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Abstract

Soft materials play an integral part in many aspects of modern life including autonomy, sustainability, and human health, and their
accurate modeling is critical to understand their unique properties and functions. Today’s finite element analysis packages come
with a set of pre-programmed material models, which may exhibit restricted validity in capturing the intricate mechanical behavior
of these materials. Regrettably, incorporating a modified or novel material model in a finite element analysis package requires
non-trivial in-depth knowledge of tensor algebra, continuum mechanics, and computer programming, making it a complex task
©_that is prone to human error. Here we design a universal material subroutine, which automates the integration of novel constitutive
<E models of varying complexity in non-linear finite element packages, with no additional analytical derivations and algorithmic
implementations. We demonstrate the versatility of our approach to seamlessly integrate innovative constituent models from the
«| material point to the structural level through a variety of soft matter case studies: a frontal impact to the brain; reconstructive surgery
of the scalp; diastolic loading of arteries and the human heart; and the dynamic closing of the tricuspid valve. Our universal material
subroutine empowers all users, not solely experts, to conduct reliable engineering analysis of soft matter systems. We envision that
this framework will become an indispensable instrument for continued innovation and discovery within the soft matter community

at large.
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1. Motivation

Understanding the mechanical behavior of soft matter is
pivotal across various scientific and engineering domains, rang-
ing from biophysics, over soft robotics, to biomedical and ma-
terial science engineering. Biological materials, composites,
polymers, foams, and gels all exhibit complex non-linear me-
chanical behaviors and functions, which result from the intrin-
sic architecture and interactions of their constituent molecules
or particles. To characterize this behavior, a multitude of con-
stitutive material models have been proposed in the literature
[37].

Finite element analysis provides a versatile and powerful frame-
work to evaluate these highly nonlinear material models and
predict their mechanical response within complex geometries
and under various loading conditions. Most contemporary fi-
nite element software packages offer an extensive number of
standard isotropic and anisotropic hyperelastic material mod-
els, including neo-Hooke [104], Mooney Rivlin [71} [89], Og-
den [77]], or Yeoh [112]. However, the implementation of newly
discovered constitutive models requires the definition of novel
material model subroutines or plugins, which map the compu-
tational domain’s second-order kinematic deformation gradient
tensor to a second-order Cauchy stress tensor [15]. These ma-
terial subroutines are evaluated within every finite element, at
each integration point, within every time step, at each Newton
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iteration.

Unfortunately, the efficient integration of novel constitutive
models into non-linear finite element software packages is a
complex task [51} [13]. The user needs to derive and imple-
ment explicit forms of the second-order Cauchy stress tensor
and the fourth-order spatial elasticity tensor [63]. The deriva-
tion and coding of these complicated tensorial expressions can
be an extremely hard task [70]], and requires a non-trivial deep
understanding of tensor algebra, continuum mechanics, com-
putational algorithms, data structures, and software architecture
[23]. Non-surprisingly, such endeavors are highly subject to hu-
man errors [113]]. This high degree of effort and risk of human
error when integrating novel constitutive models in finite ele-
ment packages limits its use to expert specialists, and, as such,
hampers research progress, dissemination, and sharing of mod-
els and results amongst a broad and inclusive community.

In this work, we streamline the implementation of novel consti-
tutive models into existing finite element analysis software, and
mitigate the risk for human error. We provide a common lan-
guage and framework for the computational mechanics commu-
nity at large. We design a modular and universal material sub-
routine, which automates the incorporation of constitutive mod-
els of varying complexity in non-linear finite element analysis
packages and requires no additional analytical derivations and
algorithmic implementations by the user. First, we introduce
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the concept of constitutive neural networks, which form the ar-
chitectural backbone for our universal material model. Next,
we illustrate the universal material model itself, describe its in-
ternal structure through pseudocodes, and showcase how this
subroutine can be effortlessly integrated and activated within
finite element simulations. We provide specific examples on
how existing constitutive models fit in our overarching frame-
work, and how we can incorporate special constitutive cases
that feature mixed invariant features. Finally, we showcase the
flexibility of our approach to naturally integrate novel constitu-
tive models from the material point level to the structural level
through various soft matter modeling case studies: the mechan-
ical simulation of a frontal impact to the brain, reconstructive
surgery of the scalp, the diastolic loading of arteries and the hu-
man heart, and the dynamic closing of the tricuspid valve.

2. Constitutive modeling

2.1. Kinematics
We introduce the deformation map ¢ as the mapping of
material points X in the undeformed configuration to points
x = @(X) in the deformed configuration [4}[39]. The gradient of
the deformation map ¢ with respect to the undeformed coordi-
nates X defines the deformation gradient F' with its determinant
J,
F=Vxe with J=det(F)>0, (D

We multiplicatively decompose the deformation gradient F' into
its volumetric F¥°! and isochoric F parts [25],

F=F".F with F'=J3] and F=J3F. (2)

As deformation measures, we introduce the left and right
Cauchy-Green deformation tensors, b and C, and their isochoric
counterparts, b and C,

x4

:Ft.
and C—F 3

S

b=F"F
C=F -F'

We further assume directionally-dependent behavior, with three
preferred directions, n?, ng, ng, associated with the material’s
internal fiber directions in the reference configuration, where all
three vectors are unit vectors, |[n? || =1, ||nd|| =1, ||nd]| = 1.
Based on the volumetric and isochoric decomposition, and the
underlying fiber orientations in the material, we characterize
the deformation in terms of 15 invariants [96|69]. More specit-
ically, we define one isotropic volumetric invariant,

Iy =det(F'-F) =J?, “)
two isotropic deviatoric invariants,
L=[FF:1 5
L=%[F—[F"-F]:[F"-F],
six anisotropic deviatoric invariants,
1:4(11) = [1?: {7] : [”(1)®”(1)] 1:5(11) = [1?:{7]2 [n(l)@’nl]
Loy = Uft 1?] [nd@nd] L) = [i'@z ([ @nd] (6)
Lyzz) = [F'-Fl: [ @ny]  Isa3=[F'-F]*: [n§@n]]

and six deviatoric coupling invariants,

L2y = [li'{”] [ @nd) L12) = [1? 1:”] () @n)]
Ly3) = [Iftl_:] :[n} @nd)] I513) = [’f fj] ) @n3] (7)
Lipsy =[F" - F]: [nd@nl] Loy =[F'-F?: [nd @n]

Note that these coupling invariants reverse their sign if one
of the fiber directions changes its sign, and can therefore not
be considered strictly invariant. Nevertheless, these pseudo-
invariants were found to be convenient for the definition of
anisotropic constitutive models [42].

2.2. Free energy function

To ensure thermodynamic consistency, we introduce the
Helmbholtz free energy y as a function of the deformation
gradient ¥ = y(F). Assuming no dissipative energy losses
within the material, and rewriting the Clausius—Duhem en-
tropy inequality [85] following the Coleman and Noll principle
[12, 29]], we derive
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as the constitutive relation between Cauchy stress ¢ and defor-
mation gradient F. To guarantee that our free energy function y
satisfies material objectivity and material symmetry, we further
constrain our stress responses to be functions of the invariants
of the left and right Cauchy Green deformation tensors b and C
[96,197]]. This results in the general definition of the free energy
function y as a function of the 15 invariants,

v (F)=

with o, € {1,2,3} and B > o. To account for the quasi-
incompressible behavior of soft materials, we make the consti-
tutive choice to additively decompose our free energy function
v into volumetric w*°! and isochoric ¥ parts,

v (I, 5,5, Iyap) » Is(ap) ) » )

y=y 4 (10)

Here, we define the volumetric free energy contribution,

v =ys(1), (11)

in terms of the isotropic volumetric invariant I3 (Eq. ), and the
deviatoric free energy contribution,

V=0 (L,h,lap) Iap)) » (12)

as functions of the isotropic and anisotropic deviatoric invari-
ants from Egs. [5|and[6] with o, 8 € {1,2,3} and B > c.

