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Abstract

We explore the potential of the deep Ritz method to learn complex fracture
processes such as quasistatic crack nucleation, propagation, kinking, branch-
ing, and coalescence within the unified variational framework of phase-field
modeling of brittle fracture. We elucidate the challenges related to the neural-
network-based approximation of the energy landscape, and the ability of an
optimization approach to reach the correct energy minimum, and we discuss
the choices in the construction and training of the neural network which
prove to be critical to accurately and efficiently capture all the relevant frac-
ture phenomena. The developed method is applied to several benchmark
problems and the results are shown to be in qualitative and quantitative
agreement with the finite element solution. The robustness of the approach
is tested by using neural networks with different initializations.
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1. Introduction

Predictive modeling and simulation of fracture processes is critically im-
portant in design for many engineering applications and still poses significant
challenges. In the past two decades, phase-field fracture modeling [1, 2] has
emerged as a game changer; it offers a unified variational framework and,
upon discretization, a flexible computational method to encompass various
aspects of fracture including crack nucleation, propagation, merging, and
branching [2–4], while obviating the need for crack tracking procedures as
well as for ad-hoc parameters and criteria. For these reasons, it has found
applications and extensions to a variety of fracture problems including ther-
mal cracks [5], ductile fracture [6], drying-induced cracks [7], and hydraulic
fracture [8], among many others. Furthermore, it has been demonstrated to
accurately capture topologically complex crack paths, even in three dimen-
sions [5], while delivering quantitatively accurate predictions [9].

The first variational phase-field model for brittle fracture was derived by
regularizing the free-discontinuity problem obtained from recasting Griffith’s
fracture criterion in a variational form [1, 10]. Regularization is performed
by introducing an additional field, known as the phase field, ranging between
0 (representing the intact material) and 1 (representing the fully cracked ma-
terial). Localization of this field in a narrow band, whose width is controlled
by a length-scale parameter inherent to the model, gives rise to a smeared
representation of a crack. Later, it was shown that a more flexible but sub-
stantially analogous variational modeling framework can be constructed from
a special family of gradient damage models [11], whereby the phase field is in-
terpreted as a damage variable and is therefore postulated to be irreversible.
In the computational setting, the regularization of a sharp crack to a smeared
representation overcomes the computational challenges encountered in han-
dling an a priori unknown crack path. The crack is now represented implicitly
by the continuous phase field; along with the displacement field, this field
is obtained by solving the non-linear coupled partial differential equations
(PDEs) stemming from the stationarity conditions of the governing energy
functional. However, two challenging aspects remain: the energy functional
is non-convex, which needs special attention in the numerics [12], and the
resolution of the (small) length scale in the discretized setting is computa-
tionally expensive. This limitation restricts the applicability of the approach
to e.g. optimization, uncertainty quantification and inverse problems.

In recent years, considerable effort has been directed towards leveraging
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advances in machine learning to accurately model physical phenomena [13];
various physics-informed deep learning approaches [14] have been employed
to solve PDEs and variational problems [15–18]. One prominent approach,
known as physics-informed neural networks (PINNs), learns the solution of
a PDE by the unsupervised (or semi-supervised) training of a neural net-
work (NN) [14, 16, 19, 20]. PINNs build upon the universal approximation
property of NNs [21–23], i.e. the ability of NNs to approximate any contin-
uous function, which allows for the use of NNs as the ansatz space for PDE
solutions. Notably, PINNs can seamlessly incorporate any available data
and compute solutions to forward and inverse problems with the same NN
architecture. They have demonstrated accurate approximation of solutions
to a variety of PDEs and inverse problems, also in solid mechanics [24–31].
Rigorous estimates of the generalization error of PINNs approximations have
also been established [20, 32, 33]. Furthermore, multiple variations of PINNs
have been proposed, such as, hp-VPINNs [17], cPINNs [34], xPINNS [35],
FBPINNs [36], among others, to tailor them for different problems and to
improve their performance.

In PINNs, training of the NN representing the solution field involves
the minimization of a loss function comprising the PDE residual and ad-
ditional terms, which enforce initial and boundary conditions and possibly
other constraints. An alternative approach known as the deep Ritz method
(DRM) [18, 37, 38], directly minimizes the energy functional instead of the
PDE residual. The DRM is particularly useful in obtaining stable solutions
when the governing energy functional is non-convex, as in phase-field fracture
modeling. Additionally, since the computation of the energy requires a lower
order of derivatives compared to the corresponding strong-form PDE, the
DRM is expected to be computationally less expensive [37]. On the other
hand, energy calculation requires integration over the entire domain, and
only a few studies have investigated quadrature rules for NNs [39].

PINN approaches have been developed to solve phase-field problems (Cahn-
Hilliard and Allen-Cahn equations) involving the phase field as the only scalar
unknown [40, 41]. In contrast, phase-field fracture modeling involves two cou-
pled fields: the displacement (vector) field and the phase field. Furthermore,
while the steep variation of the phase field at localization is governed by the
regularization length scale, the displacement field undergoes a much sharper
variation wherever the phase field localizes. These differences lead to ad-
ditional and unique challenges in approximating the solution of phase-field
fracture problems using NNs. While the DRM has shown some promise, its
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applicability has been demonstrated primarily in problems involving crack
propagation with simple crack paths [42, 43]. Crack initiation in the absence
of a notch has only been demonstrated by assuming a very large value for
the regularization length scale [42]. Additionally, these approaches have re-
quired a large number of quadrature points, exceeding the number needed
to resolve the regularization length scale. Notably, a quantitative assessment
of the solution accuracy is also lacking. The applicability of approaches
other than the DRM has been partially investigated in [42, 44]. An operator
learning approach [45, 46], namely variational DeepONets, has also been ap-
plied to predict the crack path in a problem involving crack propagation in
quasi-brittle materials [47]. However, the applicability of physics-informed
deep learning to phase-field fracture modeling hinges on the ability of NNs
to learn all the fracture processes accurately, especially considering that this
flexibility lies at the core of the phase-field approach and is also one of the
key reasons of its success.

In this work, we elucidate the challenges involved in learning the solution
of phase-field fracture problems, and investigate the design of NNs and of
their training strategies aimed at learning crack initiation, propagation, kink-
ing, branching, and coalescence. We also address the challenges associated
with learning the solution fields with the same level of domain discretization
as required in finite element analysis (FEA). We systematically demonstrate
the accuracy of the learned solution by comparing it with the FEA solution.
Additionally, we test the robustness of our approach by training NNs with
different random initializations.

