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We present a new method to solve the dynamical Bethe-Salpeter Equation numerically. The
method allows one to investigate the effects of dynamical dielectric screening on the spectral po-
sition of excitons in transition-metal dichalcogenide monolayers. The dynamics accounts for the
response of optical phonons in the materials below and on top the monolayer to the electric field
lines between the electron and hole of the exciton. The inclusion of this effect unravels the origin of
a counterintuitive energy blueshift of the exciton resonance, observed recently in monolayer semi-
conductors that are supported on ionic crystals with large dielectric constants. A surprising result
is that while energy renormalization of a free electron in the conduction band or a free hole in the
valence band is controlled by the low-frequency dielectric constant, the bandgap energy introduces a
phase between the photoexcited electron and hole, rendering contributions from the high-frequency
dielectric constant also important when evaluating self-energies of the exciton components. As a
result, bandgap renormalization of the exciton is not the sum of independent contributions from
energy shifts of the conduction and valence bands. The theory correctly predicts the energy shifts of
exciton resonances in various dielectric environments that embed two-dimensional semiconductors.

I. INTRODUCTION

Transition-metal dichalcogenides (TMDs) have
emerged as an excellent platform to study various exotic
quantum effects ranging from valley-dependent selection
rules in the monolayer limit [1–3] to fractionally quan-
tized anomalous Hall effect recently observed in twisted
MoTe2 bilayers [4–8]. Various interesting properties
of these materials originate from strong spin-orbit and
Coulomb interactions which support the formation of
various excitonic states, such as neutral and charged
excitons [9–19], neutral and charged biexcitons [20–24],
as well as hexcitons (six-body states) and oxcitons
(eight-body states) [25–27]. The two-dimensional nature
of TMD monolayers makes them strongly susceptible
to changes in the dielectric environment around them.
Raja et al. showed that the bandgap and exciton binding
energies of TMD monolayers can change by hundreds of
meV using different dielectric environments [28]. Their
study further pointed out that the offset between strong
changes in bandgap and binding energies leads to small
change in the spectral position of the neutral exciton.
An overall small energy redshift was observed in the
spectrum of devices in which the effective dielectric
constant of the surrounding environment was larger [29].

However, a recent experiment using titanium-based ox-
ides to support TMD monolayers showed an opposite
trend [30]. The optical spectra were measured in hBN-
encapsulated TMD devices and then in devices where
the supporting hBN layer was replaced by titanium diox-
ide (TiO2) or strontium titanium oxide (STO - SrTiO3).
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This replacement led to energy blueshift of the exciton
resonance in spite of the larger dielectric constants of
titanium-based oxides, where the energy blueshift seemed
to be commensurate with the amplitude of the dielectric
constant. The apparent contradiction of these findings
with previous results clearly suggests that understand-
ing of the physics is lacking.

Here, we tackle the problem by developing a new
method to solve the Bethe-Salpeter Equation (BSE) in
the dynamical regime. We use a frequency-dependent di-
electric function through the response of optical phonons
in the surrounding materials to the electric field induced
by the interaction between the electron and hole of the
exciton. The results show that band gap renormaliza-
tion (BGR) of single particles - free electrons (holes) in
the conduction (valence) band - is governed by the low-
frequency dielectric constant, ϵ0. On the other hand,
the bandgap energy renders the high-frequency dielec-
tric constant, ϵ∞, suitable in self-energy calculations of
the exciton’s electron and hole. Furthermore, the low-
frequency dielectric constants of ionic crystals are proven
to give dominant contributions to the exciton binding en-
ergy. The theory helps to explain measurements of TMD
monolayers that are supported on TiO2 and STO [30].
Since self-energies and binding energies have important
contributions from ϵ∞ and ϵ0, respectively, replacing the
surrounding dielectric environment can lead to energy
blueshift of the exciton resonance if the replacement in-
troduces a small change in ϵ∞ and a large change in ϵ0
(∆ϵ∞ ≪ ∆ϵ0).

This paper is organized as follows. Section II includes
a brief derivation, still without dynamical effects, that
explains why the exciton resonance is expected to red-
shift in energy when the dielectric constant increases. To
motivate the inclusion of dynamical effects, we discuss
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the phonon spectrum of the dielectric materials used in
the experiment and compare the phonon energies with
kinetic energies of the electron and hole in the exciton.
The theoretical formalism is presented in Sec. III, where
we explain how to include the dynamical dielectric func-
tion in self-energy calculations of charge particles as well
as in the BSE. Simulation results and their analyses are
presented in Sec. IV. A summary and outlook are given
in Sec. V. The appendices include the functional form
of the dynamical potential, technical details of the iter-
ative method, Padé approximation, parameters used in
simulations, and computation aspects.

II. BACKGROUND AND MOTIVATION

We start by analyzing what happens to the exciton
resonance energy when the dielectric screening of the en-
vironment increases. This brief analysis will motivate the
need to incorporate the dynamical dielectric response of
the encapsulating materials.

The energy shift of the exciton resonance is determined
by the BGR and binding energy. The BGR of a semi-
conductor is attributed to the Coulomb-hole effect [31],
reflecting the change in energy needed to excite an elec-
tron across the band gap when the Coulomb potential
at the immediate vicinity of the electron is changed. In
case that the dielectric environment is changed, one gets
[31–33]

∆Eg = Eg,2 − Eg,1 =
∑
q

[V (ϵ2,q)− V (ϵ1,q)]

= lim
r→0

[V (ϵ2, r)− V (ϵ1, r)] , (1)

where q is the transferred momentum in the Coulomb
interaction and ϵ1,2 are effective dielectric constants of
the two environments. Considering first a small change
in the dielectric constant, such that ϵ2 = ϵ1 + δϵ where
δϵ is small and positive, we get

∆Eg = δϵ V ′(ϵ1, r = 0) (2)

with V ′(ϵ1, r) = ∂V/∂ϵ for ϵ = ϵ1.
Because the exciton state is calculated with the same