2.3. Constitutive neural network

With the aim to universally model a hyperelastic history-
independent soft matter material behavior, we design a modular
constitutive neural network architecture depicted in Figure [I]
Leveraging our prior work on automated constitutive model dis-
covery for isotropic [60L 161 182], transversely isotropic [39,81],
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Figure 1: Constitutive neural network architecture. Anisotropic, compressible, feed forward constitutive neural network with three hidden layers to approximate
the single scalar-valued free energy w(I; ,1_2,13,1_4043 s, B)’ as a function of 15 invariants of the left Cauchy-Green deformation tensor b. The zeroth layer generates

identity (o), the rectified linear unit (o), and the absolute value (o) of the 15 invariants. The first layer generates powers (o), ()2, (o)3, etc. and the second layer

applies the identity (o), the exponential (exp(o) —
condition of polyconvexity a priori.

and orthotropic [64] soft materials, we create a universal func-
tion approximator, which maps the 15 invariants L, b, L,
I4(a/3 ) 15(a p) of the deformation gradient F onto the free energy
function y (F). The constitutive relation between the Cauchy
stress 0 and the deformation gradient F' follows naturally from
the second law of thermodynamics as the derivative of the free
energy function y with respect to the deformation gradient
F according to Eq. [8] We ensure a vanishing free energy
¥ (F) = 0 in the reference configuration, i.e., when F = I, by
using the invariants’ deviation from the energy-free reference

state, [[_] — 3], [I_ - 3], [13 — 1] [14 (aB) — Caﬁ] [15 (aB) — Cocﬁ]

as constitutive neural network input. Here, {,5 = nY, - n% cor-

rects invariants Iy(qg) and Is(ep) for their values in the unde-
formed configuration. This correction a priori ensures a stress-
free reference configuration. To ensure polyconvexity, we de-
sign the constitutive neural network architecture as a locally
connected, rather than a fully connected, feed forward neural
network. Specifically, we design the free energy function as a
sum of individual polyconvex subfunctions with respect to each
of the individual contributing invariants. As a result, our free
energy function from Eqs. [0I2] can be additively decomposed
into

v =y (h)+ (k) +ys(h)+

NN
Y Y Viap) (laa
o=1f=0a

13)

N —
g"l/aﬁ ))7

||M2

1), and the logarithm (—In(1 — (0))) to these powers. The network is not fully connected by design to satisfy the

with a, € {1,2,3} and B > a. Following Eq. [8] we derive
the Cauchy stress

IV oI - - Iy
281] b+2812 [hb— ]+2al Il
N a'
+ 1Y G gy g @
a=1p=a 4@ (14)
N N a— _ _
+Y Y a"_ls [0 @ bitg + bt @
a=1f=a 5(a

+ fig @ biig + biig @ g ,

where fig = F -n and g = F ~n% represent the deviatoric fiber
vectors in the current configuration.

Our constitutive network consists of three hidden layers with
activation functions that are custom-designed to satisfy physi-
cally reasonable constitutive restrictions [4} [60]. Specifically,
we select from the identity (o), the rectified linear unit function
(o), and the modulus function | o | for the zeroth layer of the
network, from linear (o), quadratic (0)?, cubic (o)?, and higher
order powers for the first layer, and from linear (o), exponential
exp(o), and logarithmic In(o) for the second layer.

3. A universal material model

We incorporate our universal material model within a finite
element analysis environment. Specifically, we develop a user-
defined material model subroutine which functionally maps the
local deformation gradient F' onto the free energy function y
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Figure 2: Interaction between the finite element analysis solver and the
universal material subroutine. Flowchart of the interaction between Abaqus
and the UANISOHYPER_INV subroutine architecture which embeds our univer-
sal constitutive material model. During each Newton-Raphson iteration and at
each Gauss integration point, the UANISOHYPER_INV subroutine computes the
strain energy function , its first derivatives with respect to the deformation
invariants dy/dI;, and its second derivatives with respect to the deformation
invariants 92y /dI;0I;. These quantities are used by Abaqus to compute the
components of the Cauchy stress tensor and the material tangent stiffness ten-
sor, to construct the element force vector and stiffness matrix, and to assemble
the global righthand side vector and stiffness matrix. Abaqus then performs a
Newton-Raphson iteration based on the residual between the internal and ex-
ternal forces, until it achieves convergence.

and computes its derivative with respect to the deformation gra-
dient F and the Cauchy stress tensor ¢ using Eq. [8| Addition-
ally, we compute the stiffness tensor C to improve the accu-
racy, stability, and efficiency of the iterative solution technique
required for an accurate prediction of the non-linear material
behavior under various loading conditions.

3.1. Subroutine

To predict the quasi-static response of a system undergoing
mechanical loading a non-linear finite element analysis solver
iteratively evaluates whether a proposed update to the nodal dis-
placement field satisfies the equilibrium equations that describe
the force and momentum balance within the computational do-
main. This evaluation requires the computation of the stress
tensor and the tangent stiffness tensor as functions of the pro-
posed update to the body’s total deformation. At each time step,
at each Newton-Raphson iteration, within each element, and for
each integration point, the solver evaluates the constitutive re-
sponse that characterizes the functional mapping between the
deformation gradient F' and the stress tensor ¢ and tangent stiff-
ness tensor C.

We leverage the UANISOHYPER_INV user-defined subroutine ar-
chitecture in Figure2]to seamlessly integrate our universal con-
stitutive neural network architecture within the Abaqus finite
element analysis software suite [[15)]. This subroutine provides
three input arrays: the material properties we provide in the
finite element analysis input file; the deformation gradient in-
variants as defined in Eqs. @5]6] and[7} and an array of state-

dependent field variables. Upon each evaluation, our user-
defined subroutine updates the free energy function UA(1) =y,
the array of first derivatives of the free energy with respect to
the scalar invariants UI1(NINV) = dy/dl;, and the array of
second derivatives of the free energy with respect to the scalar
invariants UI2 (NINV* (NINV+1) /2) = 9%y /d[;d];.

Figure [3] showcases the internal code structure of our universal
material model subroutine. We construct a triple set of nested
activation functions UCANN_hO, UCANN_h1, and UCANN_h2 to
compute ¥, dy/dl;, 9>y /dId1; from I, We adopt the invari-
ant numbering,

[_1 — I_NINV; NINV=1
1_2 — I_NINV; NINV =2
13 — ININV; NINV=23
1_4(aﬁ) — I_NINV; NINV=4+2(a—1)+B(B—1))
Isapy — I NINV=5+2(a—1)+B(B—1))

s)
Dependent on the number of fiber families, this scheme auto-
matically adapts itself to account for multiple fiber orientations.
For example, when our material displays an anisotropic behav-
ior with three families of fibers (NDIR = 3), there are a total of
15 invariants: 1;, 1_2_, I3 = J, six invariants of type 1_4(05B)’ and six
invariants of type Is(qp), with o, 8 € {1,2,3} and > a.

Free energy function update.. Without loss of generality, we
reformulate the free energy y from Eq. [13]in the following
form,

v = fro fiofo(li—Ip)

n _ _ 16
=Y war fou (fra (fox T —Tok)swik)) (10
i=1

where fy, f1, f> are the nested activation functions associated
with the zeroth, first, and second layers of our constitutive neu-
ral network; k = 1,...,n defines each unique additive constitu-
tive neuron that stems from the expanding nested constitutive
neural network in Figure [3} and Iy imposes the free energy
v and Cauchy stress ¢ to be zero in the reference configura-
tion. As discussed above and shown in Figure[I] these correc-
tions amount to Ly = 3 for i = 1,2, to [y = 1 for i = 3, and
Iip = Cop =1y -n% for i > 4 with respect to the invariant num-
bering scheme in Eq. [I5] Our nested activation functions in Eq.

