
FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA

RYAN CUMINGS-MENON

Abstract. The U.S. Census Bureau’s 2020 Disclosure Avoidance System (DAS) bases its output on noisy

measurements, which are population tabulations added to realizations of mean-zero random variables. These

noisy measurements are observed in a set of hierarchical geographic units, e.g., the U.S. as a whole, states,
counties, census tracts, and census blocks. The noisy measurements from the 2020 Redistricting Data File

and Demographic and Housing Characteristics File statistical data products are now public. The purpose

of this paper is to describe a method to leverage the hierarchical structure within these noisy measurements
to compute confidence intervals for arbitrary tabulations and in arbitrary geographic entities composed

of census blocks. This method is based on computing a weighted least squares estimator (WLS) and its
variance matrix. Due to the high dimension of this estimator, this operation is not feasible using the standard

approach, since this would require evaluating products with the inverse of a dense matrix with several billion

(or even several trillion) rows and columns. In contrast, the approach we describe in this paper computes
the required estimate and its variance with a time complexity and memory requirement that scales linearly

in the number of census blocks.

1. Introduction

As described by Abowd et al. (2022); Cumings-Menon et al. (2023) in more detail, the U.S. Census
Bureau’s 2020 Disclosure Avoidance System (DAS) uses formally private methods (Bun and Steinke, 2016;
Dwork et al., 2006) to protect the confidentiality of 2020 Census respondents. One important advantage
of formally private methods is that they allow for a much greater level of transparency than the methods
the Census Bureau used for disclosure limitation in previous decennial censuses. For example, the Census
Bureau has released noisy measurements that were used to create the tabulations found in the published
2020 Census statistical data products (U.S. Census Bureau, 2023b), which are called the noisy measurement
files (NMFs). These scalar noisy measurements are defined as population tabulations for specific geographic
units (e.g., the count of respondents that identify as Black and Asian in Utah, the count of respondents
that identify as Hispanic or Latino in the U.S. as a whole, etc.) added to realizations of mean-zero random
variables. The geographic units used to define these noisy measurements are also defined hierarchically in a
rooted tree, e.g., the U.S. as a whole, states, counties, census tracts, and census blocks. The purpose of this
paper is to describe a way to use these hierarchical NMFs to compute the best linear unbiased estimator
(BLUE) and confidence intervals (CIs) for arbitrary cross tabulations and for arbitrary geographic regions.

After introducing notation in the next subsection, the remainder of this section describes our primary
motivating use case, i.e., computing point estimates and CIs using the publicly available NMFs, and the
previous literature on methods related to the ones we describe here. To make this paper accessible for other
use cases, when possible, we avoid terminology that is specific to the NMFs; one of the main requirements
for the application of these methods to other use cases is that the input data is composed of observations for
vertices in a rooted tree, as explained in more detail in the next section. Section 2 describes our proposed
approach for estimating the full-information weighted least squares (WLS) estimator, which we call the Two-
Pass Algorithm, since this algorithm performs operations recursively from the bottom of the tree upward and
then, in a second stage, from the root of the tree downward. Section 3 describes a computationally efficient
way to compute the covariance between the WLS estimates of arbitrary pairs of vertices of the tree. Section
4 describes how the proposed algorithms can be used to compute confidence intervals for user-defined queries
in arbitrary geographic regions. Section 5 provides a numerical experiment of our proposed approach, to
explore the accuracy of the resulting confidence interval estimates and the computational requirements of

Date: April, 2024.
The views expressed in this technical paper are those of the author and not those of the U.S. Census Bureau. The Census

Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential

source data (Project No. 7502798, Disclosure Review Board (DRB) approval number: CBDRB-FY24-CED005-0002).

1

ar
X

iv
:2

40
4.

13
16

4v
1

 [
st

at
.C

O
]

 1
9

A
pr

 2
02

4

2 RYAN CUMINGS-MENON

the proposed algorithms. Our proposed two-pass estimation approach is related to the approach described
by Hay et al. (2010), which is described in Section 6 in more detail, and Section 7 concludes.

1.1. Notation. Throughout the paper we denote matrices using uppercase, and vectors using bold lowercase.
Given the matrices A,B ∈ RN×N we use A ≤ B to denote the property that all eigenvalues of B − A are
real and the minimum eigenvalue of B −A is non-negative. Given the random vectors a ∈ RM and b ∈ RN ,
each with elements with finite variance, we use Var(a) ∈ RM×M to denote the variance matrix of a and
Cov(a, b) ∈ RM×N to denote the covariance matrix between a and b. We denote the Kronecker product of
real matrices A,B by A ⊗ B. The length N column vector with each element equal to c ∈ R is denoted by
cN and an M × N matrix with each element equal to C ∈ R by CM×N . Also, when there is little risk of
confusion, we omit the subscript and write c (respectively, C) instead. We denote the n× n identity matrix
by In, the ith row of A ∈ Rm×n by A[i, ·], and the ith column of A by A[·, i]. We also denote the set of
nonnegative real numbers by R+, the positive reals by R++, and the nonnegative integers by Z+. We also
denote the cardinality of the finite set S by Card(S).

1.2. Setting. We make use of some terms used by the Census Bureau to describe geographic entities,
most of which can alternatively be translated into concepts from graph theory. For example, the Census
Bureau’s concept of a geographic spine, or spine, can alternatively be viewed as a rooted tree. Vertices in
this rooted tree are called geographic units, or geounits, and each geounit is associated with a geographic
region. For example, in the tabulation US spine, as defined for each decennial census by the Census Bureau’s
Geography Division, the root vertex is the US geounit, which has a geographic extent corresponding to all
50 states and Washington DC. Also, in the tabulation Puerto Rico (PR) spine, the root geounit is the PR
geounit, corresponding to Puerto Rico as a whole. The geographic extent of each geounit on the spine
corresponds to an element of a partition of the geographic extent of the root geounit. The collection of
geounits corresponding to elements within the same partition is called a geographic level, or a geolevel. For
example, in the tabulation US spine, the US geolevel contains only the US geounit, and the state geolevel
consists of the children of the US geounit, i.e., 51 geounits, each corresponding to either one of the 50 states
or Washington DC. The other geolevels on the tabulation US spine are the county, census tract, block group,
and block geolevels. Figure 1 provides a graphical representation of the tabulation US spine, including an
example of a path in the 2020 vintage of this spine from a block to the US geounit.

While we use the terminology of the Census Bureau when describing the primary use case we have in
mind, such as in the numerical experiment we present in Section 5, most often we use terminology from
graph theory instead. Specifically, let the rooted tree(/spine) be denoted by G. We use g ∈ G to denote
vertex g of G. To denote the subtree of G rooted at node g ∈ G, i.e., the subset of g that includes g ∈ G
and all of its descendants, we use Gg. We assume that G is defined so that the shortest path from any given
leaf vertex to the root vertex all have a length equal to L, and for any level index l ∈ {0, . . . , L}, we use
Level(G, l) to denote the set of vertices in level l. We also use Children(g) to denote the set of child vertices
of g ∈ G.

For each vertex g ∈ G, we will denote the vector of (unknown) independent variables associated with the
vertex by β(g) ∈ Rn. Throughout the paper, we assume that parent-child consistency holds; in other words,
for any vertex g ∈ G that is not a leaf, we assume

∑
c∈Children(g)

β(c) = β(g).(1)

We also will associate with each vertex g ∈ G a coefficient matrix S(g) ∈ Rm×n, which we assume has full
column rank. Note that we do not assume that the coefficient matrix of different vertices are identical.1 For
each vertex g, the vector of observed noisy measurements of g will be denoted by y(g) = S(g)β(g) + u(g),
where each element of u(g) ∈ Rm is an independently distributed random variable with zero mean and finite
variance.

We perform various stacking operations on the attributes of the vertices below, e.g., stack({S(g)β(g)}g∈G),
and these operations require that the vertices are ordered. Specifically, we assume this ordering ensures that,

1One implication of our use of m and n to denote the number of rows and columns of S(g) throughout the paper is that
this implicitly requires that these dimensions are the same for each vertex g ∈ G; however, we actually only require the number

of columns of S(g), i.e., n ∈ N, to be the same for each vertex.

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 3

US

Alabama (01)

Autauga (01001)

01001020100

010010201001

0100102010011000

Geolevel (l = 0)

Geolevel (l = 1)

Geolevel (l = 2)

Geolevel (l = 3)

Geolevel (l = 4)

Geolevel (l = 5)

Figure 1. This is a graphical depiction of the 2020 tabulation US spine, as defined by the
Geography Division of the Census Bureau. The right column provides the geolevel names
and indices. The left side of the figure provides an example of a path from the US geounit to
a block geounit. Specifically, in our ordering of geounits within each geolevel, this particular
path passes through the first geounit in each geolevel.

if 0 ≤ l < l′ ≤ L, then each vertex in level l precedes vertices in level l′ and also that the children of the uth

vertex of level l preceded the children of the (u + 1)st vertex of level l. For example, the path provided in
Figure 1 provides the first geounit in this ordering in each geolevel, along with the numerical geounit identifier
codes, or geocodes, for these geounits in the 2020 tabulation US spine. These geocodes are formatted so that
the first part of each geocode is the same as the geocode of the parent. Defining geocodes in this way is a
straightforward way to define an ordering with both of our required properties, since this geounit ordering
can be defined so that it corresponds to the ordering of the lexicographically-sorted list of these geocodes.2

It may also be helpful to see how these constructs fit into the use case that is the main motivation for
this paper, i.e., estimating arbitrary population cross tabulations for arbitrary geographic entities using the
public census NMFs. In this setting, for each geounit g ∈ G, β(g) ∈ Zn

+ is defined as a vector of histogram
counts, i.e., a flattened fully saturated contingency table, S(g) ∈ {0, 1}m×n is called a strategy matrix, and
y(g) := S(g)β(g)+u(g) is called the noisy measurements of geounit g. Also, in this use case, for each geounit
g ∈ G, u(g) ∈ Zm is a draw from the mean-zero discrete Gaussian distribution, as described by Canonne
et al. (2020). One particular example we use in our numerical experiment in Section 5 is the case of the
NMFs used for the persons universe of the Redistricting Data File. For each geounit, these tabulations are
composed of cross products of the attributes of the schema of the histogram, which, as described by Abowd
et al. (2022) in more detail, consist of the following attributes.