Coulomb potential, we can use perturbation theory to
quantify the change in exciton binding energy

∆Eb = δϵ⟨ ψ1|V ′(ϵ1, r)|ψ1⟩, (3)

where |ψ1⟩ is the exciton wave function corresponding to
V (ϵ1, r). The total energy shift of the exciton resonance,
∆EX0

= ∆Eg −∆Eb, becomes

∆EX0 = δϵ ⟨ ψ1 |[V ′(ϵ1, r = 0)− V ′(ϵ1, r)]|ψ1⟩ . (4)

Assuming small size exciton, the term in square brackets
is merely the derivative of r, and we get

∆EX0
≃ −δϵ

〈
ψ1

∣∣(∂2V /∂ϵ∂r)× r
∣∣ψ1

〉
< 0. (5)

The energy change is negative because V (ϵ, r) is a decay-
ing function of both ϵ and r, so that ∂2V/∂ϵ∂r > 0. In
other words, the exciton energy redshifts under a small
increase of the dielectric constant. This outcome is ex-
pected since the difference between the Coulomb poten-
tials of two dielectric environments is largest at r = 0
from which the BGR is evaluated. Thus, the energy red-
shift induced by BGR cannot be overshadowed by the
blueshift induced by weaker binding energy. We can fur-
ther generalize the result for cases in which there is a
large difference between ϵ2 and ϵ1, replacing the term δϵ
with an integration over ϵ between ϵ1 and ϵ2.
From the above derivation one might expect the en-

ergy redshift to be a prevalent effect whenever the effec-
tive dielectric screening increases. However, newly found
experimental results show the exact opposite [30]. Using
device structures in which TMD monolayers are covered
by hBN and supported on STO, the exciton resonance
energy showed a blueshift of ∼30 meV with respect to
hBN-encapsulated monolayer devices. Similar devices
that are supported on rutile (TiO2) showed an energy
blueshift of ∼15 meV. These results are especially sur-
prising given that the static dielectric constant of STO
is greater than 104 at low temperatures [34, 35] and that
of rutile is greater than 102 [36]. Namely, instead of
showing the strongest energy redshift in monolayers that
are supported on STO, the measurements yielded the
strongest energy blueshift. And instead of yielding the
second strongest energy redshift in monolayers that are
supported on rutile, the measurements yielded the second
strongest energy blueshift.
To understand the problem, we examine the state dis-

tributions of the exciton’s electron and hole components
due to their relative motion. The stochastic variational
method (SVM) [37–39] is employed to find the exci-
ton wavefunction in WSe2 monolayer covered by hBN
and supported on STO (hBN-WSe2-STO). Solid lines
show calculation results when using the low-frequency
dielectric constants of hBN and STO, and dashed lines
show the corresponding results when using their high-
frequency dielectric constants. Materials parameters are
listed in Appendix D. Figure 1(a) shows state distribu-
tions of the exciton components. The distributions sug-
gest that the kinetic energies from relative motions of the
electron and hole in the TMD monolayer are in the en-
ergy range of optical phonons in the supporting STO, as
shown in Fig. 1(b). Incorporating the lattice dynamics of
encapsulating ionic layers is important because the rel-
ative motion between the electron and hole means that
the electric field lines that spread out of the monolayer,
as shown in Fig. 1(c), change over time.

III. THEORY

The dynamical effects are obtained by solving the BSE
through inclusion of the dynamical Coulomb interaction
between charge particles. We first show how to incor-
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FIG. 1. (a) k-space distributions of the electron and hole due
to their relative motion in a charge-neutral exciton. (b) The
optical phonon modes in STO, extracted from Raman spectra
of 1 mm STO film at T = 5 K without electric field (solid
line) and when a field E = 2.2 × 105 V/cm (dashed lines) is
directed normal to the film plane. Taken from Ref. [40]. (c)
Schematic of the electric field lines between the electron and
hole of an exciton (dashed lines), some of which pass through
the surrounding environments.

porate the dynamical dielectric function in the potential
and the way to obtain the dynamical self-energy of each
component of the exciton. Then we use these quantities
in the dynamical BSE.

A. Dynamical dielectric function

We start by considering the frequency dependence of
the dielectric function of a general material subjected
to a time-dependent periodic electric field of frequency
ω. The structure geometry will later be incorporated to
obtain the effective dielectric function of the Coulomb
interaction between charged particles in the monolayer.

Assuming a lossless Lorentzian oscillator model, the
permittivity of ionic crystals under the effect of a periodic
electric field is given by

ϵ(ω) = ϵ∞
∏
j

ω2
j,LO − ω2

ω2
j,TO − ω2

. (6)

The ratio between the static and high-frequency per-
mittivities is the celebrated Lyddane–Sachs–Teller rela-
tion ϵ(ω = 0)/ϵ(ω = ∞) ≡ ϵ0/ϵ∞ =

∏
j ω

2
j,LO/ω

2
j,TO.

The index j runs over the optical-phonon modes, where
ωj,LO/TO is the associated frequency of the longitudi-
nal/transverse optical lattice vibration. Materials like
TiO2 and STO have several longitudinal and transverse
modes such that ωj,LO ≃ ωj+1,TO. Figure 1(b) shows
the phonon frequencies of STO with ω1,LO = ω2,TO,
ω2,LO = ω3,TO, and ω3,LO ≃ ω4,TO. As a consequence,
the frequency-dependent permittivity in Eq. (6) is mostly
governed by the first and last modes, yielding

ϵ(ω) = ϵ∞ + ϵ∞
ω2
4,LO − ω2

1,TO

ω2
1,TO − ω2

. (7)

Based on this observation, we will use two unitless pa-
rameters to describe the dielectric response of each layer.
The first parameter is the ratio between the first TO
phonon energy and the estimated exciton binding energy

r1 =
ℏω1,TO

εX0

. (8)

