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Monadic functors forgetful of (dis)inhibited actions

Alexandru Chirvasitu

Abstract

We prove a number of results of the following common flavor: for a category C of topolog-
ical or uniform spaces with all manner of other properties of common interest (separation /
completeness / compactness axioms), a group (or monoid) G equipped with various types of
topological structure (topologies, uniformities) and the corresponding category CG of appropri-
ately compatible G-flows in C, the forgetful functor CG Ñ C is monadic. In all cases of interest
the domain category CG is also cocomplete, so that results on adjunction lifts along monadic
functors apply to provide equivariant completion and/or compactification functors. This recov-
ers, unifies and generalizes a number of such results in the literature due to de Vries, Mart’yanov
and others on existence of equivariant compactifications / completions and cocompleteness of
flow categories.
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ity; uniformity;
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Introduction

The general theme underlying the sequel is that of equivariant topologically-flavored structures:
topologies, quasi-topologies, uniformities and the like, and their behavior in the presence of an action
by a group (or more generally monoid) G. We refer to such a structure as a G-flow in the relevant
category (of topological spaces, etc.: Definition 2.1 makes this precise), with the understanding that
the unqualified term does not entail any default continuity assumptions on the map G ˆ X Ñ X

implementing the flow.
Universal compactifications of G-flows offer part of the motivation. Recall [12, §4.4.4] that for

any topological group G, the inclusion functor

continuous compact Hausdorff G-flows “: Cpct
G

ι T2
ãÝÝÑ Top

G
ι :“ continuous G-flows (0-1)

has a left adjoint (Notation 2.3 explains the left-hand ‘ι’ subscripts). In other words, the full left-
hand subcategory is reflective [7, Definition 3.5.2]), associating to GˆX Ñ X the familiar universal
G-equivariant compactification βGX of X ([17, §1], [26], their many references, etc. The inclusion

(0-1) and its reflection moreover fit into a richer picture: a G-action G ˆ X
Ź
ÝÑ X on X equips the

latter with a uniform structure [19, Definition 7.1] pX,UŹq, generated by the entourages

VN :“
 

px, x1q P X2 | Ds P N, s Ź x “ x1
(

, neighborhood N Q 1 P G.
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The left adjoint βG to (0-1) then factors through the category unif of uniform spaces (with uniformly
continuous maps [19, Definition 7.7] as morphisms). The embedding

CpctT2
ãÝÝÑ Unif

obtained by equipping every compact Hausdorff space with its unique uniformity [19, Proposition
8.20] compatible with its topology also has a left adjoint

Unif Q pX,Uq
β‚

ÞÝÝÝÝÝÑ βUX P CpctT2
,

assigning to a uniform space pX,Uq its Samuel compactification βUX of [18, Theorem II.32]. The
equivariant compactification βGX is then nothing but βUŹ

X, equipped with the natural G-action
the latter inherits from X. Thus:

Top
G

ι

Unif
G

b

Cpct
G

ι T2
Unif

CpctT2

ŹÞÑUŹ β‚

βG

(0-2)

with forgetful unmarked downward arrows. The symbol Unif
G

b stands for the category of uniform

spaces pY,Uq equipped with G-flows GˆY
Ź
ÝÑ Y in Unif which are bounded in the sense of [14, §2,

p.276] (and the EUnif
G of [26, Definition 3.2(2)], etc.):

@ entourage V Ď Y 2, D nbhd N Q 1 P G with tps Ź y, yq | s P N, y P Y u Ď V. (0-3)

Paraphrased, the hypothesis of [17, Proposition 2.2], which ensures that the original action Ź
does indeed extend across the Samuel compactification X Ñ βUŹ

X, asks exactly that Ź be an
object of the category Unif

G
b just defined. This is so by the very definition of UŹ.

Given that the left adjoint to (0-1) is a G-equivariant version of the much more familiar Stone-
Čech compactification [7, Example 3.3.9.c], it seems reasonable to fit such left adjunctions into a
broader framework whereby the G-actions “comes along for the ride”. Formally, the observation is
that in all instances discussed above (and more), equivariant and “absolute” or “plain” compactifi-
cations are related through adjunction lifting [6, §4.5] along monadic functors [6, Definition 4.4.1];
we elaborate below, after a brief reminder ([6, §§4.1, 4.2] or [5, §§3.1, 3.2] or [23, §§VI.1-3] for the
standard theory, [15, §II] for the enriched-category version, and so on).

• A monad (or triple) on a category C is an endofunctor C
T
ÝÑ C equipped with natural trans-

formations
T ˝ T

µ
ÝÝÝÝÝÝÑ
associative

T and id
η

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
unital with respect to µ

T.

In short: a monoid in the monoidal category of endofunctors of C with composition for its monoidal
structure.

• An algebra over a monad T (or T -algebra) is an object X P C equipped with a morphism
TX Ñ X appropriately associative and unital with respect to µ and η.

