2404.13170v1 [gr-gc] 19 Apr 2024

arxXiv

Adaptive algorithms for low-latency cancellation of seismic Newtonian-noise at the

Virgo gravitational-wave detector

Soumen Koleyﬁ and Jan Harms
Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy and
INFN, Laboratori Nazionali del Gran Sasso, 1-67100 Assergi, Italy

Annalisa Allocca, Enrico Calloni, Rosario De Rosa, Luciano Errico, and Marina Esposito
Universita di Napoli “Federico I1”, 1-80126 Napoli, Italy and
INFN, Sezione di Napoli, 1-80126 Napoli, Italy

Francesca Badaracco and Luca Rei
INFN, Sezione di Genova, via Dodecaneso, I-16146 Genova, Italy

Alessandro Bertolini
Nikhef, 1098 XG Amsterdam, The Netherlands

Tomasz Bulik
Astronomical Observatory, University of Warsaw,
Al.  Ujazdowskie 4, 00-478 Warsaw, Poland and
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

Marek Cieslar, Mateusz Pietrzak, and Mariusz Suchenek
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

Irene Fiori, Andrea Paoli, Maria Concetta Tringali, and Paolo Ruggi
European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy

Stefan Hild and Ayatri Singha
Maastricht University, 6200 MD Maastricht, The Netherlands and
Nikhef, 1098 XG Amsterdam, The Netherlands

Bartosz Idzkowski and Maciej Suchinski
Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland

Alain Masserot and Loic Rolland

Université Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, F-74000 Annecy, France

Benoit Mours
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Federico Paoletti
INFN, Sezione di Pisa, [-56127 Pisa, Italy
(Dated: April 23, 2024)

A system was recently implemented in the Virgo detector to cancel noise in its data produced by
seismic waves directly coupling with the suspended test masses through gravitational interaction.
The data from seismometers are being filtered to produce a coherent estimate of the associated
gravitational noise also known as Newtonian noise. The first implementation of the system uses
a time-invariant (static) Wiener filter, which is the optimal filter for Newtonian-noise cancellation
assuming that the noise is stationary. However, time variations in the form of transients and slow
changes in correlations between sensors are possible and while time-variant filters are expected to
cope with these variations better than a static Wiener filter, the question is what the limitations are
of time-variant noise cancellation. In this study, we present a framework to study the performance
limitations of time-variant noise cancellation filters and carry out a proof-of-concept with adaptive
filters on seismic data at the Virgo site. We demonstrate that the adaptive filters, at least those
with superior architecture, indeed significantly outperform the static Wiener filter with the residual
noise remaining above the statistical error bound.
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I. INTRODUCTION

Since the first detection of gravitational waves in 2015
[1], the Advanced Virgo and LIGO detectors [2, [d] have
collectively detected about 90 gravitational wave (GW)
signals across three distinct observing runs M—Iﬂ] Be-
tween each observing run, phases of technological up-
grades are interleaved, targeting enhancements in detec-
tor sensitivity and duty-cycle %] The detector’s ulti-
mate sensitivity depends on the intrinsic physics embed-
ded within its design, such as laser shot noise at high fre-
quencies ﬂQ] and suspension-thermal noise at low frequen-
cies [10]. Figure @ shows the contribution of the different
fundamental sources of noise to the Advanced Virgo Plus
(AdV+) sensitivity. Alongside suspension-thermal noise,
Newtonian noise (NN) is anticipated to be a significant
obstacle in achieving the desired design sensitivity for fre-
quencies below 20 Hz. Consequently, one of the planned
upgrades for AdV+ before the fourth observing run (0O4)
involved the design and implementation of a low-latency
system aimed at canceling NN ] The requirement for
low latency comes from certain online analyses providing
preliminary parameter estimates, e.g., for masses and sky
location.
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FIG. 1. Contribution of several fundamental sources of noise
to the AdV+ design sensitivity corresponding to a laser input
power of 40 W and 12dB of frequency-dependent squeezing.
Newtonian noise is expected to be one of the major contrib-
utors to the low-frequency sensitivity

Newtonian noise arises from the gravitational coupling
of terrestrial density fluctuations to the suspended test-
masses of the detector ﬂﬂ], which can originate from seis-
mic waves propagating in the subsurface [13, ] or varia-
tions in pressure and temperature within the atmosphere
ﬂﬁ—lﬂ] In this article, our focus centers on cancella-

tion strategies specifically tailored for seismic NN. At-
mospheric NN produced by acoustic noise in the Virgo
buildings is predicted to be significantly lower than the
targeted AdV+ design sensitivity due to noise-mitigation
measures connected to Virgo’s air-handling system.

A technique to mitigate NN is through coherent noise
cancellation. The NN cancellation (NNC) design and im-
plementation phase follows three key steps: estimating
NN to obtain NNC requirements, designing an optimal
seismic array layout for cancellation, and implementing
algorithms to enable low-latency noise cancellation. Esti-
mation of NN relies on analytical or numerical methods
for computing the seismic displacement of the subsur-
face m,bﬁ] Simulations necessitate a priori informa-
tion concerning the seismic properties of the site. This
includes the spatial distribution of noise sources near
the test-masses, characteristics of the seismic wavefield
(whether surface or body waves), and the finite element
models representing the infrastructure surrounding the
test-masses. Studies utilizing seismic arrays for the de-
composition of the wavefield into plane waves have been
conducted at Virgo, both inside and outside the End
Buildings m, @] These surveys yield the frequency-
dependent direction and velocity of seismic noise propa-
gation at the site. Building on these studies, simulation
results for NN estimates concerning Virgo have been de-
tailed in ﬂﬁ, @] For simplicity, the green curve in Figure
[ shows the mode of the NN estimate for AdV+. In re-
ality, the NN estimate is dependent on the magnitude of
seismic noise and is time-varying.

The next phase involves designing the optimal seismic
array layout for NN cancellation. The concept of deploy-
ing seismometers around the test-masses to mitigate NN
was introduced in ] This approach makes use of the
Wiener-Hopf formulation [26], which establishes a con-
nection between observed seismic displacements and the
measured GW strain. Design of such a noise cancella-
tion system have been demonstrated for Advanced LIGO
in ﬂﬂ—@] Adopting a similar strategy, an optimal seis-
mic array designed for NN cancellation was developed for
Virgo E_é] and subsequently installed at the Virgo Cen-
tral Building (CEB), as well as the North and West End
Buildings (NEB, WEB). The method performs a global
minimization of the frequency domain Wiener residual
corresponding to the various array layouts under consid-
eration.