22l read

(0)2 wi (O)
exp(w1 () — 1
L=9 ~In(1—wi (o)) - U7

(o)

The activation function fy returns the identity, Macauley
bracketed, or absolute values, (o), (o), |o| of the zero-stress
reference configuration corrected invariants; f| raises these
invariants to the first, second, third, or any higher order powers,
(0)1, (), (0)3, (0)™; and f, applies the identity, exponential,
or natural logarithm, (o), (exp(o) — 1), (—=In(1— (0))), or any
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Figure 3: Universal material model subroutine schematic. Our universal material model user subroutine computes the strain energy function y (= UA(1)), its
first derivatives dy/dl; (= UT1(NINV)), and its second derivatives 92y 0I0I; (=UI2(NINV* (NINV+1)/2)) with respect to the scalar invariants J;, derived from
the deformation gradient F'. These functions and derivatives are computed based on a triple set of nested activation functions fy (= UCANN_hO0), f; (= UCANN_h1),
and f> (= UCANN_h2), where each unique constitutive path forms an additive constitutive neuron towards the total free energy and its derivatives.

other thermodynamically admissible function to these powers.

Cauchy stress tensor update.. To update the Cauchy stress ten-
sor ¢, we reformulate Eq. |§|in the following form,

:la‘I/(F) Fl—
J OF

u 1(91[/(9]11( ¢
~ J ol F

- 18
10y 3l (1%)

—y! poy1ovol
_Zilj <Zal,k> Zi:J dl; OF F

where Abaqus internally computes of the dI;/dF terms and
the summation of the individual NINV stress tensor contribu-
tions. We compute all the invariant-specific scalar UT1 (NINV)
= dy/dI; contributions to the full UI1 array in our user sub-
routine,

y & ' akaaflkafOk
I 81, X Z YBo0) ) b
in terms of the first derivatives of our activation functions
1 1(0)0
lol g 2(0)1 wi
8fo . 02 afl _ 3(0)2 afz _ WleXp(W1(0)>
30 12 37y T 9 | w/Awi(e)

m(oj”“1

(20)

Tangent stiffness tensor update.. To internally compute the
tangent stiffness tensor, Abaqus needs the second derivatives

of the strain energy function with respect to the invariants
0¥ /9,101, . Here, given the nested structure of our univer-
sal material model subroutine, we have 0?W/d1;dl;x =0 ,
when i # j As such, we only have non-zero values

2 n; a J 2
o7~ Be | (5585 -

9 fox 2
ik

in terms of the second derivatives of our activation functions,

d(e) 9(0)?

A fok O fik 0% fox
d(o) d(o) aifk

dfax 32f17k>
21)

0
2 S
o T o) W)

(m? —m) ()"
(22)
where the second derivative of the zeroth layer functions,
92 fy/d(0)?, vanishes identically for all three terms.

3.2. Pseudocodes

In the following five algorithmic boxes, we summarize our
universal material subroutine as pseudocode.

Algorithm [T] illustrates the UANISOHYPER_INV pseudocode
to compute the arrays UA(1), UI1(NINV), and UI2(NINV



Algorithm 1: Pseudocode for universal material sub-
routine UANISOHYPER_INV
subroutine UANISOHYPER_INV (aInv,UA,UI1,UI2)

// initialize variables

set initial array values for UA, UIl, UIZ;
set reference configuration
UANISOHYPER_INV;

set discovered parameters UNIVERSAL_TAB;

// evaluate all n rows in parameter

table
fork in ndo
// invariant, activation functions, weights
extract invariant kfO(k);
extract activation functionskf1(k),kf2(k);
extract weights wil(k), w2(k);

// invariant in reference
configuration
xInv = aInv(kf0(k))-xInvO(k);

// energyandderivatives UA, UI1l, UI2

call uCANN(xInv,kf1(k) ,kf2(k),wi(k),
w2(k),UA,UI1,UI2);

end

// return updated arrays
return UA, UI1, UI2

Algorithm 2: Pseudocode to update energy and its
derivatives UA, UI1, UI2
subroutine
uCANN (xInv,kf1,kf2,wl,w2,UA,UI1,UI2)

// zeroth layer: calculate £0,df0,ddf0
call uCANN_hO(xInv,kf0,f0,df0,ddf0);

calculate f1,df1,ddf1

// first layer:
wo = 1;
call uCANN_h1(xInv,w0,kf1,f1,df1,ddf1);

// second layer: calculate f2,df2,ddf2
call uCANN_h2(f1,wl,kf2,f2,df2,ddf2);

// update energy and derivatives
UA,UI1,U0I2

UA =TUA + w2 x £2;
UI1l = UIl + w2 * df2xdf1xdfO0;
UI2 = UI2 + w2 *((ddf2*df1**2+df2*ddf1)

*df0x*x2+df2*df1*ddf0) ;
return UA, UI1, UI2

*(NINV+1)/2) at the integration point level. First, we ini-
tialize all relevant arrays and read the activation functions
kf()’k, kfl,k and kf;; and weights Wok, Wik and W k of the n
constitutive neurons of our constitutive neural network from
our user-defined parameter table UNIVERSAL_TAB, where
wok = 1.0 by default. Then, for each node, we evaluate its row
in the parameter table UNIVERSAL_TAB and additively update

Algorithm 3: Pseudocode to evaluate output of zeroth
network layer f,df ,ddf

subroutine uCANN_hO (x,kf,f,df,ddf)
// calculate zero layer output f,df,ddf
for activation function kf

if kf = 1then
f = x;
df = 1;
ddf = 0;

else if kf = 2 then
f = (|x|+x)/2;
af = (|x|/x+1)/2;
ddf = 0;

else if kf = 3 then
= |x;
af = |x|/x;
ddf = 0;

return f ,df ,ddf

Algorithm 4: Pseudocode to evaluate output of first
network layer £ ,df ,ddf

subroutine uCANN_h1(x,w,kf,f,df,ddf)
// calculate first layer output
f,df,ddf for activation function kf

if kf = 1 then

f =wx x;

df = w *x 1;

ddf = w * 0;
else if kf = 2 then

f = wk*2 * x*%x2;
df = wx*2 * 2x%x;
ddf = wx*2 x 2;
return f,df ,ddf

the strain energy density function and its first and second
derivatives, UA, UI1, UI2.

Algorithm [2| summarizes the additive update of the free energy
and its first and second derivatives, UA, UI1, UI2, within the
universal material subroutine uCANN.

Algorithms and [3] provide the pseudocode for the three
subroutines uCANN_hO, uCANN_h1 and uCANN_h2 that evaluate
the zeroth, first and second network layers for each network
node with its discovered activation functions and weights.

3.3. FEA integration

The concept of our universal material subroutine is inher-
ently modular and generally compatible with any finite element
analysis package [15, 13 162} [105, 2]. Here, for illustrative
purposes, we implement the universal material subroutine



Algorithm 5: Pseudocode to evaluate output of sec-
ond network layer f ,df ,ddf

subroutine uCANN_h2(x,kf ,w,f,df,ddf)

// calculate second layer output
f,df,ddf for activation function kf

if kf = 1 then
f =w *x x;
df = w * 1;
ddf = w * 0;

elseif kf = 2 then

f = exp(w*x)-1;

df = w * exp(w*x);

ddf = wx*2 * exp(w*x);
elseif kf = 3 then

f = -1In(1-w*x);

df = w / (1-w*x);

ddf = wxx2 / (1-w¥x)**2;
return £ ,df ,ddf

in Abaqus FEA [15], and make all our code and simulation
files publicly available on Zenodo. For the input file to our
finite element simulation, we define our discovered model
and parameters in a parameter table. Each row of this table
represents a neuron of the final layer in our constitutive
neural network and consists of seven terms: an integer kfinv
that defines the index of the invariant I; according to the
invariant numbering scheme in equation [I5} three integers
kf0,kf1 and kf2 that define the indices of the zeroth-, first-,
and second-layer activation functions; and three floats woO,
wl and w2 that define the weights of the zeroth, first, and
second layers. In Abaqus, we declare the format of this input
parameter table using the parameter table type definition in the
UNIVERSAL _PARAM _TYPES. INC file.