• Household or Group Quarters Type (HHGQ), 8 levels: Provides counts of those living in households,
correctional facilities for adults, juvenile facilities, nursing facilities/skilled-nursing facilities, other
institutional facilities, college/university student housing, military quarters, and those living in other
noninstitutional facilities

• Voting Age (VOTING AGE), 2 levels: Provides counts of individuals that are age 17 or younger and
those that are age 18 or older

2More specifically, this ordering is defined by a sort operation that results in geocodes with a lower width preceding
longer-width geocodes and geocodes with the same width, i.e., geocodes of geounits within the same geolevel, being sorted

lexicographically.

4 RYAN CUMINGS-MENON

• Hispanic or Latino Origin (HISPANIC), 2 levels: Provides counts of individuals that are Hispan-
ic/Latino and those that are not Hispanic or Latino

• Census Race (CENRACE), 63 levels: Provides counts of individuals that identify as each combina-
tion of Black/African American, American Indian/Native Alaskan, Asian, Native Hawaiian/Pacific
Islander, White, and some other race, except “none of the above.”

Note that U.S. Census Bureau (2023b) provides instructions for downloading the Redistricting Data File
NMFs, both with unobserved histogram counts defined using 2010 and using 2020 data, as well as the
NMFs for Demographic and Housing Characteristics (DHC) files DAS executions. The DHC NMFs use
larger schemas than the Redistricting Data File schemas in order to support the estimation of more granular
queries. For example, while the persons universe Redistricting Data File schema described above consists
of n = 2, 016 = 8 × 2 × 2 × 63 detailed histogram cells for each geounit, the persons universe DHC schema
consists of 1,227,744 detailed cells.

1.3. Motivation: The Weighted Least Squares (WLS) Estimator. In this section we will define the
WLS estimator for {β(g)}g∈G . To do so, note that our parent-child consistency assumption implies that, for
any g ∈ G, S(g)β(g) can be expressed as a linear function of {β(g)}g∈Level(G,L). In other words, if we let β ∈
RN denote stack({β(g)}g∈Level(G,L)), then there exists S ∈ RM×N such that the vector stack({S(g)β(g)}g∈G)

is given by Sβ. Similarly, let u ∈ RM denote the stacked error terms, i.e., u := stack({u(g)}g∈G), and let
y denote the stacked vector of observed noisy measurements from all vertices, i.e., y := stack({y(g)}g∈G).
Using this notation, we have y = Sβ+u. Note that our assumptions in the previous section imply that, for
every g ∈ G, S(g) has full column rank and that u(g) is a random variable such that Var(u(g)) is a diagonal
matrix with finite elements. The next example describes u,y,β, and S for one case in which the tree G is
particularly simple.

Example 1. Suppose the tree G is composed of one root vertex, say g0, and this vertex has two child
vertices, say g1 and g2, respectively. In this case, we would have u = stack({u(g0),u(g1),u(g2)}), y =
stack({y(g0),y(g1),y(g2)}), and β := stack({β(g1),β(g2)}). Also, S would be defined by,

S =

S(g0) S(g0)
S(g1) 0
0 S(g2)

 .

We can use this notation to define the full-information WLS estimator and its variance matrix as

β̃ := argmin
β

(Sβ − y)⊤Var(u)−1(Sβ − y) =
(
S⊤Var(u)−1S

)−1
S⊤Var(u)−1y(2)

Var(β̃) :=
(
S⊤Var(u)−1S

)−1
.(3)

The motivation for this paper is to describe a computationally efficient method that takes as input the
observed noisy measurements y ∈ RM , an arbitrary vector q ∈ Rn, and an arbitrary subset of leaf vertices
H ⊂ Level(G, L), and then returns the best linear unbiased estimate of

βH,q :=
∑
g∈H

q⊤β(g),(4)

along with the variance of this estimate and its CI. Note that for graphs with a particularly low number of
leaf vertices, so that Var(β̃) is not a high dimensional matrix, the standard approach to WLS estimation
could be carried out in a straightforward manner. Specifically, if we define h ∈ {0, 1}Card(Level(G,L)) so that
h[i] = 1 if and only if the ith leaf vertex is in H, then this estimator and its variance would be given by

β̃H,q = (h⊗ q)⊤β̃(5)

Var(β̃H,q) = (h⊗ q)⊤Var(β̃)(h⊗ q),(6)

These two values could in turn be used to estimate confidence intervals using a Gaussian approximation for
β̃.

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 5

In this paper, we describe how to compute β̃H,q, Var(β̃H,q), and the corresponding CI, without explicitly

computing and storing the matrix Var(β̃). The use cases we have in mind are ones in which Var(β̃) is too high
dimensional to compute or store explicitly, primarily because G has a high number of leaves. For example,
the Redistricting Data File NMFs contain noisy measurements for approximately six million blocks, so the
outer inverse in (3) required to define Var(β̃) directly would not be possible to evaluate in practice, even
when n, i.e., the number of columns of each {S(g)}g∈G , is low. In contrast, our proposed approach does
require that n is small enough to allow for the efficient evaluation of inverses of n × n matrices, since our
proposed algorithm does evaluate inverses of matrices of this size explicitly. When using standard methods
to evaluate matrix inverses that are used in practice, our proposed algorithm has a time complexity and a
memory requirement that is O(n3

∑
l Card(Level(G, l))).

3 Our proposed approach works by precomputing a
set of state variables for each vertex of G using the two-pass algorithm that we describe in the next section.
We also describe algorithms that take these returned state variables as input to compute β̃H,q, Var(β̃H,q),
and the corresponding WLS-based 1− α confidence level CI.

1.4. Previous Literature. Our proposed estimation algorithm is related to two existing algorithms. First,
the approach described here is a generalization of the approach described by Hay et al. (2010), in the sense

that these two approaches provide identical estimates, i.e., β̃H,q, when m = n = 1, Var(u(g)) is the same
for each vertex g ∈ G, and the number of children of each parent vertex is constant. More detail on this
connection is provided in an example in Section 6. Note that, in addition to providing an algorithm for the
WLS estimate itself, we also provide a method that computes the exact variance of the estimate, rather than
a bound on this variance.

Second, there are also similarities between the approach described here and forward-backward algorithms
described in the literature on hidden Markov models on trees; for example, Willsky (2002) describes several
related approaches for WLS estimation using hierarchical data. At first, these approaches may seem only
tangentially related because the most standard model in this literature does not satisfy our parent-child
consistency assumption in equation (1), and instead assumes that, for each child c ∈ G with parent g ∈ G,
β(c) is given by β(c) = A(c)β(g) + w(c), where A(c) ∈ Rn×n and w(c) ∈ Rn is a random variable, which is
known as the Markov property. In other words, while we define {β(g)}g∈G in a non-random and bottom-up
manner, the hidden Markov model literature normally defines these vectors using a random process that
proceeds in a top-down manner. However, Willsky (2002) describes Markov models on trees that are said
to be degenerate, i.e., models where the Markov property is not required to hold, and other models that
are said to be internal, i.e., models in which the histogram cell counts of each parent vertex g depends on
{β(c)}c∈Children(g). Thus, the algorithm described in this paper can be viewed as an example of a forward-
backward estimation approach from the hidden Markov model literature to estimate a model that is both
degenerate and internal.

1.5. A Preliminary Result. We make use of the inverse-variance weighted mean for a vector at multiple
points in this paper. The next Lemma provides the formula for the resulting vector and its variance estimate.

Lemma 1. Suppose a, b ∈ Rn are realizations of random variables, each with finite variances and with a
mean equal to ψ ∈ Rn. Then, the minimum variance unbiased estimate of ψ that is linear in a, b is given by

ψ̂ = Var(ψ̂)
(
Var(a)−1a+Var(b)−1b

)
where

Var(ψ̂) =
(
Var(a)−1 +Var(b)−1

)−1

Proof. Let c := (a⊤, b⊤)⊤, X := stack({In, In}), and let the block matrix Ω be defined as

Ω :=

[
Var(a) 0

0 Var(b)

]
.

3Note that we describe a way that our proposed approaches can be used to estimate unbiased point estimates, variances,
and confidence intervals of estimates for queries in the much larger DHC schemas, despite the fact that n is prohibitively large

in these cases for our proposed methods to be applied directly, in Section 4.1.

6 RYAN CUMINGS-MENON

Now consider applying a WLS estimator to a dataset with the ith independent and dependent variables given
by Yi and X⊤

i,·, respectively. The resulting estimator is equal to

ψ̌ =
(
X⊤Ω−1X

)−1
X⊤Ω−1c,

which has variance given by

Var(ψ̌) =
(
X⊤Ω−1X

)−1
.

Also, the Gauss-Markov theorem implies this estimator is the best linear unbiased estimator for ψ; see for
example, (Davidson et al., 2004). The final result follows from

Var(ψ̌) =
(
Var(a)−1 +Var(b)−1

)−1
= Var(ψ̂),

and

ψ̌ =
(
X⊤Ω−1X

)−1
X⊤Ω−1Y = Var(ψ̂)

(
Var(a)−1a+Var(b)−1b

)
= ψ̂.

□

2. The Two-Pass Algorithm

Before describing the main algorithm in this section, it will be helpful to describe the primary data
structures that we use. As described in the following subsections, our main proposed algorithm performs
a series of updates on state variables within each vertex g ∈ G, which includes an estimate of β(g) and its
variance matrix. To reduce space requirements while running this algorithm, note that it is often possible to
delete prior state variables after performing some of the updates described below. Table 1 summarizes some
notation we use in this section, some of which is introduced in the following subsections.