The final step in NN cancellation and the focus of this
article involves implementation of algorithms that make
use of data from the optimal seismic array (witness chan-
nels) to subtract coherent noise from the GW strain data
(target channel). In cases of wide-sense stationary in-
puts, the Wiener filter is the optimal choice for elimi-
nating the contribution of witness channels from the tar-
get channel. Standard implementations typically involve
computing this filter using extended data periods (last-
ing days). Long data stretches are used to ensure that
the filter coefficients are sufficiently trained to reproduce
the data from the target channels. As has been observed



for Virgo, static filter of this kind provides sub-optimal
cancellation capabilities when handling time-varying in-
puts M] Addressing this challenge involves recalculat-
ing the Wiener filter at designated time intervals. How-
ever, implementing this solution in low-latency applica-
tions proves impractical due to computational complex-
ity and the ambiguity surrounding the selection of an
appropriate time interval for recomputing the filter co-
efficients. A straightforward approach to tackle this is-
sue is by exploring algorithms that address the Wiener
problem and continuously adjust the filter coefficients for
incoming samples from the witness channels. Adaptive
filtering has been widely used in acoustic echo cancella-
tion, channel equalization, speech processing, and prob-
lems related to system identification HE] Inspired by
these applications, in this article we explore two classes
of algorithms that adaptively solve the minimum-mean-
square-error problem. The first one is the least mean
square (LMS), which employs a stochastic gradient tech-
nique to minimize the mean square of the error signal
(Chapter 6 in [33]). The LMS class of algorithms is pop-
ular for its computational simplicity. However, its draw-
back lies in slow convergence and its heavy reliance on
the spectral characteristics of witness signals M] The
second class of algorithms are the recursive least squares
(RLS), which solves the quadratic minimization prob-
lem exactly at each time step. As demonstrated in m],
RLS algorithms exhibit superior tracking behavior over
LMS in medium to high signal-to-noise ratio (SNR) en-
vironments and are independent of spectral characteris-
tics when it comes to convergence rates. In this article
we evaluate the performance and suitability of these two
classes of algorithms for implementation as a low-latency
NNC at the Virgo GW detector.

The rest of the article is organized as follows: Section
[ presents a background to the cancellation problem and
a brief discussion on the seismic environment at Virgo.
Fundamental performance limitations of Wiener filters
are discussed in Section [[IIl Section [[V] compares the
noise cancellation performance between static and time-
variant Wiener filters, and sets the stage for adaptive
filters. Sections [V] and [V present the adaptive schemes
for the LMS and the RLS filters, and make a quantita-
tive assessment of the subtraction performance of each of
the algorithms. Section [VII] addresses limitations in the
current methods and explores areas of improvement. Fi-
nally the conclusions of the work are presented in Section

(VITI

II. BACKGROUND

The seismic NN cancellation array in the Virgo GW
detector comprises 115 geophones distributed across the
CEB (55), NEB (30), and WEB (30). Their locations
were determined based on array optimization studies in
[30). FiguresP(a), (b), and (c) depict the seismic arrays
at each Virgo building. These geophones have a reso-

nance frequency of 5 Hz and continuously acquire vertical
component of the seismic noise at a sampling rate of 500
samples per second. The ideal target channel to showcase
the adaptive cancellation of NN is the GW strain output
of the interferometer. However, Virgo is presently in its
commissioning phase and has yet to achieve its intended
sensitivity, particularly within the 10 — 30 Hz frequency
band, where NN is anticipated to be a major contribu-
tor to Virgo’s overall noise budget. In Figure Bl(a), the
AdV+ sensitivity is depicted, derived by averaging the
power spectral densities over 300s long windows across
a full day of data on September 19, 2023. The selection
criteria encompassed all time windows where the binary
neutron star range exceeded 25Mpc. As evident from
the figure, Virgo’s sensitivity exceeds the design sensi-
tivity by approximately three orders of magnitude. This
is further supported in Figure Bib), which shows that
no significant cross-correlations are detected between the
NN witness channels and the GW strain channel. The
cross-correlations were estimated using the same window
lengths and selection criteria of 25 Mpc as used for gen-
erating the power spectral densities.

The seismic wavefield inside the Virgo buildings is
mostly dominated by Rayleigh waves ﬂﬂ] These include
both sharp-spectral and broadband sources of noise. Vac-
uum pumps and motors operating within the Virgo build-
ings are some of the examples of sharp-spectral noise HE]
Broadband sources typically originate farther away from
the buildings and can be attributed to traffic and farming
activities ﬂﬂ] In a scenario where the seismic wavefield is
primarily dominated by Rayleigh waves, the ground tilt
along the direction of the detector is fully coherent with
NN from plane Rayleigh waves ﬂﬂ] Therefore, a logi-
cal alternative to the GW strain channel as the target
channel is the tilt signal measured by a tiltmeter. The
NEB at Virgo hosts a tiltmeter - which is a highly sensi-
tive prototype balance and was originally developed for
the Archimedes experiment ﬂ@] The device is equipped
with an interferometric readout and has a resonance fre-
quency of about 23 mHz which makes it suitable for tilt
measurements in the NN band @]

The performance of the noise cancellation system when
using the tilt as the target signal strongly depends on the
reconstruction accuracy of the tilt signal with the witness
channels. An analysis of tilt reconstruction by using the
spatial derivative of the vertical component of seismic
noise, as measured by an array of geophones, was con-
ducted for Virgo in 2020. Further details can be found
in ﬂﬂ] Another metric to demonstrate cancellation per-
formance using Wiener filters involves estimating cross-
correlations between the witness channels and the tilt
signal. Figure [ shows a surface plot of the normalized
cross-correlations between the 30 witness channels and
the tilt signal. Strong correlations of about +0.8 are
observed at frequencies of 11.7, 12.4, 18.5, 23.4, 24.4,
and 24.7Hz. These correspond to noise sources origi-
nating from the heating and the ventilation system at
the NEB. Additionally, broadband noise exhibits abso-



lute cross-correlation magnitudes ranging between 0.2
and 0.4. Consequently, strong cancellation is anticipated
for the several noise peaks, while the opposite is expected
for broadband noise.

IIT. LIMITS OF COHERENT NOISE
CANCELLATION

In this section, we calculate two important limits of
coherent noise cancellation. We start by considering the
static Wiener filter and then discuss the case of adaptive
Wiener filters. Generally, the performance of a Wiener
filter depends on:

1. Number and type of sensors (accelerometer, strain-
meter, tiltmeter), which determine the complete-
ness of information we have about the seismic field;

2. Sensitivity of sensors, which determines the preci-
sion of the derived NN model,;

3. Amount of data/information to calculate the
Wiener filter, which determines a possible bias of
the model.

The Wiener filter can be represented in frequency domain
or in time domain. Its coefficients can be assembled in a
vector h,,, where n is a time index (also applicable in fre-
quency domain where the filter is applied to finite-length
data segments), which means that the filter can be time-
variant. The filter coefficients are calculated according
to

h, = <yan];> ) <XnXl>_1v (1)

where v, is a time-domain or frequency-domain sam-
ple of the target channel, from which we want to sub-
tract the noise, and X,, are samples of input channels
of the Wiener filter, which provide the coherent informa-
tion about the noise in the target channel. The vector
X,, can contain more than one sample per channel, e.g.,
in time domain, it can include multiple past samples of
each input channel. The brackets (-) indicate an average
over many realizations of the noise, and { is the her-
mitian conjugate, which involves the transposition and
a complex conjugate. The term (y,X,) is the correla-
tion between the target channel and the input channels
(a vector of cross-spectral densities in frequency domain)
and (X, X,!) is the correlation matrix between all input
channels (the cross-spectral density matrix in frequency
domain).