We use εX0 = 170 meV in this work (approximately the
exciton binding energy in hBN-encapsulated WSe2 [12,
39]). The second parameter is the square frequency ratio
between the last LO mode and first TO mode

r2 =
ϵ0
ϵ∞

=
ω2
N,LO

ω2
1,TO

. (9)

The dielectric function in Eq. (7) can then be written as

ϵ(ω) = ϵ∞

1 +
r2 − 1

1− ω2

r21ε
2
X0

 . (10)

The Coulomb interaction between charge particles in
the monolayer is obtained by solving the Poisson Equa-
tion with the appropriate structure geometry. Details
of the derivation are given in Ref. [39]. The dynamical
Coulomb potential between charge particles is given by

V (q, ω) =
2πe2

A ϵ(q, ω) q
, (11)

where A is the area of the system. Dynamical effects are
incorporated through the dielectric functions of the sur-
rounding dielectric materials, as detailed in Appendix A.
The dynamical Coulomb potential has singularities at

the phonon frequencies. To circumvent this difficulty
when solving the BSE or evaluating the self-energies,
we use finite-temperature Green’s function formalism in
which real frequencies are replaced by imaginary and dis-
crete Matsubara frequencies [41]. Namely, ϵ(q, ω) is re-
placed with ϵ(q, z − z′), where z and z′ are imaginary
Matsubara energies of fermions before and after the in-
teraction. Their discretized energy form is (2ℓ+1)πikBT ,
where ℓ is an integer and T is temperature. Conse-
quently, the positive real number ω2 in Eq. (10) is re-
placed by (z − z′)2 which is a negative real number.
Rather than having singularities, the dielectric function
is now monotonously decaying from ϵ0 to ϵ∞ as z − z′

departs from 0.

B. Dynamical Self-Energy

The self-energy of an electron in the conduction (c)
or valence band (v) is calculated from a self-consistent
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solution of the Dyson Equation

Σi(k, z) = − 1

β

∑
q,z′

Gi(k− q, z′)V (q, z − z′). (12)

where β−1 = kBT , i = {c,v}, and the Green’s function is

Gi(k, z) =
G0

i (k, z)

1−G0
i (k, z)Σi(k, z)

=
1

z − εi(k) + µ− Σi(k, z)
. (13)

k and µ are the electron momentum and its chemical
potential, respectively. εc(k) = Eg + ℏ2k2/2mc is the
energy dispersion of the electron in the conduction band
and εv(k) = ℏ2k2/2mv is the corresponding one in the
valence band.

We emphasize that it is important to include the
dynamics in the Coulomb interaction and not only in
the Green’s functions of the electron and hole. To il-
lustrate this importance, we evaluate the self-energy
by using a static potential V (q) instead of V (q, z −
z′). Equation (12) in this case becomes frequency-
independent Σ(k) = −β−1

∑
q V (q)

∑
z′ G(k+ q, z′) ≡∑

q V (q)
(
f(k+ q)− 1

2

)
where f(k) is the Fermi-Dirac

distribution function. In the zero-temperature limit and
at charge neutrality, the self-energy of the electron in the
conduction or valence bands is

Σc/v(k) = ∓1

2

∑
q

V (q). (14)

Namely, one gets a rigid energy shift of the bands which
is essentially the BGR in the static limit. By neglecting
dynamical effects in the potential, we lose the frequency
dependence of the self-energies and decouple the electron
self-energy from that of the hole (i.e., the electron and
hole have independent self-energies which are identical
to the ones of free particles in the bands). We will show
later that the coupling and dynamical self-energies are
important to get the correct energy blueshift of the exci-
ton resonance, as observed in experiment [30].

One difficulty of self-energy calculations is the diver-
gence of the sum over q. We illustrate this point by using
the non-dynamical BGR in Eq. (14). The 2D potential
V (q) scales as q−2 in the short wavelength limit, result-
ing in a logarithmic divergence of the sum over q. We
circumvent this problem by choosing a reference TMD
structure with respect to which energy shifts are calcu-
lated. Without loss of generality, we choose a reference
system whose corresponding potential V0(q) is evaluated
with the following fixed dielectric constants ϵt = ϵb = 3.8.
The BGR of a given system with respect to the reference
system is then given by

Σ̃c/v(k) = ∓1

2

∑
q

(V (q)− V0(q))

= ∓e
2

2

∫ ∞

0

dq

(
1

ϵ(q)
− 1

ϵ0(q)

)
. (15)

ϵ(q) and ϵ0(q) are the non-dynamical dielectric functions
of the investigated TMD and reference system, respec-
tively (see Eq. (A2)). When dynamical effects are in-
cluded, the self-energy in Eq. (12) has the same diver-
gence problem, and it can be regularized in a similar way

Σ̃i(k, z) = − 1

β

∑
q,z′

Gi(k+ q, z′)

× [V (q, z − z′)− V0(q)] , (16)

where the free electron Green’s function now becomes

Gi(k, z) =
1

z − εi(k) + µ− Σ̃i(k, z)
. (17)

The dynamical self-energy Σ̃i(k, z) can be self-
consistently calculated from Eqs. (16) and (17) using the
iterative method (see Appendix B for details).