Similar to the forward-backward algorithms described by Willsky (2002), the result of the two-pass algo-
rithm described below is the BLUE for β(g) for each vertex g ∈ G. This is because, for each vertex g ∈ G,
each of the three updates to the state variable estimate of β(g) is given by the BLUE for a progressively
larger information set, i.e., a subset of the noisy measurements. Specifically, the first step of the algorithm
is to define this state variable estimate of each vertex g as the WLS estimator based only on the noisy
measurements of vertex g. Given our assumptions that S(g) has full column rank and u(g) has a mean of
zero and finite variance, the Gauss-Markov theorem implies that this initial WLS estimate is the BLUE for
this particular information set; see for example, (Davidson et al., 2004). In the bottom-up pass, this state
variable is updated as the inverse-variance-weighted mean of this initial estimate and an estimate defined as
the sum over the bottom-up pass estimates of the children of vertex g. As described in Lemma 1, using the
inverse-variance-weighted mean results in the linear unbiased estimator with the lowest possible variance, so
the bottom-up pass update defines the estimate of β(g) as the BLUE for the information set given by the
noisy measurements of the graph Gg. Similarly, in the top-down pass, this information set is expanded further
to also include the noisy measurements of higher levels of G by projecting the estimate from the bottom-up
pass onto the column space of S, using a projection defined as the minimizer of the inverse-variance-weighted
least squares objective function. This step also ensures the final estimate satisfies the same parent-child con-
sistency property as the (unobserved) vector of histogram counts, i.e., equation (1). As described in more
detail in Theorem 1 below, the variance-minimizing projection is also used to define this final state variable
update.

2.1. Bottom-Up Pass: Initialization Step. The first step of the algorithm is to initialize state variables
of each vertex g ∈ G as

β̂(g|g) :=
(
S(g)⊤Var(u(g))−1S(g)

)−1
S(g)⊤Var(u(g))−1y(g),(7)

Var(β̂(g|g)) :=
(
S(g)⊤Var(u(g))−1S(g)

)−1
.(8)

For each of the leaf of the tree, i.e., each vertex in Level(G, L), also let

β̂(g|g−) := β̂(g|g)(9)

Var(β̂(g|g−)) := Var(β̂(g|g))(10)

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 7

G The rooted tree, or, in our main motivating use case, the geographic spine
Children(g) The set of vertices in G that are children of g
Gg The subtree of G rooted at vertex g
S(g) ∈ Rm×n The coefficient matrix for vertex g
y(g) ∈ Rm The observed noisy measurements of vertex g
u(g) ∈ Rm The error component of the noisy measurements of vertex g
Var(z) The variance matrix of the random variable z
β(g) ∈ Rn The (unobserved) vector of independent variables for vertex g

β̂(g|g) ∈ Rn Estimate for vertex g based on y(g)

β̂(g|g−) ∈ Rn Estimate for vertex g based on noisy measurements in Gg
β̃(g) ∈ Rn Estimate for vertex g based on the observed random variables of all vertices in G

Table 1. Some of the common notational conventions we use throughout the paper

2.2. Bottom-Up Pass: Recursion Step. The updates described in this section are performed first for ver-

tices in Level(G, L−1), and afterward in each level moving up the tree. Specifically, given {β̂(c|c−)}c∈Children(g)

and {Var(β̂(c|c−))}c∈Children(g), let

β̂(g|Children(g)−) :=
∑

c∈Children(g)

β̂(c|c−),(11)

Var(β̂(g|Children(g)−)) :=
∑

c∈Children(g)

Var(β̂(c|c−)).(12)

Now, since we have two independent estimates of β(g), i.e., β̂(g|g) and β̂(g|Children(g)−), for each vertex
g, we can define a new estimate as the linear combination of these estimates that has the lowest possible
variance, which is the invariance-variance weighted mean of these two vector estimates, as described in
Lemma 1. In other words, in this step, we update the state variables using

Var(β̂(g|g−)) :=
(
Var(β̂(g|g))−1 +Var(β̂(g|Children(g)−))−1

)−1

(13)

β̂(g|g−) := Var(β̂(g|g−))
(
Var(β̂(g|g))−1β̂(g|g) + Var(β̂(g|Children(g)−))−1β̂(g|Children(g)−)

)
.(14)

2.3. Top-Down Pass: Initialization Step. Prior to starting the top-down pass, we initialize the state
variables of the root vertex g as

β̃(g) := β̂(g|g−)(15)

Var(β̃(g)) := Var(β̂(g|g−)).(16)

2.4. Top-Down Pass: Recursion Step. The updates in the top-down pass can be viewed as solutions to
the optimization problem

{β̃(c)}c∈Children(g) = argmin
{β(c)}c∈Children(g)

∑
c∈Children(g)

∥Var(β̂(c|c−))−1/2
(
β̂(c|c−)− β(c)

)
∥22 such that:

∑
c∈Children(g)

β(c) = β̃(g).(17)

The Karush–Kuhn–Tucker (KKT) conditions of this optimization problem are

Var(β̂(c|c−))−1
(
β̃(c)− β̂(c|c−)

)
= λ ∀ c ∈ Children(g)∑

c∈Children(g)

β̃(c) = β̃(g).

8 RYAN CUMINGS-MENON

These two conditions imply that λ can be found using

∑
c∈Children(g)

β̃(c)− β̂(c|c−) =
∑

c∈Children(g)

Var(β̂(c|c−))λ

=⇒ β̃(g)−
∑

c∈Children(g)

β̂(c|c−) =
∑

c∈Children(g)

Var(β̂(c|c−))λ

=⇒ λ =

 ∑
c∈Children(g)

Var(β̂(c|c−))

−1 β̃(g)− ∑
c∈Children(g)

β̂(c|c−)

 .

After substituting this value of λ into the first KKT condition, we have

β̃(c) := β̂(c|c−) +A(c)

β̃(g)− ∑
c′∈Children(g)

β̂(c′|c′−)

 ,(18)

where

A(c) := Var(β̂(c|c−))

 ∑
c′∈Children(g)

Var(β̂(c′|c′−))

−1

.(19)

Next we will derive the update to the variance matrix state variable, i.e., Var(β̃(c)). To do so, first let Q̃g

be defined so that β̃(g) = τ + Q̃g

∑
c∈Children(g) β̂(c|c−), where τ is a random variable that is independent of

{β̂(c|c−)}c∈Children(g), i.e., τ is the component of β̃(g) that is a linear function of the noisy measurements

of vertex g and the vertices that are ancestors of g. Also, let Bc := β̂(c|c−)−A(c)
∑

c′∈Children(g) β̂(c
′|c′−).

To derive Var(β̃(c)), we will first derive a few intermediate properties. First, the definition of A(c) implies

A(c)

 ∑
c′∈Children(g)

Var(β̂(c′|c′−))

 = Var(β̂(c|c−)).(20)

Next, we have

Cov(Bc, β̃(g)) = Cov(β̂(c|c−)−A(c)
∑

c′∈Children(g)

β̂(c′|c′−), τ + Q̃g

∑
c′∈Children(g)

β̂(c′|c′−))

= Var(β̂(c|c−))Q̃⊤
g −A(c)

 ∑
c′∈Children(g)

Var(β̂(c′|c′−))

 Q̃⊤
g

=
(
Var(β̂(c|c−))−Var(β̂(c|c−))

)
Q̃⊤

g = 0,(21)

where the penultimate equality follows from (20).

Equation (21) implies that Var(β̃(c)) can be written as

Var(β̃(c)) = Cov(β̃(c), β̃(c)) = Cov(Bc +A(c)β̃(g), Bc +A(c)β̃(g))

= Cov(Bc, Bc) + Cov(Bc, A(c)β̃(g)) + Cov(A(c)β̃(g), Bc) + Cov(A(c)β̃(g), A(c)β̃(g))

= Var(Bc) +A(c)Var(β̃(g))A(c)⊤

= Var(β̂(c|c−))−Var(β̂(c|c−))A(c)⊤ −A(c)Var(β̂(c|c−))

+A(c)

 ∑
c′∈Children(g)

Var(β̂(c′|c′−))

A(c)⊤ +A(c)Var(β̃(g))A(c)⊤,

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 9

so this and equation (20) imply

Var(β̃(c)) = Var(β̂(c|c−))−Var(β̂(c|c−))A(c)⊤ −A(c)Var(β̂(c|c−))

+ Var(β̂(c|c−))A(c)⊤ +A(c)Var(β̃(g))A(c)⊤

= Var(β̃(c)) := Var(β̂(c|c−))−A(c)Var(β̂(c|c−)) +A(c)Var(β̃(g))A(c)⊤.(22)

The following theorem describes the way in which the projection defining the estimator β̃(c) is optimal.
This theorem is proved in Appendix A.

Theorem 1. Suppose that the following conditions hold.

(a) stack({β̌(c)}c∈Children(g)) ∈ RnCard(Children(g)) is any unbiased estimator of stack({β(c)}c∈Children(g))

(b) stack({β̌(c)}c∈Children(g)) is linear in β̃(g) and each element of {β̂(c|c−)}c∈Children(g)

(c)
∑

c∈Children(g) β̌(c) = β̃(g)

Out of all such estimators, the estimator {β̃(c)}c∈Children(g) defined in (18), is optimal, in the sense that,

Var(stack({β̃(c)}c∈Children(g))) ≤ Var(stack({β̌(c)}c∈Children(g))).

Algorithm 1 provides pseudocode that summarizes this two-pass algorithm, but a description of how this
algorithm fits into the motivation for this paper, as described in Section 1.3, may also be helpful. Specifically,
the final state variables {β̃(u)}u∈G and {Var(β̃(u))}u∈G are directly related to the standard WLS estimate,

β̃, and its variance matrix, as defined in (2-3), because β̃ = stack({β̃(u)}u∈Level(G,L)) and the diagonal blocks

of Var(β̃) are given by {Var(β̃(u))}u∈Level(G,L). This implies that, after running this two-pass algorithm, we

can take as input q ∈ Rn and H ⊂ Level(G, L) and output β̃H,q, as defined in (5). In cases in which H

is the set of leaves that are descendants of a given vertex u ∈ G, we could also compute Var(β̃H,q) using

q⊤Var(β̃(u))q, but we would not be able to compute Var(β̃H,q) in more general cases. The next section

describes how to compute Cov(β̃(u), β̃(v)) for arbitrary u, v ∈ G, which, as described in Section 4 below in

more detail, can be used to compute Var(β̃H,q) in all cases.