The Wiener filter is the optimal noise-cancellation fil-
ter in linear systems. This begs the question whether
there are any fundamental limitations to the performance
of the Wiener filter. In preparation of such an analysis,
let us assume that the estimates (y,X,1), (X, X!} of the
true correlations (y,X,)?, (X, X1} have errors,

<ynX7];> = <anr];> = <XHXJ>O + En,

(2)

<ynX717:>0 + €n;

in which case, the corresponding bias of the Wiener filter
up to second order in the correlation-estimation errors
reads

h, =h0+e - (XX —hl- (X, X)) E,
+h - (XX D0) T B (X X)) B
—a - (XXH) B,
=h’+¢' —~h’-E'+h’ - E -E —¢ - E/,

n

(3)

where in the last line we have subsumed the inverse of the
correlation matrix (X, X1\ into the definition of the bias
terms €., E;. The noise-cancellation procedure is now to
multiply the filter coefficients to the samples of the input
channels, and the scalar output is the best estimate of
the noise contained in the target channel. The procedure
leaves the residual y,, — h,, - X,,. The average power of
the residual is given by

<|hn - Xn — yn|2> = <|h1(z) X — yn|2>
+ ([h,? XX = (X - [e) —h? - B +c.c.)

+ (e, —h) - E) - (X, X)) - (e, —hy - E})
+ (B XaX]) = X)) - 02 By, - B, — e ]
—|—c.c.),

where +c.c. means to add the complex conjugate of the
previous term. The averages (-) that appear here are cal-
culated over a different set of noise realizations than the
averages that appear in equations (2) and @)). To adopt
language from machine learning, one could think of the
data used to calculate the Wiener filter in equation (B]) as
training set, and the data used to calculate the average
power of the residual in equation (@) as the verification
set. The result in equation (4) has four contributions.
The term h? - (X, X[} — (y,X), which appears in the
second and fourth contribution, is small, i.e., linear in
the errors of the correlation estimates calculated from the
verification set. This means that the second contribution
is really a second-order term in correlation-estimation er-
rors (one error coming from the training set, one from the
verification set), and the last contribution is third order.
For this reason, we will neglect the contribution to the
residual power coming from the last contribution. Since
the error in the second contribution depends in an impor-
tant way on the duration of the verification set, e.g., how
many data we use to estimate the power spectral density
of residual noise, it is not suited to define a fundamental
performance limitation of the Wiener filter. In the fol-
lowing, we will therefore focus on the third contribution,
which is quadratic in the errors €,, E/, coming from the
training set.
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FIG. 2. (a) The blue and red solid circles show the positions of the geophones at level 1 and 2 of the CEB, respectively. (b) The
blue solid circles show the locations of the geophones and the red star shows the location of the tiltmeter in the NEB. (c) The
blue solid circles show the locations of the geophones in the WEB. Note that the origin of the coordinate system corresponds
to the location of the beamsplitter at the CEB, and ‘north’ corresponds to the direction of the north arm of the interferometer
which is oriented 20° clockwise with respect to the geographic north
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FIG. 3. (a) Comparison between AdV+ sensitivity during

its commissioning phase before O4 and the design sensitivity.
The green curve represents the estimated NN, approximately
three orders of magnitude lower than the current sensitivity.
(b) Normalized cross-correlations between the 115 geophones
and the GW strain channel corresponding to a month of data.
No significant cross-correlations are observed.

Lower bound on noise residuals from statistical
errors of the correlation estimates

Statistical errors of the correlation estimates used to
calculate the Wiener filter cause a filter bias. Let us
revisit the calculation of the effect of statistical errors on
Wiener filtering first presented in Harms et al. @] A
Wiener filter was calculated to find correlations between

Normalized
cross-correlation
30 = =

Frequency (Hz)

-0.6
-0.8
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FIG. 4. Surface plot showing the cross-correlation between
the witness channels and the tilt signal. The colorbar repre-
sents the magnitude of the normalized cross-correlations.

ground motion and LIGO Hanford GW data. Ground
motion was observed with an array of geophones and a
tiltmeter. Since the correlated noise in the GW data
was expected to be very weak, it was important to assess
the statistical significance of the correlation measurement
with a Wiener filter.

Here, we consider the case of a single input chan-
nel X to keep the calculation simple, and we assume a
frequency-domain Wiener filter and stationary noise so
that correlations between frequencies can be neglected,
which greatly simplifies the Wiener filter. Then, the
statistical estimation error of the cross-spectral density

(CSD) (y(£)X(F)") is
) = | PR

14

; ()



where v is the number of data segments going into the
CSD estimate, and (Jy(f)|*)° is the true power spectral
density of the target channel y. For time-domain fil-
ters like the finite-impulse-response Wiener filter, v is
the product of the duration of the training set used to
calculate the filter, and the frequency at which noise is
to be subtracted. Inserting this expression into the third
contribution on the right-hand-side of equation (@), we
obtain for the term quadratic in e(f)

_ w@HPA°

Buw( ) = VX (D) = il - WU

(6)
This bound on subtraction residuals is very powerful
since it only depends on the power spectral density of
the target channel. It can therefore be easily evaluated
for any noise-cancellation scenario.
Similarly, we have for the error E(f),

(X(HIP°
N

and calculating the quadratic term in E(f) of equation
@), we find

E(f) = (7)

R (HE"(NHIPIX(HIP)
OB _ (R°HX ) (8)
(1IX()12)° v ’

where the numerator is the power spectral density of the
output of the Wiener filter. This bound therefore requires
knowledge of the Wiener filter and is less powerful.
These results can be extended to apply to the case
when the input X,, mapped by the Wiener filter contains
N samples per channel and P channels. The statistical
error in equation () increases by a factor N - P. In prac-
tice, N can be the number of coefficients of a finite im-
pulse response (FIR) filter, which is a few hundred coeffi-
cients per channel for Newtonian-noise cancellation, and
there can be about 100 seismometers M] This means
that the number of averages v in equation (@) needs to
be larger than 10% to be able to achieve noise reduction
by a factor 10 in amplitude, which means 10°s of data
are required in the training set for noise cancellation at
10Hz. Let us imagine that someone wants to use such a
filter to reduce Newtonian noise at 0.1 Hz by a factor 100
in amplitude, then v needs to be 10% and the training set
must have a length of at least 10?s, which is 30 years.
While it is conceivable to have such long training sets in
some applications, we will see below that nonstationar-
ities of the seismic field set limits on the Wiener filter
performance. One needs to optimize a trade-off between
a reduction of the filter bias due to statistical errors as
described in this section by increasing the length of the
training set, or better tracking the nonstationarities of
the field by regularly or continuously updating the filter,
which means to reduce the length of the training set.