The paper is organized as follows. A brief review of the phase-field brit-
tle fracture formulation is presented in Section 2. In Section 3, the DRM
is summarized, and the challenges in learning the solution of a phase-field
fracture problem are discussed along with the design of the NNs and their
training strategy. This is followed by numerical examples of crack nucleation,
propagation, kinking, branching, and coalescence in Section 4. Finally, we
summarize the main conclusions in Section 5.

2. Phase-field model of brittle fracture

In this section, we summarize the governing equations of the phase-field
model of brittle fracture which we aim at solving with the deep learning
approach proposed in the following sections.
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2.1. Basics of the formulation

Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a bounded open domain occupied by a
d-dimensional body. ΓD,0, ΓD,1 and ΓN are disjoint sections of the boundary
∂Ω of Ω with prescribed homogeneous Dirichlet, non-homogeneous Dirichlet
and Neumann boundary conditions, respectively. The body is assumed to
be linear elastic with the strain energy density given by Ψ(ε) = 1

2
λtr2(ε) +

µtr(ε · ε), where λ and µ are the Lamé constants, and ε = 1
2
(∇u + ∇uT )

is the infinitesimal strain tensor, with u : Ω → Rd as the displacement field.
The total energy functional for the body acted upon by body force b̄ and
surface traction t̄ is given by:

E(u, α) =
∫
Ω

(
g(α)Ψ+(ε(u)) + Ψ−(ε(u))

)
dΩ︸ ︷︷ ︸

Eel

+
Gc

cw

∫
Ω

(
w(α)

l
+ l|∇α|2

)
dΩ︸ ︷︷ ︸

Ed

−
∫
Ω

b̄ · u dΩ−
∫
ΓN

t̄ · u ds. (1)

Here Eel and Ed represent the elastic and damage parts of the energy, re-
spectively. α : Ω → [0, 1] is the phase field (or damage field), with α = 0
representing the undamaged state and α = 1 the fully damaged state. The
function g(α), known as degradation function, modulates the degradation
of the elastic energy with increasing damage. w(α) is also known as local
dissipation function, as it dictates the energy dissipated through damage in
the unit volume of the material. The parameter l with 0 < l ≪ diam(Ω)
is the regularization length controlling the thickness of the transition zone
between undamaged and fully damaged material regions; Gc represents the
fracture toughness of the material, and cw is a normalization constant given
by cw = 4

∫ 1

0

√
w(t)dt. In this work, we adopt the following choices [11]:

AT1 model : g(α) := (1− α)2 + η, w(α) := α, cw = 8/3, (2)

AT2 model : g(α) := (1− α)2 + η, w(α) := α2, cw = 2. (3)

with η = o(l). The elastic strain energy density Ψ is decomposed into active
(i.e. damage-driving) and inactive (i.e. damage-resisting) parts, Ψ+ and Ψ−,
respectively, and the degradation is applied only to Ψ+ [48–51]. While several
energy decompositions are available [48–50, 52], in this work we focus on
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the volumetric-deviatoric decomposition [48] whereby

Ψ+ =
1

2
K⟨tr(ε)⟩2+ + µtr(e · e),

Ψ− =
1

2
K⟨tr(ε)⟩2−, (4)

with ⟨a⟩+ = max{0, a}, ⟨a⟩− = min{0, a}, the bulk modulus K = λ + 2
3
µ,

and the deviatoric strain tensor e = ε − tr(ε)
3

I, where I is the third-order
identity tensor.

2.2. Time-discrete evolution problem

In the time-discrete setting of the quasi-static evolution problem, the
state of the system at the (pseudo-)time or loading step n ≥ 1 is obtained as
the solution of the minimization problem

argmin
u,α

{En(u, α) : u ∈ Vūn , α ∈ Dαn−1}, (5)

where

En(u, α) = Eel(u, α) + Ed(α)−
∫
Ω

b̄n · u dΩ−
∫
ΓN

t̄n · u ds, (6)

Vūn := {u ∈ (H1(Ω))d : u = 0 on ΓD,0, u = ūn on ΓD,1} (7)

denotes the space of kinematically admissible displacement fields, and

Dαn−1 := {α ∈ H1(Ω) : α ≥ αn−1 in Ω} (8)

denotes the space of admissible phase fields. The condition α ≥ αn−1 repre-
sents the irreversibility of the phase field evolution. The first-order necessary
conditions of the minimization problem deliver the strong form of the gov-
erning equations

∇ · σ + b̄n = 0, (9)

α− αn−1 ≥ 0, (10)

g′(α)Ψ+ +
Gc

cw

(
w′(α)

l
− 2l∆α

)
≥ 0, (11)

(α− αn−1)

[
g′(α)Ψ+ +

Gc

cw

(
w′(α)

l
− 2l∆α

)]
= 0, (12)
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all valid in Ω, and represent the local equilibrium of forces, damage irre-
versibility, damage criterion and loading-unloading conditions, respectively.
The Cauchy stress is defined as σ = g(α)∂Ψ

+

∂ε
+ ∂Ψ−

∂ε
, and ()′ = ∂

∂α
(). The

whole set of boundary conditions reads as follows:

u = 0 on ΓD,0,

u = ūn on ΓD,1,

σn = t̄n on ΓN ,

α− αn−1 ≥ 0, ∇α · n ≥ 0, (α− αn−1)(∇α · n) = 0 on Γ. (13)

2.3. Irreversibility of the phase field

One way to enforce the irreversibility of the phase field in the compu-
tations is to add to the energy functional in (1) the following energetic
penalty [53]:

E ir(α) =

∫
Ω

1

2
γir⟨α− αn−1⟩2−dΩ, (14)

where γir is the penalty parameter, whose value can be chosen as suggested
in [53]:

γir =
Gc

l

27

64TOL2ir
(AT1 model), (15)

γir =
Gc

l

(
1

TOL2ir
− 1

)
(AT2 model). (16)

Here 0 < TOLir ≤ 1 is the prescribed irreversibility tolerance threshold; in
this work, we set it to TOLir = 5× 10−3.