T -algebras form Eilenberg-Moore category CT of T -algebras, equipped with a functor CT catfgt
ÝÝÝÝÑ C

forgetting the algebra structure maps TX Ñ X: [6, Definition 4.1.2] for plain categories, or [15,
§II.1, preceding Proposition II.1.1] for the enriched version.
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• A functor C1 Ñ C is monadic (or tripleable) if it fits into a diagram

C1

C

CT ,
»

fgt

commutative up to natural isomorphism.

The point now is that each square in the commutative functor diagram

Cpct
G

ι T2
Unif

G
b Top

G
ι

CpctT2
Unif Top

(0-4)

with forgetful downward arrows, and analogous squares involving “interpolating” categories such as
TopT2

(Hausdorff spaces) and TopT
3
1
2

(Tychonoff spaces), fits into the framework of the adjunction

lifting theorem [6, Theorem 4.5.6 and Exercise 4.8.5]: the downward arrows are monadic and the top
categories have appropriate colimits, and hence the top horizontal functors have left adjoints as soon
as the bottom ones do. A heavily abbreviated sampling of Theorems 2.9 and 2.10 and corollary 2.11,
then, reads as follows.

Theorem A (1) For every topological group G the forgetful functors CG
¨ Ñ C are all monadic,

with ¨ P tι, bu as appropriate and C ranging over any of the categories

- Top‚ with ‚ P tblank, T2, T2f “ functionally Hausdorff, T
3
1

2

u;

- or Unif‚ with ‚ P tblank, T2 “ Hausdorff, pT2, cq “ complete Hausdorffu;

- or CpctT2
.

(2) The categories CG
¨ of (1) are all also cocomplete

(3) Consequently, for any of the reflective inclusion functors C ãÑ D the corresponding CG
¨ ãÑ

DG
¨ is also reflective by monadic left-adjoint lifts.

Offshoots of this main thread include

• a generalization (Corollary 2.12) of the main result of [24] to the effect that for a Hausdorff
topological group G the category of G-Tychonoff flows (i.e. [25, p.220] those embedding homeomor-
phically onto their image in the G-equivariant compactification) is cocomplete;

• left adjoints of which the construction pX,Uq ÞÑ pX,UGq of [26, Lemma 3.8], universally
attaching a bounded flow in Unif to a quasi-bounded one [26, Definition 3.2(4)], is a particular case.
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1 Preliminaries

Some commonly-employed notation and terminology:

• The hom space of morphisms X Ñ Y in a category C is CpX,Y q. On the few occasions when
they come up, opposite categories carry a ‘˝’ superscript (as in C˝).

• Set, Top, Cpct and Unif denote the categories of sets and topological, compact and uniform
spaces respectively; for the latter we refer the reader to [19, Chapter 7], [8, Chapter II], etc., with
more specific citations below, as needed.

• We will often speak of D-concrete categories pC, Uq, i.e. [1, Definition 5.1] faithful functors

C
U
ÝÑ D. Set-concrete categories (the constructs of [1, Definition 5.1(2)]) are just plain concrete.

• Separation axioms ([34, §13 and §35] for topologies and uniformities respectively) occasionally
decorate the main category symbols as subscripts: TopT2

and UnifT2
for Hausdorff topological and

uniform spaces respectively, for instance, TopT
3
1

2

for Tychonoff [34, Definition 14.8] (or Hausdorff

completely regular) spaces, etc. Another example of occasional interest (for instance through its
relevance to operator algebras [28, Definition 2.2]) is the category TopT2f

of functionally Haus-
dorff spaces [34, Problem 14G]: those admitting continuous real-valued functions assigning any two
distinct points distinct values.

• Topκ is the category of compactly generated spaces (or κ-spaces), i.e. [34, Definition 43.8] the
spaces whose open sets are precisely those whose intersection with every compact subspace is open
(equivalently: carrying the final topology [8, §I.2.4, Proposition 6] induced by the inclusions of its
compact subspaces).

Topκ is coreflective in Top ([23, §VII.8, Proposition 2] for the Hausdorff version TopT2,κ Ă
TopT2

), so in particular (co)complete. By [23, §VII.8, Theorem 3] (and its non-Hausdorff coun-
terpart) Topκ and TopT2,κ are also Cartesian closed [23, §IV.6] for their product ˆκ (hence-
forth the κ-product) obtained by composing the usual Cartesian product with the coreflection
TopT2

Ñ TopT2,κ: all endofunctors ´ ˆκ X are left adjoints.

• We also write UnifT2,c for the category of complete [8, §II.3.3, Definition 3] Hausdorff uniform
spaces (completeness makes sense without separation, but is better behaved categorically in its
presence).

• For a monoidal category [6, Definition 6.1.1] pC,b, 1Cq we write GrpCq or MonpCq for the
categories of groups or respectively monoids internal to it: objects X P C equipped with associative

morphisms X b X Ñ X and units 1C Ñ X, along also with an inversion X
p´q´1

ÝÝÝÝÑ X in the case
of Gr, all mutually compatible in the familiar sense (see e.g. [23, §III.6] for Cartesian monoidal
categories, i.e. those with finite products and b “ ˆ).