C. Dynamical Bethe-Salpeter Equation

The BSE is an equation for bound states between two
particles. Its dynamical version is used here to describe
the interaction between electron and hole excited by light
with negligible momentum. The equation with its Feyn-
man diagram shown in Fig. 2 reads [31, 32, 42]

G(k, z,Ω) = G0(k, z,Ω) + (18)

1

β

∑
q,z′

G0(k, z,Ω)V (q, z − z′)G(k+ q, z′,Ω),

where the Green’s function of a free electron-hole pair is
given by

G0(k, z,Ω) =
1

Ω− z − εc(k)− Σ̃c(k,Ω− z) + µ

× 1

z + εv(k) + Σ̃v(k, z)− µ
. (19)

Ω, an even (bosonic) imaginary Matsubara energy, is re-
lated to the energy of the photon exciting the electron-
hole pair. Equation (18) can be solved using the itera-
tive method, the same method as the one used for cal-
culating the self-energies in Eqs. (16)-(17). The details

= + k1 � k2, �z

ki + q, ⌦� z, kf + q ki + q, ⌦� z k1 + q, ⌦� z k2 + q, ⌦� z0, kf + q

�ki, z, �kf �ki, z �k1, z �k2, z0, �kf
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FIG. 2. Feynman diagram for the Bethe-Salpeter Equation
describing the interaction between electron (top double lines)
and hole (bottom double lines) via the dynamical potential
V (q, z − z′), represented by the doubled wavy line.
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are presented in Appendix B. One can notice that so-
lutions of different bosonic frequencies Ω are decoupled,
and therefore, equations of different Ωs can be solved
independently. The solutions are then used to find the
contracted pair function

g(k,Ω) = −β−1
∑
z

G(k, z,Ω). (20)

The final step is to analytically continue the contracted
pair function to the real-frequency axis, g(k,Ω → ω+iδ),
using the Padé approximation technique [32, 42, 43], as
discussed in Appendix C. The real-frequency pair func-
tion is related to optical absorption by

A(ω) = −
∑
k

Im [g(k,Ω → ω + iδ)] , (21)

where δ is broadening parameter which might include ef-
fects of finite exciton lifetime, scattering off impurities,
and thermal fluctuations. Note that temperature in this
formalism sets the energy resolution of Matsubara fre-
quencies and is not related to the broadening of reso-
nance peaks which is controlled by δ. In this work, we
keep δ = 3 meV for the sake of simplicity. More details
are mentioned in Appendix E.

In the non-dynamical regime, the potential and self-
energies are frequency independent. The BSE in Eq. (18)
can be further contracted, yielding

g(k,Ω) = g0(k,Ω)−
∑
q

g0(k,Ω) V (q) g(k+ q,Ω), (22)

and the corresponding function of a free electron-hole
pair is given by [31, 41]

g0(k,Ω) = −β−1
∑
z

G0(k, z,Ω)

=
fv(k)− fc(k)

Ω + εv(k) + Σ̃v(k)− εc(k)− Σ̃c(k)
. (23)

fc(v)(k) is the Fermi-Dirac distribution function for elec-
trons in the conduction (valence) band. Note that the
free-pair function has the same form as the polarization
function in the random-phase approximation. The only
difference is that we have interband electron-hole excita-
tion here instead of intraband particle-hole excitation in
the polarization function. The analogy means that the
method developed in this work is applicable for studying
the dynamical response in the dielectric screening formal-
ism.

IV. RESULTS AND DISCUSSIONS

We first show signatures of dynamical effects in the
BGR and in self-energies of free particles. The self-
energies are then used in calculations of the pair func-
tion g(k,Ω), which in turn is used to extract the spectral
position of the charge-neutral exciton resonance.
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FIG. 3. Real part of the self-energy Σc(k, z) of conduction-
band electrons in hBN-WSe2-STO as a function of Matsub-
ara frequency z = (2ℓ + 1)πikBT . Solid (dotted) lines are
self-consistent solutions of Eqs. (16)-(17) when Eg = 1.9 eV
(0.2 eV). For comparison, the dashed (dash-dotted) line is
the solution of Eq. (15) with ϵ∞ (ϵ0). Inset: Spectral func-
tion of an electron at the edge of the conduction band,
Ek = 0, in hBN-WSe2-STO (red solid line) and hBN-WSe2-
hBN (blue dashed line). The resonance energy of the latter
(former) emerges at −9.5 meV (−49.5 meV), denoting the
BGR with respect to the edge of the conduction band in the
non-dynamical reference system (ϵb = ϵt = 3.8).

A. Dynamical effects in the self-energy and BGR

Figure 3 shows the self-energy of electrons Σc(k, z) as a
function of Matsubara frequency z for two representative
energies, Ek = ℏ2k2/2mc = {0, 200 meV}. Dynamical
effects are included by using the potential V (q, z − z′)
in Eq. (11) adjusted to describe WSe2 monolayer be-
tween STO and hBN layers. The parameters used in the
calculation are listed in Appendix D. The bandgap en-
ergies in these calculations are Eg = 1.9 eV (solid lines)
and Eg = 0.2 eV (dotted lines), where the chemical po-
tential is set at the midgap, i.e., µ = Eg/2. The cor-
responding self-energies in the valence band, Σv(k, z),
are almost the same as Σc(k, z) but with opposite sign
(not shown). This similarity is reasoned by similar effec-
tive masses of electrons and holes, which together with
the midgap chemical potential, result in a good electron-
hole symmetry. The self-energy is used to obtain the
electron Green’s function Gc(k, z) through Eq.(17). The
conduction-band BGR is evaluated from the resonance
energy of the spectral function

A(E) = −Im [Gc(k = 0, z → E + iδ)] . (24)

The analytical continuation from imaginary to real ener-
gies (z → E) is performed by using the Padé approxima-
tion technique (see Appendix C).

The inset of Fig. 3 shows the spectral functions A(E)
at the edge of the conduction band, k = 0, in hBN-
WSe2-STO and hBN-WSe2-hBN structures when dy-
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TABLE I. BGR calculations with different dielectric param-
eters. The energies shifts are with respect to the reference
system (hBN-WSe2-hBN with ϵ(ω) = ϵ∞ in the hBN layers).

