 − r2 − 2, and no root of r2 − r + 1

is real, it must be the case that λ′ = γ + 1/γ.

Besides E2, the graph E′
2 is also one of the 31 minimal forbidden subgraphs for the family D∞

of generalized line graphs. As it turns out, E′
2 is the bottleneck case in Lemma 21.

Proposition 44. For every minimal forbidden subgraph F for the family D∞ of generalized line

graphs, if F is not isomorphic to E2, and FR is not the rooted graph E′
2 in Figure 11, then

limℓ→∞ λ1(FR, ℓ) < −95/47 for every nonempty vertex subset R of F .

We postpone the computer-assisted proof of Proposition 44 to Appendix A. Now we prove

Theorem 10 for every λ ∈ (λ∗, λ′).

Proof of Theorem 10. Pick an arbitrary λ ∈ (λ∗, λ′). Since λ′ ≈ 2.02124 < 2.02127 ≈ 95/47, in

view of Proposition 44, we can replace the constant λ∗ in Lemma 21 with λ. The rest of the proof

follows exactly that of Theorem 3 on Page 8.

Remark. For n ≥ 6, the graph E′
n is in G(λ′) \ G(2). Since it is not an augmented path extension,

Theorem 10 no longer holds for λ ≥ λ′.

To show that it is impossible to generalize Theorem 5, we need the following result on the set

of smallest graph eigenvalues.

Theorem 45 (Theorem 2.19 of Jiang and Polyanskii [10]). For every λ > λ∗, there exist graphs

G1, G2, . . . such that limn→∞ λ1(Gn) = −λ.

Proof of Theorem 11. Fix λ > λ∗. Assume for the sake of contradiction that there exists a finite

family F of rooted graphs and N ∈ N such that every graph G on more than N vertices, if

λ1(G) ∈ (−λ,−λ∗), then G is isomorphic to an augmented path extension of a rooted graph in F .

By Lemma 25, for each rooted graph FR ∈ F , we can set a(FR) := limℓ→∞ λ1(FR, ℓ, ). We can

then pick an open interval I ⊂ (−λ,−λ∗) that avoids the finite set {a(FR) : FR ∈ F}. Note that only
finitely many graphs have their smallest eigenvalues in I, which contradicts with Theorem 45.
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9 Concluding remarks

Since Theorem 10 holds for every λ ∈ (λ∗, λ′), we ask the following natural question.

Problem 46. Classify all the connected graphs with smallest eigenvalue in (−λ′,−λ∗). In partic-

ular, classify such graphs on sufficiently many vertices.

To conclude the paper, we reiterate a similar problem raised in [10] on signed graphs, which are

graphs whose edges are each labeled by + or −. When we talk about eigenvalues of a signed graph

G± on n vertices, we refer to its signed adjacency matrix — the n× n matrix whose (i, j)-th entry

is 1 if ij is a positive edge, −1 if ij is a negative edge, and 0 otherwise.

Problem 47. Classify all the connected signed graphs with smallest eigenvalue in (−λ∗,−2). In

particular, classify such signed graphs on sufficiently many vertices.

Understanding such signed graphs, and extending their classification beyond −λ∗ would offer

insights into spherical two-distance sets. We refer the reader to [10, Section 5] for the relevant

discussion.
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A Computer-assisted proofs

Proof of Propositions 22 and 44. For the exceptional case in Proposition 44 where FR is the rooted

graph in Figure 11, the path extension (FR, ℓ) is just E′
ℓ+3, whose smallest eigenvalue approaches

−λ′ as ℓ → ∞ according to Proposition 43. We strengthen the other inequalities in Proposition 44

by replacing λ′ with 95/47.

In view of Lemma 26, for each rooted graph FR considered in Propositions 22 and 44, to show

limℓ→∞ λ1(FR, ℓ) < −95/47, we only need to show that

A(FR,0) + (95/47)I − (95/94 − 3
√
21/94)Ev0 ,v0

is not positive semidefinite, where v0 is the vertex in V (FR, 0)\V (F ). Since 95/94−3
√
21/94 > 6/7,

to show that the above matrix is not positive semidefinite, it suffices to show the matrix

A(FR,0) + (95/47)I − (6/7)Ev0 ,v0 (4)
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with rational entries is not positive semidefinite.

Our implementation is straightforward. We iterate through the 7-vertex graphs labeled by

A1,...,A39 and the 8-vertex graphs labeled by B1,...,B4 in Proposition 22, and the minimal

forbidden subgraphs, labeled by G1,...,G31, for the family D∞ in Proposition 44. For each

graph F , we check whether AF + (95/47)I, a principal submatrix of the matrix in (4), is positive

semidefinite. Since 95/47, which is not an algebraic integer, cannot be a graph eigenvalue, we

instead check whether AF + (95/47)I is positive definite. If so, we output the nonempty vertex

subsets R of F , for which the determinant of the matrix in (4) is nonnegative.

In the output, either F is isomorphic to E3 or E2, or FR is the exceptional rooted graph in

Figure 11. Therefore the output of our program serves as the proof of the strict inequalities in

Propositions 22 and 44.

Our code is available as the ancillary file path extension.rb in the arXiv version of this paper.

We provide the input as path extension.txt for the convenience of anyone who wants to program

independently. In the input, each line contains the label of the graph and the string of the form

u[1]u[2]...u[2e-1]u[2e], which lists the edges u[1]u[2],...,u[2e-1]u[2e] of the graph. The

first line represents the graph E2, the next 4 lines represent B1, . . . , B4 in Figure 4, and the rest

lines represent the 31 minimal forbidden subgraphs for D∞. ada
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