On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs *

Ruy Fabila-Monroy ${ }^{\dagger \ddagger}$ Rosna Paul ${ }^{\text {§ }} \boldsymbol{\|} \quad$ Jenifer Viafara-Chanchi ${ }^{\dagger * *}$
Alexandra Weinberger ${ }^{\text {sititj}}$

April 23, 2024

Abstract

A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let $n \geq r$ be positive integers. The graph K_{n}^{r}, is the complete r-partite graph on n vertices, in which every set of the partition has at least $\lfloor n / r\rfloor$ vertices. The layered graph, L_{n}^{r}, is an r-partite graph on n vertices, in which for every $1 \leq i \leq r-1$, all the vertices in the i-th partition are adjacent to all the vertices in the $(i+1)$-th partition. In this paper, we give upper bounds on the rectilinear crossing numbers of K_{n}^{r} and L_{n}^{r}.

1 Introduction

Let G be a graph on n vertices and let D be a drawing of G. The crossing number of D is the number, $\operatorname{cr}(D)$, of pairs of edges that cross in D. The crossing number of G is the minimum crossing number, $\operatorname{cr}(G)$, over all drawings of G in the plane. A rectilinear drawing of G is a drawing of G in the plane in which its vertices are points in general position, and its edges are drawn as straight-line segments joining these points. The rectilinear crossing number of G, is the minimum crossing number, $\overline{\operatorname{cr}}(G)$, over all rectilinear drawings of G in the plane. Computing crossing and rectilinear crossing numbers of graphs are important problems in Graph Theory and Combinatorial Geometry. For a comprehensive review of the literature on crossing numbers, we refer the reader to Schaefer's book [2].

Most of the research on crossing numbers have been focused around the complete graph, K_{n}, and the complete bipartite graph $K_{n, m}$. For the complete graph, Hill [3] gave the following drawing of K_{n}; see Figure 1 for an example. Place half of the vertices equidistantly on the top circle of a cylinder, and the other half equidistantly on the bottom circle. Join the vertices with geodesics on the cylinder. Hill showed that the

[^0]This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

Figure 1: An example of Hill's drawings of K_{8}, where here for convenience only the edges of one vertex are drawn. Left: The drawing on a cylinder. Right: An equivalent representation of Hill's drawings via concentric cycles.
following number, $H(n)$, is the crossing number of this drawing, and it is now conjectured to be optimal. Let

$$
H(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor .
$$

Conjecture 1 (Harary-Hill [4])

$$
\operatorname{cr}\left(K_{n}\right)=H(n)
$$

For the complete bipartite graph, Zarankiewicz gave a rectilinear drawing with the following number, $Z(n, m)$, as crossing number of this drawing, and it is now conjectured to be optimal. Let

$$
Z(n, m):=\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor
$$

and

$$
Z(n):=Z(n, n)
$$

Conjecture 2 (Zarankiewicz [5])

$$
\operatorname{cr}\left(K_{n, m}\right)=Z(n, m)
$$

The number $Z(n, m)$ is also conjectured to be the general optimal crossing number, directly implying the following conjecture.

Conjecture 3

$$
\overline{\operatorname{cr}}\left(K_{n, m}\right)=\operatorname{cr}\left(K_{n, m}\right)
$$

Much less is known for the rectilinear crossing number of the complete graph. For $n \geq 10$, it is known that

$$
\operatorname{cr}\left(K_{n}\right)<\overline{\operatorname{cr}}\left(K_{n}\right)
$$

In contrast to the case of the complete bipartite graph, there is no conjectured value for $\overline{\mathrm{cr}}\left(K_{n}\right)$, nor drawings conjectured to be optimal. The best bounds to date are

$$
0.379972\binom{n}{4}<\overline{\operatorname{cr}}\left(K_{n}\right)<0.380445\binom{n}{4}+O\left(n^{3}\right)
$$

The lower bound is due to Ábrego, Fernández-Merchant, Leaños, and Salazar [6], and the upper bound to Aichholzer, Duque, Fabila-Monroy, García-Quintero, and Hidalgo-Toscano [7]. It is known that

$$
\lim _{n \rightarrow \infty} \frac{\overline{\operatorname{cr}}\left(K_{n}\right)}{\binom{n}{4}}=\bar{q}
$$

for some positive constant \bar{q}; this constant is known as the rectilinear crossing constant.
Let $K_{n_{1}, n_{2}, \ldots, n_{r}}$ be the complete r-partite graph with n_{i} vertices in the i-th set of the partition; and let K_{n}^{r} be the complete balanced r-partite graph in which there are at least $\lfloor n / r\rfloor$ vertices in every partition set. Harborth [8] gave a drawing that provides an upper bound for $\operatorname{cr}\left(K_{n_{1}, n_{2}, \ldots, n_{r}}\right)$; and gave an explicit formula for this number. He claims that for the case of $r=3$, his drawing can be made rectilinear. More recently, Gethner, Hogben, Lidický, Pfender, Ruiz and Young 9 independently studied the problem of the crossing number and rectilinear crossing number of complete balanced r-partite graphs. For $r=3$, they obtain the same bound as Harborth; and their drawing is rectilinear.

Let r be a positive integer and let n be a multiple of r. The layered graph, L_{n}^{r}, is the graph defined as follows. Its vertex set is partitioned into sets V_{1}, \ldots, V_{r}, each consisting of n / r vertices. We call the set V_{i}, the i-th layer of L_{n}^{r}. The edge set of L_{n}^{r} is given by

$$
\left\{u v: u \in L_{i} \text { and } v \in L_{i+1}, \text { for } i=1, \ldots, r-1\right\}
$$

that is, the edges are exactly all possible edges between vertices on consecutive layers.
In this paper, we mainly focus on the rectilinear crossing numbers of K_{n}^{r} and L_{n}^{r}. If n is fixed and r tends to n, then K_{n}^{r} tends to K_{n}. We believe that studying the rectilinear crossing number of K_{n}^{r} might shed some light on how optimal rectilinear drawings of K_{n} look like.