Algorithm 1: Two-Pass Estimation: Returns matrices and vectors that can be used in Algorithm
3 to generate point estimates and confidence intervals of user-defined queries for an arbitrary set of
leaves
input : G : The rooted tree, with noisy measurements and coefficient matrices associated with each

vertex
input : {y(g), S(g),Var(u(g))}g∈G : The set of noisy measurements, coefficient matrices, and

variance matrices of the noisy measurements for each vertex g ∈ G
// For each vertex g in graph G, use equations (7) and (8) to define β̂(g|g) and

Var(β̂(g|g)), respectively. For each vertex g ∈ Level(G, L), let β̂(g|g−) and

Var(β̂(g|g−)) be defined as β̂(g|g) and Var(β̂(g|g)), respectively, as described in

equations (9) and (10).

// For each l in L− 1, . . . , 0 and each vertex g ∈ Level(G, l), use equations (14) and (13)

to define β̂(g|g−) and Var(β̂(g|g−)).
// Initialize the top-down pass using (15) and (16), i.e., for g given by the root

vertex, let β̃(g) and Var(β̃(g)) be defined as β̂(g|g−) and Var(β̂(g|g−)),
respectively.

// For each level l in 1, . . . , L and each vertex c ∈ Level(G, l), define A(c), β̃(c) and

Var(β̃(c)) using (19), (18), and (22), respectively.

return: {β̃(g),Var(β̃(g)), A(g),Var(β̂(g|g−))}g∈G

10 RYAN CUMINGS-MENON

3. Covariance Between Estimates of Arbitrary Vertices

Similar derivations that were used to derive Var(β̃(c)) in the preceding section can also be carried out to

find the covariance Cov(β̃(u), β̃(v)) for arbitrary u, v ∈ G. Specifically, this involves recursively substituting

instances of β̃(·) in the covariance function inputs for its definition in (18), until the only instance of β̃(·) is
the closest common ancestor of u and v in the tree G. Afterward, these functional forms can be simplified
significantly using algebraic simplifications and the property (20). We provide these covariance matrices,
rather than the underlying derivations in detail, because the derivations themselves are both straightforward
and tedious. It turns out that the resulting covariance matrices are very similar to the ones described in
Section IV.4 by Willsky (2002), as we describe in more detail below.

Before describing these covariance matrices, some additional notation will be helpful. Specifically, let
u∧ v denote the vertex that is the closest common ancestor of u and v. Also, let ω(u, v) denote the shortest
path from u to v. We also denote the tth element (respectively, the tth element from the end) of this path
by ω(u, v)[t − 1] (respectively, ω(u, v)[−t]). In other words, for u, v ∈ G, the shortest path from u to v is
given by ω(u, v)[0](= u), ω(u, v)[1], . . . , ω(u, v)[−2], ω(u, v)[−1](= v). Also, we use the same notation defined

in the last subsection for Bc, i.e., Bc := β̂(c|c−)−A(c)
∑

c′∈Children(u∧v) β̂(c
′|c′−).

Next we will derive the covariance matrix Cov(β̃(u), β̃(v)) for two specific cases. First, we consider the
case in which u, v ∈ G are sibling vertices. Note that, because of property (20), we have

Cov(Bu, Bv) = A(u)

 ∑
c∈Children(u∧v)

Var(β̂(c|c−))

A(v)⊤ −Var(β̂(u|u−))A(v)⊤ −A(u)Var(β̂(v|v−))

= Var(β̂(u|u−))A(v)⊤ −Var(β̂(u|u−))A(v)⊤ −A(u)Var(β̂(v|v−)).

= −A(u)Var(β̂(v|v−)),

which implies

Cov(β̃(u), β̃(v)) = Cov(Bu +A(u)β̃(u ∧ v), Bv +A(v)β̃(u ∧ v))

= Cov(Bu, Bv) + Cov(Bu, A(v)β̃(u ∧ v))

+ Cov(A(u)β̃(u ∧ v), Bv) + Cov(A(u)β̃(u ∧ v), A(v)β̃(u ∧ v))

= Cov(β̃(u), β̃(v)) = A(u)Var(β̃(u ∧ v))A(v)⊤ −A(u)Var(β̂(v|v−)).(23)

Next we will consider the case in which g, c ∈ G and c ∈ Children(g). In this case we have

Cov(β̃(c), β̃(g)) = Cov(Bc +A(c)β̃(g), β̃(g))

= Cov(Bc, β̃(g)) +A(c)Cov(β̃(g), β̃(g))

= Cov(β̃(c), β̃(g)) = A(c)Var(β̃(g)).(24)

Equations (23-24) can also be generalized to describe the functional form of Cov(β̃(u), β̃(v)) for arbitrary
u, v ∈ G. This functional form closely resembles the one provided in Willsky (2002) for the covariance
between the values of a random process at two vertices on a rooted tree. The functional form provided
by Willsky (2002) is based on the recursive equation describing the coarse-to-fine dynamics of the process,
which in our case is (18), and can be viewed as a series of operations involving matrices associated with

vertices along the shortest path from u to v in G, e.g., in our case Var(β̃(·)),Var(β̂(·| · −)), and A(·). The
covariance matrix provided by Willsky (2002) can be derived by starting from u ∧ v by initializing the

covariance matrix as Var(β̃(u ∧ v)) and then recursively moving outward on the path ω(u, v) from u ∧ v, to

account for the relationship between β̃(u ∧ v) and vertices further away from u ∧ v along this path. Our
functional forms are slightly different than the ones provided by Willsky (2002) because the inclusion of term

−A(c)
∑

c′∈Children(g) β̂(c
′|c′−) in (18) prevents the random process resulting from the two pass-approach

described in the previous section from satisfying the Markov property exactly. Specifically, while the Markov
property requires that, for any u, v ∈ G, β̃(u) and β̃(v) are independent after conditioning on only β̃(u∧v), we

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 11

instead have independence between any β̃(u) and β̃(v) after conditioning on {β̃(u∧v)}∪{β̃(c)}c∈Children(u∧v).
This difference between our setting and the model considered by Willsky (2002) requires some additional

care when reasoning about the relationship between elements of {β̃(u∧v)}∪{β̃(c)}c∈Children(u∧v), so we will
use the covariance matrices in (23-24) directly when accounting for these relationships.

First we consider cases in which v ∈ G is an ancestor of u ∈ G. In this case, the resulting covariance matrix
is identical to the ones provided in Section IV.4 by Willsky (2002). Specifically,

Cov(β̃(u), β̃(v)) =

 ∏
k∈ω(u,v)/{v,ω(u,v)[−2]}

A(k)

Cov(ω(u, v)[−2], β̃(v))

=

 ∏
k∈ω(u,v)/v

A(k)

Var(β̃(v)).(25)

Next we consider the case in which u, v ∈ G are not ancestors of one another. In this case, we have

Cov(β̃(u), β̃(v)) =

 ∏
k∈ω(u,u∧v)/{ω(u,u∧v)[−2],u∧v}

A(k)

Cov(β̃(ω(u, u ∧ v)[−2]), β̃(ω(u ∧ v, v)[1]))

 ∏
k∈ω(u∧v,v)/{ω(u∧v,v)[1],u∧v}

A(k)⊤

 .(26)

Algorithm 2: Compute Covariance: Computes the matrix Cov(β̃(u), β̃(v)) for arbitrary u, v ∈ G
input : G : The rooted tree

input : {β̃(g),Var(β̃(g)), A(g),Var(β̂(g|g−))}g∈G : the output of Algorithm 1

input : u, v ∈ G : This algorithm returns Cov(β̃(u), β̃(v))
if u = v then

return: Var(β̃(u))
end

if v = u ∧ v then
// See equation (25) for this case:

return:
(∏

k∈ω(u,v)/v A(k)
)
Var(β̃(v))

end

if u = u ∧ v then
// Switch the inputs u, v and transpose the output of this function:

return: Compute Covariance
(
G, {β̃(g),Var(β̃(g)), A(g),Var(β̂(g|g−))}g∈G , v, u

)⊤

end

// The remaining case follows from (26):

u′ ← ω(u, u ∧ v)[−2]
v′ ← ω(u ∧ v, v)[1]

Cov(β̃(u′), β̃(v′))← A(u′)Var(β̃(u′ ∧ v′))A(v′)⊤ −A(u′)Var(β̂(v′|v′−))
return:

(∏
k∈ω(u,u′)/{u′} A(k)

)
Cov(β̃(u′), β̃(v′))

(∏
k∈ω(v′,v)/{v′} A(k)⊤

)

When u, v ∈ Level(G, L), the derivations in this section can be used to derive the off-diagonal blocks of

Var(β̃), as defined in (3), so, combined with the derivation for the diagonal blocks provided in the previous
section, these results allow for the computation of arbitrary elements of the variance matrix of the standard
WLS estimate.

12 RYAN CUMINGS-MENON

Algorithm 2 provides pseudocode that summarizes the methods described in this section. The next section
describes how Algorithms 1 and 3 can be used to compute β̃H,q, as defined in (5), its variance, and confidence
intervals for this estimate.

4. Confidence Interval Estimation

The previous two sections describe each of the state variable updates required for the two-pass estimation
approach and the computation of Cov(β̃(u), β̃(v)) for arbitrary u, v ∈ G, as summarized in Algorithms 1
and 2, respectively. It is straightforward to use these two algorithms to derive confidence intervals centered
at β̃H,q, which is done below in Algorithm 3.