2.4. Non-dimensionalization scheme

Non-dimensionalization not only reduces the number of relevant physical
parameters, but also aids in learning by ensuring that the inputs are ∼ 1.
So, we non-dimensionalize the energy functional using the following scheme:

x̃ =
x

L
, l̃ =

l

L
, ũ =

u

L

(
Gc

El

)−1/2

,

λ̃ =
λ

E
, µ̃ =

µ

E
, and Ẽ =

lE
L3Gc

, (17)
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where x ∈ Ω (x̃ ∈ Ω̃) is a material point coordinate, L is the characteristic

length of the body, E is the Young’s modulus, and
√

Gc

El
is of the order of the

critical strain for crack nucleation in a 1D bar [11]. Then the dimensionless
form of the energy functional in (1), with no surface tractions and body
forces, and including the energetic penalty to enforce the irreversibility of
the phase field, reads

Ẽ(ũ, α) =
∫
Ω̃

(
g(α)Ψ̃+(ε̃(ũ)) + Ψ̃−(ε̃(ũ))

)
dΩ̃︸ ︷︷ ︸

Ẽel

+
1

cw

∫
Ω̃

(
w(α) + l̃2|∇̃α|2

)
dΩ̃︸ ︷︷ ︸

Ẽd

+

∫
Ω

1

2
γ̃ir⟨α− αn−1⟩2−dΩ̃︸ ︷︷ ︸

Ẽir

, (18)

where ∇̃ = L∇, ε̃ = ε
(
Gc

El

)−1/2
, Ψ̃± = lΨ±

Gc
, γ̃ir = lγir

Gc
, Ẽel = lEel

L3Gc
,

Ẽd = lEd

L3Gc
, and Ẽ ir = lEir

L3Gc
. Also, the non-dimensional stress follows as

σ̃ = g(α)∂Ψ̃
+

∂ε̃
+ ∂Ψ̃−

∂ε̃
. Furthermore, leveraging the relation among Lamé con-

stants, Young’s modulus and Poisson’s ratio ν, we obtain λ̃ = ν
(1+ν)(1−2ν)

and µ̃ = 1
2(1+ν)

. Notably, as a consequence, the only parameters in the

non-dimensional energy are ν and l̃. For simplicity of notation, from here
onwards, we only use non-dimensional quantities but omit the (̃·) symbol.

3. A Deep Ritz method for phase-field fracture modeling

3.1. The Deep Ritz method

In the DRM, as in any other physics-informed deep learning approach for
solving PDEs and variational problems, the solution field is represented by
an NN, frequently a feedforward NN (also known as a multilayer perceptron).
A feedforward NN is a composition of affine transformations and scalar non-
linear activation functions. Given an input y ∈ Rn, the NN maps it to the
output zθ ∈ Rm as follows

zθ(y) = CK ◦ σ ◦ CK−1 · · · ◦ σ ◦ C1(y), (19)
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where Ck (with 1 ≤ k ≤ K) represents an affine transformation, also known
as the kth layer of the NN. Specifically, Ckzk = Wkzk + bk, where Wk and bk
are trainable weights and biases and zk is the input to the layer. The symbol ◦
represents the composition of functions, and σ is a scalar activation function.
Commonly used activation functions are the ReLU, sigmoid, and hyperbolic
tangent (tanh) functions [54]. θ denotes the set of all trainable parameters
of the NN, i.e. θ = {Wk, bk},∀ 1 ≤ k ≤ K.

Training of the NN aims to find θ such that zθ approximates the tar-
get solution. It involves constructing an appropriate loss function and then
minimizing the loss with respect to the parameters in θ. The minimization
is typically performed using stochastic gradient decent algorithms such as
Adam [55] or higher-order optimization algorithms such as L-BFGS [56].

For our problem, we define the displacement and phase fields obtained
from the NN as uθ(x) and αθ(x). Then the loss function is expressed as

L = log(Eθ), (20)

where Eθ = E(uθ, αθ) is obtained from (18). Taking the log of the energy
in (20) makes the loss function ∼ 1, allowing us to set the same weight for
weight regularization (to be discussed later) and the same stopping criterion
for the optimizer for all the problems investigated in this work.

Note that, in our experience, the enforcement of the Dirichlet boundary
conditions using a soft constraint in DRM is challenging. Hence, we enforce
them by constructing an ansatz, following the approach employed in [14], see
Section 3.2.1. For a general domain shape for which an ansatz is not feasible,
general approaches for the enforcement of boundary conditions as in [57, 58]
can be employed.

3.2. Construction and training of the NN

Our aim is to obtain an NN-based approximation of the solution fields
employing the DRM in learning. This approach entails two key challenges.
The first challenge lies in ensuring that the NN-based approximation of the
energy surface, Eθ, is a faithful projection of the energy landscape in the
space of NN-parameters. Specifically, it is crucial that the energy barriers
and minima are appropriately represented. In turn, the representation of
the energy surface relies on three ingredients: the construction of the NN(s)
representing the fields, the computation of the gradients of the fields, and the
integration over the domain. The second challenge lies in the choice of the
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optimization algorithm. This algorithm needs to respect the energy barriers
and reach the correct local energy minimum regardless of the complexity of
the solution associated with that energy minimum. As follows, we discuss all
these aspects and refer to some Appendices for additional details.

Figure 1: Scheme of our deep Ritz method for the two-dimensional case (left); function
constraining the phase field between 0 and 1 (right)

3.2.1. Choice of the NN architecture

Physically distinct fields such as the displacement field and the phase field
are expected to be learned efficiently when represented by independent NNs.
However, we find that an intimate coupling between the fields, facilitated by
representing the displacement and phase fields as the outputs of the same
NN, helps in learning the nucleation of a crack as shown in Appendix A.
Hence, we construct an NN which takes as input the position vector of a
point in the domain (2 components in 2D, 1 in 1D) and delivers outputs which
correspond to the components of the displacement vector and the value of the
phase field at that point (3 outputs in 2D, 2 in 1D), see Figure 1. The non-
dimensionalization scheme outlined in Section 2.4 ensures that the inputs are
∼ 1. In constructing an ansatz to apply Dirichlet boundary conditions, we
ensure that the outputs of the NN corresponding to the displacement field
are also approximately ∼ 1 as follows:

uθ = fu(x, ûθ)Up, (21)

vθ = fv(x, v̂θ)Up, (22)

where ûθ and v̂θ are the direct NN outputs corresponding to the displacement
components, and Up is the prescribed displacement. fu and fv are designed
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for each problem. To ensure that αθ ∈ [0, 1], the application of the sigmoid
function to the direct NN output corresponding to the phase field, α̂θ, is an
attractive choice; however, it turns out that its vanishing slope hinders crack
nucleation. Therefore, we design the following function, plotted in Figure 1,
to overcome this problem:

αθ = fα(α̂θ) =


α̂θ

4
+ 1

2
, for |α̂θ| ≤ 2

β(α̂θ + 2), for α̂θ < −2

β(α̂θ − 2) + 1, for α̂θ > 2

(23)

By setting αθ = fα(α̂θ) in the 1D bar problem, we find that the order of
the smallest β for which an NN can learn the correct critical load for crack
nucleation is 10−3. So, we set β = 10−3 in all examples of this paper.