Lower bound on noise residuals due to sensor noise

We can use equation (@) to calculate the lower bound
on noise residuals from sensor noise. For simplicity, we
assume again the case of cancellation of stationary noise
with a frequency-domain Wiener filter, but this time
using data from P sensors with identical sensor noise
with power spectral density S(f). The power spectral
density of sensor noise is contained in the diagonal of
(X(f)XT(f)). We can consider the contribution of the
sensor noise as an error E(f) of the correlation matrix

(X(NHXT(F),
E(f) = S(HL, 9)

where I is a unit matrix of the same size as the matrix
(X(f)XT(f)). Inserting this error term into equation (2])
and equation (@), we get
(In(f)-X(f) = y(NH)
= (I0°(f) - X(f) =y(NH*)° + S(HR°(f) - (h°(f
+S(PRO(F) - (X(HXT () ()
= (ly(HIH° =) - XHXH° - (1)
+S(HM(f) - (0(f)
0

+S(H)PRO() - (XX - (mO(f)) o
10

)
',
)

where superscripts  mean that the sensor noise S(f) is
not included in these terms. The result is what we would
expect, i.e., the Wiener filter h(f) maps the sensor noise
into the output together with the signal, which leads to
an inevitable contribution to the noise residuals:

Boens(f) = S(/)R(f) - (0°(f)) (11)

As a simple example, let’s assume that all P sensors
whose data go into X(f) see the same signal. In this
case, we have

a(f
ho(f):%(l,...,l), (12)
where a(f) is the common transfer function from each
component of X(f) to y(f). We then obtain h(f) -

(ho(f))T =la(f)|*/P and

= s(Hs (13)

In this example, the lower bound decreases inversely with
increasing number of sensors, which is as expected since
the sensor noise effectively averages out over the P sen-
sors forming a more sensitive supersensor of a common
signal.



Cancellation limits in the case of nonstationary noise

Next, we analyze the impact of temporal variations
in the plant (e.g., changing correlations) on the statis-
tical bound Bg.i. We assume that we have a noise-
cancellation filter trying to track the changes in the plant.
Such a filter could be an adaptive Wiener filter as de-
scribed in the subsequent sections or even a time-variant
neural network described by linear weights. The number
of coefficients describing this filter is L (equal to N - P
in the case of a Wiener filter). Now let us assume that
the typical time scale of plant variations that we intend
to track is 7. Then the maximum number of averages
to calculate the filter coefficients for noise cancellation at
frequency f is v = f7, and we find the following statisti-
cal bound on noise residuals

210

Bu(r) 2 S, (1)
For example, if we want to be able to follow hour-scale
variations of the seismic field for NNC at 10 Hz with a
filter that has L = 100 coefficients, then we can reduce
NN at 10Hz at most by a factor 19 in amplitude. If we
want to follow minute-long variations with an L = 100
filter, then we can reduce NN at 10 Hz at most by a factor
2.4 in amplitude. At this point, Bgtat(f) could actually
limit the NNC performance, and one might achieve bet-
ter noise reduction by increasing the averaging time to
reduce Bgtar at the cost of not being able to adapt to
minute-scale variations in correlations.

There is an important connection between Wiener fil-
tering using sensor data as input and matched filtering
of transient events, which is the common technique to
model and analyze GW signals. It was shown that in
the case of a likelihood analysis of a GW signal and after
subtraction of the best-fit (f) from the GW data that
includes the true signal §(f), a residual is left in the data
whose SNR (in power) is L, where L is the number of
parameters of the generally nonlinear signal model ],

T g — o)
40/01fT =1, (15)

where the numerator under the integral contains the av-
erage over many transients subtracted with this model.
Hence, the number of filter parameters appears equally
as factor in the statistical bound of linear Wiener filter-
ing and of nonlinear matched-filter-based transient sub-
traction. In fact, the expressions in equations (IZ)) and
([Id) are analogous with two important differences. The
first difference is that Wiener filters can be improved
by averaging over many realizations of the noise lead-
ing to a reduction of the bound by a factor v = fr.
In matched-filter analyses, a model needs to be matched
to an observed transient under variation of parameters
with ad hoc unknown values, and this must be done for
every transient individually. This is true for noise tran-
sients as for GW signals with the additional burden that

one must provide a faithful model of a noise transient
@] The second difference is that the model used for the
matched-filter transient subtraction can accumulate in-
formation about the transient from different frequencies,
which means that for transients with broad spectrum, the
residual at each frequency might lie below other instru-
ment noise. The only way to further reduce the residual
left by a transient is if exactly the same transient repeats
and therefore the model of the transient can be gradually
improved. Also note that if there is uncertainty of the
occurrence time of a transient with known shape, then
L =1, and this is enough to enforce the SNR bound on
the residual after subtraction. In practice for NNC, the
residuals of such transients would be higher. It should be
stressed that other limiting factors like incomplete infor-
mation about the seismic field or systematic errors can
become relevant before the ultimate performance limita-
tions described in this section are reached.

IV. STATIC AND DYNAMIC WIENER FILTER

The Virgo NN cancellation problem is envisaged as a
low-latency Multiple Input Single Output system. At
any time index n, the past N samples from P witness
channels are used to compute an estimate of a target
sample y,,. The Wiener filter coefficients h,, are obtained
by minimizing the error

where X,, =[x}, x| |- ,X27N+1]T isa (NP x 1) col-
umn vector of the data from the witness channels, and
X, = [zL,22,---  xP]T. As stated previously in equa-

tion (), the optimal time domain filter h? is obtained

ot} 0, which leads to the Wiener-Hopf

by solving oL

solution
h% =PRI, (17)

where for simplicity and future presentation we denote
(X, X,l) with R and (y,X,!) with P. In our application,
seismic noise measured by the different witness channels
is correlated. Consequently, the matrix R is rank defi-
cient within numerical precision. Hence, we seek a solu-
tion as

min{[[h, 2 [ b, R = P} (18)

where || - ||2 represents the Euclidean norm.

The NN cancellation system targets noise within the
10 — 25Hz frequency band. Hence, prior to estimat-
ing the noise-cancellation filters a series of pre-processing
steps are implemented. These include downsampling the
witness and target channel data to 100 Hz, followed by
bandpass filtering within the 10 — 25 Hz range. All the fil-
ters used in pre-processing are FIR filters. This ensures
causality of the noise subtraction process. Data from



each of the witness and the target channels are then lin-
early detrended and scaled using the standard deviation
specific to each channel’s data. Other parameters that
need to be determined before estimating and applying
the Wiener filter to longer data stretches are the number
of witness channels P and the filter length N. Amongst
the 30 channels at the NEB, we select 24 for our analyses.
Given the proximity of several channels within a meter
of each other, we excluded six channels from the analy-
sis. Ideally, all channels should be included, but special
frequency-dependent processing is required to deal with
high correlations between close seismometers, which we
avoid in our first analysis of adaptive-filter performances.
While correlations are very high between all close sen-
sor pairs below 15 Hz, architectural features of the Virgo
NEB and WEB cause the correlation to fall above 15 Hz
between some of the sensors even if they are only sepa-
rated by one meter [23].