Algorithm 3: Estimate Confidence Interval: Returns the full-information BLUE count estimate
and confidence interval of a user-defined query evaluated in an arbitrary subset of the leaf vertices
of G
input : G : The rooted tree

input : {β̃(g),Var(β̃(g)), A(g),Var(β̂(g|g−))}g∈G : the output of Algorithm 1
input : q ∈ Rn : The linear counting query of interest
input : H ⊂ Level(G, L) : The subset of the leaves of G for which to estimate the linear query
input : α : This algorithm will return the 1− α confidence interval of βH,q

vertices ← ∅
// For each level l in L− 1, . . . , 0 and for each vertex g ∈ Level(G, l), if all children

of g are in H, remove Children(g) from H and add vertex g to H.

Var(β̃H,q)← 0

β̃H,q ← 0

for u ∈ H do

β̃H,q ← β̃H,q + q⊤β̃(u)

for v ∈ H do

Cov(β̃(u), β̃(v))← Compute Covariance
(
G, {β̃(g),Var(β̃(g)), A(g),Var(β̂(g|g−))}g∈G , u, v

)
Var(β̃H,q)← Var(β̃H,q) + q

⊤Cov(β̃(u), β̃(v))q

end

end

// Φ(·) denotes the cumulative distribution function of the standard normal

distribution:

c←
√

Var(β̃H,q)Φ
−1(1− α/2)

return: β̃H,q, (β̃H,q − c, β̃H,q + c)

A number of theoretical properties can also be shown for the estimate β̃H,q and its confidence interval
using standard results on the weighted least squares estimator. Recall that in Section 1.3 we assumed
that S ∈ RM×N has full column rank and that u ∈ RM is a vector of independent mean-zero random
variables, each with a known and finite variance. As a result of these assumptions, the Gauss-Markov
theorem implies that the estimate β̃H,q that is output from Algorithm 3 has the smallest possible variance
out of all estimators that are unbiased and linear in the noisy measurements y; see for example, (Davidson

et al., 2004). In addition, if u(g) is normally distributed for each g ∈ G, then β̃H,q is also normally distributed,
which can be shown using standard finite sample properties of the WLS estimator (Davidson et al., 2004).
As a result, when this additional normality condition holds, this finite sample property implies that the
confidence intervals output from Algorithm 2 are statistically valid in this case.

When u(g) is not normally distributed (but our other assumptions still hold), we could use standard

asymptotic theory for regressions to show the same result, i.e., normality of β̃H,q along with its same
implication of statistical validity of the confidence intervals output from Algorithm 2, holds in some limiting
cases Davidson et al. (2004). However, these limiting cases are not realistic in our primary motivating use
case, as they require the number of noisy measurements to diverge, so we will not expand on these further.

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 13

After describing our implementation of Algorithm 3 in the next subsection, we will provide a numerical
experiment to assess the accuracy of these confidence intervals in practice for our motivating use case. While
u is not distributed as a Gaussian in this motivating use case, there are still reasons to be optimistic about the
accuracy of the confidence intervals output from Algorithm 3; for example, as described in Section 1.2, the
distribution of u is closely related to the Gaussian distribution, i.e., it is the discrete Gaussian distribution
Canonne et al. (2020).

4.1. Computational Considerations. For many use cases, the limiting factor for the feasibility of the
algorithms proposed in this paper will be the need to store many dense n × n matrices. For example,
one possible use case would be to apply these methods to the NMFs for the Redistricting Data File, and,
as described above, in this case n is equal to 2, 016. Since our choice of output for Algorithm 1, i.e.,

{β̃(g),Var(β̃(g)), A(g),Var(β̂(g|g−))}g∈G , requires storing three dense n × n matrices for every vertex and
since G would have approximately 6 million leaf vertices when using the production US DAS execution
Redistricting Data File NMFs, at least several hundreds of terabytes would be required to store the output
of Algorithm 1 without using methods to reduce storage space in this case. This is problematic because it
would be ideal to store the output of Algorithm 1 after it is run only once, so that this output can be used
to support the computation of confidence intervals of linear query answers in arbitrary set of leaves over
an extended period of time. With this in mind, this section describes multiple ways to reduce the storage
requirements of the output of Algorithm 1.

For the primary motivating use case we have in mind, one of the most straightforward and effective ways
to keep space requirements of the output of Algorithm 1 low would be to reduce the size of the histogram
schema by marginalizing the NMFs over certain levels of attributes in the original schema. For example, in
the case of the NMFs for the Redistricting Data File, rather than running Algorithm 1 on the full schema
HHGQ × HISPANIC × VOTING AGE × CENRACE, we could marginalize the NMFs over all attributes
other than HHGQ, save the output of Algorithm 1, and then repeat this process for each of the three
remaining attributes. Given the number of levels of each of these attributes, as provided in Section 1.2, this
alternative would reduce the space requirements for all of the outputs of Algorithm 1 by approximately a
factor of 1, 005.8(≈ 8× 2× 2× 63/(8 + 2 + 2 + 63)), and would also substantially reduce the computational
requirements of the executions of this algorithm. Likewise, calling Algorithm 1 after marginalizing over each
possible pair of these four attributes would reduce the space requirements by a factor of approximately 14.2
relative to using all attributes simultaneously. The downside of this approach is that we could only support
the computation of user-defined queries that depend on only a subset of the attributes; however, in the
vast majority of use cases for decennial census data, the queries of interest do not depend on all attributes
of the full histogram schema used to generate the NMFs. For this reason, in practice, we expect that use
cases using decennial census NMFs will most often only require n ≤ 2, 016. Note that, unlike the NMFs for
Redistricting Data File DAS executions, the schemas used to generate the NMFs for the persons and units
universes of the DHC DAS executions have more than 1.2 million detailed histogram cells, so marginalizing
over attributes is a requirement for computational feasibility of our proposed approach in these cases.

There are also several algorithmic modifications that can be considered to reduce the size of the output of
Algorithm 1. First, storage of the matrices {A(g)}g can optionally be avoided entirely, since these matrices

can be recomputed using {Var(β̃(g)),Var(β̂(g|g−))}g∈G when they are required. Second, one can also
leverage the fact that, in many use cases, some of the matrices output from Algorithm 1 will be the same,
to avoid storing multiple instances of duplicate matrices. For example, for our primary use case of interest,

vertices in the lowest level of G have the matrix Var(β̂(g|g−)) given by one of only two possible values.

Third, one can use the fact that the variance matrices in {Var(β̃(g)),Var(β̂(g|g−))}g∈G are symmetric to
reduce the storage requirement of these matrices by approximately one half. Fourth, the storage requirement
of the output of Algorithm 1 can also be reduced using a compressed format. In the numerical experiments
provided in the next section, we use these final two methods to reduce the space requirements for the output
of Algorithm 1.

5. Numerical Experiment

In this section we provide a numerical experiment using a Python/PySpark implementation of the algo-
rithms we proposed above. For the purposes of this numerical experiment, this implementation was executed
on Amazon Web Services (AWS) using Elastic Map Reduce (EMR) version 6.12 and Apache Spark version

14 RYAN CUMINGS-MENON

Table 2. CI Empirical Coverage: For each of the four CIs considered, and each of the three
sets of queries considered, this table provides the CI coverage, which is the proportion of
CIs that contain the true CEF-based count out of all queries in the given query set for all
block groups in PR.

CI Type
Query 0.90 CI 0.95 CI 0.90 CI, Nonnegative 0.95 CI, Nonnegative
All Redistricting Tabulations 0.8994 0.9496 0.9473 0.9737
Total Population 0.8922 0.9363 0.8922 0.9363
CENRACE 0.9002 0.9498 0.9479 0.9739

3.4. The DAS is run on EMR clusters built from AWS r5.24xlarge virtual machines, in which each virtual
machine has 96 cores and 768GiB of RAM. We configured the cluster so that it had one primary node and
5 core nodes, and configured Spark so that there were 5 executors, each with 40 executor cores.

Rather than using all noisy measurements generated by a full US DAS execution, in this numerical
experiment, we used the publicly available NMFs from the persons universe Redistricting Data File Puerto
Rico (PR) DAS execution of the 2010 Demonstration Data Product; instructions for downloading these
NMFs are available at U.S. Census Bureau (2023b). This DAS execution used settings that were identical
to that of the 2020 production DAS execution that was used to publish the 2020 PR persons tables in
the Redistricting Data File, other than the fact that the 2010 Census data was used as input instead of
the 2020 Census data. As described previously, unlike the tabulation US spine described in Figure 1, the
geographic spine that is used internally within the DAS implementation for PR executions is rooted at the
geounit corresponding to PR as a whole, which is included in the state geolevel, and subsequent geolevels
include county, tract, optimized block group, and the block geolevels. Optimized block groups are distinct
from the census block groups that are included in the tabulation spine described above, so the 2,543 PR
tabulation census block groups are not on the optimized spine used internally within DAS; for more detail
on the optimized spine, see Cumings-Menon et al. (2022). Since these PR tabulation census block groups
are not in the spine used to generate the NMFs, they provide interesting off-spine geographic entities for
the purpose of testing our proposed estimation approaches, so we will focus on the estimation of CIs of 2010
tabulations for PR census block groups.

We will consider CIs at the 0.9 and 0.95 confidence levels in particular. In the context of this numerical
experiment, we will use empirical coverage, or coverage, of a set of CIs to refer to the proportion of the CIs
in this set that contain the true population count. We will estimate the coverage of several CIs for several
sets of queries in this section; note that a 1− α confidence level CI should ideally have a coverage that is at
least approximately 1−α. Note that one complication in this numerical example is that the point estimates
(and therefor the CIs) are not entirely independent with one another. We do not expect the impact of this
issue to be large, because the strength of the dependence between typical pairs of PR census block groups
becomes weaker as the fanout values, i.e., the number of child geounits of parent geounits, increases, and
the fanout values in the spine are fairly high, especially at higher geolevels. For example, the county geolevel
is composed of the 78 municipios of PR.