3.2.2. Choice of the activation function

Another important aspect of the NN design is the choice of the non-linear
activation function. In PINNs, smooth activations like tanh are frequently
employed. However, we find that an NN with this activation fails to learn
the correct crack path (see Appendix B). The evolution of the loss during
training suggests that an NN with tanh activation fails to represent the en-
ergy barrier in the loss landscape which would prevent crack propagation
in an incorrect direction. Therefore, we employ ReLU activation with the
following modification:

zk+1 = max{0, mk(Wkzk + bk)}, (24)

where mk are learnable coefficients. While initializing the NN, we set mk =
m0, where m0 is a constant. We observe that while the value of mk does
not change significantly during training, some choices of m0, as detailed
in Section 4.1, facilitate learning the critical applied displacement for crack
initiation or propagation with higher accuracy.

3.2.3. Gradient computation and quadrature

Computation of the gradients poses another challenge. When employing
autodifferentiation to compute the gradients of the fields represented by an
NN with a smooth activation function like tanh, the learned fields display
high-frequency oscillations (similar to those resulting from Gibbs phenom-
ena) leading to the localization of the stress in random directions near the
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crack tip (see Appendix C). This can be viewed as an undesired modification
of the energy barrier, allowing for crack propagation in unexpected directions
and leading to an inaccurate crack path prediction.

While this is an additional argument against the use of tanh activation,
the problem is not solved by the use of the ReLU activation function. To
address it, we discretize the domain as we would do in FEA. The field val-
ues at the nodes are obtained from the NN, whereas the field values and
their gradients within each element, in particular at the Gauss points, are
computed using shape functions like in FEA, as follows

uh
θ (x) =

n∑
a=1

Na (x)ua
θ , αh

θ (x) =
n∑

a=1

Na (x)αa
θ ,

∇uh
θ (x) =

n∑
a=1

ua
θ ⊗∇Na (x) , ∇αh

θ (x) =
n∑

a=1

αa
θ ∇Na (x) , (25)

where the superscript h denotes the finite element approximation of the fields,
Na(x) is the shape function corresponding to node a of the finite element
discretization, and ua

θ and αa
θ are the values of uθ and αθ at the same node,

respectively, with a = 1...n and n as the number of nodes. This approach to
gradient computation makes the training considerably faster.

We use the finite element discretization also for the purpose of approx-
imating the integral in (18) in order to compute the energy using the NN-
based representation of the displacement and phase fields. We evaluate the
integral employing Gauss quadrature at each element of the finite element
discretization.

3.2.4. Weight regularization

Weight regularization plays an important role in obtaining the correct
solution of a phase-field fracture problem using the same level of domain dis-
cretization as needed in FEA. In the problem of crack nucleation in a 1D bar
in Section 4.2, when employing autodifferentiation for strain computation,
the NN learns incorrect solutions with approximately zero energy after crack
nucleation. An analysis of the governing PDEs (see Appendix D) reveals
that the phase-field model does not constrain the maximum slope of the dis-
placement field near the localized phase field, thus this slope depends on the
expressivity of the NN. Therefore, if the training points are not fine enough
to resolve the sharply changing displacement field expressible by the NN,
and not only the length scale l, the DRM yields incorrect solutions as shown
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in Figure D.26. Correct results can be obtained by a finer discretization of
the domain than needed to resolve the regularization length scale; this is
however computationally inefficient, as it requires an even finer resolution
than needed for FEA computations. Note that, while we first recognized the
issue when adopting autodifferentiation, the employment of gradient compu-
tation by finite element discretization (as illustrated in Section 3.2.3) does
not solve this issue. Instead, a solution is to limit

(
duθ

dx

)
max

by introducing
weight regularization. This leads to a computationally efficient approach,
in which the discretization of the domain needed for an accurate solution
is comparable to the one used in FEA. Therefore, we employ weight regu-
larization throughout the examples in this paper, see Section 4.1 for more
details.

3.2.5. Choice of the optimization algorithm

Optimization algorithms play a key role in the training of an NN and
selecting one that respects energy barriers and reaches the correct energy
minimum is essential. In this study, we consider the L-BFGS algorithm [56]
and the resilient backpropagation (RPROP) algorithm [59]. While L-BFGS
is the fastest of the two, it is unable to reach a good energy minimum with
the localized phase field and the sharply varying displacement field (see Ap-
pendix E). In contrast, the RPROP algorithm is observed to respect energy
barriers and reach the desired energy minimum. It should be noted that
the performance of first-order optimization algorithms like Adam for these
problems was considerably poorer compared to L-BFGS and RPROP, hence
we do not consider them further in this work.

3.2.6. Transfer learning

As loading is applied in incremental steps, we utilize transfer learning to
learn the solution quickly. The trained network from the previous loading
step is used as the initial network for training in the current loading step. We
observe that transfer learning enables learning the solution field in typically
fewer than 500 steps of the RPROP optimizer provided a load step does not
lead to a sudden crack propagation and associated jump in energy.

3.2.7. Nucleation and damage evolution

Our experience shows that crack nucleation is more challenging to learn
than crack propagation. In the AT1 model, the phase field does not evolve
slowly with increasing load but jumps abruptly from 0 to 1 at the location of
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crack nucleation when the threshold loading for crack nucleation is reached.
This poses a formidable challenge for NNs to learn crack nucleation in 2D.
Therefore, for 2D problems involving crack nucleation we employ the AT2
model, which allows for a slow evolution of the phase field to nonzero values
before it jumps to 1 at the threshold loading condition.