This paper is organized as follows. In Section 2, we give a general technique to obtain non-rectilinear and rectilinear drawings of a given graph G on n vertices. It simply consists of mapping randomly the vertices of G to optimal drawings of K_{n}. We show how this technique upper bounds $\operatorname{cr}\left(K_{n}^{r}\right)$ and $\overline{\operatorname{cr}}\left(K_{n}^{r}\right)$. The bounds obtained in this way are very close to being optimal. However, for the layered graphs this technique gives rather poor upper bounds. In Section 3, we give a technique were given an specific drawing of a graph, we use this drawing as a "seed" to produce larger drawings by replacing each vertex u with a cluster of collinear vertices S_{u} arbitrarily close to u. In the new drawing two vertices in different clusters S_{u} and S_{v} are adjacent whenever u and v are adjacent in the original drawing. We call the new larger drawing a "planted drawing". The conjectured crossing optimal drawings of $K_{n, n}$ and $K_{n, n, n}$ mentioned above are actually planted drawings with drawings of $K_{2,2}$ and $K_{2,2,2}$ as seeds, respectively. However, we show that there is no rectilinear drawing of K_{4} or K_{8}^{4} that can be the seed of a crossing optimal planted drawing of K_{n}^{4}. For the layered graph, we give a rectilinear planar drawing of $L_{2 r}^{r}$. When used as a seed this drawing produces a planted drawing of L_{n}^{r}, with significantly smaller crossing number, than those produced by the random embedding technique. The proofs of many of our results are long and technical; for the sake of clarity, we have relocated most of the proofs and constructions to an appendix.

2 Random Embeddings into Drawings of K_{n} with Small Crossing Number

Suppose that we have a drawing (that can be rectilinear but doesn't have to be) D^{\prime} of K_{n}. If $\operatorname{cr}\left(D^{\prime}\right)$ is small, it might be a good idea to use this drawing to produce a drawing of a graph G on n vertices. Let D be the drawing of G that is produced by mapping the vertices of G randomly to the vertices of D^{\prime}, and where the edges are drawn as their corresponding edges of D^{\prime}. We call D a random embedding of G into D^{\prime}.

In every 4 -tuple of vertices of D^{\prime}, there are three pairs of independent edges, which could cross. Of these three pairs at most one pair is crossing. For every pair of independent edges of G, we have a possible crossing in D; thus, the probability that this pair of edges is mapped to a pair of crossing edges is equal to

$$
\frac{1}{3} \cdot \frac{\operatorname{cr}\left(D^{\prime}\right)}{\binom{n}{4}} .
$$

By defining, for every pair of independent edges of G, an indicator random variable with value equal to one if the edges cross and zero otherwise, we obtain the following result where $\|G\|$ is the number of edges in G and $d(v)$ is the degree of a vertex v of G.

Lemma 4

$$
\mathrm{E}(\operatorname{cr}(D))=\frac{c r\left(D^{\prime}\right)}{3\binom{n}{4}}\left(\binom{\|G\|}{2}-\sum_{v \in V(G)}\binom{d(v)}{2}\right)
$$

Complete r-partite Graphs

For an upper bound on the crossing number of K_{n}^{r}, we use Lemma 4 and Hill's drawing of K_{n}.
Theorem 5 Suppose that n is a multiple of r. Let D be a random embedding of K_{n}^{r} into Hill's drawing of K_{n}. Then,

$$
\operatorname{cr}\left(K_{n}^{r}\right) \leq E(\operatorname{cr}(D)) \leq \frac{1}{16}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-\frac{3 n^{3}}{2}\right)+O\left(n^{2}\right)
$$

In [9], the authors obtain the same bound on $\operatorname{cr}\left(K_{n}^{r}\right)$ by considering a random mapping of the vertices of K_{n}^{r} into a sphere, and then joining the corresponding vertices with geodesics. This type of drawing is called a random geodesic spherical drawing. In 1965, Moon [10], showed that the expected number of crossings of a random geodesic spherical drawing of K_{n} is equal to

$$
\frac{1}{16}\binom{n}{2}\binom{n-2}{2}=H(n)-O\left(n^{3}\right)
$$

which explains why the bound of Theorem 5 matches the bound of 9 .
Let $H(n, r)$ be the number of crossings in Harborth's drawing for $\operatorname{cr}\left(K_{n}^{r}\right)$. Due to the complexity of the formula, we use the following approximation to $H(n, r)$ instead.

Lemma 6 If n is a multiple of r, then

$$
H(n, r) \leq \frac{1}{16}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-2 n^{3}\right)+O\left(n^{2}\right)
$$

Let D be as in Theorem 5 note that by Lemma 6, it holds that

$$
E(\operatorname{cr}(D))-H(n, r) \leq \frac{1}{32}\left(\frac{r-1}{r}\right)^{2} n^{3}+O\left(n^{2}\right)=O\left(n^{3}\right)
$$

Thus, the random embedding gives an upper bound on $\operatorname{cr}(D)$ that matches the conjectured value up to the leading term, but it is a little worse in the lower terms.

We now upper bound $\overline{\operatorname{cr}}\left(K_{n}^{r}\right)$, with this technique.
Theorem 7 Let r be a positive integer and n a multiple of r. Let \bar{D} be a random embedding of K_{n}^{r} into an optimal rectilinear drawing of K_{n}. Then

$$
\begin{aligned}
\overline{\operatorname{cr}}\left(K_{n}^{r}\right) & \leq E(\operatorname{cr}(\bar{D})) \\
& \leq \frac{\bar{q}}{4!}\left(\frac{r-1}{r}\right)^{2} n^{4}+o\left(n^{4}\right) \\
& <0.015852\left(\frac{r-1}{r}\right)^{2} n^{4}+o\left(n^{4}\right) .
\end{aligned}
$$

For a lower bound we have the following.
Theorem 8 Let r be a positive integer and n a multiple of r. Then

$$
\overline{\operatorname{cr}}\left(K_{n}^{r}\right) \geq \overline{\operatorname{cr}}\left(K_{r}\right)\left(\frac{n}{r}\right)^{4}
$$

Figure 2: A drawing of K_{8}^{4} with 6 crossings (left) and K_{9}^{4} with 15 crossings (right).