The choice of the number of filter coefficients N per
witness channel is not trivial. Choosing a too low num-
ber of filter coefficients introduces a bias in the esti-
mate of the target sample. This bias depends on the
energy of the omitted terms of the filter coefficients and
the cross-correlations between witness channels. For the
latter, an understanding of the physics of the system
plays a key role. In our particular case where the wit-
ness channels are separated maximally by about 30m
with seismic-wave propagation speeds between 100 and
150m/s [24, 31], we do not expect significant cross-
correlations between the witness channels beyond half a
second (= 50 samples at a sampling frequency of 100 Hz).
Although, it might be possible that reflected seismic
waves or their reverberations are visible in the cross-
correlations at a much later time. Hence, we performed
a test of the noise cancellation performance correspond-
ing to three different filter lengths of N = 51,101, 201.
Figure Ba) shows the amplitude spectrum of the tar-
get signal alongside the Wiener-reconstructed signals for
these three filter lengths. The amplitude spectra of the
reconstructed signals exhibit similarity, with subtle dif-
ferences observed in cancellation performance. We define
the cancellation performance in decibels (dB) for the fre-
quency band f1; — f5 as

f2

> ()
f=hH

f2 ’
> yA(f)

f=h

Tfi,f2 = 10 x 10glO (19)

where e(f) and y(f) represent the absolute values of the
Fourier transforms of the error and the target signals,
respectively. The Fourier transforms are evaluated every
10s. In Figures Bb) and (c), the cancellation perfor-
mance over a 1000s data duration is presented. As men-
tioned previously, the cancellation performance remains
within a dB of each other and the cancellation perfor-
mance improves marginally for increasing filter lengths.
It is also worth noting that with increasing number of

filter coefficients, the complexity of the linear system in
equation (I7) increases and the conditioning of the ma-
trix R worsens. Hence, adhering to both computational
and physical constraints we chose N = 101 for our anal-
ysis.

The next parameters that need to be decided upon
are the length of the data stretches needed to calculate
the Wiener filter coefficients, and how often the filter
coefficients need to be reevaluated to adapt to poten-
tial changes in the seismic field. In the case when the
noise statistics are stationary, reevaluation of the filter
coefficients is not necessary. The choice of these window
lengths depends on two factors. The first is the statis-
tical limit as discussed in Section [IIl This means that
the noise cancellation performance of the Wiener filter
can potentially be limited by statistical errors if the data
stretch is not long enough. The second one is the SNR-
bound given in equation (IIJ). If the seismometers mea-
sure ground displacements with an SNR of 20, the best
cancellation performance that can be achieved with re-
spect to the SNR-bound is about 13dB (can be better or
worse depending on the correlations between seismome-
ters). Therefore in such cases, even if the longer stretches
of data are used to calculate the Wiener filters, the can-
cellation performance cannot be improved beyond the
SNR-bound. In order to understand the effect of these
parameters on the noise cancellation performance, we de-
fine two cases of Wiener-filter evaluation. The first one
we refer to as the static Wiener filter (SWF). This corre-
sponds to the case, when a fixed length of data is used to
calculate the filter coefficients, and the coefficients do not
change with time. The same filter coefficients are used to
cancel noise for all subsequent data. The second one we
refer to as the updated Wiener filter (UWF). Unlike the
SWF, the filter coefficients of the UWF are reevaluated
after a given time interval. In the next few paragraphs,
we present a comparative analysis of the noise cancel-
lation performance of the SWF implementation and a
Wiener filter that is regularly updated.

We calculate the SWF and UWF for two different sce-
narios. In the first scenario, we estimate the Wiener filter
using data from the witness and target channels for a pe-
riod of 1000s starting at 00:00:00 UTC on August 01,
2023. The estimated SWF was applied to the full subse-
quent data stretch of the same day. The UWF coeflicients
were reevaluated every 1000s. This last setup operates
like an offline cancellation scheme. Filter coefficients are
estimated every 1000s of data and subsequently applied
to the same 1000s of data from the witness channels to
cancel the target signal. The choice of the 1000s inter-
val for evaluating filter coefficients was made to keep Bgtat
well below the observed filter performance. Before apply-
ing the filters to the data, we used the same detrending
and scaling coefficients used during the filter calculation
process. Figure[fillustrates the noise cancellation perfor-
mance of the UWF reevaluated every 1000s correspond-
ing to the frequency bands 10 — 15 Hz, 15 — 20 Hz, and 20
— 25Hz. A cancellation between 10 — 15dB is observed
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FIG. 5. (a) Amplitude spectra of the target and Wiener-
reconstructed signals computed by averaging over 10s win-
dows within a 1000s data stretch. (b) Noise cancellation in
the 10 — 15 Hz frequency band corresponding to three differ-
ent Wiener filter lengths. (c) same as (b), but corresponds to
the 15 — 20 Hz band.

for the frequency band 10 — 20 Hz and between 5 — 10dB
in the 20 — 25 Hz band. Following equation (@), the statis-
tical limit to the noise cancellation is between 15 — 20 dB.
Therefore, making use of more data like 2000s to reevalu-
ate the filter coeflicients will not improve the cancellation
performance, which is instead limited by something else.
The limit is probably not coming from the sensor SNR
either since ground displacement inside the Virgo build-
ings in the 10 Hz — 25 Hz band is strong leading to high
SNR. It is possible that the seismometers do not provide
the full required information about the seismic field to
model the noise in the target channel, or there are tem-
poral variations of the seismic field that the filter is not
able to track by updating it every 1000s. Figures [T(a),
(b), and (c) illustrate some of the disadvantages of us-
ing the SWF'. Both filters show comparable performance
up to a few thousand seconds post the SWF estimation.
However, a gradual degradation in performance of the
SWF is observed as time approaches mid-day. This is
due to the fact that the SWF was estimated using data
from a quiet time around mid-night on August 01, 2023.
Consequently, the static filter performs worse compared
to the UWF during the day time. Several instances when
710,15 €xceeds 0dB are also observed. This implies that
the SWF occasionally adds noise instead of subtracting
noise from the target channel.

In the second scenario, we estimated the SWF by us-
ing a day of data from the witness and target channels.
This test was done to verify if the cross-correlations esti-
mated using a day of data provide a better average per-
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FIG. 6. Noise cancellation performance of the UWF reeval-
uated every 1000s corresponding to a full day of data from
August 01, 2023. The blue, black, and the red curves show
the cancellation performance for the frequency bands: 10 —
15Hz, 15 — 20 Hz, 20 —25 Hz, respectively.
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FIG. 7. Comparison of noise cancellation performance using
the SWF (blue curve) computed from a 1000s data starting
at 00:00:00 UTC on August 01, 2023, applied to subsequent
data stretches for the same day, and the UWF (red curve)
estimated every 1000 s on August 01, 2023, across frequency
bands: (a) 10 — 15Hz, (b) 15 — 20 Hz, and (c) 20 — 25 Hz.

formance over a full day compared to using 1000s of data
from night time. These filters were then applied to can-
cel the target signal from the next days. The correla-
tions between the data from the witness channels were
first computed every 1000s and then averaged across all
such windows within a day of data. The averaged cross-
correlations were used to create the matrix R. Similarly,
the row vector P, which comprises the cross-correlations
between the witness and target channels, was populated



by estimating cross-correlations every 1000s and averag-
ing them over a full day. The steps for estimating the
UWF were the same as stated under the first scenario.
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FIG. 8. Comparison of noise-cancellation performance using
static Wiener filter (blue curve) computed from a full day’s
data on July 31, 2023, applied to August 01, 2023, and UWF
(red curve) updated every 1000s on August 01, 2023, across
frequency bands: (a) 10 — 15Hz, (b) 15 — 20Hz, and (c) 20 —
25 Hz.