3.2.8. Summary

To summarize, our approach involves one NN with adaptive ReLU activa-
tion expressing both the displacement and phase fields. Dirichlet boundary
conditions are enforced employing an ansatz which also ensures that the NN
outputs corresponding to the displacement field are approximately ∼ 1. To
incentivize the phase field to lie between 0 and 1 without hindering crack
nucleation, we design a new function fα(α̂θ). Field gradients are computed
numerically like in FEA. To estimate the integral in the computation of the
energy, Gauss quadrature is employed for each element in a discretized do-
main. In the training of the network, weight regularization is employed to
constrain the maximum strain expressible by the NN. The RPROP algorithm
is found to perform best in training the NN to learn the solution fields. We
also employ transfer learning to learn the solution efficiently. Additionally,
while the NN learns crack propagation, branching, and coalescence using the
AT1 model, it is able to learn crack nucleation in 2D only with the AT2
model.

4. Numerical examples

In this section, we first demonstrate crack nucleation in a 1D homoge-
neous bar and an L-shaped panel. We then study crack propagation in a
single-edge notched (SEN) specimen under both tensile and shear loading
conditions. To illustrate crack branching, we again model a SEN specimen
under shear loading without strain energy decomposition. Crack coalescence
is demonstrated by subjecting a specimen with three preexisting cracks to
tensile loading.

Since these examples are taken from the phase-field fracture literature,
for each example we use the same material properties as in the corresponding
paper. This not only enables an easier comparison with the results of the
referenced papers; it also demonstrates that the developed approach works
robustly for different material properties (and geometries). Throughout the
2D examples, we assume plane-strain conditions.
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4.1. Numerical setup

For the 1D problem, we use an NN of 4 hidden layers and 50 neurons
in each layer. The coefficient in the activation function is set to m0 = 1,
and we do not include mk among the learnable parameters. The L-BFGS
optimizer is found to be sufficient to learn the solution in this case. Eight
NNs with different initializations obtained by using Xavier initialization [60]
with random seeds are trained for this problem.

For the 2D problems, we use an NN of 8 hidden layers and 400 neurons
in each layer. The size of the network is chosen based on the numerical
experiment conducted for the problem of crack nucleation in an L-shaped
panel (see Appendix F). We set m0 = 2 for crack initiation in the L-shaped
panel, and m0 = 3 for the remaining 2D problems. We train 8 NNs with
different initializations for each problem employing Xavier initialization with
random seeds. In the first loading step, an NN is first trained with L-BFGS
before training it with RPROP; for all the subsequent loading steps only
RPROP is used. For RPROP, the learning rate is set to 10−5 with the
smallest and largest step sizes of 10−10 and 50, respectively. The remaining
optimizer parameters are kept as in the standard implementation in Pytorch.
The stopping criterion is set to correspond to a relative change in the loss
function of less than 5 × 10−6 for 10 consecutive optimization steps, with
a maximum of 10000 optimization steps. Additionally, we apply L2 weight
regularization with a weight of 10−5. The Pytorch library [61] is used for
implementation and training.

In the 1D problem, we discretize the domain into elements of size l/5
and assume linear shape functions. In the 2D problems, we utilize triangular
elements with linear shape functions. Only the regions of the domain where
the crack is expected to propagate are finely discretized with elements of size
l/5, to limit the computational cost. Away from these regions, the element
size smoothly increases up to 4l. Discretization is performed using Gmsh [62].
We use one Gauss point per element for integration.

The numerical setup for the reference FEA computations is detailed
in Appendix G.

4.2. Crack nucleation in a 1D homogeneous bar

We first study crack nucleation in a linear elastic bar shown in Figure 2.
This problem lends itself to an analysis that sheds light on the reason for
the occurrence of incorrect solutions when the domain is not discretized suf-
ficiently finely.
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Figure 2: 1D bar problem: geometry and boundary conditions.

In this case, the expression of the energy in (18) simplifies to the following
form:

E(u, α) =
∫ 0.5

−0.5

1

2
g(α)

(
du

dx

)2

dx+
1

cw

∫ 0.5

−0.5

(
w(α) + l2

∣∣∣∣dαdx
∣∣∣∣2
)
dx. (26)

The only parameter in the above expression is l, and we set l = 0.05. We
employ the AT1 model (see (2)). The following ansatz is employed to apply
the boundary conditions:

uθ = [(x+ 0.5)(x− 0.5)ûθ + (x+ 0.5)]Up,

αθ = (x+ 0.5)(x− 0.5)α̂θ. (27)

Note that, since fracture at the boundaries requires less energy compared to
fracture inside the domain, the NN (as well as the FEA) has a tendency to
choose the solution with fracture at the boundary. To suppress this solution,
we set αθ = 0 at the boundaries using the above ansatz.

For the 1D bar, the energies obtained from the NN are compared with
the FEA solution in Figure 3, showing close agreement. Additionally, the
displacement and phase fields before and after crack nucleation are compared
with the FEA solution in Figure 4, again showing that the DRM achieves a
quite accurate solution.

4.3. Crack nucleation in an L-shaped panel

This problem illustrates crack nucleation in 2D. The geometry of the panel
and the boundary conditions are as shown in Figure 5, whereas the material
properties are set to ν = 0.18 and l = 0.01 [53]. To prescribe homogeneous
and nonhomogeneous Dirichlet boundary conditions, we construct distance
functions d1(x, y) and d2(x, y), respectively, such that d1(x, y) equals 1 at
y = −0.5 and smoothly decreases to 0 away from it, and d2(x, y) equals 1 at
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Figure 3: 1D bar: elastic and fracture energies vs prescribed displacement from NN and
FEA.
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Figure 4: 1D bar: displacement and phase fields before and after crack nucleation from
NN and FEA.

the section of the boundary where Up is applied and smoothly decreases to
0 away from it (see Appendix H for more details):

uθ = [(1− d1(x, y))ûθ]Up,

vθ = [(1− d1(x, y))(1− d2(x, y))v̂θ + d2(x, y)]Up,

αθ = fα(α̂θ). (28)

As discussed in Section 3.2, the NN finds it difficult to learn crack nu-
cleation when the AT1 model is employed; therefore, we use the AT2 model
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Figure 5: L-shaped panel: geometry and boundary conditions.
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Figure 6: L-shaped panel: displacement and phase fields at Up = 1.2 from NN and FEA.

in this problem. Figure 6 compares the solution obtained from the NN with
the FEA solution at Up = 1.2. The crack path in the NN solution closely
resembles that in the FEA solution, although the FEA solution shows com-
paratively sharper turning of the crack. Note that, due to the non-convexity
of the governing energy functional, even the FEA solution is in general not
unique, and changes in the obtained crack patterns may be induced by nu-
merical perturbations as discussed in [63]. Figure 7 illustrates the mean and
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Figure 7: L-shaped panel: elastic and fracture energies vs prescribed displacement from
NN and FEA.

standard deviation of the energies obtained from 8 trained NNs with dif-
ferent initializations, and compares them with the energies obtained from
FEA. The energies are in close agreement before crack nucleation, and the
NN accurately captures the critical Up at which nucleation takes place. How-
ever, in the subsequent stage the damage energy obtained from the NN is
higher than in FEA. This discrepancy results from the difficulty in learning
a curving crack and can be improved by reducing the loading step sizes and
imposing a stricter stopping criterion for the optimizer, which however would
increase the computational cost.