PPPPPPPϵ
Materials

hBN-WSe2-STO hBN-WSe2-hBN

ϵ(ω) −49.5 meV −9.5 meV

ϵ0 −51.6 meV −10.9 meV

ϵ∞ −10.4 meV 0 meV

namical effects are included. The resonance emerges at
the conduction-band edge, where the zero energy level
corresponds to the edge of the conduction band in the
non-dynamical reference system (ϵt = ϵb = 3.8). Table
I summarizes the BGR calculations using low- and high-
frequency dielectric constants as well as the dynamical
dielectric function. The dynamical result is very close
to the one calculated with ϵ0, providing strong evidence
that charge particles in the monolayer are also screened
by phonons. On the other hand, the self-energies Σc(k, z)
shown by solid lines in Fig. 3 are closer to the self-energy
calculated by Eq. (14) with ϵ∞ (dashed line). This resem-
blance comes from the inclusion of the bandgap energy
Eg. This inclusion does not affect the BGR because af-
ter analytical continuation z → Eg + E in Eq. (24), the
bandgap energy in the denominator of Eq. (17) is elimi-
nated (i.e., it is merely a reference energy level).

B. Dynamical effects in the optical spectrum

The dynamical potential V (q, z − z′) affects both the
BGR and binding energy. To decouple these effects, we
focus first on the binding energy by neglecting the self-
energy terms in the BSE (i.e., Σ̃c/v(k, z) = 0 in Eq. (18)).
The resulting absorption spectra of hBN-WSe2-hBN and
hBN-WSe2-STO structures are shown in Figs. 4(a) and
(b), respectively. For comparison, we have also calculated
the absorption spectra with the non-dynamical potential
V (q) using low-frequency dielectric constants (dashed
lines) and high-frequency ones (dash-dotted lines). The
exciton binding energy is Eb = 122 meV when us-
ing the dynamical potential in hBN-WSe2-STO. Corre-
sponding values of the non-dynamical calculations are
E0

b = 104 meV and E∞
b = 181 meV. The dynamical bind-

ing energy is closer to the one calculated with ϵ0, mean-
ing that screening of the interaction between the electron
and hole is dominated by the low frequency part of the
dielectric function. On the other hand, Fig. 4(a) shows
opposite trend for the hBN-WSe2-hBN structure, where
the dynamical calculation is closer to the non-dynamical
one calculated with ϵ∞.

To understand this behavior, we define a low-frequency

contribution factor

α ≡ E∞
b − Eb

E∞
b − E0

b

, (25)

where α = 1 (α = 0) means that the exciton binding
is completely controlled by ϵ0 (ϵ∞). Using the calcu-
lated results in Fig. 4, the low-frequency contribution
factor is α = 0.77 for hBN-WSe2-STO and α = 0.27
for hBN-WSe2-hBN. The difference stems from the Ly-
ddane–Sachs–Teller relation of hBN and STO, expressed
through the parameter r2 in Eq. (9). A larger r2 leads
to stronger dynamical contribution in Eq. (10), which in
turn pushes the dielectric function away from ϵ∞ and
closer to ϵ0. Indeed, r2 > 103 in low-temperature STO
versus r2 ≈ 1.3 in hBN. To confirm that our understand-
ing is correct, we repeated the calculation of hBN-WSe2-
STO but with changing r2 of STO from 4096 to 1.3. This
change corresponds to lowering ϵ0 of STO from 25000 to
7.8. The result of the calculation is shown in Fig. 4 (c).
We obtain α = 0.2, confirming that the contribution of
ϵ∞ is indeed dominant at smaller r2.
Next, we include the self-energy in calculations of the

absorption spectra and consider the competition between
BGR and binding energy. The exciton resonance energy
is the difference between band-gap energy and electron-
hole binding energy, EX0

= Eg−Eb. When the dielectric
environment surrounding the monolayer or quantum well
changes, the renormalized bandgap and binding energies
tend to offset each other, such that EX0

is only slightly
changed [28, 31, 32]. For example, a stronger dielectric
screening leads to smaller band-gap energy and smaller
binding energy, where their difference is much smaller
than the change of each of them. As mentioned in Sec. II,
a common observation in monolayer semiconductors is
a small overall energy redshift of EX0

when the mate-
rials that encapsulate the monolayer are replaced with
higher-dielectric constant materials. Figure 5(a) shows
the calculated absorption spectra from the BSE using a
non-dynamical potential. The BGR effect is calculated
with respect to the reference system (ϵb = ϵt = 3.8).
In accordance with the analysis of Sec. II, the exciton
resonance redshifts when the dielectric constant of the
surrounding environment increases.
Yet, the energy redshift can turn to a blueshift if

dynamical effects are considered through the potential
V (q, z − z′) and self-energies Σ̃c/v(k, z), and if replac-
ing the encapsulating materials involve a large change
in ϵ0 and a small change in ϵ∞. Figure 5(b) shows
the resulting absorption spectra of three different struc-
tures: hBN-WSe2-hBN, hBN-WSe2-TiO2, and hBN-
WSe2-STO. In agreement with experimental results [30],
replacing the supporting hBN layer with TiO2 leads to
energy blueshift, which is further increased when STO is
used as support. The opposite energy-shift trends of the
non-dynamical and dynamical calculations in Figs. 5(a)
and (b), can be explained as follows. The binding energy
is mainly dominated by the low-frequency part of the di-
electric function, where the change is from ϵhBN

0 = 4.9
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FIG. 4. Absorption spectra of (a) hBN-WSe2-hBN and (b) hBN-WSe2-STO structures. Blue solid lines are results calculated
with the dynamical potential V (q, ω) but without self-energies of the electron and hole in the exciton. Black dashed lines (red
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FIG. 5. (a) Calculated absorption spectra with the non-dynamical potential of various dielectric environments. The BGR
effect is calculated with respect to the reference system (ϵb = ϵt = 3.8). The exciton resonance shows energy redshift when
the dielectric screening is increased. (b) Calculated absorption spectrum with the dynamical potential and Eg = 1.9 eV. The
exciton resonance shows energy blueshift when the dielectric screening of the environment is increased. (c) The same as in (b)
but for Eg = 0.2 eV, showing an energy redshift trend.

to ϵTiO2
0 ∼ 200 and then to ϵSTO

0 = 25000. As a result,
the change in binding energy is relatively significant. On
the other hand, the self-energies of the electron and hole
in the exciton have larger contribution from the high-
frequency part, where the change is from ϵhBN

∞ = 3.8 to
ϵTiO2∞ ∼ ϵSTO

∞ ∼ 6. As a result, the BGR effect is rela-
tively mitigated. The confluence of both trends is that
the energy redshift from BGR is smaller than the energy
blueshift from binding energy (∆Eg < |∆Eb|), leading to
overall energy blueshift of the exciton resonance.