Similar to the comparison presented in Figure [l the
performance comparison for the daily-averaged SWF and
UWF are shown in Figures B(a), (b), and (c¢). For this
particular implementation, the SWF coefficients were es-
timated from data on July 31, 2023 and applied to data
from the following day (August 01, 2023). Unlike the
scenario where the static Wiener filter was estimated us-
ing a 1000s stretch of data (Figure [7), the performance
of the daily-averaged static Wiener filters does not ex-
hibit diurnal variation. A decrease in the percentage of
time when the SWF introduces noise to the target chan-
nels is also observed. The stability in performance of the
daily-averaged static Wiener filter can be attributed to
it being calculated using a day of data, as opposed to
just a 1000s duration. During the day time when the
SNR of the transients increase and a good cancellation is
observed with the UWF, the SWF shows approximately
5dB lower cancellation performance in the 10 — 15 Hz
and 15 — 20 Hz bands.

Overall, for both scenarios presented above, the per-
formance of the SWF lags behind the UWF. This un-
derscores the necessity for adaptive filters, a topic to be
discussed in upcoming sections. In order to assess the
noise-cancellation performance of the adaptive filters, the
UWF evaluated every 1000s will be used as a benchmark.
This seems a good choice, given the Wiener formulation
of the subtraction scheme.

10
V. LEAST MEAN SQUARE ALGORITHM

The Least Mean Square (LMS) algorithm [43] derives
its roots from the steepest descent algorithm. In the
steepest descent algorithm, the filter coefficients at time
index n are adapted as

h,=h,_1+ u(P —h,_1R), (20)

where p > 0 is the step-size parameter. However, com-
puting the matrix R and the row vector P at every new
time index is computationally inefficient and not suitable
for low-latency applications. Hence, the LMS method
which is a stochastic gradient algorithm uses the instan-
taneous estimates of R and P. The filter coefficients are
then adapted as

hn - hnfl + ,UJXL (yn - hnflxn)
— h, =h, ; +pX! &, (21)

where &, = y, —h,,_1X,,. The condition for convergence
of h,, to the optimal filter coeflicients for a given system
is0<pu< )\jt, where Apax is the maximum eigenvalue
of the matrix R. (equation 6.8 in [44]). With minor mod-
ifications to equation (2II), the normalized version of the
LMS algorithm is derived such that the step-size can be
expressed independent of the eigenvalue-spread of matrix

R.

A. Normalized Least Mean Square

The Normalized LMS (NLMS) adaptation can be ex-
pressed as

Xie,

h, =h, s +tor——"F",
Xn X, + ONLMS

(22)

where 0 < « < 2 is the normalized step-size, and donrms
is a small positive constant to avoid division by zero in
case when the input signals are zero vectors. From equa-
tion (22), it is evident that the selection of « is crucial
for the filter adaptation. The NLMS algorithm demon-
strates the fastest convergence when o = 1 [45]. Con-
sequently, we adopted o = 1, initializing the algorithm
with h_; = 014 xp. Data pre-processing for the witness
and target channels were similar to the ones during the
UWF implementation. Figure [@(a) depicts the NLMS
algorithm’s convergence to the noise cancellation perfor-
mance of the UWF. Typically, the NLMS algorithm con-
verges at a rate of about 20dB per 5N P samples for
white inputs HE] However, in our correlated input sce-
nario, convergence might take longer. For instance, with
N = 101 and P = 24, we observed convergence to ap-
proximately 10dB in about 5N P samples (at a sampling
rate of 100Hz). In Figure @(b), a comparison of the
transient-tracking performance of the NLMS algorithm
is depicted. The arrow in the figure highlights a tran-
sient lasting approximately 500s. True to the cause, we



observe that the NLMS algorithm performs noise cancel-
lation which is comparable to the UWF method.
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FIG. 9. (a) The red curve shows the convergence of the NLMS
to the UWF cancellation performance (blue curve) within the
first 80 — 100s after start. (b) Comparison of the transient
noise cancellation performance of the NLMS to the UWF in
the frequency band 20 — 25 Hz. The arrow points to the time
stretch when the NLMS filter adjusts itself to match the spec-
tral characteristics of the transient.

In order to compare the performance of the NLMS al-
gorithm against the UWF over longer time scales, the
NLMS algorithm was run on seven days of continuous
data (August 01 — August 07, 2023). Figures [[0(a), (b),
and (c) show the noise-cancellation performance compar-
ison between the NLMS and UWF methods for a single
day (August 01, 2023). The NLMS method performs as
well or slightly better compared to the UWF in the 10 —
15Hz and 20 — 25 Hz bands. However, an offset of about
2dB is observed in the 15 — 20 Hz band. This is a charac-
teristic spectral bias often seen with stochastic gradient
methods HE] Across the entire seven-day analysis win-
dow, we calculated the performance difference between
the NLMS and UWF methods within the frequency band

fi—f2as

NLMS NLMS UWF
Dfl f2 Tf1f2 Tfifa (23)

Figure[[dldisplays the histograms of D%L}V[S for three dis-
tinct frequency bands: 10 — 15Hz, 15 — 20 Hz, and 20 —
25 Hz. Notably, the NLMS outperforms the UWF in the
10 — 15Hz band approximately 70% of the time. Con-
versely, in the 15 — 20 Hz band, the UWF surpasses the
NLMS in performance for about 90% of the time with a
positive mean in the distribution. For the 20 — 25 Hz
band, the mean of the distribution is close to zero with
an almost equal percentage of data on both sides. An ob-
servation to note is that DNle%IS < 0 indicates the NLMS
outperforms the UWF, and vice versa for D?R};{S > 0.

We also assess the percentage of time when ’Dl;lfj%s <2
The latter implies that the NLMS performance is at most
2dB worse than the UWF. Another crucial metric is the
percentage of time when TNLMS > 0. This indicates in-
stances where the NLMS adds noise rather than sub-
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FIG. 10. Comparison of noise cancellation performance be-
tween the NLMS algorithm (red curve) and the UWF method
(blue curve) for August 01, 2023 data, across frequency bands:
(a) 10 — 15Hz, (b) 15 - 20 Hz, and (c) 20 — 25Hz.

tracting it from the target signal. The first row in Table
1 presents these statistics. The NLMS cancellation per-
formance points out two significant aspects. Firstly, it
outperforms the UWF method in the 10 — 15Hz band
approximately 70% of the time. This is typically due
to the stochastic nature of the algorithm, albeit at the
cost of performance in the 15 — 20 Hz band. Secondly,
there are instances when TIQ\IOL%/}S exceeds zero (about 8%
of the time) which is undesirable. This typically results
from the fixed step-size in the NLMS algorithm. For
this reason, several variable step-size NLMS algorithms
have been proposed over the last few decades HE@]
However, most of the methods heavily rely on the input
signals’ statistics and the expected error signal variance.
Consequently, our focus is on a specific variant — a blend
of the NLMS and the proportionate NLMS algorithm
ﬂ5__1|] This variant is less dependent on input statistics,
offering potential advantages for our application.