Whenever an object Y in a monoidal category pV,b, 1V q is exponentiable in the sense [6, Defi-

nition 7.1.3] that V
´bY
ÝÝÝÑ V is left adjoint to a functor rY,´s, there is a correspondence

ˆ

morphisms X b Y Ñ Z

˙

–

ˆ

morphisms X Ñ rY,Zs

˙

currying

uncurrying

4



(in terminology well familiar to theoretical computer scientists [33, §5.1] and also occasionally in use
in category theory [4, Definition 14]). We frequently (and sometimes tacitly) take this for granted,
often for set maps, with b “ ˆ and rX,Y s “ functions X Ñ Y .

2 Monadic compactification / completion lifts

The central objects under consideration are flows in categories.

Definition 2.1 For a monoid G a flow on an object X P C of a category C is a monoid morphism
G Ñ CpX,Xq. �

Remarks 2.2 (1) The term ‘flow’ is in wide use in the literature (e.g. [3]), and its advantage
over ‘action’ is that it seems somewhat more natural to transport attributes of the underlying space
X to the former (rather than the latter): compact (Hausdorff) flows are those for which X is
compact (Hausdorff), similarly for Tychonoff spaces/flows, etc.

(2) The categories of interest in the present section are all concrete, and hence flows can always

be interpreted as just plain uncurried set maps G ˆ X
Ź
ÝÑ X (unital and associative, as usual).

Even when G is topological and C is some category of topological spaces, though, it is occasionally
convenient to consider flows whose underlying map Ź is not necessarily continuous. We allow for
this by further qualifying the flow:

• If G is a topological group then a flow on X in a Top-concrete category is continuous if the
map G ˆ X

Ź
ÝÑ X is.

• Under the same circumstances the flow is only separately continuous if s Ź x, s P G, x P X is
continuous in each variable if the other is kept fixed, etc. �

Notation 2.3 For monoidal C and internal monoids G P MonpCq one can also consider the category
CG
ι of objects X P C equipped with appropriately unital associative morphisms G b X Ñ X in C

(the left-hand subscript stands for ‘internal’). We apply this to subcategories D Ď C as well, writing
DG
ι for the internal flows G b X Ñ X with X P D (even when G itself is not an object of D, but
only of the larger C).

Top
G

ι , for instance, is the category of continuous flows for topological groups G. In practice,
such internal actions will always also be flows in the sense of Definition 2.1 by (un)currying, so we
refer to them as such. Other left-hand decorations occasionally appear, as in (0-2).

For more general families F of conditions we might demand flows satisfy we employ the generic
symbol CG

F
for the category of flows in C meeting those requirements. �

Remark 2.4 Suppose the topological group G has coincident right and left uniformity [31, Lemma-
Definition 2.1], with entourages consisting of ps1, sq P G2 with s1s´1 or respectively s´1s1 close to
1 P G. G will then be a group internal to Unif, and Unif

G
b is nothing but the Unif

G
ι of

Notation 2.3: (0-3) simplifies to the requirement that G ˆ Y
Ź
ÝÑ Y be uniformly continuous for the

(left=right) uniformity on G and the product uniformity on G ˆ Y ([31, Example 0.20(b)], [19,
§7.6], etc.; the categorical product in Unif). �

Constraints one might impose on flows in Top or Unif or any number of analogues (Hausdorff
spaces, etc.) include the following.
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Examples 2.5 (1) When G P MonpTopq and C Ď Top is a subcategory we have the continu-
ous flows therein, making up the category CG

ι of Notation 2.3.

(2) Still assuming G topological, there are also the separately continuous flows mentioned in
Remark 2.2(2).

(3) It is natural at this stage to regard the two preceding examples as polar extremes along a
topological-action-strength axis, with (1) most and (2) least constraining. Mixtures are conceiv-
able: one might consider, for instance, separately continuous actions G ˆ X Ñ X that are jointly
continuous when restricted to a fixed submonoid H ď G.

(4) Take C “ Unif (or subcategories thereof: UnifT2
, etc.) and G a topological group. We

have already recalled in (0-3) the bounded (or equiuniform) flows, constituting the category denoted
by EUnif

G in [26, Definition 3.2(3)] and Unif
G

b in (0-2).

(5) With C and G as in (4), there is the category of π-uniform actions (or quasi-bounded G-flows
in Unif) of [26, Definition 3.2(4)], denoted there by Unif

G. The requirement is that for every
entourage W Ď X2, the action G ˆ X Ñ X (or rather its Cartesian square) map some

∆N ˆ V :“ tps, sq | s P Nu ˆ V Ď G2 ˆ X2 – pG ˆ Xq2

into W for an identity neighborhood N Q 1 P G and an entourage V Ď X2 over the entourages of
the uniformity on X.