4.4. Crack evolution in a notched specimen

The geometry of the SEN specimen and boundary conditions are as shown
in Figure 8, while the material properties are ν = 0.3 and l = 0.01 [53]. We
define the following ansatz to apply the boundary conditions and to compute
α:

uθ = [(y + 0.5)(0.5− y)ûθ + (y + 0.5) cos(ω)]Up,

vθ = [(y + 0.5)(0.5− y)v̂θ + (y + 0.5) sin(ω)]Up,

αθ = fα(α̂θ). (29)

We define the notch in the sample by setting an initial phase field as
described in Appendix I; the NN learns the notch as a localized phase field
as shown in Figure 8.
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Figure 8: SEN specimen: geometry and boundary conditions (left); phase field from NN
at the smallest applied tensile load (right).
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Figure 9: SEN specimen under tensile loading (ω = π/2): displacement and phase fields
at Up = 0.2 from NN and FEA.
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4.4.1. Tensile loading

With this problem, we demonstrate the ability of the NN to learn crack
propagation. We subject the SEN specimen to tensile loading, i.e. the load-
ing angle is ω = π/2, and adopt the AT1 model. Figure 9 compares the
fields obtained from NN and FEA at Up = 0.2, showing close agreement. In
this example, the simplicity of the crack path allows the NN to easily and
accurately learn the cracked solution. Figure 10 compares the energies as-
sociated with the NN solution with the energies from FEA, exhibiting once
again a close agreement. Note that the comparatively higher standard devi-
ation near the critical load for crack propagation results from differences in
the prediction of the critical load for different initializations of the NN.
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Figure 10: SEN specimen under tensile loading (ω = π/2): elastic and fracture energies
vs prescribed displacement from NN and FEA.

4.4.2. Shear loading

This problem demonstrates the ability of the NN to learn crack kinking,
i.e. the change in direction of a crack. To this aim, we subject the SEN
specimen to shear loading, i.e. the loading angle is ω = 0, and again use
the AT1 model. The displacement and phase fields obtained from the NN at
Up = 0.4 are compared with the FEA solution in Figure 11, showing close
agreement. Note that FEA encounters convergence issues for Up > 0.4, while
the NN does not exhibit any problem even in that range, as demonstrated
by Figure 12, which shows the fields at Up = 0.47.

The energies associated with the NN solution are compared with the
energies from FEA in Figure 13. They are also very close, although the
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Figure 11: SEN specimen under shear loading (ω = 0): displacement and phase fields at
Up = 0.4 from NN and FEA.
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Figure 12: SEN specimen under shear loading (ω = 0): displacement and phase fields at
Up = 0.47 from NN.

critical load for crack propagation in the NN solution is slightly higher than
in FEA. Moreover, higher standard deviations in the energies result from
slight variations in the critical loads for different NN initializations.

4.5. Crack branching in a notched plate

To demonstrate crack branching, we again prescribe the shear loading
condition on the SEN specimen, i.e. ω = 0. In this problem, in the absence
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Figure 13: SEN specimen under shear loading (ω = 0): elastic and fracture energies vs
prescribed displacement from NN and FEA.
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Figure 14: Crack branching test: displacement and phase fields at Up = 0.37 from NN
and FEA.

of the strain energy decomposition in (4), which differentiates between tensile
and compressive stresses, unphysical branching of the crack occurs [3]. Since
in this case we do not seek a physically realistic prediction of the behavior
but rather an accurate solution of the governing PDEs, we purposefully omit

23



the strain energy decomposition, i.e. we take Ψ+ = Ψ and Ψ− = 0. Figure 14
illustrates that the NN is able to learn crack branching. The fields obtained
from the NN at Up = 0.37 are compared with the FEA solution in Figure 14,
displaying again a good agreement, with some differences in the prediction
of the curvature of the crack path.

The evolution of the energies with Up obtained from the NN are compared
with the FEA energies in Figure 15. The critical load at which branching
initiates shows variability for different NN initializations, leading to a higher
standard deviation; however, the average value is close to the critical load
predicted by FEA. Also, the difficulty encountered by the NN in learning the
curvature of the crack path is reflected in the deviation of the energies from
those computed from FEA after the critical load. Note that one of the 8 NNs
had difficulty in learning branching; the corresponding result is not included
in the computation of the mean and standard deviation of the energies.
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Figure 15: Crack branching test: elastic and fracture energies vs prescribed displacement
from NN and FEA.

4.6. Crack coalescence in a plate with cracks
To demonstrate crack coalescence, tensile loading is applied on a specimen

with preexisting cracks (Figure 16). In this case, we again adopt (29) with
loading angle ω = π/2, and the material properties are ν = 1/3 and l =
0.01 [64]. We use a larger value for l in comparison to [64] to reduce the
computational cost.

Figure 17 demonstrates that the NN is able to learn crack coalescence.
Unlike in the FEA solution, cracks starting from the initial cracks and reach-
ing the domain boundaries are at an angle from the horizontal direction. On
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Figure 16: Specimen with preexisting cracks: geometry and boundary conditions (left) and
phase field at the location of the cracks from NN at the smallest applied load in training
(right).

the other hand, as discussed earlier, the FEA solution itself is not guaranteed
to be unique [63].

The energies obtained from the NN with increasing Up are compared with
the FEA energies in Figure 18. The critical load at which propagation and
merging occurs, while close to the FEA prediction, shows slight variability for
different NN initializations, leading to a higher standard deviation near the
critical load. The energies obtained from the NN after the crack propagates
through the sample are in close agreement with the FEA energies even though
the crack paths show differences. This suggests that different crack paths
may be competing at similar energy levels, which is a known phenomenon in
phase-field fracture modeling [63]. An alternative explanation may be that
the NN is not reaching a sufficiently deep energy minimum, in which case
results can be improved by prescribing a stricter stopping criterion for the
optimizer. Note that here two NNs (out of 8) exhibit difficulty in learning
the correct crack evolution, thus the corresponding results are not included
in the computation of the mean and standard deviation of the energies.