*PARAMETER TABLE TYPE, name="UNIVERSAL_TAB",
parameters = 7

INTEGER, , "index invariant, kfinv,o"
INTEGER, , "index Oth activ function, kf0,o0"
INTEGER, , "index 1st activ function, kfl,o0"
INTEGER, , "index 2nd activ function, kf2,o0"
FLOAT, , "weight Oth hidden layer, w0,o0"
FLOAT , , "weight 1st hidden layer, wl,o"
FLOAT , , "weight 2nd hidden layer, w2,0"

Within our Abaqus FEA simulation input file, we include the
parameter table type definition using

*INCLUDE, INPUT=UNIVERSAL_PARAM_TYPES.INC

and call our user-defined material model through the command
*ANISOTROPIC HYPERELASTIC, USER, FORMULATION=INVARIANT,
TYPE=INCOMPRESSIBLE, LOCAL DIRECTIONS=NDIR

where integer NDIR defines the number of local fiber directions
in our material, followed by the discovered list of parameters:

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,1,1,1.0,w11,w21
1,1,1,2,1.0,w12,w22
1,1,2,1,1.0,w13,w23

The first index of each row selects between the invariants, the
second index applies the identity, Macauley brackets, or abso-
lute values to the invariants, (o), (o), |o], the third index raises
them the first, second, third, or any higher order powers, (o)l,
(0)?, and the fourth index applies the identity, exponential, or
natural logarithm, (o), (exp(c) — 1), (—In(1 — (0))), or any
other thermodynamically admissible function to these powers.
For brevity, we can simply exclude terms with zero weights
from the list.

[e]

3.4. Compressibility

To extend our universal material model subroutine towards
compressible materials, we add a volumetric strain energy
function Yo in terms of the third invariant I3. We follow
the same nested activation function approach as in Figure
and add the volumetric strain energy density w'°!, its first
derivative dy"°'/dL; and its second derivatives 92/ 8132
to the UA(1), UI1(NINV), UI2(NINV*(NINV+1)/2) arrays.
Using the invariant numbering scheme from equation [15] we
have NINV= 3, and introduce UA(1), UI1(3) and UI2(6).
To incorporate compressible material behavior in our FEA
simulation, we change the TYPE keyword argument line in our
Abaqus input file to TYPE = COMPRESSIBLE,

*ANISOTROPIC HYPERELASTIC, USER, FORMULATION=INVARIANT,
TYPE=COMPRESSIBLE, LOCAL DIRECTIONS=NDIR

where integer NDIR defines the number of local fiber directions
of our material. We add the volumetric contributions to our
constitutive parameter table, along with all the other deviatoric
free energy contributions,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
3, 1, 1, 1, 1.0, wi,, W20
3, 1, 2, 17 1.®, Wio, Wz’o

For example, the volumetric strain energy function [94]]

K
Yoo = > (I — 1) (23)

translates into the following contribution to the input file

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
3,1,2,1,1.0,1.0,K/2

Alternatively, the volumetric strain energy function

K (-1
Yol = = ( 3 D) _]n<13)> (24)
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which is a special case of the modified Ogden formulation [[77],
can be reformulated to

K 1
o= 5 ({1 = 1)+ (= 1 =1 (1)1 1)
(25)
which translates into the following lines in the input file

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
3, 1, 1, 1, 10, 10, K/2
3, 1, 2, 1, 10, 0.5, K/2
3, 1, 1, 3, 10, -10, K/2

3.5. The subroutine applied

To showcase the flexibility and modularity of our universal
material model subroutine, we demonstrate how our approach
naturally integrates the popular neo Hooke [104]], Mooney
Rivlin [71} |89]], Yeoh [112]], polynomial [88], Holzapfel [40],
and Kaliske [47] models into Abaqus FEA. For each model, we
provide the strain energy function and its translation into the
UNIVERSAL_TAB parameter table for the FEA input file.

Neo Hooke model. The strain energy function of the compress-
ible linear first invariant neo Hooke model [[104]]

L1y (26)

— I_— —_—
v =Cio(lh 3)—1-D1

translates into the following two-line parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 1.8, 1.0, Cy
3, 1, 2, 1, 18, 10, 1/D

Mooney Rivlin model. The strain energy function of the com-
pressible linear first and second invariant Mooney Rivlin model
[71,189]

- _ 1
v =Cro(h —3)+Cor (12—3)+51(13—1)2 27

translates into the following three-line parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 1.8, 1.0, Cy
2, 1, 1, 1, 10, 1.0, Co
3, 1, 2, 1, 10, 1.0, 1/D

Yeoh model. The strain energy function of the compressible
first invariant Yeoh model [112]]
w=Cio(l —3)+Cao (I —3)* +C3 (I - 3)°

1 6
— (-1
+D3(3 )

1 , 1 4 (28)
— (h—=1)4+— (-1
+D1(3 )+D2(3 )

translates into the following six-line parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 1.0, 1.0, Cyg
, 1, 1.0, 1.0, Cy
1, 1.0, 1.0, Czp
1, 1.8, 1.0, 1/D
1
1

)

)

, 10, 10, 1/D,
, 1.0, 1.8, 1/D;

w W W = =

e e e
o BN WN

Polynomial model. The strain energy function of the compress-
ible first invariant polynomial model [88]]

N B ; N o 2i
y=3YCoh=3)'+} o (-1)" (29)
i i=1""1

i=1
translates into the following parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 1.8, 1.0, Cy
1, 1, 2, 1, 1.0, 1.0, Cy
1, 1, 3, 1, 1.8, 1.0, Cs

. 1.0, 1.0, Cyo

1, 1, N, 1

3, 1, 2, 1, 10, 10, 1/D;
3, 1, 4, 1, 10, 10, 1/D
3, 1, 6 1, 10, 10, 1/Ds
3, 1, N2, 1, 1.0, 1.0, 1/Dy

Holzapfel model. The strain energy function of the compress-
ible two-fiber family Holzapfel model [40]

, 1 (B-1
W—C10(11—3)+D< > —1n13>

k _
+ 2712 (exp [ka Ty — 1)%] = 1) (30)

k _
+ 2712 (exp [k2(lui22) — 1)’ -1)

translates into the following six-line parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 1.0, 1.0, C1o

. 1.8, kp, ki/2k;

, 1.0, kp, ki/2k;

, 1.0, 1.0, 1/D

, 1.0, 0.5 1/D

, 1.0, -1.0, 1/D

) )

)

WwW W o
I—ll—\\‘I—lNN
H‘.I\JQHN‘.[\)
w = = NN

Kaliske model. The strain energy function of the compressible
two-fiber family Kaliske model [47]]

3 .3 _ .0 _
v=Y a(l -3+ Y b;(h-3)+Y e (I —1)"
i=1 j=1 k=2

m

6 6
_|_
=

d (1_5(11)—1)1"‘Zem(l_4(22)_1)
2 m=2
6 .1 [((B)?=1
+ 3 fo(B2y—1) t5 <(3)2 —ln(I3)>
n=2

3D



translates into the following parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1, 1, i, 1, 10, 10, a;
2, 1, j, 1, 1.8, 18, bj
4, 1, k, 1, 10, 10, o
5, 1, 1, 1, 1.0, 10, d;
8, 1, m 1, 1.0, 1.0, ey
9, 1, n, 1, 1.0, 1.0, f,
3, 1, 1, 1, 18, 1.6, 1/D
3, 1, 2, 1, 18, 0.5, 1/D
3, 1, 1, 3, 10, -1.0, 1/D