Theorems 7 and 8 imply the following.
Corollary 9 Let $r=r(n)$ be a monotone function of n such that $r \rightarrow \infty$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{\overline{\operatorname{cr}}\left(K_{n}^{r}\right)}{\binom{n}{4}}=\bar{q}
$$

In both [8] and [9], it is conjectured that

$$
\operatorname{cr}\left(K_{n}^{3}\right)=\overline{\operatorname{cr}}\left(K_{n}^{3}\right)
$$

Using the order type database [11, we have verified that

$$
\overline{\mathrm{cr}}\left(K_{8}^{4}\right)=8 \text { and } \overline{\mathrm{cr}}\left(K_{9}^{4}\right)=15
$$

On the other hand

$$
\operatorname{cr}\left(K_{8}^{4}\right) \leq H(8,4)=6 \text { and } \operatorname{cr}\left(K_{9}^{4}\right) \leq H(9,4)=15 .
$$

See Figure 2 for an example. From the above results we conjecture the following.
Conjecture 10 There exists a natural number $n_{0}>9$ such that for all $n \geq n_{0}$,

$$
\operatorname{cr}\left(K_{n}^{4}\right)<\overline{\operatorname{cr}}\left(K_{n}^{4}\right) .
$$

Layered Graphs

Using the random embedding technique into Hill's drawing of K_{n}, we obtain the following upper bound for $\operatorname{cr}\left(L_{n}^{r}\right)$.

Theorem 11

$$
\operatorname{cr}\left(L_{n}^{r}\right) \leq \frac{(r-1)^{2}}{16 r^{4}} n^{4}+O\left(n^{3}\right)
$$

We improve this upper bound in Section 3 .

3 Planted Rectilinear Drawings

Let D be a rectilinear drawing of a graph G. For every vertex v of G, let ℓ_{v}, be a directed straight line passing through v and no other vertex of D, such that to left of ℓ_{v} there are $\lfloor d(v) / 2\rfloor$ neighbors of v and to the right of ℓ_{v} there are the remaining $\lceil d(v) / 2\rceil$ neighbors of v. Let G^{s} be the graph whose vertex set is equal to

$$
\{(v, i): i=1, \ldots, s \text { and } v \in V(G)\}
$$

and in which (v, i) is adjacent to (w, j) whenever $v w$ is an edge of G. We say that the set $\{(v, 1), \ldots,(v, s)\}$ is the cluster of v. Let D^{s} be the rectilinear drawing of G^{s} in which for every vertex v of G, the vertices its cluster are placed arbitrarily close to ℓ_{v} and arbitrarily close to $v($ in $D)$. We say that D^{s} is a planted drawing of G^{s} with seed D.

Lemma 12

$$
\operatorname{cr}\left(D^{s}\right)=\operatorname{cr}(D) s^{4}+\sum_{v \in V(G)}\left(\binom{\lfloor d(v) / 2\rfloor}{ 2}+\binom{\lceil d(v) / 2\rceil}{ 2}\right) \frac{s^{3}(s-1)}{2}+\|G\| \frac{s^{2}(s-1)^{2}}{4}
$$

Seeds and planted drawings were first used by Ábrego and Fernández-Merchant [12] ${ }^{1}$ to upper bound the rectilinear crossing number of K_{n}. The current best upper bound on $\overline{\operatorname{cr}}\left(K_{n}\right)$ is obtained via a seed of 2643 vertices and 771218714414 crossings.

Complete r-partite Graphs

Note that if we use $K_{t r}^{r}$ as a seed for a planted drawing of K_{n}^{r}, we have that $s=\frac{n}{t r}$. Thus, from Lemma 12 we obtain the following.

Corollary 13 Let D be a rectilinear drawing of $K_{t r}^{r}$. Then using D as a seed we obtain a planted drawing of K_{n}^{r} with

$$
\left(\frac{\operatorname{cr}(D)+\frac{r t}{2}\left(\binom{\lfloor(r-1) t / 2\rfloor}{ 2}+\binom{\lceil(r-1) t / 2\rceil}{ 2}+\frac{r(r-1) t^{2}}{8}\right.}{(r t)^{4}}\right) n^{4}-O\left(n^{3}\right)
$$

crossings.
Using the seeds in Figure 3, we obtain planted rectilinear drawings of K_{n}^{2} and K_{n}^{3}, with the conjectured minimum number of crossings.

Using the random embedding technique and Theorem 5 we obtain a rectilinear drawing of K_{n}^{4} with at most

$$
\begin{equation*}
0.0089676 n^{4}+o\left(n^{4}\right) \tag{1}
\end{equation*}
$$

crossings; and since $\bar{q}>0.379972$, the best we can hope to achieve with the random embedding technique is a rectilinear drawing of K_{n}^{4} with

$$
\begin{equation*}
0.0089055 n^{4}+o\left(n^{4}\right) \tag{2}
\end{equation*}
$$

crossings.
Using a planar drawing of K_{4} as a seed, we obtain a rectilinear planted drawing of K_{n}^{r} with

$$
\left(\frac{2\left(\binom{1}{2}+\binom{2}{2}\right)+\frac{3}{2}}{4^{4}}\right) n^{4}-O\left(n^{3}\right)=\frac{7}{2^{9}} n^{4}-O\left(n^{3}\right)=0.013671875 n^{4}-O\left(n^{3}\right)
$$

[^1]