We provide mathematical and physical reasonings to
the observed energy blueshift (i.e., why weakening of
the binding energy is stronger than the bandgap-energy
shrinkage). As shown by Eq. (19), the self-energy of the
electron in the exciton is associated with (Ω−z) whereas
that of the hole with z. The bosonic frequency Ω is re-
lated to the photon energy which is of the order of the
bandgap energy; a large value compared with phonon

or binding energies. Consequently, the self-energy of at
least one of the exciton’s components asymptotically ap-
proaches the value of the self-energy when calculated
non-dynamically with ϵ∞. An alternative view is that
the energy difference between the exciton components is
encoded as a time-dependent phase factor exp(iEgt/ℏ),
which leads to a dominant contribution from the high-
frequency part of the dielectric function to the exciton’s
BGR.

Finally, we recall that the edge of an energy band is
merely a reference level when the interest is in the BGR of
a charge particle in this band. The energy reference level
is eliminated in the analytical continuation step (see dis-
cussion at the end of Sec. IVA). Therefore, the dominant
contribution to the BGR of a charge particle comes from
the low-frequency part of the dielectric function (Table I).
On the other hand, the reference energy level for a bound
pair (exciton) mandates that at least its electron or hole
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are subjected to high frequencies that cannot be elimi-
nated by analytical continuation. To confirm the impor-
tance of the bandgap energy, we have performed addi-
tional calculations with similar parameters to the ones
used in Fig. 5(b), but with a much smaller bandgap en-
ergy, Eg = 0.2 eV. The results are shown in 5(c). As
expected from the explanation above, the trend is now
reversed and we observe a small energy redshift coming
from lesser contribution of high frequencies to the BGR
(Fig. 3).

V. SUMMARY

We have presented a model that incorporates dy-
namical dielectric screening effects in the Bethe-Salpeter
Equation. The model allows one to study excitons in
transition-metal dichalcogenide monolayers that are em-
bedded in various dielectric environments. We have
employed an iterative numerical technique to solve the
Bethe-Salpeter Equation, allowing us to perform com-
prehensive calculations with a large number of Matsub-
ara frequencies and fine mesh in momentum space. The
theory sheds light on the intricate energy shifts of exci-
ton resonances. Assuming that the bandgap energy is
evidently larger than the exciton binding energy, we can
have one of two opposite trends when the materials on
top and/or below the monolayer are replaced with higher-
dielectric constant materials. If the involved materials
are such that their low- and high-frequency dielectric
constants are not evidently different (ϵ0/ϵ∞ ̸≫ 1), then
we should expect the exciton energy to redshift in the
new environment. On the other hand, the exciton energy
should blueshift if ϵ0/ϵ∞ ≫ 1. These findings, identified
by the inclusion of dynamical dielectric screening, help
us to explain recent measurements in hBN-TMD-hBN,
hBN-TMD-TiO2, and hBN-TMD-STO devices [30].

Beyond the agreement of the theory with experiment,
the analysis identifies a distinction between the bandgap
energy renormalization of excitonic complexes and the
energy renormalization of free electrons in the conduc-
tion band or free holes in the valence band. In the exci-
tonic case, the renormalization has important contribu-
tion from the high-frequency part of the dielectric func-
tion. On the other hand, energy renormalizations of free
electrons in the conduction band and/or free holes in the
valence band are dominated by the low-frequency part
of the dielectric function. One important consequence is
that if ϵ0 and ϵ∞ are much different, the bandgap en-
ergy renormalization that one measures in ARPES ex-
periments cannot be used to infer the bandgap energy
renormalization of bound electron-hole pairs.
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Appendix A: Coulomb potential

We simulate the structure geometry as a TMD mono-
layer with thickness d sandwiched between top and bot-
tom layers with dielectric constants ϵt and ϵb. The TMD
monolayer is modeled as three atomic sheets with po-
larizabilities χ+ for the central Tungsten (W) sheet and
χ− for the top and bottom Selenium (Se) ones, displaced
by ±d/4 from the center. The model was developed in
Ref. [39] and has been employed to study several prob-
lems [25, 26, 44]. The resulting static potential for the
interaction between two charges in the monolayer is

V (q) =
2πe2

A ϵ(q) q
, (A1)

where the dielectric function reads

ϵ(q) =
1

2

[
Nt(q)

Dt(q)
+
Nb(q)

Db(q)

]
. (A2)

Defining pj ≡ (ϵj − 1)/(ϵj + 1) for the top and bottom
dielectric constants (j = b/t), we get that

Dj(q) = 1 + qℓ− − qℓ−(1 + pj)e
− qd

2 − (1− qℓ−)pje
−qd,

Nj(q) = (1 + qℓ−) (1 + qℓ+)

+ [(1− pj)− (1 + pj) qℓ+] qℓ−e
− qd

2

+ (1− qℓ−)(1− qℓ+)pje
−qd. (A3)

where ℓ± = 2πχ±.
The Coulomb potential in Eq. (A1) becomes frequency

dependent by using dynamical polarization parameters,
pj(ω) ≡ (ϵj(ω) − 1)/(ϵj(ω) + 1), where ϵj(ω) is the di-
electric function of the j = b/t layer (Eq. (10)).