(6) As the nomenclature (bounded vs. quasi-bounded) suggests, and [26, Remark 3.3(5) and
paragraph preceding Remarks 3.3] observe, (4) constrains G-flows in Unif strictly more onerously
than (5). In the hybridization spirit of (3), one could concoct categories of flows quasi-bounded
globally and bounded when restricted to subgroups H ď G.

(7) Mimicking continuous flows in Top, where the action G ˆ X Ñ X must be a morphism
in that category, appropriate choices of F will model as Unif

G
F categories of flows for which

G ˆ X Ñ X is uniformly continuous when

• X is given its original uniformity on both sides;

• G is given its right or left uniformity, or the bilateral [31, Definition-Proposition 2.2] analogue;

• and G ˆ X its product uniformity.

Note, however, that G might not be an internal group in Unif: inversion would have to be uniformly
continuous, and it plainly is not so for the right (say) uniformity unless the latter is bilateral.

(8) Once more as in (2), having equipped G with a uniformity, we can recover the category of
separately uniformly continuous flows G ˆ X Ñ X in Unif as a CG

F
. �

Remark 2.6 The distinction drawn in Example 2.5(2) between joint and separate continuity does
matter in practice. Linear representations G ˆ E Ñ E of compact Hausdorff topological groups
on topological vector spaces, usually [30, §2, p.13] assumed separately continuous, can easily fail to
be jointly continuous ([10, Example 2.2], for instance). Joint continuity is, however, automatic [9,
p.VIII.9, Proposition 1] if the topological vector space E is barreled [21, §21.2]. �

One can rework much of the above internally to compactly generated spaces.
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Examples 2.7 (1) For G P MonpTopκq there are categories CG
ι of flows continuous for the

κ-product.

[12, §5.1] writes KR for TopT2,κ and KRGRP for GrpTopT2,κq. The resulting category of
G-flows discussed here is the k-KR

G of [12, §5.3].

(2) As in Example 2.5(2), one can weaken the preceding constraint to separate continuity.

(3) Take C “ TopT2,κ and G P MonpCq as in Example 2.7(1), but strengthen that constraint
(as opposed to weakening it, as (2) does): consider actions G ˆ X Ñ X jointly continuous for the
usual product topology (rather than the finer κ-product).

Per Proposition 2.8 below, this product-structure mixture (ordinary versus κ) produces a flow
category that is less well-behaved for our purposes (monadicity, etc.). �

Proposition 2.8 For an internal monoid G P MonpTopT2,κq the following conditions are equiva-
lent.

(a) G is locally compact.

(b) The forgetful functor Top
G

c T2,κ
U
ÝÑ TopT2,κ from flows G ˆ X Ñ X jointly continuous for

the Cartesian product is monadic.

(c) U is a right adjoint.

(d) U is continuous.

(e) U preserves products.

(f) U preserves binary products.

(g) U preserves products of the form pG, translation actionq ˆ pX, trivial actionq.

Proof For (a) ñ (b) recall [6, Proposition 7.2.9] that plain Cartesian products with locally compact
spaces coincide with the corresponding κ-products. U , in that case, will be the forgetful functor
associated to the monad G ˆ ´ (unambiguous product).

The other downward implications being formal, it remains to settle (g) ñ (a). Failure of local
compactness would imply [27, Theorem 3.1 and footnote (5)] the existence of some X P TopT2,κ

for which the κ-product Gˆκ X is strictly finer than the usual product. But then Example 2.18(2)
argues via Lemma 2.17 that the left-hand translation action on G ˆκ X is not continuous on G ˆ
pG ˆκ Xq, negating (g). �

It will be useful to have the monadicity claims made in the Introduction collected together under
one heading, with a more or less common argument. Some are certainly in the literature, e.g. [12,
Theorem 3.1.9] or [13, Theorem 2.3] for C “ Top (which case is simpler than the others because
the left adjoint to Top

G
ι Ñ Top is explicitly Gˆ ´); I have not been able to trace all back to prior

work though.

Theorem 2.9 Let G be a monoid and S,J Ď 2G families of subsets thereof.
The functors CG

F
Ñ C forgetful of actions meeting a constraint F are monadic in all of the

following cases.

7



(a) G is a topological monoid, C is any of the subcategories Top‚ with

‚ P
!

blank, T0, T1, T2, T2f , T
3
1

2

)

or CpctT2
, and the actions GˆX Ñ X are required to be separately continuous over S ˆX, S P S

and jointly continuous over J ˆ X, J P J .

(b) G is equipped with a uniformity, C “ Unif‚ with ‚ P tblank, T2, pT2, cqu, and the actions
are again separately (jointly) uniformly continuous over S ˆ X, S P S (respectively J ˆ X, J P J ).

(c) G P MonpTopκq, C “ Top‚,κ with ‚ P tblank, T2u, and the actions are again jointly or
separately continuous respectively over

κpSq ˆ X and κpJq ˆκ X, S P S, J P J

where κ is the coreflection Top Ñ Topκ and ˆκ is the κ-product of Section 1.