Figure 3: The seeds for the planted drawings of K_{n}^{2} and K_{n}^{3}
crossings. Using a rectilinear drawing of K_{8}^{4} with 8 crossings, we obtain a planted rectilinear drawing with

$$
\left(\frac{8+4\left(\binom{3}{2}+\binom{3}{2}\right)+6}{8^{4}}\right) n^{4}-O\left(n^{3}\right)=\frac{38}{8^{4}} n^{4}-O\left(n^{3}\right)=0.009277344 n^{4}-O\left(n^{3}\right)
$$

crossings.
Fabila-Monroy and López [13] used an heuristic of randomly moving vertices to obtain a rectilinear drawing of K_{75} with 45049 crossings. This was used as a seed for a previous best upper bound on \bar{q}. In [14] Duque, Fabila-Monroy, Hernández-Vélez and Hidalgo-Toscano gave an $O\left(n^{2} \log n\right)$ time algorithm to compute the crossing number of a rectilinear drawing of a graph on n vertices. Using a similar heuristic as in [13] and the algorithm of [14], we obtained a rectilinear drawing of K_{24}^{4} with 2033 crossings. Using this as a seed we obtain a planted rectilinear drawing of K_{n}^{4} with

$$
\left(\frac{2033+12\left(\binom{9}{2}+\binom{9}{2}\right)+54}{24^{4}}\right) n^{4}-O\left(n^{3}\right)=\frac{2951}{24^{4}} n^{4}-O\left(n^{3}\right)=0.0088946 n^{4}-O\left(n^{3}\right)
$$

crossings. This is better than the best possible upper bound obtainable with the random embedding technique. However, for $r \geq 5$, we have not found seeds that provide planted drawings with less crossings than the drawings obtained from the random embedding technique.

Layered Graphs

We now show a rectilinear planar drawing D_{r} of $L_{2 r}^{r}$. For $i=1, \ldots, r$, let $\left\{u_{i}, v_{i}\right\}$ be the two vertices on layer i of $L_{2 r}^{r}$. Place u_{i} and v_{i} at the points p_{i} and q_{i}, respectively; where

$$
p_{i}:=\left\{\begin{array}{l}
(i, 0) \text { if } i \text { is odd, } \\
(0, i) \text { if } i \text { is even, }
\end{array} \quad \text { and } q_{i}:=\left\{\begin{array}{l}
(-i, 0) \text { if } i \text { is odd } \\
(0,-i) \text { if } i \text { is even } .
\end{array}\right.\right.
$$

See Figure 4 for the drawing of L_{12}^{6}.
Using this drawing as a seed for a planted drawing of L_{n}^{r}, we obtain a rectilinear drawing with

$$
\begin{aligned}
& \sum_{v \in V\left(D_{r}\right)}\left(\binom{\lfloor d(v) / 2\rfloor}{ 2}+\binom{\lceil d(v) / 2\rceil}{ 2}\right) \frac{s^{4}}{2}+\left\|D_{r}\right\| \frac{s^{4}}{4}-O\left(s^{3}\right) \\
= & (2(r-2) \cdot 2) \frac{n^{4}}{2 \cdot(2 r)^{4}}+4 \cdot(r-1) \frac{n^{4}}{4 \cdot(2 r)^{4}}-O\left(n^{3}\right) \\
= & \frac{3 r-5}{16 r^{4}} n^{4}-O\left(n^{3}\right)
\end{aligned}
$$

Figure 4: The rectilinear D_{6} drawing of L_{12}^{6}
crossings. For $r \geq 4$, this is better than the upper bound obtained with the random embedding technique.
For $i=2, \ldots, r-1$, let H_{i} be the subgraph of L_{n}^{r} induced by the vertices in layers $i-1, i$ and $i+1$. Note that this graph isomorphic to $K_{n / r, 2 n / r}$. Thus, assuming that Zarankiewicz's conjecture holds, in every drawing of L_{n}^{r}, H_{i} produces at least $Z(n / r, 2 n / r)$ crossings. Each of these crossings is produced by at most two such H_{i} 's. Therefore, assuming that Zarankiewicz's conjecture is true, we have that

$$
\operatorname{cr}\left(L_{n}^{r}\right) \geq \frac{(r-2)}{2} Z(n / r, 2 n / r)=\frac{2 r-4}{16 r^{4}} n^{4}-O\left(n^{3}\right) .
$$

References

[1] R. Fabila-Monroy, R. Paul, J. Viafara-Chanchi, and A. Weinberger, "On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs," in XX Encuentros de Geometrıa Computacional (EGC'23), Santiago de Compostela, Spain, pp. 33-36, 2023.
[2] M. Schaefer, Crossing numbers of graphs. CRC Press, 2018.
[3] F. Harary and A. Hill, "On the number of crossings in a complete graph," Proceedings of the Edinburgh Mathematical Society, vol. 13, no. 4, pp. 333-338, 1963.
[4] R. K. Guy, "A combinatorial problem," Nabla (Bulletin of the Malayan Mathematical Society), vol. 7, pp. 68-72, 1960.
[5] K. Zarankiewicz, "On a problem of P. Turan concerning graphs," Fund. Math., vol. 41, pp. 137-145, 1954.
[6] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar, "A central approach to bound the number of crossings in a generalized configuration," in The IV Latin-American Algorithms, Graphs, and Optimization Symposium, vol. 30 of Electron. Notes Discrete Math., pp. 273-278, Elsevier Sci. B. V., Amsterdam, 2008.
[7] O. Aichholzer, F. Duque, R. Fabila Monroy, O. E. García-Quintero, and C. Hidalgo-Toscano, "An ongoing project to improve the rectilinear and the pseudolinear crossing constants." Preprint.
[8] H. Harborth, "Über die Kreuzungszahl vollständiger, n-geteilter Graphen," Mathematische Nachrichten, vol. 48, no. 1-6, pp. 179-188, 1971.
[9] E. Gethner, L. Hogben, B. Lidickỳ, F. Pfender, A. Ruiz, and M. Young, "On crossing numbers of complete tripartite and balanced complete multipartite graphs," Journal of Graph Theory, vol. 4, no. 84, pp. 552-565, 2017.
[10] J. W. Moon, "On the distribution of crossings in random complete graphs," J. Soc. Indust. Appl. Math., vol. 13, pp. 506-510, 1965.
[11] O. Aichholzer, F. Aurenhammer, and H. Krasser, "Enumerating order types for small point sets with applications," Order, vol. 19, no. 3, pp. 265-281, 2002.
[12] B. M. Ábrego and S. Fernández-Merchant, "Geometric drawings of K_{n} with few crossings," J. Combin. Theory Ser. A, vol. 114, no. 2, pp. 373-379, 2007.
[13] R. Fabila-Monroy and J. López, "Computational search of small point sets with small rectilinear crossing number," Journal of Graph Algorithms and Applications, vol. 18, no. 3, pp. 393-399, 2014.
[14] F. Duque, R. Fabila-Monroy, C. Hernández-Vélez, and C. Hidalgo-Toscano, "Counting the number of crossings in geometric graphs," Inform. Process. Lett., vol. 165, pp. Paper No. 106028, 5, 2021.