Appendix B: Iterative method

The iterative method is used in calculations of
Eqs. (16)-(18). These equations can generally be writ-
ten as

Γ(k, z) =
1

β

∑
q,z′

F (z,Γ(k+ q, z′)) , (B1)

where Γ(k, z) represents either the self-energy Σ̃i(k, z)
in Eqs. (16)-(17) or the interacting pair Green’s func-
tion G(k, z,Ω) in Eq. (18). We have omitted the
bosonic frequency Ω in Eq. (B1) because the BSE of dif-
ferent Ω parameters are decoupled and can be solved
separately. When we are interested in self-energies,
F (z,Γ(k+ q, z′)) is a composite function of the form

F (z,Γ(k+ q, z′)) =
V0(q)− V (q, z − z′)

z − εi(k+ q) + µ− Γ(k+ q, z)
(B2)
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with Γ(k, z) ≡ Σ̃i(k, z). And when interested in the BSE

F (z,Γ(k+ q, z′)) = G0(k, z,Ω) [βδq,0δz,z′

+ V (q, z − z′)Γ(k+ q, z′,Ω)] (B3)

with Γ(k, z) ≡ G(k, z,Ω).
The computational cost can be greatly reduced if one

considers a two-dimensional system with circular symme-
try in momentum space k, i.e., Γ(k, z) ≡ Γ(k, z). Equa-
tion (B1) then becomes

Γ(k, z) =
∑
z′

∫ ∞

0

A dq

4π2

∫ π

0

F (z,Γ(k+ q, z′)) dθ. (B4)

The equation is solved numerically by discretizing the
momentum space, i.e., we calculate Γ(ki, z) at nK rep-
resentative momenta {ki =

(
i− 1

2

)
dk, i = 1, nK} and

nZ fermionic Matsubara frequencies. Here, we divide
the momentum space to nK rings with similar thickness
dk = KMax/nK where the cutoff momentum KMax is
chosen large enough to neglect contributions from states
above such momentum. The cutoff energy correspond-
ing to KMax is Ek

Cut. The number of Matsubara fre-
quencies nZ involved in the calculation guarantees that
Ez

Cut = nZ × πkBT is out of the accessible range of all
related energy quantities of the considered phenomena
(e.g., bandgap energy of the TMD monolayer, exciton
binding energy, and kinetic energies of the electron and
hole in the exciton).

For (ki+q) in Eq. (B4) to fall into the jth ring, we set
the condition

Ci,j : (j − 1) ≤
√
q2 + k2i + 2kiq cos θ

dk
< j. (B5)

Using this condition, we can rewrite Eq. (B4) in a form
suitable for numerical calculation

Γ(ki, z) =
∑
z′,j

Fi,j(z, z
′) , (B6)

where the function Fi,j(z, z
′) is defined by

Fi,j(z, z
′) =

A

4π2

∫
{q,θ}∈Ci,j

F (z,Γ(ki + q, z′)) dqdθ. (B7)

This equation can be solved by matrix inversion [32, 42].
However, the computational cost of such calculation is
expensive and prohibits the use of a large number of
Matsubara frequencies and fine momentum mesh. In-
stead, we use an iterative method which helps to solve
Eq. (B6) at a much smaller computational cost. The
iterative steps are

1. Start by guessing a solution, usually the non-
interacting function Γin(ki, z) ≡ Γ0(ki, z).

2. Substitute the input function Γin(ki, z) into the
right hand side of Eq. (B6) to find the output func-
tion Γout(ki, z) on the left hand side.

3. Use Γout(ki, z) as an input to the right-hand side
of Eq. (B6) repeatedly until convergence is reached
(i.e., Γout(ki, z) = Γin(ki, z)).

In calculation of the interacting pair Green’s func-
tion G(k, z,Ω), the iterative procedure can be performed
for each Matsubara frequency Ω = Ωj independently.
The convergence of the iterative method can be sped up
by using the converged results of the higher frequency
G(k, z,Ωj) as the initial trial function for the next lower
frequency Gin(k, z,Ωj−1) ≡ G(k, z,Ωj).

The converged solution of the BSE equation is diffi-
cult to obtain for low values of Ωj . Fortunately, we can
get rid of the the first few lowest Ωj frequencies because
their Green’s functions only contribute to states close to
the continuum (e.g., 2s, 3s, and so on). The 1s exci-
ton state, with binding energy of hundreds of meV, is
mostly controlled by high values of Ωj . The convergence
of the analytical continuation depends on the number
of bosonic frequencies, nΩ, as discussed in Appendix E.
In addition, convergence of the iterative method for the
BSE can be improved by lowering the change from the
input to output Green’s functions. This can be done by
modifying the third step above, where instead of directly
using the output Green’s function, Gout(k, z,Ωj), we use
a linear combination of the old input and output Green’s
functions as input for the next iterative step

ηGin(k, z,Ωj) + (1− η)Gout(k, z,Ωj) → Gin(k, z,Ωj). (B8)

The calculations in this work use η = 0.5.

One useful property is that the contracted exciton
Green’s function obeys

g(k,−Ω) = g∗(k,Ω), (B9)

thereby saving half the computational effort by calculat-
ing g(k,Ω) for positive Matsubara frequencies and using
the above relation to find g(k,Ω) of negative Matsubara
frequencies.

Once the self-energy Σ̃i(k, z) and the contracted exci-
ton pair function g(k,Ω) are obtained, the Padé approx-
imation technique is employed to extract the BGR and
absorption spectrum, respectively.

Appendix C: Padé approximation technique

Padé approximation is a technique used to perform an-
alytical continuation from imaginary Matsubara energies
to real ones [32, 42, 43]. Usually the method is used for
finding the real frequency Green’s function when its val-
ues {Gi} are known at N Matsubara frequencies {zi}
(or {Ωi} in case of bosonic Green’s functions), where
i = 1, N . In this work, the Green’s function is obtained
from Eqs. (17) or (20). To perform the continuation, we
look for the Green’s function of each momentum k in
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form of a rational fraction

GN (z) =
a1

1 +
a2(z − z1)

1 +
a3(z − z2)

1 + · · ·
...