(d) G is a topological group, C a category of uniform spaces as in (b) above, and the actions are
required to be either bounded (Example 2.5(4)) or quasi-bounded (Example 2.5(5)).

Proof We suppress the left-hand subscript in CG
F

Ñ C to lighten the notation.
The proof is a standard application of Beck’s Precise Tripleability Theorem (PTT) ([5, §3.3,

Theorem 10] or [6, Theorem 4.4.4]), whose hypotheses we check in turn (also recalling them in the
process).

(I) CG G
ÝÑ C is a right adjoint. As noted above, some cases are simpler than others: for

C “ Top, for instance, one can simply take the left adjoint of G to be G ˆ ´ with the left-hand
translation action. This move does not apply in general, e.g. for C “ CpctT2

, because G is not
generally compact Hausdorff. It will thus be cleaner to give a uniform abstract existence argument

for the left adjoints C
F
ÝÑ CG by verifying the conditions of Freyd’s Adjoint Functor Theorem ([1,

Theorem 18.12], [23, §V.6]).

First, in all cases, the two categories CG and C are complete (i.e. [23, §V.1] have arbitrary small
limits) and G is continuous (meaning [23, §V.4] that it preserves those limits). It is enough [1,
Theorem 12.3 and Proposition 13.4] to check this for products and equalizers; these are defined in
all cases set-theoretically via subspace/product topologies and uniformities, the various separation
axioms mentioned (T2 and T

3
1

2

) survive passage to both subspaces and products, and G-actions

simply come along.

Secondly, the Adjoint Functor Theorem also requires the solution-set condition: for every object

X P C there is a set (as opposed to a proper class) of morphisms X
fiÝÑ GYi such that every X

f
ÝÑ GY

factors as

X

GYi

GY .

fi Gg

f

This is achievable by taking for the set tfiu all morphisms from X into G-action carriers of cardinality
ď κ for some κ dependent only on X and G.

In those cases where it suffices to factor through G-invariant subspaces this is obvious: a G-
invariant space generated by the image of a map defined on X has cardinality at most |G| ¨ |X|.
When one has to factor through closed subspaces, i.e. when a completion process is involved (for
C “ UnifT2,c and CpctT2

), recall [20, §2.4] that there is a uniformly-valid bound

|Z| ď exp exp |D|, Z P TopT2
, D Ď Z dense.

8



(II) G reflects isomorphisms. This means that a morphism f in the domain CG of G is
an isomorphism provided Gf is one in the codomain C. The claim is self-evident, as in each case
inverses of G-equivariant maps are again G-equivariant.

(III) CG has coequalizers for the pairs pf, gq with pGf,Ggq contractible and G pre-

serves them. Recall [5, §3.3, pre Proposition 2] that a pair pϕ0, ϕ1q of morphisms in a category is
contractible (or split) if it fits into a diagram

X 1 X Y

ϕ0

ϕ1

ϕ

r

s , ϕr “ id, ϕ0s “ id, ϕ1s “ rϕ (2-1)

(whereupon ϕ is automatically [5, §3.3, Proposition 2] a coequalizer for pϕ0, ϕ1q).

In all cases G acts by C-isomorphisms, so the action does travel along the coequalizer ϕ of (2-1)
to give an action GˆY Ñ Y (with ϕi :“ Gfi, i “ 0, 1). The issue is in every case checking that that
map is continuous in the appropriate sense (plainly continuous or compatible with the uniformity).
This, though, follows from the splitting (2-1): the action in question factors as

G ˆ Y

G ˆ X X

Y ,

idˆr ϕ

(2-2)

with the outer bottom arrows morphisms in the desired category C and the middle bottom morphism
continuous in the requisite sense. �

The categories CG are also presumably well known to be cocomplete: see [12, §4.3.3] for C “ Top,
TopT2

and CpctT2
for instance. We record the result in full here, for convenience and uniformity.

Theorem 2.10 The categories CG
F

Ñ C of Theorem 2.9 are all cocomplete.

Proof Consider a small-domain functor D
F
ÝÑ CG

F
Ñ C. A colimit for F is nothing but an

initial object in the category cocpF q of cocones over F [7, Definitions 2.6.5 and 2.6.6]. Because
CG

F
Ñ C is continuous between categories cocpF q is complete as well, with the forgetful functor

cocpF q Ñ CG
F

Ñ C assigning a cocone its tip continuous.
Freyd’s initial-object theorem [23, §V.6, Theorem 1] will thus ensure the existence of such an

initial object assuming, once more, a solution-set condition: a set S of objects in cocpF q so that
every object receives a morphism from some object in S. Exactly as in the proof of Theorem 2.9,
though, it is enough to take for S all flows whose carrier space X has cardinality bounded by some
cardinal dependent only on F and G. �

To return to the issue of equivariant compactifications and monadic lifting:

Corollary 2.11 For any of the reflective inclusion functors C ãÑ D the corresponding CG
F

ãÑ DG
F

is also reflective.