3.6. Generalization to mixed-invariant models

Until now, all our constitutive models have been sums of
contributions of the individual invariants. It is straightforward
to generalize this concept to mixed-invariant models. Specifi-
cally, we create these mixed invariants as parameter-weighted
combinations of two or more individual invariants. To incor-
porate mixed invariants in our material subroutine, we create a
second parameter table type,

*PARAMETER TABLE TYPE, name="MIXED_INV",
parameters = 16

INTEGER, , "index n of mixed invariant,Kinv,o"
FLOAT, , "coefficient 1st mixed invariant, Ki,o"
FLOAT, , "coefficient 2nd mixed invariant,K2,o0"
FLOAT, , "coefficient 3rd mixed invariant,K3,o0"
FLOAT, , "coefficient 15th mixed invariant,K15,0"

where each of the 15 «;, mixed invariant coefficients denotes
contributions to the mixed invariant [ o,

15
Ieo =) Ko (32)
j=1

in which /; follows the invariant numbering in equation [I5} To
activate these mixed invariants in our FEA model, we include
the following lines in our Abaqus input file,

*PARAMETER TABLE, TYPE="MIXED_INV"
L, Ki,1,K2,1,K3,1,K4,1,K5.1,K6,1, K71, K8,1, K91
K10,1, K11,1, K12,1, K131, K14,1, K151
2, K12,K22,K32,K42,K52,K62,K72,K82,K92
K10,2,K11,2, K12,2, K13,2, K142, K15 2

We activate any novel constitutive neuron associated with these
mixed invariants, using the following argument lines in our
Abaqus input file,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
101, kfO191, kflig1, kf2191, We,101, W1,101,
102, kf0192, kfl1g2, kf2102, we,102, W1,102,

W2,101
W2,102

For clarity, we number all derived mixed invariants starting at
NINV= 101.

Holzapfel dispersion model. The strain energy function of the
Holzapfel dispersion model [28]

s 1 (15—1
'I/C10(113)+D< 5 11113)
kl Tk 2
+ 5 (exp [l gy = 1] =1) (33)

kl T 2
+ 2%, (exp {k2<11/4(22) —1) } - 1)
uses the two mixed invariants

I} jaryy = k(0 = 3) + (1= 3K) (Iyn) — 1)

=K

- - - (34)
1/a2) = K =3)+ (1 =3k) (Iy22) = 1)

where K describes the dispersion of the collagen fibers rang-
ing from x = 0.0 for ideally aligned fibers to k¥ = 1/3 for
isotropically distributed fibers. Leveraging our "MIXED_INV"
and "UNIVERSAL_TAB" definitions, we translate this strain en-
ergy function into our universal material model subroutine by
inclusion of the following lines in our Abaqus input file,

*PARAMETER TABLE, TYPE="MIXED_INV"

1,x,0.0,0.0,(1 -3«),0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0

2,%,0.0,0.0,0.0,0.0,0.0,0.0,(1—3x),0.0,
0.0,0.0,0.0,0.0,0.0,0.0

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1, 1, 1, 1, 1.0, 1.0, C
101, 2, 2, 2, 1.0, ky, ki/2k;
102, 2, 2, 2, 1.0, ky, ki/2k;
3, 1, 1, 1, 18, 10, 1/D
3, 1, 2, 1, 1.8, 05, 1/D
3, 1, 1, 3, 1.8, -1.8, 1/D
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Figure 4: Universal material modeling of the human brain. Deformation and stress profiles for frontal impact to the human brain. The finite element models
simulate the deformation and internal tissue loading corresponding to best-fit Mooney Rivlin, Blatz Ko, and newly discovered constitutive models from left to right.
All simulations leverage our universal material model subroutine and only differ in the definition of the UNIVERSAL_TAB constitutive parameter table in the finite

element analysis input file.

4. Applications

In the following sections, we showcase examples of soft
matter systems where our universal material model subroutine
naturally integrates mechanical testing from the material point
level to the structural level.

4.1. The human brain

Brain tissue is among the softest and most vulnerable tis-
sues in the human body [10]. The tissue’s delicate packing of
neurons, glial cells, and extracellular matrix functionally regu-
lates most vital processes in the human body and governs hu-
man cognition, learning, and consciousness [24]. As mechanics
play a crucial role in neuronal function and dysfunction [32]],
understanding the mechanical behavior of brain tissue is es-
sential for anticipating how the brain will respond to injury,
how it evolves during its development, or how it remodels as
disease advances. Computational models play a crucial role
in this endeavor, allowing researchers to simulate the multi-
faceted behavior of brain tissue and explore the biomechanical
role of mechanical forces in health and disease [38}/57} 76| [T10].
These models require adequate constitutive models that capture
the complex and unique characteristics of this ultrasoft, highly
adaptive, and heterogeneous tissue.

Constitutive modeling. Over the past decade, various research
groups around the world have made significant process in the
experimental and constitutive characterization of human brain
tissue [8]]. This has led to multiple competing constitutive mod-
els to characterize the behavior of gray and white matter tissue.
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Most notably, neo Hooke [104], Blatz Ko [7], Mooney Rivlin
[89]], Demiray [18]], Gent [30], and Holzapfel mod-
els were proposed as successful candidates to characterize the
stress-stretch response of these tissues. Given brain tissue’s in-
tricate behavior, fitting a constitutive model to one single load-
ing mode, tension, compression, or shear, does not general-
ize well to the other modes [61], 08]. Therefore, we consider
a widely-used benchmark dataset where 5 x 5 x Smm> human
brain samples were tested in tension, compression, and shear
[8L. 9L [10]. We concomitantly discover and fit the best possible
constitutive models considering these loading modes together
and find the following three best models and parameters [61].

The Mooney Rivlin model [71]

1 _ 1 _
V=5 (I —3)+§I~l2(12—3)

with parameters (; = 0.0021 kPa, y, = 1.8817 kPa for the gray
matter cortex, and y; = 0.0168 kPa, u, = 0.9697 kPa for the
white matter corona radiata. This translates into

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1, 1, 1, 1, 1.0, 1.8, puy/2
2, 1, 1, 1, 1.0, 10, pp/2
The Blatz Ko model [[7]]
1 -
‘V:EIJ(IZ_3)

with parameters y = 1.9043 kPa for the gray matter cortex, and
U = 0.9556 kPa for the white matter corona radiata. This trans-



lates into

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
2,1,1,1,1.0,1.0,u/2

Our newly discovered six-term model [61} |82]

w:mm—ﬂ+§ﬂmem—mfu

,%m(pm b —3])+ b 3]
1
+2a722 {GXP (bz [1_2*3]2) - 1] - 2%?“(1 —b []_273]2)

with non-zero terms o4 = 1.2520 kPa, fB; = 0.9875,
U = 3.8007 kPa, ay = 6.2285 kPa, by = 1.6495, ap = 4.6743
kPa, and B, = 1.6663 for the gray matter cortex and
up = 0.2215 kPa, a; = 0.2350 kPa, by = 0.2398, a, = 6.3703
kPa, by = 1.8893, op = 4.5065 kPa, and B, = 1.1789 for the
white matter corona radiata. We translate this model into the
following six-line parameter table of our universal material
model:

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

2, 1, 1, 1, 1.0, 18, U1
2, 1, 1, 2, 1.0, bl7 a1/2b1
2, 1, 1, 3, 10, B1, oa1/2B;
2, 1, 2, 1, 1.0, 18, Uy
2, 1, 2, 2, 1.0, bz, a2/2b2
2, 1, 2, 3, 10, B, /2B

Simulation. Utilizing our universal material model subroutine,
we incorporate these brain models into a realistic vertical head
impact finite element simulation [82]]. Based on magnetic reso-
nance images [36], we create the two-dimensional sagittal finite
element model in Figure ] In this model, gray and white mat-
ter are spatially discretized using 6,182 gray and 5,701 white
linear triangular elements, resulting in 6,441 nodes, and 12,882
degrees of freedom in total. We embed our model into the skull
using spring support at the free boundaries and apply a frontal
impact to the brain that we represent with all three models,
the Mooney Rivlin, Blatz Ko, and new discovered models, as
shown in Figure 4]