Since we know each true count is nonnegative, we can optionally increase the coverage of each CI, and
reduce its width, by rounding the endpoints of the CI up to zero in the event they are negative, which we
will refer to as a nonnegative CI. Tables 2 and 3 provide the empirical coverage and the average width,
respectively, of the 0.9 and 0.95 CIs, both before and after rounding up to zero for three sets of queries.
Specifically, we use “All Redistricting Tabulations” to refer to all persons Redistricting Data File tabulations
published in 2020, i.e., tables P1, P2, P3, P4, and P5, as described by U.S. Census Bureau (2023a), “Total
Population” to refer to the total population, and “CENRACE” to refer to the collection of queries that
provide the population counts in each of the 63 race combination categories of this attribute, as described
in Section 1.2. For each of these three sets of queries, Tables 2 and 3 consider the CIs for each query in the
set, evaluated in each 2010 vintage PR tabulation census block group.

Table 2 shows that coverage of the CIs before rounding up to zero, has a coverage that is fairly close
to the confidence level of the CI considered, for each of the three sets of queries. The final two columns
demonstrate that rounding these endpoints up to zero improves the coverage of these CIs, particularly for
CIs of more granular queries that are more likely to have negative CI endpoints. Table 3 also shows that

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 15

Table 3. CI Averaged Widths: For each of the four CIs considered, and each of the three
sets of queries considered, this table provides the CI width, averaged over all queries in the
given query set and all block groups in PR.

CI Type
Query 0.90 CI 0.95 CI 0.90 CI, Nonnegative 0.95 CI, Nonnegative
All Redistricting Tabulations 100.8 120.1 54.84 65.74
Total Population 314.4 374.6 313.1 373.2
CENRACE 97.81 116.6 50.66 60.78

rounding up to zero can significantly narrow the widths of these same CIs of more granular queries. This
later table also shows that the widths of these CIs are fairly wide on average. This is because census block
groups were not on the optimized spine used internally in Redistricting Data file DAS executions. Note
that one possibility to increase accuracy further would be to also leverage the information in the DHCP
NMFs, after marginalizing over all cells other than the 2,016 detailed histogram cells in the Redistricting
Data file schema, as described in Section 1.2. However, as described in Cumings-Menon et al. (2022), the
DHC DAS executions used a different spine than the Redistricting Data file DAS executions, so if this is
done, Algorithm 1 would need to be run separately on both sets of NMFs. Afterward, for each query and
each geographic entity, the WLS-based point estimates and variances could be computed separately using
each of the outputs of Algorithm 1. If these point estimates are denoted by β̃H,q,1, β̃H,q,2 ∈ R, then the
inverse-variance weighted query estimate would be equal to

β̌H,q =
(
β̃H,q,1/Var(β̃H,q,1) + β̃H,q,2/Var(β̃H,q,2)

)
/
(
1/Var(β̃H,q,1) + 1/Var(β̃H,q,2)

)
,(27)

which has a variance given by

Var(β̌H,q) = 1/
(
1/Var(β̃H,q,1) + 1/Var(β̃H,q,2)

)
,(28)

and then the final confidence interval can be computed using the same approach as in Algorithm 3, i.e., with

endpoints given by β̌H,q ±
√

Var(β̌H,q)Φ
−1(1− α/2).

Note that the analyses above assess statistical validity of these CIs at only two confidence levels. To
provide a way to assess statistical validity at all confidence levels, we also constructed the Z−scores of a set
of estimates, which for each estimate β̃H,q is defined as,

zH,q =
(
β̃H,q − βH,q

)
/

√
Var(β̃H,q).(29)

If u(g) were normally distributed for each g ∈ G, then we would have zH,q ∼ N(0, 1), so we can asses the
error due to our normality modeling assumption by computing the Z−scores for a set of queries to see how
closely these scores appear to follow a standard normal distribution. To do this, we computed the Z−scores
for the total population query for each of the 2,543 census block groups in PR. Figure 2 provides a Q-Q plot
based on these Z−scores. For each blue point, the horizontal axis provides the empirical quantiles of the
2,543 sample Z−scores and the vertical axis provides the corresponding theoretical quantile value based on
a standard normal distribution. The red line provides the identity function. Since the blue points are very
close to the identity function, this set of Z−scores appear to follow a Gaussian distribution quite closely.
This plot also implies that, for any α ∈ (0, 1), the 1 − α CIs for this set of queries would have empirical
coverage close to 1− α.

To provide an idea of the computational requirements of our implementation of the proposed algorithms
for the numerical experiment explored here, the total runtime of our implementation of Algorithm 1 was
8.6 hours, and estimating all of the CIs afterward took approximately 17.1 hours. Our implementation of
Algorithm 1 stored its output in AWS S3 storage in a Apache Parquet format, and the size of this final
output was approximately 795.6 GB for all geolevels in this compressed format, with the vast majority of
this space (699.8 GB) being required to store the block geolevel matrices. The total number of blocks in
PR in 2010 with either a housing unit or a GQ, i.e., the universe of blocks we consider in this numerical
example, was 51,937, which is about 1/113 of the total number of blocks in the spine of the 2020 US DAS

16 RYAN CUMINGS-MENON

Figure 2. Q-Q Plot: The blue points in this plot can be viewed as points on a parametric
curve, parameterized by the quantile q ∈ (0, 1). The horizontal axis provides the q quantile
of the standard normal distribution and the vertical axis provides the sample quantile of
the Z−score. The red line provides the identity function, f(x) = x.

optimized spine. Given this difference in the scale of the 2020 US and the 2010 PR DAS optimized spines
and the computational requirements of this numerical experiment for the 2010 PR NMFs, a similar exercise
may also be possible for the 2020 US production NMFs, albeit with a more significant computational cost.
Also, the persons universe Redistricting Data File DAS schema likely has a number of detailed cells, i.e.,
n = 2, 016, near the highest value that would still allow for estimation in the 2020 US DAS optimized spines
without marginalizing prior to estimation. As described previously, estimation using the 2020 US DHCP or
DHCH NMFs would require marginalizing the NMFs to smaller(/coarser) histograms prior to estimation,
since both of these two schemas have more than n = 1.2 million detailed cells for each geounit.

6. Comparison with Hay et al. (2010)

As described above, the approach proposed in this paper can be viewed as a generalization of the approach
proposed by Hay et al. (2010), which we will describe in more detail in this section. To do so, we will assume
we are in the setting described by Hay et al. (2010). In other words, we will suppose that, for every g ∈ G,
S(g) is equal to the 1 × 1 matrix [1], each vertex g ∈ G has k ∈ N children, and that the PLB allocated
to each query, and therefore also the variance of each noisy measurement, is the same. Although it is not
assumed by Hay et al. (2010), we will also suppose the variance of each query is equal to one specifically,
since this variance does not appear in their algorithm and it simplifies the derivations below slightly.

In this setting Hay et al. (2010) show that the OLS estimator can be found using a two-step approach.
For each g ∈ G, before stating this theorem, they first define z(g) ∈ R, which in our notation is given by

z(g) =

{
y(g) g ∈ Level(G, L)(

kL−l+1−kL−l

kL−l+1−1

)
y(g) +

(
kL−l−1

kL−l+1−1

)∑
c∈Children(g) z(c) g ∈ Level(G, l) and l ̸= L

.(30)

The relevant result from Hay et al. (2010) is stated below.

Theorem 2. (Theorem 3 from Hay et al. (2010)) If, for every g ∈ G, S(g) is equal to the matrix [1], each
vertex g ∈ G has k ∈ N children, and the variance of each noisy measurement is one, then the WLS solution
can be found using the recurrence relation

β̌(v) =

{
z(v) v ∈ Level(G, 0)
z(v) + 1

k

(
β̌(g)−

∑
c∈Children(v) z(c)

)
v ̸∈ Level(G, 0) and v ∈ Children(g)

.(31)

Below we show that our estimator is a special case of the estimator described by Hay et al. (2010).

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 17

Theorem 3. If, for every g ∈ G, S(g) is equal to the matrix [1], each vertex g ∈ G has k ∈ N children, and

the variance of each noisy measurement is one, then β̌(g) = β̃(g).

Proof. First we will show that z(g) = β̂(g|g−) under the assumptions of the theorem. To do so, for

g ∈ Level(G, l), we will begin by deriving a convenient functional form for v(l) := Var(β̂(g|g−)) under
the conditions of the theorem. Using the definition from Section 2.1 and the assumptions of this theorem,
for any g ∈ Level(G, L), we have v(L) = Var(y(g)) = 1. Using notation introduced in Section 2.2, we have

Var(β̂(g|Children(g)−)) = kv(l) for any g ∈ Level(G, l− 1), so the variance of the inverse variance weighted
mean implies

v(l − 1) =
1

(1 + 1/(kv(l)))
= 1− 1

1 + kv(l)

After solving this recursive equation with the boundary condition that v(L) = 1, we have,

v(l) =
(k − 1)kL

kL+1 − kl

Note that, for g ∈ Level(G, l), equation (13) implies

β̂(g|g−) = v(l)

y(g) + 1

kv(l + 1)

∑
c∈Children(g)

β̂(c|c−)

 .

Note that, for any g ∈ Level(G, L), we clearly have z(g) = β̂(g|g−). Also, in the case of vertices in

levels above level L, the definition of z(g) and β̂(g|g−) follows a similar form, in the sense that, for any
g ∈ Level(G, l) with l < L, both estimators are weighted means of y(g) and the sum over the estimates of

the children of g. In the case of both z(g) and β̂(g|g−), the weights of these two terms sum to one, so we will

establish that z(g) = β̂(g|g−) for all g ∈ Level(G, l) with l < L by showing that the ratio of these weights

are the same for both of these estimators. In the case of β̂(g|g−), this ratio of these weights is given by
kv(l + 1), and in the case of z(g) this ratio is given by

kL−l+1 − kL−l

kL−l − 1
.