4 Appendix

We continuously use that:

- if x is an even integer, then $\lfloor(x-1) / 2\rfloor=(x-2) / 2=x / 2-1$;
- and if x is an odd integer, then $\lfloor x / 2\rfloor=(x-1) / 2$.

Lemma 14

$$
\frac{H(n)}{3\binom{n}{4}} \leq \frac{1}{8}\left(1-\frac{2}{n}\right)
$$

Proof. If n is even, then

$$
\begin{aligned}
\frac{H(n)}{3\binom{n}{4}} & =\frac{2}{n(n-1)(n-2)(n-3)}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor \\
& =\frac{2}{n(n-1)(n-2)(n-3)}\left(\frac{n}{2}\right)\left(\frac{n-2}{2}\right)\left(\frac{n-2}{2}\right)\left(\frac{n-4}{2}\right) \\
& =\frac{1}{(n-1)(n-3)}\left(\frac{1}{2}\right)\left(\frac{n-2}{2}\right)\left(\frac{n-4}{2}\right) \\
& =\frac{1}{8(n-1)(n-3)}((n-2)(n-4)) \\
& =\frac{n-2}{8}\left(\frac{(n-4)}{(n-1)(n-3)}\right) \\
& =\frac{n-2}{8}\left(\frac{(n-4)}{n^{2}-4 n+3}\right) \\
& =\frac{n-2}{8}\left(\frac{(n-4) n}{\left(n^{2}-4 n+3\right) n}\right) \\
& =\frac{n-2}{8}\left(\frac{n^{2}-4 n}{\left(n^{2}-4 n+3\right) n}\right) \\
& <\frac{n-2}{8}\left(\frac{1}{n}\right) \\
& =\frac{1}{8}\left(1-\frac{2}{n}\right) .
\end{aligned}
$$

If n is odd, then

$$
\begin{aligned}
\frac{H(n)}{3\binom{n}{4}} & =\frac{2}{n(n-1)(n-2)(n-3)}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor \\
& =\frac{2}{n(n-1)(n-2)(n-3)}\left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right)\left(\frac{n-3}{2}\right)\left(\frac{n-3}{2}\right) \\
& =\frac{1}{8 n}\left(\frac{(n-1)(n-3)}{n-2}\right) \\
& =\frac{n-2}{8 n}\left(\frac{(n-1)(n-3)}{(n-2)(n-2)}\right) \\
& =\frac{n-2}{8 n}\left(\frac{n^{2}-4 n+3}{n^{2}-4 n+4}\right) \\
& <\frac{1}{8}\left(\frac{n-2}{n}\right) \\
& =\frac{1}{8}\left(1-\frac{2}{n}\right) .
\end{aligned}
$$

According to Harborth [8], if n is a multiple of r, then
$H(n, r) \leq \frac{3}{8}\binom{r}{4} \frac{n^{4}}{r^{4}}+r\left\lfloor\frac{n / r}{2}\right\rfloor\left\lfloor\frac{n / r-1}{2}\right\rfloor\left\lfloor\frac{n-n / r}{2}\right\rfloor\left\lfloor\frac{n-n / r-1}{2}\right\rfloor-\binom{r}{2}\left(\left\lfloor\frac{n / r}{2}\right\rfloor^{2}\right)\left(\left\lfloor\frac{n / r-1}{2}\right\rfloor^{2}\right)+O\left(n^{2}\right)$.
We bound this formula to obtain Lemma 6 .
Proof. [Lemma 6] Let

$$
\begin{gathered}
A:=\frac{3}{8}\binom{r}{4} \frac{n^{4}}{r^{4}}=\frac{1}{64} \cdot \frac{(r-1)(r-2)(r-3)}{r^{3}} n^{4}, \\
B:=r\left\lfloor\frac{n / r}{2}\right\rfloor\left\lfloor\frac{n / r-1}{2}\right\rfloor\left\lfloor\frac{n-n / r}{2}\right\rfloor\left\lfloor\frac{n-n / r-1}{2}\right\rfloor,
\end{gathered}
$$

and

$$
C:=\binom{r}{2}\left\lfloor\frac{n / r}{2}\right\rfloor^{2}\left\lfloor\frac{n / r-1}{2}\right\rfloor^{2} .
$$

If n / r is even, then

$$
\begin{aligned}
B & =r\left(\frac{n}{2 r}\right)\left(\frac{n}{2 r}-1\right)\left(\frac{n}{2}-\frac{n}{2 r}\right)\left(\frac{n}{2}-\frac{n}{2 r}-1\right) \\
& =\frac{n}{2}\left(\frac{n}{2 r}-1\right)\left(\frac{n}{2}\left(\frac{r-1}{r}\right)\right)\left(\frac{n}{2}\left(\frac{r-1}{r}\right)-1\right) \\
& =\left(\frac{n^{2}}{4 r}-\frac{n}{2}\right)\left(\frac{n^{2}}{4}\left(\frac{r-1}{r}\right)^{2}-\frac{n}{2}\left(\frac{r-1}{r}\right)\right) \\
& =\frac{n^{4}}{16 r}\left(\frac{r-1}{r}\right)^{2}-\frac{n^{3}}{8 r}\left(\frac{r-1}{r}\right)-\frac{n^{3}}{8}\left(\frac{r-1}{r}\right)^{2}+O\left(n^{2}\right)
\end{aligned}
$$