...

1 +
aN (z − zN−1)

1
,

(C1)

where the coefficients ai are to be determined so that

GN (zi) = Gi; i = 1, N. (C2)

If one defines a set of functions {fj(z)} for j = 1, N by
the following recursion

f1(zi) = Gi; for i = 1, N

fj(z) =
fj−1(zj−1)− fj−1(z)

(z − zj−1)fj−1(z)
, (C3)

the coefficients ai in Eq. (C1) are given by

ai = fi(zi) for i = 1, N. (C4)

Indeed, the recursion in Eq .(C3) leads to

fj−1(z) =
fj−1(zj−1)

1 + (z − zj−1)fj(z)
, (C5)

which means that

f1(z) =
f1(z1)

1 + (z − z1)f2(z)
. (C6)

The condition of f1(z1) = G1 = GN (z1) from Eqs. (C2)-
(C3) leads to a1 = f1(z1). Applying the recursion in
Eq. (C5) one more time, we have

f1(z) =
a1

1 + (z − z1)
f2(z2)

1+(z−z2)f3(z)

, (C7)

which can be combined with the condition of f1(z2) =
G2 = GN (z2) from Eqs. (C2)-(C3) to prove that a2 =
f2(z2). The same procedure can be performed with
higher indices to prove Eq. (C4).

The introduction of the recursive relation in Eq. (C3)
supports the calculation of the coefficients {ai} through
the following steps

• Start with f1(zi) = Gi for i = 1, N .

• Express fj(zi) of higher indices j > 1 by assigning
z = zi in Eq. (C3).

• Obtain ai from Eq. (C4).
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FIG. 6. An example of using the analytical continuation to
obtain the absorption spectrum of hBN-WSe2-STO structure.
The black and red lines are absorption spectra obtained from
the Padé approximation using N ≡ nΩ = 120 and 140 points,
respectively. The spurious noise is suppressed by averaging
the absorption spectra of different nΩs (see text).

The real-frequency Green’s function is obtained from
Eq. (C1) by replacing z with ω+iδ, where the broadening
parameter δ takes into account effects of finite lifetimes,
scattering off impurities, and thermal fluctuations.
Figure 6 shows the absorption spectra obtained from

the Padé approximation using N ≡ nΩ = 120 (black line)
and nΩ = 140 (red line) points, corresponding to 40 and
20 neglected Matsubara frequencies around Ω = 0, re-
spectively. Other parameters are provided in Appendix
D. Because the technique employs the rational fraction
in Eq. (C1) to approximate the Green’s function, it in-
herently introduces noises in form of random and weak
spurious peaks other than the main broad peak of the
exciton bound state. The latter emerges at the same
spectral position for all values of nΩ. Averaging the spec-
tra of different nΩs helps to suppress the spurious peaks.
The results shown in this work are averages of spectra
calculated with nΩ = {120, 122, 124, ...140}.

Appendix D: Parameters

The following parameters are used for the WSe2 mono-
layer in different dielectric environments.

1. The effective masses are mc = 0.29m0 (top
conduction-band valley), mv = 0.36m0 (top
valence-band valley) [45]. The kinetic energies of
electrons and holes are evaluated by parabolic en-
ergy dispersion.

2. The monolayer parameters of the potential are d =
6 Å and ℓ+ = ℓ− = 5d (Appendix A).

3. The dielectric constants of hBN, TiO2, and STO,
and the parameter r1 = ℏωTO/εX0 (with εX0 = 170
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TABLE II. Parameters of different dielectric environments.

Materials hBN TiO2 STO

ϵ0 4.9 [39, 46, 47] 192 [36, 48] 25000 [34, 35]

ϵ∞ 3.8 [39, 46, 47] 6 [48] 6 [35]

r1 0.55 [46] 0.14 [48] 0.1 [40, 49, 50]

meV) are listed in Table II.

4. The following parameters are used in the numerical
calculations of the self-energy and BSE: nK = 100,
Ek

Cut = 2 eV, nZ = 3200, T = 80 K, and the
broadening used in the analytical continuation of
Eq. (21) and (24) is δ = 3 meV.

Appendix E: Numerical aspects

The temperature enters the BSE (Eq. (18)) via the
imaginary Matsubara frequencies, classified as bosonic
Ω = 2ℓπikBT (exciton) or fermionic z = (2ℓ + 1)πikBT
(electron and hole). Due to computational limitation, the
calculation includes a finite number of fermionic frequen-
cies nZ which, as mentioned in Appendix B, is chosen
to guarantee a very large Ez

Cut. All the calculations in
this work are performed with nZ = 3200 and T = 80 K,
corresponding to Ez

Cut ≃ 70 eV which is far larger than
the bandgap and exciton binding energy of the system.

The converged solutions are shown by the inset of Fig.
7 in which we compare the results for T = 40 K and
T = 80 K. While doubling the temperature somewhat

affects the resonance amplitudes, it hardly changes the
resonance energy (we only care for the exciton energy in
this work). Doubling the number of fermionic frequen-
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FIG. 7. Calculated absorption spectra with nZ = 3200 and
6400 fermionic Matsubara frequencies. Inset: Calculated ab-
sorption spectra at T = 40 K and 80 K.

cies, nZ as shown in Fig. 7, hardly affects the height and
spectral position of the peak, meaning that the calcula-
tion is converged with T = 80 K and nZ = 3200.
It is emphasized that the temperature T sets the en-

ergy resolution of the discrete Matsubara frequencies,
while it does not contribute to the broadening of the
resonance peak. The temperature-dependent broaden-
ing, as seen in experiments, can be modeled through the
broadening parameter δ(T ). We have used δ = 3 meV
throughout this work, neglecting its temperature depen-
dence for simplicity.
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