Thus, to establish that z(g) = β̂(g|g−) for all g ∈ Level(G, l) with l < L, we need to show

kL−l+1 − kL−l

kL−l − 1
= kv(l + 1) ⇐⇒ kL−l+1 − kL−l

kL−l − 1
=

(k − 1)kL+1

kL+1 − kl+1

⇐⇒ kL(k − 1)

kL − kl
=

kL(k − 1)

kL − kl
,

which implies z(g) = β̂(g|g−) for all g ∈ G.
The final result follows from the fact that, after replacing z(g) with β̂(g|g−) in the recurrence relation in

(31), this recursive formula is equal to the top-down pass described in Section 2. □

7. Conclusion

This paper describes a two-pass estimation approach for hierarchical data that is capable of providing
WLS-based estimates and confidence intervals. We also provide a numerical exercise to demonstrate feasibil-
ity of the approach for our motivating use case. As described in the previous section, this two-pass approach
can be viewed as a generalization of the approach described by Hay et al. (2010). This section concludes
by describing some advantages of our proposed approach relative to another approach in the context of our
primary motivating use case, i.e., estimating tabulations and their corresponding confidence intervals using
census NMFs, as described in Section 1.3.

In the context of our motivating use case, an alternative to using the WLS estimator described above is to
simply derive point estimates from the NMFs directly. For example, one can estimate the total population
of a geographic entity that corresponds to a geounit using the total population primitive DP answer of the
geounit directly. An alternative estimator for this same query answer can be derived by summing over the
total population noisy measurements of the children of this geounit. More generally, in this section, we
will refer to all estimates that can be defined by adding and/or subtracting a subset of the scalars in the

18 RYAN CUMINGS-MENON

NMFs as näıve estimates of a tabulation. For use cases that do not require high precision, and only require
tabulation estimates for geographic entities that are geounits on the spine used to generate the NMFs, these
näıve estimates may be adequate. However, unlike the näıve estimates, the full-information WLS estimator
provides a unique estimate, with the added benefit of also providing the lowest possible variance out of all
estimators that are unbiased linear functions of the noisy measurements.

These advantages of the two-pass WLS estimator are most obvious when estimating queries for a geo-
graphic entity that is far from the spine used to generate the noisy measurements, meaning many geounits
would need to be added and subtracted from one another to derive the geographic entity. For example,
when deriving a total population estimate for Navajo Nation, it would not be obvious how to choose a
relatively small set of noisy measurements that provides an unbiased näıve estimate with a sufficiently low
variance. Examples of approaches that are capable of constructing these subsets of the NMFs would include
considering adding the NMFs at the block geolevel NMFs, considering the NMFs for the least-granular set
of geounits that are entirely within a geounit on the spine, i.e., the approach described in the first comment
of Algorithm 3, or considering the NMFs of the smallest set of geounits that can be used to derive the
off-spine geographic entity by adding and/or subtracting the geounits in this set.4 As a result, data users
confronted with this issue when using one of the näıve estimators would often choose different sets of noisy
measurements and thus potentially arrive at dissimilar estimates. In contrast, the WLS estimator proposed
here allows users to construct the unique minimum-variance point estimates, and their corresponding CIs
using a normality approximation, even for geographic entities that are far from the geographic spine. We
expect data users will view the combination of accuracy, approximate normality, and uniqueness provided
by the WLS-based tabulation estimators to be advantageous.

It is also worth pointing out that the Census Bureau is developing an alternative method to compute
confidence intervals, based on simulating the DAS using the 2020 production DAS execution outputs, i.e., the
microdata detailed files (MDFs), as the input of each simulation iteration. This simulation-based approach
appears to perform well, with CIs that are typically more narrow than the WLS-based CIs of the approach
described in this paper, since this simulation-based approach leverages the increased accuracy due to the
inequality constraints used within DAS. The main advantage of the WLS-based approach described here
over this simulation-based approach is that we avoid the assumption that DAS runs using the private census
data as input have similar error distributions as DAS runs that use the 2020 MDFs as input. Since both
approaches have advantages, which of these two approaches is best for a given application will typically be
dependent on the specific goals of the use case.

References

Abowd, J. M., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Heineck, M., Heiss, C., Johns, R., Kifer,
D., Leclerc, P., Machanavajjhala, A., et al. (2022). The 2020 Census disclosure avoidance system topdown
algorithm. Harvard Data Science Review, (Special Issue 2).

Bun, M. and Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pages 635–658. Springer.

Canonne, C. L., Kamath, G., and Steinke, T. (2020). The discrete Gaussian for differential privacy. Advances
in Neural Information Processing Systems, 33:15676–15688.

Cumings-Menon, R., Abowd, J. M., Ashmead, R., Kifer, D., Leclerc, P., Ocker, J., Ratcliffe, M., and
Zhuravlev, P. (2022). Geographic spines in the 2020 census disclosure avoidance system. arXiv preprint
arXiv:2203.16654.

Cumings-Menon, R., Ashmead, R., Kifer, D., Leclerc, P., Spence, M., Zhuravlev, P., and Abowd, J. M.
(2023). Disclosure avoidance for the 2020 Census Demographic and Housing Characteristics File. arXiv
preprint arXiv:2312.10863.

Davidson, R., MacKinnon, J. G., et al. (2004). Econometric theory and methods, volume 5. Oxford University
Press New York.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages 265–284. Springer.

Hay, M., Rastogi, V., Miklau, G., and Suciu, D. (2010). Boosting the accuracy of differentially private
histograms through consistency. Proceedings of the VLDB Endowment, 3(1).

4This latter set of geounits is described in more detail in Cumings-Menon et al. (2022).

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 19

U.S. Census Bureau (2023a). Decennial Census P.L. 94-171 Redistricting Data.
U.S. Census Bureau (2023b). Developing the DAS: Demonstration Data and Progress Metrics.
Willsky, A. S. (2002). Multiresolution markov models for signal and image processing. Proceedings of the
IEEE, 90(8):1396–1458.

Appendix A. Result on Optimality of Top-Down Pass Projection

This section provides the proof of Theorem 1. Before doing this, we first prove three lemmas that provide
properties of the state variables for the parent vertex g ∈ G. To do this, some additional notation will also
be helpful. Specifically, for this parent vertex g ∈ G, let κ := Card(Children(g)) and E ∈ Rnκ×n be defined
as

E :=

In...
In

 .

Also, let β̃g be defined as stack({β̃(c)}c∈Children(g)), where β̃(c) is defined in (18), and let β̂g be defined as

stack({β̂(c|c−)}c∈Children(g)), where β̂(c|c−) is defined in (14).

The first lemma in this section provides the functional form for the matrix Q̃g, as introduced in Section
2.4.

Lemma 2. In the top-down pass, for each parent vertex g ∈ G, Q̃g satisfies

Q̃g = Var(β̃(g))

 ∑
c∈Children(g)

Var(β̂(c|c−))

−1

.(32)

Proof. The initialization step of the top-down pass implies that for the root vertex g, i.e., equations (15)-(16),

we have β̃(g) = β̂(g|g−), and

Var(β̃(g)) = Var(β̂(g|g−)) =
(
Var(β̂(g|g))−1 +Var(β̂(g|Children(g)−))−1

)−1

.

Thus, equation (14) implies

Q̃g = Var(β̂(g|g−))Var(β̂(g|Children(g)−))−1 = Var(β̃(g))

 ∑
c∈Children(g)

Var(β̂(c|c−))

−1

,

so the property in the statement of this result, i.e., equality (32), holds for the root vertex.
Now we will suppose equality in (32) holds for an arbitrary parent vertex g ∈ G and we show that this

implies it also holds for the children of g. To do so, first recall that, for any vertex p ∈ Children(g), equation
(18) implies

β̃(p) = β̂(p|p−) +A(p)

β̃(g)− ∑
p′∈Children(g)

β̂(p′|p′−)

= β̂(p|p−) +A(p)

τ g + Q̃g

 ∑
p′∈Children(g)

β̂(p′|p′−)

− ∑
p′∈Children(g)

β̂(p′|p′−)

 .

By (14), we can substitute each instance of β̂(p|p−) with

τ̌ p +Var(β̂(p|p−))

 ∑
c∈Children(p)

Var(β̂(c|c−))

−1 ∑
c∈Children(p)

β̂(c|c−)

 ,

20 RYAN CUMINGS-MENON

where τ̌ p is a random vector that is independent of β̂(c|c−), for each c ∈ Children(p). Thus, for τ p defined

as another random vector that is independent of β̂(c|c−), for each c ∈ Children(p), we have

β̃(p) =τ p +Var(β̂(p|p−))

 ∑
c∈Children(p)

Var(β̂(c|c−))

−1 ∑
c∈Children(p)

β̂(c|c−)

+A(p)

(
Q̃g − I

)
Var(β̂(p|p−))

 ∑
c∈Children(p)

Var(β̂(c|c−))

−1 ∑
c∈Children(p)

β̂(c|c−)

=τ p +

(
I +A(p)

(
Q̃g − I

))
Var(β̂(p|p−))

 ∑
c∈Children(p)

Var(β̂(c|c−))

−1 ∑
c∈Children(p)

β̂(c|c−)

 .

Since we supposed the equality (32) holds for vertex g ∈ G, this implies

Q̃p =

I +A(p)

Var(β̃(g))

 ∑
p∈Children(g)

Var(β̂(p|p−))

−1

− I

Var(β̂(p|p−))

 ∑
c∈Children(p)

Var(β̂(c|c−))

−1

,

so since this result requires that

Q̃p = Var(β̃(p))

 ∑
c∈Children(p)

Var(β̂(c|c−))

−1

,

we need to show,

Var(β̃(p)) =

I +A(p)

Var(β̃(g))

 ∑
p∈Children(g)

Var(β̂(p|p−))

−1

− I

Var(β̂(p|p−)).

By (22), this equality holds if and only if

Var(β̂(p|p−))−A(p)Var(β̂(p|p−)) +A(p)Var(β̃(g))A(p)⊤

=

I +A(p)

Var(β̃(g))

 ∑
p∈Children(g)

Var(β̂(p|p−))

−1

− I

Var(β̂(p|p−))

⇐⇒ A(p)Var(β̃(g))A(p)⊤ = A(p)Var(β̃(g))

 ∑
p∈Children(g)

Var(β̂(p|p−))

−1

Var(β̂(p|p−))

⇐⇒ A(p)⊤ =

 ∑
p∈Children(g)

Var(β̂(p|p−))

−1

Var(β̂(p|p−)),

which is satisfied by the definition of A(p), i.e., (19). □

Lemma 3 provides an eigenvalue bound that will be useful in the proof of the main result of this section.