Proof As sketched before, in the discussion surrounding (0-4):

CG
F

DG
F

C

D

fgt

fgt

9



has monadic downward arrows by Theorem 2.9, a reflective bottom rightward arrow by assumption
and a cocomplete left-hand corner by Theorem 2.10. The top rightward arrow must then also be a
right adjoint, by the already-referenced adjunction lifting theorem [6, Theorem 4.5.6] (which in fact
would only have required that CG

F
have coequalizers for reflexive pairs [6, Exercise 4.8.5]). �

As an aside, recall ([25, p.220], [2, §4]) that a G-flow is G-Tychonoff if its map to the universal G-
equivariant compactification is a homeomorphism onto its image. Since the property is one attached
to the flow rather than the space, we denote the resulting category by

`

Top
G

ι

˘

T
3
1

2

. The relatively

recent [24] proves
`

Top
G

ι

˘

T
3
1

2

cocomplete for Hausdorff G by

• first constructing coequalizers in the larger category Top
G

ι T
3
1

2

[24, Theorem 1] and then

transporting those over to
`

Top
G

ι

˘

T
3
1

2

[24, Corollary 2];

• and also constructing coproducts in that smaller category directly [24, Theorem 3].

The cocompleteness result follows from Theorem 2.10 with no separation constraints on G, but
it might be worth recording the natural intermediate generalization between the two cocompleteness
results.

An embedding C ãÑ D as in Corollary 2.11 will single out a special class of objects in the larger
category DG

F
: the full subcategory

´

D
G

F

¯

CãÑD

ãÝÝÑ D
G

F (2-3)

on those objects G ˆ X Ñ X whose reflection X Ñ Y in CG
F

is an isomorphism (uniform or
topological, etc.) onto its image.

Corollary 2.12 For C ãÑ D as in Corollary 2.11 the subcategory (2-3) is cocomplete.

Proof An immediate consequence of Theorem 2.10 and Corollary 2.11, since (2-3) is full reflective:
the reflection of an object is its image through the reflection in CG

F
. �

And returning to the motivating instance:

Corollary 2.13 The category
`

Top
G

ι

˘

T
3
1

2

of continuous G-Tychonoff flows is cocomplete.

Proof This is indeed a particular case of Corollary 2.12:
´

Top
G

ι

¯

T
3
1

2

Ď Top
G

ι T
3
1

2

is precisely (2-3) with F :“ ι, C :“ CpctT2
and D :“ TopT

3
1
2

. �

Remarks 2.14 (1) The forgetful functors CG
F

Ñ C Ñ C of Theorem 2.9 are more rarely
cocontinuous:

• For C “ Top, for instance, [12, Theorem 3.4.3] shows that colimits are preserved when G is
locally compact Hausdorff, but coequalizers are not preserved generally by [12, §3.4.4].

The crucial property of G in the aforementioned [12, Theorem 3.4.3] is in fact its exponentiability
(i.e. the requirement that G ˆ ´ be a left adjoint on Top, as recalled in Section 1). Indeed, this
will ensure coequalizer preservation and in fact cocontinuity (the conditions are in fact equivalent:
Proposition 2.15): T is precisely the monad attached to the monadic functor Top

G
ι Ñ Top, and

it is a formal exercise to show that in general, given

10



– a small category D;

– a category C admitting D-shaped colimits limÝÑF , D
F
ÝÑ C;

– and a monad C
T
ÝÑ C,

D-shaped colimits exist in the Eilenberg-Moore category CT and are preserved by the forgetful

functor CT G
ÝÑ C if and only if they are preserved by T .

The implication (ð) (also noted in passing in [32, proof of Lemma 5.5]) is [6, Proposition 4.3.2].
Conversely, recall that T can be recovered as

T “ G ˝ pleft adjoint of Gq .

Said left adjoint of course preserves arbitrary colimits, so any colimits preserved by G are preserved
by T also.

Locally compact spaces (separated or not) are exponentiable [6, Proposition 7.1.5], so [12, The-
orem 3.4.3] in fact goes through for possibly non-T2 locally compact groups. See also [16, Theorem
II-4.12] for alternative characterizations of exponentiable spaces. Exponentiability is equivalent to
local compactness assuming T2 (or more generally [16, Theorem V-5.6], for sober spaces, i.e. [16,
Definition O-5.6] those for which irreducible closed sets are closures of unique singletons).

• For C “ CpctT2
and locally compact Hausdorff G the preservation of coproducts by CG

ι Ñ
C Ñ C is equivalent to the discreteness of G [11, Theorem 3.1].