If n / r is odd, and n is even, then

$$
\begin{aligned}
B & =r\left\lfloor\frac{n / r}{2}\right\rfloor\left\lfloor\frac{n / r-1}{2}\right\rfloor\left\lfloor\frac{n-n / r}{2}\right\rfloor\left\lfloor\frac{n-n / r-1}{2}\right\rfloor \\
& =r\left(\frac{n / r-1}{2}\right)\left(\frac{n / r-1}{2}\right)\left(\frac{n-n / r-1}{2}\right)\left(\frac{n-n / r-1}{2}\right) \\
& =\frac{r}{16}\left(\frac{n^{2}}{r^{2}}-\frac{2 n}{r}+1\right)\left(\left(\frac{r-1}{r}\right)^{2} n^{2}-2\left(\frac{r-1}{r}\right) n+1\right) \\
& =\frac{n^{4}}{16 r}\left(\frac{r-1}{r}\right)^{2}-\frac{n^{3}}{8 r}\left(\frac{r-1}{r}\right)-\frac{n^{3}}{8}\left(\frac{r-1}{r}\right)^{2}+O\left(n^{2}\right)
\end{aligned}
$$

If n / r is odd and n is odd, then

$$
\begin{aligned}
B & =r\left\lfloor\frac{n / r}{2}\right\rfloor\left\lfloor\frac{n / r-1}{2}\right\rfloor\left\lfloor\frac{n-n / r}{2}\right\rfloor\left\lfloor\frac{n-n / r-1}{2}\right\rfloor \\
& =r\left(\frac{n / r-1}{2}\right)\left(\frac{n / r-1}{2}\right)\left(\frac{n-n / r}{2}\right)\left(\frac{n-n / r-2}{2}\right) \\
& =\frac{r}{16}\left(\frac{n^{2}}{r^{2}}-\frac{2 n}{r}+1\right)\left(\left(\frac{r-1}{r}\right)^{2} n^{2}-2\left(\frac{r-1}{r}\right) n\right) \\
& =\frac{n^{4}}{16 r}\left(\frac{r-1}{r}\right)^{2}-\frac{n^{3}}{8 r}\left(\frac{r-1}{r}\right)-\frac{n^{3}}{8}\left(\frac{r-1}{r}\right)^{2}+O\left(n^{2}\right)
\end{aligned}
$$

If n is even, then

$$
\begin{aligned}
C & =\binom{r}{2}\left\lfloor\frac{n / r}{2}\right\rfloor^{2}\left\lfloor\frac{n / r-1}{2}\right\rfloor^{2} \\
& \frac{r(r-1)}{2} \cdot \frac{n^{2}}{4 r^{2}}\left(\frac{n}{2 r}-1\right)^{2} \\
& =\frac{r-1}{32 r^{3}} n^{4}-\frac{r-1}{8 r^{2}} n^{3}+O\left(n^{2}\right) ;
\end{aligned}
$$

if n is odd, then

$$
\begin{aligned}
C & =\binom{r}{2}\left\lfloor\frac{n / r}{2}\right\rfloor^{2}\left\lfloor\frac{n / r-1}{2}\right\rfloor^{2} \\
& =\frac{r(r-1)}{2}\left(\frac{n / r-1}{2}\right)^{2}\left(\frac{n / r-1}{2}\right)^{2} \\
& =\frac{r(r-1)}{32}\left(\frac{n^{4}}{r^{4}}-\frac{4 n^{3}}{r^{3}}+O\left(n^{2}\right)\right) \\
& =\frac{r-1}{32 r^{3}} n^{4}-\frac{r-1}{8 r^{2}} n^{3}+O\left(n^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
H(n, r) & \leq A+B-C+O\left(n^{2}\right) \\
& =\frac{1}{16}\left(\frac{(r-1)(r-2)(r-3)}{4 r^{3}}+\frac{(r-1)^{2}}{r^{3}}-\frac{r-1}{2 r^{3}}\right) n^{4} \\
& +\frac{1}{8}\left(-\frac{r-1}{r^{2}}-\frac{(r-1)^{2}}{r^{2}}+\frac{r-1}{r^{2}}\right) n^{3} \\
& +O\left(n^{2}\right) \\
& =\frac{1}{16}\left(\frac{r^{3}-2 r+r}{4 r^{3}}\right) n^{4}+n^{3}+O\left(n^{2}\right)-\frac{1}{16}\left(\frac{r-1}{r}\right)^{2} 2 n^{3}+O\left(n^{2}\right) \\
& =\frac{1}{16}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-2 n^{3}\right)+O\left(n^{2}\right)
\end{aligned}
$$

Lemma 15 If n is a multiple of r, then

$$
\left(\binom{\left\|K_{n}^{r}\right\|}{2}-\sum_{v \in V\left(K_{n}^{r}\right)}\binom{d(v)}{2}\right)=\frac{1}{2}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-n^{3}\right)+O\left(n^{2}\right)
$$

Proof. Every set in the partition has n / r vertices. Thus, the number of edges between two different sets is equal to n^{2} / r^{2}. Therefore,

$$
\left\|K_{n}^{r}\right\|=\frac{n^{2}}{r^{2}}\binom{r}{2}=\frac{n^{2}}{2} \cdot \frac{r-1}{r}
$$

and

$$
\binom{\left\|K_{n}^{r}\right\|}{2}=\frac{n^{4}}{8}\left(\frac{r-1}{r}\right)^{2}-\frac{n^{2}}{4}\left(\frac{r-1}{r}\right)
$$