4.7. Computational cost

Training of the NNs is performed on NVIDIA GeForce RTX 2080 Ti
GPUs, whereas FEA computations are performed on Intel(R) Xeon(R) W-

25



0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
u

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
v

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50

7.5

5.0

2.5

0.0

2.5
1e 4

0.0

0.5

1.0

1.5

2.01e 1

0.00

0.25

0.50

0.75

1.00

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
uFEA

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
vFEA

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
FEA

4

2

0

21e 2

0.0

0.5

1.0

1.5

2.0
1e 1

0.00

0.25

0.50

0.75

1.00

Figure 17: Specimen with preexisting cracks: displacement and phase fields at Up = 0.2
from NN and FEA.
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Figure 18: Specimen with preexisting cracks: elastic and fracture energies vs prescribed
displacement from NN and FEA.

2223 CPUs. While our DRM approach is robust and we are able to learn
solutions involving various fracture phenomena, we observe that the DRM
is computationally more expensive compared to FEA, with the training for
NNs taking up to one order of magnitude longer than the corresponding FEA
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computations. This observation is not suprising; our aim in this work was not
to deliver an alternative solution framework for a single boundary value prob-
lem in phase-field fracture, but rather to develop a robust approach which
can lay the foundation to solve parametric phase-field fracture problems with
the DRM.

5. Conclusions

To harness physics-informed deep learning for phase-field fracture model-
ing, we propose the design of an NN and of a learning approach based on the
DRM, aimed at learning complex fracture processes. The main conclusions
of this work are as follows:

• Phase-field fracture modeling requires solving a coupled problem which
involves fields with sharp spatial variations. Training NNs to learn
such fields is challenging; successful training relies, on one hand, on the
ability of the NN to accurately approximate the energy surface and, on
the other hand, on the ability of an optimizer to reach the correct local
minimum respecting the energy barriers.

• We empirically establish that fully connected feed-forward NNs, with
a modified ReLU activation and an appropriate ansatz in the construc-
tion of the solution fields, along with weight regularization and numer-
ical gradient computation, is able to learn complex fracture processes.
Furthermore, RPROP is found to be the most effective optimization
algorithm for training.

• Our approach can solve examples of crack initiation, propagation, kink-
ing, branching, and coalescence taken from the phase-field fracture lit-
erature, within one single numerical setup. Results in terms of solution
fields and energy vs. applied displacement curves are in quantitatively
excellent agreement with the respective FEA results. Additionally, our
approach is robust to different network initializations.

In this work, we focused on the design of a robust NN and learning
approach to learn the solution of boundary value problems involving diverse
fracture phenomena in phase-field fracture modeling. While our approach
is computationally expensive compared to FEA, our aim is not to deliver
an alternative solution framework for a single boundary value problem in
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phase-field fracture; rather, the present work is intended as the first step in
the direction of learning solutions to parametric phase-field fracture models
with the DRM. In this setting, NNs can be trained on a few realizations
of the parameter space and results can then be inferred online for all other
realizations, leveraging the true potential of the DRM. Learning solutions to
parametric phase-field fracture models will be the goal of our future research.
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Appendix A. Independent NNs for the displacement and phase
fields

Using independent NNs for the physically different fields to learn their
unique features separately can be expected to make training faster. We
construct two NNs of 8 hidden layers and 200 neurons, representing the dis-
placement and phase fields separately, with all the other settings as in Sec-
tion 4. Note that this NN configuration lowers the number of the learnable
parameters. We first study the SEN specimen under shear loading described
in Section 4.4.2, and conclude that the NNs are able to learn crack prop-
agation, as shown in Figure A.19. Subsequently, we use the two NNs to
learn crack nucleation in an L-shaped panel as described in Section 4.3; here,
the NNs are unsuccessful, as shown in Figure A.20. So, we use one NN to
represent both the fields for all the problems.

Appendix B. Activation functions

We assess the ability of the NNs with different activation functions in
learning crack propagation in the SEN specimen under shear loading. We
use the same NN size and optimizer settings as in Section 4.4.2, but set the
activation function to be tanh. As shown in Figure B.21, the NN is able to
learn the displacement and phase fields which yield sharp stress fields near
the crack tip. It also learns the critical Up for crack propagation accurately.
However, it fails to learn the correct crack path as shown in Figure B.22.
Furthermore, the smoothly decreasing loss and the comparison of the phase
fields at two different optimization steps shown in Figure B.22 suggest that
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Figure A.19: Phase field at Up = 0.4 after crack propagation (left) and energies (right) for
the SEN specimen under shear loading (ω = 0) when the displacement and phase fields
are represented by two separate NNs.
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Figure A.20: Phase field at Up = 1.2 (left) and energies (right) for the L-shaped panel
when the displacement and phase fields are represented by two separate NNs. In this case,
the crack fails to nucleate.

the NN-based representation of the loss lacks the energy barrier which could
prevent the NN from learning the incorrect solution.

Appendix C. Autodifferentiation for gradient computation

When employing a smooth activation and autodifferentiation for gradient
computation, the solution field exhibits spurious oscillation. The displace-
ment field in the 1D bar problem in Section 4.2, learned using an NN with
2 hidden layers and 20 neurons with the tanh activation function, exhibits
oscillations as shown in Figure C.23. We also train an NN with 6 hidden
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Figure B.21: Stress field at Up = 0.31 in the SEN specimen under shear loading (ω = 0).
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Figure B.22: Phase field at Up = 0.32 in the SEN specimen under shear loading (ω = 0)
(left) and evolution of the loss function during training (right).
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layers and 50 neurons with tanh activation to learn the solution of the SEN
specimen under shear loading. While spurious oscillations in the displace-
ment field are not apparent, they can be observed in the stress field as shown
in Figure C.24. Furthermore, at the critical Up, the crack propagates in an

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
u

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
v

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50

0

1

2

3
1e 1

6

4

2

0

1e 2

2

4

6

8

1e 1

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
11

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
22

0.5 0.0 0.5
0.50

0.25

0.00

0.25

0.50
12

1

0

1

1

0

0

2

4

6

8
1e 1

Figure C.24: Displacement field, phase field, and stress field at Up = 0.31 in the SEN
specimen under shear loading (ω = 0).

incorrect direction as shown in Figure C.25.
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Figure C.25: Phase field at Up = 0.32 in the SEN specimen under shear loading (ω = 0).
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Appendix D. The maximum strain in the 1D bar

For the bar described in Section 4.2, the equilibrium equation is given by

dσ

dx
= 0, (D.1)

hence, the stress in the bar is uniform. Since σ = g(α)du
dx
, the strain can be

expressed as du
dx

= σ
g(α)

= S(α)σ, where S(α) = 1/g(α) is the compliance.