B. Improved proportionate NLMS

The proportionate NLMS (PNLMS) algorithm was de-
veloped in the early 2000s for addressing network echo
cancellation problems. In particular this method finds
wide usage in situations where the echo paths are sparse.
Unlike the NLMS algorithm which uses a fixed adapta-
tion step size, the PNLMS algorithm assigns the step
size to each of the filter coefficients based on their val-
ues in the previous iteration. This can also be visualized
as a strategy where larger coeflicients receive larger in-
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crements at each iteration. It has been proven that the
PNLMS algorithm shows faster convergence compared to
the NLMS algorithm in problems where the filter coeffi-
cients are sparse ﬂ@] However, in situations where the
nature of the filter coefficients are unknown, the PNLMS
performs worse compared to the NLMS algorithm @]
Hence, the improved PNLMS (IPNLMS) which is a mix
of NLMS and PNLMS was developed that would perform
better than the NLMS algorithm irrespective of the na-
ture of the filter coefficients. The filter coefficients are
updated as

XIL Gn— lgn
X Gpo1X, + SpNLMS

hn = hn,1 —+ « (24)

where G,,_1 is a diagonal matrix of size (NP x NP) at
time index (n—1). Each diagonal element g; correspond-
ing to the [*" filter coefficient hin—1 is expressed as

-B
2NP +(1+5)

| hl,n—l |

_ 25
Mo re

gl,nfl

where | - | denotes the absolute value, || - ||; denotes the
Li-norm, and € is a small positive constant to avoid di-
vision by zero. The quantity dipnrms in equation 24)) is
computed as

o (1-6)

OIPNLMS = POy SND (26)
where p is a small positive constant and 0% is the
power of the input signal X,,. Examining equations (24]),
@38), and 24), it becomes evident that the filter coeffi-
cient adaptation simplifies to the NLMS algorithm when
[ = —1 and the PNLMS algorithm when $ = 1. Similar
to the NLMS algorithm, the IPNLMS algorithm is initial-
ized with h_y = 01 nyp and o = 1.0. The small positive
constant € is set to 10719 and p is set to 0.01. As previ-
ously mentioned, the choice of 8 determines whether the
filter adaptation follows the NLMS or PNLMS approach.
For most applications, 5 is commonly selected as -0.5 or
0.0, as indicated in @] In our specific application, we
opted for 8 = 0.0 as it demonstrated better convergence
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speed and steady-state tracking compared to the NLMS
algorithm.

Similar to the tests performed for the NLMS algorithm,
the IPNLMS algorithm was applied to continuous data
between August 01 and August 07, 2023. Figures [[2(a),
(b), and (c¢) show the comparison of the subtraction per-
formance between the IPNLMS and UWF algorithms for
a day of data (August 01, 2023) corresponding to the fre-
quency bands of 10 — 15 Hz, 15 — 20 Hz, and 20 — 25 Hz,
respectively. The IPNLMS algorithm outperforms the
UWF method in the 10 — 15 Hz band for approximately
90% of the time which is a substantial improvement com-
pared to the NLMS algorithm (about 70% of the time).
Similarly, in the 20 — 25 Hz band a better cancellation
performance was observed over the UWF method for
about 70% of the time (about 45% for the NLMS al-
gorithm). Another noteworthy improvement lies in the
reduction of time when the algorithm introduces noise
to the target instead of subtraction. In the frequency
band of 20 — 25 Hz, the NLMS algorithm added noise ap-
proximately 8% of the time which is reduced to about
3% with the implementation of the IPNLMS algorithm.
Table [[] lists several of the aforementioned performance
indicators.
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FIG. 12. Comparison of noise cancellation performance be-
tween the IPNLMS algorithm (red curve) and the UWF
method (blue curve) for August 01, 2023 data, across fre-
quency bands: (a) 10 — 15Hz, (b) 15 — 20Hz, and (c) 20 —
25 Hz.

In summary, the IPNLMS algorithm exhibits better
performance compared to the NLMS algorithm in both
the 10 — 15 Hz and 20 — 25 Hz frequency bands. The his-
tograms of ’D?PN,SMS for these frequency bands are pre-
sented in Figure However, similar to the NLMS al-
gorithm, the subtraction performance of the IPNLMS al-
gorithm lags behind the UWF method in the 15 — 20 Hz



frequency band. In order to improve the cancellation
performance within the 15 — 20Hz band and minimize
the instances of noise addition to the target channel, the
next section explores noise cancellation algorithms within
the RLS class. Among the various options, including the
prewindowed approach ﬂ@], the sliding window method
@], and the exponentially windowed scheme [56], we opt
for the latter as it proves effective in tracking changes
within a time-varying system.
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FIG. 13. Comparison of the histograms of leﬁ)}\}I;Ms corre-
sponding to the frequency bands 10 — 15 Hz, 15 — 20 Hz, and
20 — 25 Hz.

VI. RECURSIVE LEAST SQUARE
ALGORITHM

In the Recursive Least Square (RLS) algorithm at time
index n, the filter coefficients h,, are obtained by solving

n
min Y A"le,el, (27)
b 13

where A is called the forgetting factor and e,, follows from
equation (6l). The value of X is set to a value very close
to 1.0. This is in contrast to the prewindowed scheme
where lambda is precisely set to 1.0. Following equation
@), this implies that with growing number of iterations
the impact of the errors from the past in determining the
current values of the filter coefficients gradually diminish.
For any time index n > N P, the filter coeflicients can be
obtained by using the following recursions ﬂﬁ],

C, =X 1R}, (28)
l=1+C.X, (29)
eh =yn —h, 11X, (30)
h, =h,_1 +7,¢Cyy (31)
R,!=)\"'R;} - Cly,C,. (32)

The filter coefficients are updated using equation (BII),
where the update involves the normalized Kalman gain
C,, and the apriori error estimate ef. The scaling fac-
tor 7, in equation (29) can be expressed equivalently as
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én = v, 1C,,, where C,, represents the unnormalized
Kalman gain. The Kalman gain C,, is estimated using
equation (28) where

R, =Y XX, X} (33)
t=0

represents the exponentially weighted input data co-
variance matrix. Recursive estimation of the inverse
of matrix R,, in equation [B2) follows from the ‘Sher-
man-Morrison-Woodbury matrix inversion lemma’ @]
Similar to the LMS implementations, the filter coeffi-
cients at the start of the algorithm are initialized as
h_; = 01«xyp, and the matrix Rj is set to {,uA}fl,
where p is a positive scalar weighting factor and A =
diag{ \NF ANP=10... A}, Following equation (4.17) in

@], a reasonable choice for the value of p is % where L

is the number of data points over which the input signal

power 0% is estimated.