4.2. Skin

Skin is the largest organ of the human body [[L1]. It serves
vital functions for our survival such as being the first line of
defense against mechanical injury while at the same time al-
lowing us to move and interact with the world [58]]. Surgery of
any kind entails skin rupture and manipulation [1]. Especially
during reconstructive procedures, skin tissues are subjected to
extreme deformations [56]. The complex stress field generated
by skin tissue manipulation has a direct effect on the subse-
quent wound healing response, with excessive stress causing
increased inflammatory response that can lead to fibrosis [S5].
In some cases, excessive stress can even result in tissue necro-
sis [33]. Thus, accurate computational models of skin are key
to design safe reconstructive surgical procedures.
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Constitutive modeling. Skin modeling has received significant
attention for more than half a century [53|[103]]. Isotropic mod-
els such as the neo Hooke [[104]] or Mooney Rivlin [71} [89]
models have been used, but show significant limitations. Not
only do they fail to describe the anisotropy of skin, they also
lack the ability to capture this tissue’s rapid strain-stiffening be-
havior [53]]. To overcome these issues, we examine combined
uniaxial and biaxial tensile testing data of porcine skin tissue
samples [99, [100] to discover more accurate material models
that depict the anisotropic stress-stretch behavior. First, we fit
the microstructure-inspired Holzapfel model [40],

v = yill =3+ 55 fexp (batln ~ D)~ 1]
This model was originally developed for arterial tissues and
combines the isotropic linear first invariant neo Hooke term,
[I; — 3], with an anisotropic quadratic exponential fourth invari-
ant term, <I_4<11) — 1), along the collagen fiber direction. Here,
our best possible fit to the combined uniaxial and biaxial test-
ing data results in yu = 0.2492 MPa, a4 = 0.1054 MPa, and
b4 = 10.7914. We naturally incorporate this constitutive model
and parameters in our universal material model subroutine us-
ing the following two-line parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 1.0, 1.0, u
4. 2, 2, 2, 1.0, by, a4/2b4

Given the rather low mean goodness of fit R% =0.6857, we sub-
sequently leverage a tranversely isotropic constitutitive neural
network to discover a more accurate model [59]]. From a library
of 216 = 65 ,536 possible combinations of terms, we discover a
model in two exponential quadratic terms,

- i — 3?2 —
Y= 2%, (eXP [bl (I —3) } 1)
as _
+ Tb4 (exp [b4<14(11) — 1>2} — 1)

with parameters a; = 1.3291 MPa, b; = 0.8207, a4 = 0.2656
MPa, and by = 0.3921 [59]. To integrate this new model into
a finite element simulation, we incorporate the following two
parameter lines in our universal material subroutine

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 2, 2, 108, by, a;/2b;
4, 2, 2, 2, 1.0, b47 a4/2b4

In contrast to the neo Hooke Holzapfel model, this discov-
ered constitutive neural network model has a mean good of fit
R? = 0.8629 for the combined uniaxial and biaxial porcine skin
testing data [59]].

Simulation. Leveraging our universal material subroutine, we
integrate both material models in a finite element simulation
of a 62-year-old adult male patient undergoing reconstructive
surgery following surgical melanoma resection [56]. A three-
dimensional patient specific geometry was obtained via multi-
view stereo reconstruction of a sequence of photos taken in the
operating room before and after surgery. The scalp was approx-
imated based on the skin surface and spatially discretized using
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Figure 5: Universal material modeling of skin. Deformation and stress profiles in the human scalp following a melanoma resection reconstruction procedure.
The finite element models simulate the deformation and internal tissue loading corresponding a two-stage flap rotation and suturing procedure, with the first stage
shown in the top row and the second stage shown in the bottom row. The remaining wound is closed with a skin graft to avoid excessive tissue stresses and damage.
Both tissue manipulations are modeled using the best-fit constitutive neural network model in the three left columns. For comparison, we also showcase the resulting
stress profiles for the best-fit neo Hooke Holzapfel model in the right column. All simulations leverage our universal material model subroutine and only differ in
the definition of the UNIVERSAL_TAB constitutive parameter table in the finite element analysis input file.

75,282 linear tetrahedral elements and 25,394 nodes, leading
to a total 76,182 degrees of freedom. Our simulation recapitu-
lates the closure of the resected tissue defect by imposing nodal
constraints to nodes on either edge of the defect to mimic su-
tures used to close the wound. Figure[5|showcases the deforma-
tion and internal tissue tension profiles following the two-step
surgical skin reconstruction procedure. We clearly observe the
limited tissue deformation and loading profiles during the first
stage in the top row. In contrast, during the second stage surgery
in the bottom row, substantial deformations develop across the
skin. Specifically, we appreciate the regional differences be-
tween the isotropic I; and anisotropic f4(1 1) deformation invari-
ants. Figure [5] also showcases noticeable stress profile differ-
ences between the newly discovered material model and the
neo Hooke Holzapfel model in the third and fourth columns.
In the lower stretch regimes shown in the first stage reconstruc-
tion, the neo Hooke Holzapfel model clearly overestimates the
stresses in the skin. In the higher stretch regimes, shown during
the second stage reconstruction in the bottom, the neo Hooke
Holzapfel fit underestimates the stresses in the tissue. While a
modeling-based overestimation of the stress state holds limited
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risks from a medical point of view, an underestimation could
have harmful consequences as clinical decisions co-informed
by such models could cause excessive tissue damage and scar-
ring. Figure[5]showcases the crucial aspect that proper constitu-
tive modeling and calibration plays in this regard, in which the
neo Hooke Holzapfel model, which does not properly capture
skin tissue’s strain-stiffening, underestimates the tissue stress in
comparison to the more accurate newly discovered model.

4.3. Human arteries

Computational simulations play a pivotal role in under-
standing and predicting the biomechanical factors of a wide va-
riety of arterial diseases [44} (79} [105]]. In vascular medicine,
knowing the precise stress and strain fields across the vascu-
lar wall is critical for understanding the formation, growth, and
rupture of aneurysms and dissections [45}[108,31]; for identify-
ing high-risk regions of plaque formation, rupture, and throm-
bosis [43, [87]; and for optimizing stent design and surgery
(16} 21].
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aortic arch. The finite element models simulate the deformation and internal tissue loading corresponding to the best-fit Holzapfel dispersion model in the top
row and newly discovered model in the bottom row. Both simulations leverage our universal material model subroutine and only differ in the definition of the
UNIVERSAL_TAB constitutive parameter table in the finite element analysis input file.

Constitutive modeling. Over the past four decades, various
phenomenological polynomial [107, [109], exponential [27],
logarithmic [101], and exponential-polynomial [49] [114]
models have been proposed to describe the non-linear elastic,
anisotropic, quasi-incompressible behavior of arterial tissue.
Recently, microstructurally-informed models were brought for-
ward, including symmetric two- and four-fiber family models
[6]], either symmetric or unsymmetric [41]. All these
material models can fit uniaxial and biaxial arterial tissue test-
ing data, but do not always generalize well to off-axis testing
regimes [93]].