(2) Item (1) above also shows that in proving monadicity, one could not employ some of the
“coarser” versions of Beck’s theorem. The Reflexive Tripleability Theorem (RTT) of [29, Proposition
5.5.8], for instance, would require the preservation by CG

F
Ñ C of reflexive coequalizers, i.e. [5,

§3.3, p.108] coequalizers of pairs pf, gq of parallel morphisms that have a common right inverse. In
all cases under consideration, though, that would amount to preservation of arbitrary coequalizers
(which we know does not obtain universally): because coproducts are, space-wise, simply disjoint
unions, an arbitrary parallel pair

X Y

f

g

expands into a reflexive pair

X
š

Y Y

pf,idY q

pg,idY q

with the same coequalizer. �

Incidentally, the argument in [12, §3.4.4] showing (via [12, Example 1.5.11]) that Top
pQ,`q Ñ

Top fails to preserve coequalizers can be amplified into a characterization of those groups for which
such pathologies do not obtain. See also [12, §§6.3.6-7] for explicit mention and discussion of the
comonadicity of Top

G
ι Ñ Top for locally compact Hausdorff G.

Proposition 2.15 For a topological group G, the following conditions are equivalent.

(a) G is exponentiable as a topological space, i.e. Top
Gˆ´
ÝÝÝÑ Top is a left adjoint.

(b) G ˆ ´ is cocontinuous.

11



(c) G ˆ ´ preserves Top-coequalizers.

(d) G ˆ ´ preserves quotients in Top by equivalence relations.

(e) Top
G

ι
G
ÝÑ Top is comonadic.

(f) Top
G

ι
G
ÝÑ Top is a left adjoint.

(g) Top
G

ι
G
ÝÑ Top is cocontinuous.

(h) Top
G

ι
G
ÝÑ Top preserves coequalizers.

Proof The downward implications from (a) to (d) are obvious (for arbitrary spaces; the group
structure is irrelevant), and [16, Theorem II-4.12] proves (a) ðñ (d) (for T0 spaces, but that
assumption is not crucial). The first four conditions are thus equivalent.

We also plainly have
peq ùùñ pfq ùùñ pgq ùùñ phq. (2-4)

The first implication reverses by any number of comonadicity, dually to Theorem 2.9, because we
already know that G is continuous (so preserves all equalizers). Because G preserves coproducts, it is
cocontinuous precisely when it preserves coequalizers [1, Proposition 13.4], so the third implication
in (2-4) also backtracks. As for the converse to the second implication, it is a consequence of the
adjoint functor theorem [1, Theorem 18.12] provided we verify the solution-set condition. To that

end, note that every map GpY q
f
ÝÑ X in Top factors (just plain set-theoretically) as

GpY q

XG

X

projection at 1PG

f

through the G-equivariant upper left-hand map

GpY q Q y ÞÝÝÑ
`

G Q s ÞÝÝÑ fps Ź yq P X
˘

P XG

(with XG acted upon by G via sŹϕ :“ ϕp´ ¨sq). f will thus factor through Gpπq for some quotient
G

π
ÝÑ G in Top

G
ι of cardinality |G| ď |XG| (so bounded independently of G).

We now have

pdq ðñ pcq ðñ pbq ðñ paq
Remark 2.14(1)

ðùùùùùùùùùñ phq ðñ pgq ðñ pfq ðñ peq,

and we are done. �

Remark 2.16 It might also be instructive to adapt [12, Example 1.5.11 and §3.4.4] (there specific
to G “ Q) to see directly how coequalizer preservation fails whenever G ˆ ´ fails to preserve a
quotient X :“ X{R in Top by an equivalence relation R Ď X2: the implication (h) ñ (d) of
Theorem 2.10, in other words.

Failure of quotient preservation means that the quotient topology G ˆq X is strictly finer than
the usual product topology G ˆπ X. It then follows that the translation action

G ˆπ pG ˆq Xq ÝÝÑ G ˆq X

cannot be continuous. The general phenomenon driving this remark is recorded in Lemma 2.17
below. �
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The technical principle noted in Lemma 2.17 below is certainly a simple one, but worth isolating:
it has already surreptitiously come in handy (at least) twice.

Recall [22, Definition 1.2.10] that a colax (sometimes oplax [35, p.271]) monoidal functor D
F
ÝÑ C

between monoidal categories pD,b, 1q and pC,b, 1q is one equipped with morphisms

F p‚ b ´q
φ‚,´

ÝÝÝÝÝÝÑ F ‚ bF ´ and 1
φ

ÝÝÝÝÑ F1,

natural and compatible with the associativity and unitality constraints in the guessable sense.

Lemma 2.17 Let D F
ÝÑ C be an op-lax monoidal functor,

G b G
µ

ÝÝÝÝÑ G, 1
η

ÝÝÝÝÑ G in D

an internal monoid and X P D an object.
If there is a factorization

F pG b G b Xq

F pGq b F pG b Xq

F pG b Xq

φG,GbX

F pµbidXq

(2-5)

then F pG b Xq
φG,X
ÝÝÝÑ FG b FX has a left inverse. In particular, if φG,X is epic then it is an

isomorphism.