Lemma 3. For any parent vertex g ∈ G, we have
∑

c∈Children(g) Var(β̂(c|c−)) ≥ Var(β̃(g)).

Proof. For arbitrary parent vertex g ∈ G, let sg :=
∑

c∈Children(g) Var(β̂(c|c−)).
First, we prove the result for the root vertex g ∈ G. In this case, (16) and (13) imply

Var(β̃(g)) = Var(β̂(g|g−)) =
(
Var(β̂(g|g))−1 + s−1

g

)−1

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 21

Thus, the result in this case follows from

sg ≥ Var(β̃(g)) ⇐⇒ sg ≥
(
Var(β̂(g|g))−1 + s−1

g

)−1

⇐⇒
(
Var(β̂(g|g))−1 + s−1

g

)
sg ≥ I ⇐⇒ Var(β̂(g|g))−1sg ≥ 0,

which is satisfied because both Var(β̂(g|g))−1 and sg are positive definite by our assumptions on {S(g)}g∈G
and the variance of the mean zero errors {u(g)}g∈G .

Second, we prove the result for the arbitrary parent vertex c ∈ G, which has a parent vertex that we
denote by g ∈ G. Recall equation (22) is

Var(β̃(c)) = Var(β̂(c|c−))−A(c)Var(β̂(c|c−)) +A(c)Var(β̃(g))A(c)⊤

= Var(β̂(c|c−))−Var(β̂(c|c−))s−1
g Var(β̂(c|c−)) + Var(β̂(c|c−))s−1

g Var(β̃(g))s−1
g Var(β̂(c|c−))

=
(
Var(β̂(c|c))−1 + s−1

c

)−1

−
(
Var(β̂(c|c))−1 + s−1

c

)−1

s−1
g

(
Var(β̂(c|c))−1 + s−1

c

)−1

+
(
Var(β̂(c|c))−1 + s−1

c

)−1

s−1
g Var(β̃(g))s−1

g

(
Var(β̂(c|c))−1 + s−1

c

)−1

,

where the final equality follows from (13). Thus, sc ≥ Var(β̃(c)) is satisfied if and only if

sc ≥
(
Var(β̂(c|c))−1 + s−1

c

)−1

−
(
Var(β̂(c|c))−1 + s−1

c

)−1

s−1
g

(
Var(β̂(c|c))−1 + s−1

c

)−1

+
(
Var(β̂(c|c))−1 + s−1

c

)−1

s−1
g Var(β̃(g))s−1

g

(
Var(β̂(c|c))−1 + s−1

c

)−1

⇐⇒
(
Var(β̂(c|c))−1 + s−1

c

)
sc

(
Var(β̂(c|c))−1 + s−1

c

)
≥ Var(β̂(c|c))−1

+ s−1
c − s−1

g + s−1
g Var(β̃(g))s−1

g

⇐⇒ Var(β̂(c|c))−1scVar(β̂(c|c))−1 +Var(β̂(c|c))−1 + s−1
g − s−1

g Var(β̃(g))s−1
g ≥ 0.(33)

A sufficient condition for (33) is

s−1
g − s−1

g Var(β̃(g))s−1
g >= 0 ⇐⇒ sg >= Var(β̃(g)),

so, since this latter condition is satisfied by the root vertex, inequality (33), and thus also the final result,
follows from induction. □

Theorem 1 shows that the projection used in the top-down pass, i.e., the solution to the optimization
problem in (17), provides the minimum-variance estimator in the family of estimators that are unbiased,
linear in the input random variables, and that satisfy the parent-child consistency constraints. The next
lemma provides the functional form of all such estimators that are in this family.

Lemma 4. Suppose that the following conditions hold.

(a) β̌g := stack({β̌(c)}c∈Children(g)) ∈ Rnκ is any unbiased estimator of stack({β(c)}c∈Children(g))

(b) β̌g is linear in β̃(g) and β̂g := stack({β̂(c|c−)}c∈Children(g))

(c) E⊤β̌g =
∑

c∈Children(g) β̌(c) = β̃(g)

Then, there exists R ∈ Rnκ×n such that

β̌g = (I −RE⊤)β̂g +Rβ̃(g)

and also E⊤R = I.

Proof. By the linearity property of β̌g that is assumed in the statement of the result, i.e., assumption (b),

there exists Q ∈ Rnκ×nκ and R ∈ Rnκ×n such that

β̌g = (I −Q)β̂g +Rβ̃(g).(34)

After left multiplying both sides of this equality by E⊤, assumption (c) implies

22 RYAN CUMINGS-MENON

β̃(g) = (E⊤ − E⊤Q)β̂g + E⊤Rβ̃(g).

⇐⇒ E⊤ = E⊤Q(35)

and E⊤R = I(36)

After taking the expectation of both sides of (34), assumption (a) implies

E(β̌g) = stack({β(c)}c∈Children(g)) =
(
(I −Q) +Re⊤

)
stack({β(c)}c∈Children(g))

⇐⇒ Q = Re⊤(37)

□

The three lemmas above are used in the following proof of Theorem 1, which shows that the projection used
in the top-down pass provides the best unbiased, linear estimate that satisfies the parent-child consistency
constraints.

Theorem 1. Suppose that the following conditions hold.

(a) β̌g := stack({β̌(c)}c∈Children(g)) ∈ Rnκ is any unbiased estimator of stack({β(c)}c∈Children(g))

(b) β̌g is linear in β̃(g) and β̂g := stack({β̂(c|c−)}c∈Children(g))

(c)
∑

c∈Children(g) β̌(c) = β̃(g)

If β̃(c) is defined as in (18) and β̃g is defined as stack({β̃(c)}c∈Children(g)), then

Var(β̃) ≤ Var(β̌g).(38)

Proof. Equation (18) implies that β̃g = (I −RE⊤)β̂g +Rβ̃(g), where R := stack({A(c)}c∈Children(g)). Since

E⊤R = I by definition of R, Lemma 4 implies that there exists D ∈ Rnκ×n such that E⊤D = 0 and

β̌g = (I − (R+D)E⊤)β̂g + (R+D)β̃(g),

which implies

Var(β̌g) = (I − (R+D)E⊤)Var(β̂g)(I − E(R+D)⊤) + (R+D)Var(β̃(g))(R+D)⊤

+ (I − (R+D)E⊤)Cov(β̂g, β̃(g))(R+D)⊤ + (R+D)Cov(β̃(g), β̂g)(I − E(R+D)⊤).(39)

After expanding, substituting Cov(β̂g, β̃(g)) for Cov(β̃(g), β̂g)
⊤, and then using Lemma 2 to substitute

Cov(β̃(g), β̂g) for E
⊤Var(β̂g)EQ̃⊤

g , (39) becomes

Var(β̌g) = Var(β̃g)− (I − (R+D)E⊤)Var(β̂g)ED⊤ −DE⊤Var(β̂g)(I − ER⊤)

+ (R+D)Var(β̃(g))D⊤ +DVar(β̃(g))R⊤

+ (I − (R+D)E⊤)Var(β̂g)EQ̃⊤
g D

⊤ −DE⊤Var(β̂g)EQ̃⊤
g R

⊤

− (R+D)Q̃gE
⊤Var(β̂g)ED⊤ +DQ̃gE

⊤Var(β̂g)(I − ER⊤)(40)

Since (21) implies (I −RE⊤)Var(β̂g)E = 0, (40) can be written as

Var(β̌g) = Var(β̃g) +DE⊤Var(β̂g)ED⊤ + (R+D)Var(β̃(g))D⊤ +DVar(β̃(g))R⊤

−DE⊤Var(β̂g)EQ̃⊤
g (R+D)⊤ − (R+D)Q̃gE

⊤Var(β̂g)ED⊤(41)

FULL-INFORMATION ESTIMATION FOR HIERARCHICAL DATA 23

Since Lemma 2 implies Q̃g = Var(β̃(g))
(
E⊤Var(β̂g)E

)−1

, (41) can be written as

Var(β̌g) = Var(β̃g) +DE⊤Var(β̂g)ED⊤ + (R+D)Var(β̃(g))D⊤ +DVar(β̃(g))R⊤

−DE⊤Var(β̂g)E
(
E⊤Var(β̂g)E

)−1

Var(β̃(g))(R+D)⊤

− (R+D)Var(β̃(g))
(
E⊤Var(β̂g)E

)−1

E⊤Var(β̂g)ED⊤

⇐⇒ Var(β̌g) = Var(β̃g) +DE⊤Var(β̂g)ED⊤ + (R+D)Var(β̃(g))D⊤ +DVar(β̃(g))R⊤

−DVar(β̃(g))(R+D)⊤ − (R+D)Var(β̃(g))D⊤

⇐⇒ Var(β̌g) = Var(β̃g) +D
(
E⊤Var(β̂g)E −Var(β̃(g))

)
D⊤(42)

Since Lemma 3 implies E⊤Var(β̂g)E −Var(β̃(g)) is positive semi-definite, (42) implies Var(β̌g) ≥ Var(β̃g).
□

	1. Introduction
	1.1. Notation
	1.2. Setting
	1.3. Motivation: The Weighted Least Squares (WLS) Estimator
	1.4. Previous Literature
	1.5. A Preliminary Result

	2. The Two-Pass Algorithm
	2.1. Bottom-Up Pass: Initialization Step
	2.2. Bottom-Up Pass: Recursion Step
	2.3. Top-Down Pass: Initialization Step
	2.4. Top-Down Pass: Recursion Step

	3. Covariance Between Estimates of Arbitrary Vertices
	4. Confidence Interval Estimation
	4.1. Computational Considerations

	5. Numerical Experiment
	6. Comparison with Hay et al. (2010)
	7. Conclusion
	References
	Appendix A. Result on Optimality of Top-Down Pass Projection