We consider biaxial tensile testing of thoracic aortic tissue sam-
ples at five differing circumferential-axial stretch ratios [74]
Using data-driven constitutive neural networks, we discover the
most appropriate arterial material model. From a library of
216 — 65,536 possible combinations of terms, we discover

SR =3]+ 5 (explb (T =3) - 1)

Z .u5 <15(u) >2

112

V=" 1_1 3+

with an isotropic linear and exponential linear first invariant
term and an anisotropic quadratic fifth invariant term. Our best-
fit parameters read p; = 33.45 kPa, a = 3.74 kPa, b = 6.66,
Us = 2.17 kPa for the media at an angle o« = +7.00° and
ur = 8.30 kPa, a = 1.42 kPa, b = 6.34, us = 0.49 kPa for
the adventitia at an angle o = £66.78°. This translates into
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the following four-line parameter table of our universal mate-
rial model,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1, 1, 1, 1, 1.0, 1.0, uy/2
1, 1, 1, 2, 10, b, a/2b
5, 2, 2, 1, 10, 10, us/2
9, 2, 2, 1, 10, 1.0, us/2

Alternatively, in the classical microstructure-inspired disper-
sion type Holzapfel model

| a -
V=sk [ = 3] +i:Zl,2% (exp |:b<11/4(ii) - 1>2} - 1)
our best-fit parameters are yu = 48.68 kPa, a = 6.67 kPa,
b = 23.17, ¥ = 0.074 for the media at o« = +7.00°) and
u = 13.22 kPa, a = 0.93 kPa, b = 12.06, k¥ = 0.091 for the
adventitia at @ = +66.78°. We translate this model into the
following parameter table of our universal material model

*PARAMETER TABLE, TYPE="MIXED_INV"

1,%,0.0,0.0,(1 —31<) 0.0,0.0,0.0,0.0,0.0
0.0,0.0,0.0,0.0,0.0,0.0

1,%,0.0,0.0,0.0,0.0,0.0,0.0,(1 —3k)
0.0,0.0,0.0,0.0,0.0,0.0

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 10, 1.8, pu/2

101, 2, 2, 2, 1.6, b, a/2b

102, 2, 2, 2, 1.6, b, a/2b



Simulation. Using our universal material subroutine, we inte-
grate both models in a finite element simulation of the human
aortic arch under hemodynamic loading conditions [80]. Our
aortic arch geometry is extracted from high-resolution mag-
netic resonance images of a healthy, 50th percentile U.S. male
[78]]. We assume an average aortic wall thickness of 3.0 mm,
where the inner 75% of the wall make up the media and the
outer 25% make up the adventitia. We discretize our geome-
try using 60,684 linear tetrahedral elements for the media and
30,342 linear tetrahedral elements for the adventitia, leading
to a total 61,692 degrees of freedom. The local collagen fiber
angles against the circumferential direction are + 7.00° in the
media and + 66.78° in the adventitia and are locally defined
as a vector field variable for each element. We use continuum
distributed coupling boundary conditions at the aortic outlets to
constrain the arch in space [83]], and leverage Neumann bound-
ary conditions to simulate the hemodynamic loading conditions
the aortic arch undergoes during a single cardiac cycle. Fig-
ure [6] showcases the computed diastolic stresses in the media
and the adventitia for both our newly discovered model and the
microstructure-informed dispersion-type Holzapfel model [81]].

4.4. Heart valves

The tricuspid valve is our right atrioventricular valve which
ensures unidirectional blood flow through the right side of the
heart. Often as a result of other primary diseases [90,20], a dis-
eased tricuspid valve can fail to close and regurgitate. Tricuspid
valve disease affects over one million Americans and is associ-
ated with increased patient mortality and morbidity [72} [75]].
Computational models of the tricuspid valve provide valuable
insights into the workings of the valve, and have been used to
increase our understanding of the progression of valve disease
[65]] and to work towards improved repair outcomes [35].

Constitutive modeling. Numerous studies have investigated the
mechanical behavior of atrioventricular valve leaflets. Valvular
leaflets exhibit a pronounced anisotropy and a non-linear be-
havior, motivating an anisotropic exponential material model
to capture this complex material behavior [54]. Others have
used microstructurally-informed models [28} 52] or anisotropic
exponential Fung-type models [50] to capture the material re-
sponse of the tricuspid valve leaflets. However, the tricuspid
valve leaflets only exhibit slight anisotropy [84]]. To improve
the ease of use in computational models, recent studies have
proposed a simplified isotropic Fung-type exponential function
[48]]. Leveraging force-controlled 400 mN equibiaxial mechan-
ical tests on 7x7 mm valve leaflet tissue samples [67], we fit
the following two-term isotropic exponential Fung-Type model
(66]

Y= 050[1_1 —3]-1-% (CXp [Cg(l_l —3)2} —1)

with an isotropic linear first invariant term describing the
response at small-strains and under compression and an ex-
ponential first invariant term determining the strain-stiffening
response under large strains [48]]. Our best-fit parameters
are ¢ = 1.0 kPa, ¢; = 0.124 kPa, ¢, = 4.57 for the anterior,
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co = 1.0 kPa, ¢y = 0.188 kPa, ¢, = 14.86 for the posterior, and
co = 1.0kPa, ¢ =0.191 kPa, ¢, = 17.75 for the septal leaflets.
To incorporate this constitutive model in our universal material
subroutine, we define the following two parameter lines

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1, 1, 1, 1, 10, 1.0, cg/2
1, 1, 2, 2, 10, c3 c1/2

Simulation. Using our universal material subroutine, we in-
tegrate the constitutive behavior of all three leaflets into a
personalized finite element model of the tricuspid valve, the
Texas 1.1 TriValve [66, [106]. Through personalized pressure
and annular displacement recordings in the realistic hemody-
namic environment of an organ preservation system and image-
based planimetry on the excised valve, a three-dimensional
reconstruction of the tricuspid valve is build at end-diastole.
The valve and chordae geometries are spatially discretized
using 8,283 linear quadrilaterial shell elements and 4,169
three-dimensional linear multi-segmented truss elements, re-
sulting in a total 25,761 degrees of freedom. By imposing
the recorded personalized annular displacements and an end-
systolic transvalvular pressure of 22.95 mmHg on the ventricu-
lar surface of the valve, we simulate valvular loading from end-
diastole to end-systole. Figure [/| showcases the resulting de-
formation and maximum principal stress contours the tricuspid
valve. Notably, the varying stiffnesses of the anterior, septal,
and posterior leaflets result in noticeable differences in the first
invariant of the Cauchy-Green deformation tensor, but in com-
parable maximum principal stress profiles across the leaflets.

4.5. The human heart

Cardiac disorders are a leading cause of morbidity and
death worldwide [68]. Computational models of cardiac func-
tion hold immense potential to contribute to our understanding
of health and disease, improve our diagnostic analyses, and op-
timize personalized intervention [78} 5| 22]]. For example, cor-
rective surgeries in obstructive cardiomyopathy [86] and con-
genital heart defects [102], the replacement of diseased valves
[26], or the implantation of a cardiac assist device [91] all
involve complex and delicate procedures that demand careful
planning and simulation to ensure their success. Crucially, the
accuracy and reliability of these computational models hinge
on precise constitutive modeling of the underlying mechanical
behavior of myocardial tissue.

Constitutive modeling. Research on constitutive models that
accurately describe passive myocardial mechanics spans over
five decades. One of the earliest models described cardiac
muscle tissue as an isotropic hyperelastic material [17]. Later,
with increasing experimental insights, more sophisticated trans-
versely isotropic [46, [14]], and eventually orthotropic [92, 42]]
constitutive models were introduced. This latter cardiac-tissue
Holzapfel model is currently one of the most popular models
for heart muscle tissue and fits simple shear tests of myocardial
tissue well [[19]. Nevertheless, it displays limitations when si-
multaneously fitted to different loading modes [34]]. Therefore,
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Figure 7: Universal material modeling of heart valves. Personalized tricuspid valve loading during the cardiac cycle. The finite element models simulate the
deformation, left, and internal tissue loading, right, in response to the inter-ventricular pressure changes from end-diastole to end-systole. The tricuspid valve is
shown from a side and top view. Each valvular leaflet leverages our universal material model subroutine and only differs in the definition of the UNTVERSAL_TAB

constitutive parameter table in the finite element analysis input file.

we consider triaxial shear and biaxial extension tests on human
myocardial tissue [93]], and use these data to discover and the
best possible model and parameters to characterize both load-
ing conditions combined [64].