For every vertex v of K_{n}^{r}, it holds that

$$
d(v)=\frac{r-1}{r} n
$$

Thus,

$$
\sum_{v \in V\left(K_{n}^{r}\right)}\binom{d(v)}{2}=\frac{n^{3}}{2}\left(\frac{r-1}{r}\right)^{2}-\frac{r-1}{r} \cdot \frac{n^{2}}{2}
$$

It follows that

$$
\begin{aligned}
\left(\binom{\left\|K_{n}^{r}\right\|}{2}-\sum_{v \in V\left(K_{n}^{r}\right)}\binom{d(v)}{2}\right) & =\frac{n^{4}}{8}\left(\frac{r-1}{r}\right)^{2}-\frac{n^{2}}{4}\left(\frac{r-1}{r}\right)-\frac{n^{3}}{2}\left(\frac{r-1}{r}\right)^{2}+\frac{n^{2}}{2}\left(\frac{r-1}{r}\right) \\
& =\frac{1}{2}\left(\frac{r-1}{r}\right)\left(\frac{n^{4}}{4}\left(\frac{r-1}{r}\right)-\frac{n^{2}}{2}-n^{3}\left(\frac{r-1}{r}\right)+n^{2}\right) \\
& =\frac{1}{2}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-n^{3}\right)+O\left(n^{2}\right)
\end{aligned}
$$

Using Lemmas 4, 14 and 15, we can prove Theorem 5 .

Proof. [Theorem 5 By Lemma 4 , it holds that

$$
E(\operatorname{cr}(D))=\frac{H(n)}{3\binom{n}{4}}\left(\binom{\left\|K_{n}^{r}\right\|}{2}-\sum_{v \in V\left(K_{n}^{r}\right)}\binom{d(v)}{2}\right)
$$

Applying Lemmas 14 and 15 on the equality above yields

$$
\begin{aligned}
E(\operatorname{cr}(D)) & \leq \frac{1}{8}\left(1-\frac{2}{n}\right)\left(\frac{1}{2}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-n^{3}\right)+O\left(n^{2}\right)\right) \\
& \leq \frac{1}{16}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-\frac{3 n^{3}}{2}\right)+O\left(n^{2}\right)
\end{aligned}
$$

Proof. [Theorem 7 From Lemma 4 and the best upper bound known for $\overline{\mathrm{cr}}\left(K_{n}\right)$, it follows that

$$
\begin{aligned}
E(\overline{\operatorname{cr}}(\bar{D})) & =\frac{\overline{\operatorname{cr}}\left(K_{n}\right)}{3\binom{n}{4}}\left(\binom{\left\|K_{n}^{r}\right\|}{2}-\sum_{v \in V\left(K_{n}^{r}\right)}\binom{d(v)}{2}\right) \\
& =\frac{\bar{q}\binom{n}{4}+o\left(n^{4}\right)}{3\binom{n}{4}}\left(\frac{1}{2}\left(\frac{r-1}{r}\right)^{2}\left(\frac{n^{4}}{4}-n^{3}\right)+O\left(n^{2}\right)\right) \\
& \leq \frac{\bar{q}}{4!}\left(\frac{r-1}{r}\right)^{2} n^{4}+o\left(n^{4}\right) .
\end{aligned}
$$

Proof. [Theorem 8 Let D be a rectilinear drawing of K_{n}^{r}. Let D^{\prime} be a rectilinear drawing of K_{r} obtained by choosing one point from each color class of D. There are $(n / r)^{r}$ such choices; and each choice provides at least $\overline{\mathrm{cr}}\left(K_{r}\right)$ crossings. Each such crossing is counted exactly $(n / r)^{r-4}$ times.

Proof. [Corollary 9] We have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\overline{\operatorname{cr}}\left(K_{n}^{r}\right)}{\binom{n}{4}} & \geq \lim _{n \rightarrow \infty} \overline{\operatorname{cr}}\left(K_{r}\right) \cdot\left(\frac{n}{r}\right)^{4} \cdot \frac{4!}{n(n-1)(n-2)(n-3)} \\
& \geq \lim _{r \rightarrow \infty} \frac{\overline{\operatorname{cr}}\left(K_{r}\right)}{\left(\frac{r^{4}}{4!}\right)} \\
& =\bar{q}
\end{aligned}
$$

By Theorem 7, $\lim _{n \rightarrow \infty} \frac{\overline{\operatorname{cr}}\left(K_{n}^{r}\right)}{\binom{n}{4}} \leq \bar{q}\left(\frac{r-1}{r}\right)^{2}$.
As $\left(\frac{r-1}{r}\right)^{2}<1$, it follows that

$$
\lim _{n \rightarrow \infty} \frac{\overline{\mathrm{cr}}\left(K_{n}^{r}\right)}{\binom{n}{4}}=\bar{q} .
$$

To prove Theorem 11, we use the following proposition.
Proposition 16 Let r be a positive integer and let n be a multiple of r. Then

$$
\left(\binom{\left\|L_{n}^{r}\right\|}{2}-\sum_{v \in V\left(L_{n}^{r}\right)}\binom{d(v)}{2}\right)=\frac{(r-1)^{2}}{2 r^{4}} n^{4}-\frac{2 r-3}{r^{3}} n^{3}+\frac{r-1}{r^{2}} n^{2}
$$

Proof. Note that

$$
\left\|L_{n}^{r}\right\|=(r-1)\left(\frac{n}{r}\right)^{2}
$$

and

$$
\binom{\left\|L_{n}^{r}\right\|}{2}=\frac{(r-1)^{2}}{2 r^{4}} n^{4}-\frac{r-1}{2 r^{2}} n^{2} .
$$

We have that

$$
\begin{aligned}
\sum_{v \in V\left(L_{n}^{r}\right)}\binom{d(v)}{2} & =\frac{2 n}{r}\binom{n / r}{2}+\frac{(r-2) n}{r}\binom{2 n / r}{2} \\
& =\frac{2 n}{r}\left(\frac{n^{2}}{2 r^{2}}-\frac{n}{2 r}\right)+\frac{(r-2) n}{r}\left(\frac{2 n^{2}}{r^{2}}-\frac{n}{r}\right) \\
& =\frac{2 r-3}{r^{3}} n^{3}-\frac{r-1}{r^{2}} n^{2} .
\end{aligned}
$$