Proof Left-invertible epimorphisms are isomorphisms by (the dual to) [1, Proposition 7.36], hence
the second claim given the first. For the latter, fit a factorization (2-5) into the commutative

F pG b G b Xq

F pGq b F pG b Xq

F pG b Xq;

F pG b Xq

FG b FX

φG,GbX

F pµbidXq

F pidG bηbidXq

φG,X idFG bF pηbidXq

id

commutative, indeed, because the triangle commutes by assumption and the upper left-hand square
by the naturality of φ‚,´. We have the requisite left inverse to φG,X in the composition of the two
upper right-hand maps. �

Examples 2.18 The two occasions for applying Lemma 2.17 alluded to above are as follows.

(1) Take C “ Top with its usual Cartesian monoidal structure (or any number of satellite
variations; TopT2

, etc.). D is the category of equivalence relations

pX,Rq, R Ď X ˆ X, X P C,

again with the Cartesian structure. The functor D
F
ÝÑ C is

D Q pX,Rq
F

ÞÝÝÝÝÑ X :“ X{R P C.

13



The colax structure derives from the familiar observation that quotients of products have at least
a fine a topology as the corresponding products of quotients. The canonical φ‚,´ are also plainly
epic, being set-theoretic bijections.

Identify G P MonpCq with its diagonal equivalence relation, so that it becomes a monoid in D as
well. Lemma 2.17 then applies, and says that whenever Gˆ´ fails to preserve a quotient X :“ X{R
the left-hand translation G-action on the quotient space Gˆq X with the quotient topology fails to
be continuous for the Cartesian topology on G ˆ pG ˆq Xq.

(2) Take for F the full embedding

D :“ TopT2,κ ã
F

ÝÝÝÝÑ TopT2
“: C

of the category of Hausdorff compactly generated spaces, i.e. [34, Definition 43.8] those X P TopT2

whose open sets are precisely those whose intersection with every compact subspace is open (equiva-
lently: X carries the final topology [8, §I.2.4, Proposition 6] induced by the inclusions of its compact
subspaces).

TopT2,κ is coreflective in TopT2
[23, §VII.8, Proposition 2], so in particular (co)complete. It is

also Cartesian closed [23, §VII.8, Theorem 3] for its product ˆκ (henceforth the κ-product) obtained
by composing the usual Cartesian product with the coreflection TopT2

Ñ TopT2,κ; this gives the
colaxity

p‚q ˆκ p´q
φ‚,´

ÝÝÝÝÑ p‚q ˆ p´q

required by Lemma 2.17, again epic because bijective. Per that result, we will have G P MonpTopT2,κq
failing to operate plain-ˆ-continuously on GˆκX whenever the latter carries a strictly finer topology
than G ˆ X. This phenomenon is what drove the proof of Proposition 2.8. �

There are also functors linking the categories CG
F

of Theorem 2.9 for fixed C and G varying
F : one can strengthen the constraint F to F 1 (notation: F ĺ F 1) in the sense of making it more
demanding. Examples include

• enlarging S and/or J ;

• enlarging individual sets belonging to S and/or J ;

• strengthening the quasi-boundedness of Example 2.5(5) to the boundedness of Example 2.5(4);

• and in turn strengthening the latter to joint uniform continuity for actions G ˆ X Ñ X as in
Example 2.5(7), upon equipping G with any of its standard uniformities (left, right, bilateral).

Any such relation F ĺ F 1 produces a full inclusion functor CG
F 1 Ď CG

F
. It is at this point not

surprising, perhaps, that those inclusions reflect (i.e. admit left adjoints).

Theorem 2.19 For all listed instances of constraint strengthening F ĺ F 1 in the context of Theorem 2.9
the resulting inclusion CG

F 1 Ď CG
F

is reflective.

Proof By Theorem 2.9 the categories are complete and the inclusion is continuous because it fits
into a commutative triangle

CG
F 1

C

CG
F

.
ι

monadicmonadic
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The conclusion now follows from the adjoint functor theorem [1, Theorem 18.12] after again ob-
serving that the solution-set condition is satisfied in all cases: a morphism X Ñ ιY in the larger
category factors through ιY 1 with the cardinality of Y 1 bounded uniformly in terms of only X and
the fixed data C, G, F and F 1. �

Remark 2.20 The particular case

quasi-boundedness (Example 2.5(5)) “: F ĺ F
1 :“ boundedness (Example 2.5(4))

of Theorem 2.19 is the construction pX,Uq ÞÑ pX,UGq of [26, Lemma 3.8], attaching a uniform
space carrying a bounded G-action to one carrying only a quasi-bounded one.

[26, Lemma 3.8] does not phrase the construction in terms of universality, but the check that that
universality does obtain is simple enough: the entourages of the original uniformity U are enlarged by
fiat into those of UG so as to render the original action bounded (hence a uniformly continuous map
pX,Uq Ñ pX,UGq), and the enlargement is plainly optimal subject to this boundedness constraint.�
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