We begin with the four-term Guan model [34] that features
an exponential linear term in the first invariant /1, exponential
quadratic terms in the fiber and normal fourth invariants I;; and
Iy, and an exponential quadratic term in the fiber-sheet eighth
invariant Igg,

_1}

5 Texp (bys[lses)?) — 1)-

v = lexp(olh

- [exp (bn (lan — 1>2) -

3 ot

1]

2brl Zb

Calibrating this model simultaneously on biaxial tensile and
triaxial shear data for human myocardial tissue, we obtain a
mean goodness of fit R* = 0.867 for parameters a = 0.782
kPa, b = 7.248, ay = 4.488 kPa, by = 14.571, a, = 2.513 kPa,
bn = 10.929, a¢; = 0.436 kPa, and bgg = 4.959. To incorporate
this constitutive model in our universal material subroutine, we
define the following four parameter lines,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1, 1, 1, 2, 10, b, a/2b

4, 2, 2, 2, 1.0, by ag/2bg
14, 2, 2, 2, 1.0, by, an/2bn
6, 1, 2, 2, 1.0, bfs7 afs/bes

Next, we consider the seven-term generalized Holzapfel model
which features an exponential linear term in the first in-
variant Ij, exponential quadratic terms of all fourth invariants
L, Lis, Iy, and an exponential quadratic term in all eighth in-
variants I_gfs, I_gfn, I_gsn.

v= ;—b [exp (O[T = 3])) + [exp (bellar= 1)) = 1]
Zb [exp (bs<l_4s -1) ) —1] + b, [exp (bn<l4n —1) ) —1]
+ 2lis[exp (brs[lgss]?) — 1] + 5 bsn[exp (banllssn]?) — 1].

A combined triaxial-biaxial training of this model calibrates the
model parameters to a = 0.950 kPa, b = 5.457, af = 3.318
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kPa, by = 23.701, a; = 1.405 kPa, by = 20.067, a, = 2.037
kPa, by, = 16.976, az; = 0.586 kPa, bgs = 1.081, ag, = 0.047
kPa, and by, = 11.842. This model has a mean goodness of
fit R2 = 0.876 [64]. We translate this constitutive model into
our universal material subroutine through the definition of the
following parameter lines in our finite element analysis input
file

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1, 1, 1, 2, 18, b, a/2b

4, 2, 2, 2, 1.0, bf, af/be
8, 2, 2, 2, 1.8, bs, as/2bs
14, 2, 2, 2, 1.8, by, ay/2by
6, 1, 2, 2, 1.0, bfs, afs/beS
12, 1, 2, 2, 1.0, bsy, asn/2bsy

Finally, we leverage an orthotropic constitutive neural network
to discover the best model and parameters to explain the exper-
imental data. From a library of 232 = 4,294,967,296 possible
combinations of terms and a sparsity-promoting regularization
with o = 0.01, we discover a four-term model,

_ a _
y=u(h-3)"+ 27; [exp (be(lyr—1)%) — 1]

a - a -

+ e [P (baTan = 1)%) = 1]+ ﬁ[exp (brs[Fsts)?) — 1)-

with a mean goodness of fit R> = 0.894 [64]. Here, our discov-
ered material parameters amount to u = 5.162 kPa, ar = 3.426
kPa, by =21.151, a, = 2.754 kPa, b, = 4.371, ag, = 0.494 kPa,
and bgg = 0.508. We integrate this newly discovered model for

myocardial tissue in our finite element analysis through the fol-
lowing four-line parameter table

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

2, 1, 1, 2, 10, 1.0, /2

4, 27 2, 2, 1.@, bf7 af/be
14, 2, 2, 2, 1.0, by, an/2by
67 1, 2, 2, 1.0, bfs, afs/beS

Simulation. We incorporate all three constitutive models for
myocardial tissue in the finite element analysis software solver
Abaqus [13] using our universal material subroutine, and pre-
dict the stress state of the left and right ventricular wall dur-
ing diastolic filling. We create a finite element model of the
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Figure 8: Universal material modeling of the human heart. Personalized isotropic and directional deformation invariant and maximum principal stresses stress
profiles, in short-axis slices frontal views, resulting from a healthy left and right ventricular end-diastolic pressure loading of 8mmHg and 4mmHg. The finite
element models simulate the deformation and internal tissue loading corresponding to the best-fit Guan model in the top row, the generalized Holzapfel model in
the middle row, and the newly discovered model in the bottom row. All three simulations leverage our universal material model subroutine and only differ in the
definition of the UNIVERSAL_TAB constitutive parameter table in the finite element analysis input file.

left and right ventricular myocardial wall from high-resolution
magnetic resonance images of a healthy 44-year-old Caucasian
male with a height of 178 cm and weight of 70kg [80, [78].
We spatially discretize our computational domain using 99,286
quadratic tetrahedral elements and 154,166 nodes, leading to
a total 462,498 degrees of freedom. We compute the heli-
cally wrapped myofibers by solving a Laplace-Dirichlet prob-
lem across our computational domain, and assume a transmural
fiber variation from +60° to -60 ° from the endocardial to the
epicardial wall [T11]]. The resulting microstructural organiza-
tion covers 99,286 local element-based fiber, sheet, and normal
vectors, f, So, no. We apply homogeneous Dirichlet bound-
ary conditions at the mitral, aortic, tricupid, and pulmonary
valve annuli to fix the heart in space [83], and load it with
hemodynamic Neumann boundary conditions that correspond
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to the endocardial blood pressure during diastolic filling. Fig-
ure 8] showcases the resulting deformation and stress profiles in
both ventricles in response to left and right ventricular pressures
of 8 mmHg and 4 mmHg. In a row-to-row comparison of the
short-axis views, we observe small differences between the de-
formation invariants and the maximum principal wall stresses
of all three models, with larger values for our newly discovered
model and the Guan model and smaller values for the gener-
alized myocardial Holzapfel model. We can explain these dif-
ferences by the differing goodness of fit of the three models.
Moreover, we observe that our diastolic hemodynamic loading
conditions enforce deformation and stress states that surpass the
homogeneous tissue testing protocols of the triaxial shear and
biaxial extension training data, which creates local regions of
extrapolation beyond the initial training regime [64]. Taken



together, while our discovered four-parameter model best ex-
plains the laboratory experiments of triaxial shear and biaxial
extension, all three models translate well into a single univer-
sal material subroutine and predict fairly similar stress profiles
across the human heart.

5. Conclusion

In this work, we designed a universal constitutive modeling
framework to predict the mechanical behavior of soft materials
across a wide range of applications. We set up a modular ma-
terial subroutine architecture which seamlessly integrates with
Abaqus, and can easily be generalized towards other non-linear
finite element analysis solvers. Doing so, our framework miti-
gates the risk for human error and streamlines the integration of
newly discovered material models in their simulations, thus al-
leviating the users to perform lengthy algebraic derivations and
extensive programming. Furthermore, our material subroutine
serves as an excellent verification tool for more expert finite el-
ement software developers aiming to debug their own soft ma-
terial models and finite element analysis implementations. We
demonstrated the versatility of the universal material subrou-
tine through numerical simulations of various living systems
including the brain, skins, arteries, valves and the human heart.
Providing a common language and material subroutine for the
computational mechanics community at large, we aspire to de-
mocratize the computational analysis of soft materials amongst
a broader cohort of researchers and engineers. With one single
subroutine, everyone - and not just a small group of expert spe-
cialists - can now perform reliable engineering analysis of artifi-
cial organs, stretchable electronics, soft robotics, smart textiles,
and even artificial meat. Fostering this inclusivity, our frame-
work can form an invaluable tool towards continued innovation
and discovery in the field of soft matter overall.
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