Thus,

$$
\left(\binom{\left\|L_{n}^{r}\right\|}{2}-\sum_{v \in V\left(L_{n}^{r}\right)}\binom{d(v)}{2}\right)=\frac{(r-1)^{2}}{2 r^{4}} n^{4}-\frac{2 r-3}{r^{3}} n^{3}+\frac{r-1}{r^{2}} n^{2} .
$$

Combining Proposition 16 with Lemmas 4 and 14 , we obtain Theorem 11 .
Proof. [Theorem 11

$$
\begin{aligned}
\operatorname{cr}\left(L_{n}^{r}\right) \leq & E(\operatorname{cr}(D))=\frac{H(n)}{3\binom{n}{4}}\left(\binom{\left\|L_{n}^{r}\right\|}{2}-\sum_{v \in V\left(L_{n}^{r}\right)}\binom{d(v)}{2}\right) \leq \\
& \frac{1}{8}\left(1-\frac{2}{n}\right)\left(\frac{(r-1)^{2}}{2 r^{4}} n^{4}+O\left(n^{3}\right)\right) \leq \frac{(r-1)^{2}}{16 r^{4}} n^{4}+O\left(n^{3}\right) .
\end{aligned}
$$

Proof. [Lemma 12] We classify the crossings of D^{s} depending on the number of different clusters in which the endpoints of the edges defining the crossing appear. Let e_{1} and e_{2} be a pair of edges of D^{s} that cross.

Suppose that the endpoints of e_{1} and e_{2} appear in four different clusters. We have that $e_{1}=(u, i)(v, j)$ and $e_{2}=(w, k)(x, l)$ for some four distinct vertices u, v, w, l of D and indices $1 \leq i, j, k, l \leq s$. Thus, $u v, w x$ is a pair of crossing edges in D; and for each pair of crossing edges in D we obtain s^{4} pairs of crossing edges of D^{s}, such that its endpoints lie in four different clusters. Therefore, the number of crossings of D^{s} generated by pairs of edges whose endpoints lie in four different clusters is equal to

$$
\operatorname{cr}(D) s^{4}
$$

Suppose that the endpoints of e_{1} and e_{2} lie in three different clusters. Without loss of generality $e_{1}=(u, i)(v, j)$ and $e_{2}=(u, k)(w, l)$ for some three distinct vertices u, v, w of D and indices $1 \leq i, j, k, l \leq s$. Thus, v and w lie on the same side of ℓ_{u}; and for every pair of vertices of D lying on the same side of ℓ_{u} we obtain $\binom{s}{2} s^{2}$ crossings in D^{s} generated by pairs of edges whose endpoints lie in three different clusters. Therefore, the number of crossings of D^{s} generated by pairs of edges whose endpoints lie in three different clusters is equal to

$$
\sum_{v \in V(G)}\left(\binom{\lfloor d(v) / 2\rfloor}{ 2}+\binom{\lceil d(v) / 2\rceil}{ 2}\right) \frac{s^{3}(s-1)}{2}
$$

Suppose that the endpoints of e_{1} and e_{2} lie in two different clusters. We have that $e_{1}=(u, i)(v, j)$ and $e_{2}=(u, k)(v, l)$ for some edge $u v$ of D and indices $1 \leq i, j, k, l \leq s$; and for every edge of D we obtain $\binom{s}{2}\binom{s}{2}$ crossings in D^{s} generated by pairs of edges whose endpoints lie in two different clusters. Therefore, the number of of crossings of D^{s} generated by pairs of edges whose endpoints lie in two different clusters is equal to

$$
\|G\| \frac{s^{2}(s-1)^{2}}{4}
$$

We now give the coordinates of the rectilinear drawing D of K_{24}^{4} with 2033 crossings. The colors are $0,1,2$ and 3 . We have appended the color of each point as a third coordinate.

$$
\begin{aligned}
V(D)=\{ & (-59260959,44970123,0),(261261347,-43693014,0),(158829052,-28658158,0) \\
& (-20273112,-23913465,0),(20602644,-8343316,0),(-8148611,-63519416,0) \\
& (30209164,4850528,1),(12317574,-161508817,1),(46649346,-344926319,1) \\
& (-11015825,-47872739,1),(-26347789,22655563,1),(-46729617,35472331,1) \\
& (-74136586,66127255,2),(-278900322,316137789,2),(14791528,-20163276,2) \\
& (-140757971,147565111,2),(14081248,-20874215,2),(9903931,-24183515,2) \\
& (-38516867,27953341,3),(-60922797,47350463,3),(8267623,-135305393,3) \\
& (-15043716,-39580158,3),(41831995,797354,3),(181333931,-34086725,3)\}
\end{aligned}
$$

The vertices of this drawing can be seen in Figure 5.
-

Figure 5: The vertices of a rectilinear drawing of K_{24}^{4}

[^0]: *A preliminary version of this work has been presented at EGC'23 1
 ${ }^{\dagger}$ Departamento de Matemáticas, CINVESTAV
 ${ }^{\ddagger}$ ruyfabila@math.cinvestav.edu.mx
 §Institute for Software Technology, Graz University of Technology, Graz, Austria
 ${ }^{\text {I }}$ Supported by the Austrian Science Fund (FWF) grant W1230.
 \|ropaul@ist.tugraz.at
 **viafara@math.cinvestav.mx
 ${ }^{\dagger \dagger}$ Department of Mathematics and Computer Science, FernUniversität in Hagen, Hagen, Germany
 $\ddagger \ddagger$ alexandra. weinberger@fernuni-hagen.de

[^1]: ${ }^{1}$ They do it in a different way as presented here; first they duplicate each vertex along halving lines; then they choose halving lines for the original and new vertices and duplicate a new. They iterate this process.