During evolution of the phase field, eq. (11) (written as equality since
α > αn−1), reads

−1

2
S ′(α)σ2 + w1

[
w′(α)− 2l2

d2α

dx2

]
= 0, (D.2)

where w1 = 1
cw

and the first term has been modified to express it in terms

of compliance and stress. Multiplying the above equation with dα
dx

and inte-
grating with respect to x yields

−1

2
S(α)σ2 + w1

[
w(α)− l2

(
dα

dx

)2
]
= C, (D.3)

with C as the integration constant. Since, far away from the point of local-
ization of the phase field, α and its gradient vanish (thus w = 0 and S = 1),
we obtain C = −1

2
σ2; further substitution of du

dx
= S(α)σ yields

du

dx
= σ +

2w1

σ

[
w(α)− l2

(
dα

dx

)2
]
. (D.4)

At the location in the bar where the maximum strain occurs, the following
condition holds

d

dx

(
du

dx

)
=

(
w′(α)− 2l2

d2α

dx2

)
dα

dx
= 0, (D.5)

hence, dα
dx

= 0 and (
du

dx

)
max

= σ +
2w1w(α)

σ
. (D.6)

When the phase field localizes, the stress in the bar goes from a positive value
to 0 (however, for σ = 0 the so-called optimal profile forms, where dα

dx
̸= 0
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at the center). When the stress approaches 0, the maximum of strain, given
by (D.6), is unbounded. In FEA, the maximum strain is set by the element
size which is chosen small enough to resolve the length scale l. In contrast,
the maximum strain in the DRM is dictated by the expressivity of the NN.
Consequently, if the training points are not fine enough to resolve the sharp
slope of the displacement field expressible by an NN and not only the length
scale l, the DRM yields an incorrect solution as shown in Figure D.26.
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Figure D.26: Incorrect displacement field, phase field and energies when the maximum
strain expressed by the NN solution is not controlled. The plots are obtained using an NN
with 2 hidden layers and 20 neurons with the tanh activation. The correct solution fields
and energies are shown in Figure 4 and Figure 3, respectively.

Appendix E. The limitations of the L-BFGS optimizer

To probe the ability of the L-BFGS optimizer in learning the sharp fields
in the DRM, we apply it to learn the solution of the SEN sample under
shear loading as described in Section 4.4.2. We train the same NN used
in Section 4.4.2. As shown in Figure E.27, the NN fails to learn the sharp
displacement field even before crack propagation begins. It also does not
learn crack propagation as Up is increased.

Appendix F. Network size estimation

We conduct numerical experiments with different network sizes for the
problem of crack nucleation in an L-shaped panel in Section 4.3. The energies
associated with the solutions obtained from networks with different sizes are
compared in Figure F.28. Based on these experiments, we choose a network
with 8 hidden layers and 400 neurons for all the 2D problems solved in this
work.
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Figure E.27: Displacement and phase fields at Up = 0.31 for the SEN specimen under
shear loading (ω = 0) when the fields are learned using only the L-BFGS optimizer.
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Figure F.28: Energy associated with the solutions learned with different network sizes vs
prescribed displacement. In the left plot, number of neurons is 400; in the right plot,
number of hidden layers is 8. (hl: hidden layers)

Appendix G. Numerical setup for FEA

In the FEA computation for the 1D problem in Section 4.2, we discretize
the domain into elements of size l/5 and assume linear shape functions. To
obtain the solution of the 2D problems, we employ quadrilateral elements
with bilinear shape functions and two Gauss points per parametric direction.
The regions of the domain where the crack is expected to propagate are
discretized with elements of size l/5. The element size smoothly increases up
to 4l away from these regions.

Initial cracks are modeled by prescribing α = 1 at the location of the
crack and solving a so-called recovery problem. We set an irreversibility
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tolerance of TOLir = 10−3. The staggered solution algorithm together with
the Newton-Raphson procedure is employed to iteratively converge to the
solution [53]. We set an error tolerance on the residual norm of 10−4 for the
staggered scheme and 10−6 for the Newton-Raphson procedure. Moreover,
we set a maximum of 500 iterations for the Newton-Raphson procedure and
1000 iterations for the staggered scheme.

Appendix H. Distance functions for the L-shaped panel

To ensure the strict enforcement of the Dirichlet boundary conditions
in the problem in Section 4.3, we construct distance functions that satisfy
C1 continuity. For applying the fixed boundary condition at y = −0.5, we
construct the following distance function:

d1(x, y) =

{(
y+0.5

a
− 1
)2

, for y + 0.5 ≤ a

0, otherwise
(H.1)

To apply the prescribed displacement on a section of the boundary shown
in Figure 5, we construct the following distance function:

d2(x, y) =



(
|y|
a
− 1
)2

, for x ≥ 0.44 and |y| ≤ a(√
(0.44−x)2+y2

a
− 1

)2

, for x ≤ 0.44 and
√

(0.44− x)2 + y2 ≤ a

0, otherwise

(H.2)
In this work, we set a = 0.1.

Appendix I. Initial α in a notched sample

To define the initial α in a notched sample, we make use of the analytical
expression for α in a 1D bar upon crack nucleation [4]. Below we provide the
expression for the initial α in a notched sample shown in Figure I.29 in the
AT1 model. Note that x′ − y′ is the transformed coordinate system aligned
with the crack and with its origin at one end of the crack.
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Figure I.29: A sample with an initial crack

α0 =



(
1− |y′|

2l

)2
, for 0 < x′ < Lc and |y′| < 2l(

1−
√

x′2+y′2

2l

)2

, for x′ < 0 and
√
x′2 + y′2 < 2l(

1−
√

(x′−Lc)2+y′2

2l

)2

, for x′ > Lc and
√
(x′ − Lc)2 + y′2 < 2l

0, otherwise

(I.1)
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