The matrix R,, and the Kalman gain vector én in
equations (28) — ([B2) have dimensions (NP x NP) and
(1 x NP), respectively. Consequently, the computa-
tional complexity per time update of the RLS algorithm
amounts to about 3N2P2 + 5NP. In our specific im-
plementation with N = 101 and P = 24, this level of
computational complexity for low-latency implementa-
tion is impractical. Moreover, future implementation of
the NN cancellation system at Virgo is expected to use
more than 100 witness channels. Hence, in order to ad-
dress the computational load, we aim to tackle the RLS
problem using faster algorithms without compromising
on the performance.

Two main classes of fast algorithms address the RLS
problem: the fast lattice and the fast transversal fil-
ter (FTF) algorithms. Early works on the development
of the lattice algorithms can be found in ﬂ@, ]. Al-
though these algorithms have a computational complex-
ity of about O(N P?), they significantly outpace the stan-
dard RLS algorithm. Subsequent improvements in speed
over the lattice algorithms were achieved with the devel-
opment of the FTF versions. Some examples of the early
FTF versions include the fast Kalman @, @] and the
FAEST algorithms [62]. While these algorithms also ex-
hibit a O(N P?) complexity, the coefficient of N P? is con-
siderably smaller compared to the lattice versions. Con-
sequently, we chose to proceed with the FTF version of
the fast algorithms.

The time update of the filter coefficients in the FTF-
RLS algorithm follows the same as in equation (BII).
However, the update of the Kalman gain C,, does not
follow the standard implementation. Instead a different
time-updating scheme is used. These are commonly re-
ferred to as the order update and down date procedures.
The derivation of the FTF-RLS algorithm is more te-
dious and complex as compared to the standard RLS
implementation. The FTF-RLS algorithm used in our
implementation can be found in ﬂé?] One of the prob-
lems identified within a few years of development of the
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Methods Percentage of population
Di1o,15 < 0|{D10,15 < 2|{710,15 > 0{D15,20 < 0|D15,20 < 2|715,20 > 0|D20,25 < 0|D2p,25 < 2|120,25 > 0
NLMS 71.3 95.58 0.59 8.09 74.31 0.83 45.26 86.42 7.93
IPNLMS 89.67 98.91 0.24 12.86 78.98 0.20 69.83 95.92 3.00
FTF-RLS 54.56 99.55 0.36 41.38 99.56 0.37 27.76 99.26 0.68

TABLE I. Performance statistics of the NLMS, IPNLMS, and FTF-RLS algorithms concerning the parameters Dy, r, and
T, f, for the frequency bands of 10 — 15Hz, 15 — 20Hz, and 20 — 25 Hz. The statistics were derived from 60,480 observations,

covering the period from August 01, 2023, to August 07, 2023.

FTF algorithms was related to their numerical stability.
These algorithms were found to be exponentially unsta-
ble ﬂ@, é], implying that the filter coefficients could di-
verge after a certain number of iterations. While operat-
ing with infinite precision would prevent this instability,
the algorithm used in this article @] tackles numeri-
cal instability by leveraging redundancies. During the
Kalman gain update, identical parameters are computed
through different formulations and convex combinations
of these estimates are fed back at various stages in the
algorithm. Detailed information regarding the optimal
feedback coeflicients is provided in Section VI of @]
In our implementation of the algorithm, we have used
the same values of the coefficients as proposed in ﬂ@]
Considering the intricacies involved in implementing this
algorithm and to ensure brevity for readers, as well as ac-
commodate potential future upgrades to the technique,
the computer programs are available at @] For easier
comprehension, we have used the same variable notations
as outlined in Table II of [63].

An important parameter that we have not discussed
so far and which impacts the stability of the FTF-RLS
algorithm is the choice of the forgetting factor A. Based
on studies in B, @], the condition 1 > A > 1 — ﬁ,
where m > 2 must be satisfied. Opting for a value of
A very close to 1.0 ensures numerical stability. However,
this occurs at the cost of slower convergence given that
the time constant of the FTF-RLS algorithm can be ex-
pressed as ﬁ M] Hence, in order to obtain a right
balance between stability and speed of convergence we
chose A =1 — BNLP where the time constant 3N P is ex-

pressed as number of samples.

Using the values of © and A as stated earlier and fol-
lowing the same pre-processing steps implemented in the
UWF and LMS schemes, we applied the FTF-RLS al-
gorithm to continuous data measured between August
01 - 07, 2023. Figures [[4la), (b), and (c) present a
performance comparison between the FTF-RLS and the
UWF method for the initial 2000s following the start of
the FTF-RLS algorithm. Convergence of the subtraction
performance to the UWF method occurs in about 100s
after the start. Ideally for uncorrelated inputs, conver-
gence should occur in 3N P samples which corresponds
to about 72s after the start (P =24, N = 101, and sam-
pling rate of 100 Hz). However, in our application the
inputs are correlated. Hence, the convergence is delayed.
Most of the analysis on convergence and steady state per-
formance of the FTF algorithms have been performed for

white Gaussian input sequences M] As we note, for ap-
plications with correlated inputs, the observed and the
theoretical values of convergence time differ. Neverthe-
less, the algorithm was numerically stable and was found
to run seamlessly for days.
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FIG. 14. The red curve shows the convergence of the FTF-
RLS algorithm to the UWF’s cancellation performance (blue
curve) within the first 80 — 100s after start corresponding to
the frequency bands (a) 10 — 15Hz. (b) 15 — 20Hz, and (c)
20 — 25 Hz.

Figures [[Ba) and (b) display the spectrograms illus-
trating the target data and the FTF-RLS cleaned data for
the period spanning August 01 to August 06, 2023. The
temporal resolution of the spectrogram is 100s. Power
spectral densities are computed at 100s intervals, em-
ploying a Hann window with a length of 10s and an
overlap of 5s between successive windows. A strong
noise subtraction of about 20 — 25dB is observed for
sharp spectral noise peaks at frequencies such as 11.6 Hz,
12.3Hz, 13.4Hz, and 18.5Hz. In the case of broadband
noise, a weaker subtraction of about 10dB is observed.
This performance aligns with the observed correlations
between the witness and the target signals. Strong cor-
relations exceeding 0.8 were observed for sharp spectral
peaks, while broadband noise had correlations between



0.2 and 0.4 (Figure M.
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FIG. 15. Spectrogram of the (a) target data and (b) FTF-
RLS cleaned data for the period from August 01 to August 06,
2023. Average PSDs are computed every 100s using window
lengths of 10s, with an overlap of 5s between successive time
windows.

In line with the noise-cancellation tests performed for
the UWF and LMS algorithms, we calculated TEEE‘RLS
for the frequency bands of 10 — 15 Hz, 15 — 20 Hz, and 20 —
25 Hz. Figures[Ifla), (b), and (c) present the comparison
of the noise cancellation efficiency between the FTF-RLS
and UWF across these three frequency bands. The per-
formance of the FTF-RLS algorithm matches the UWF
method across all three frequency bands. This is in con-
trast to the LMS method which exhibited bias in the 15 —
20 Hz range. Over a continuous seven-day run, the FTF-
RLS algorithm achieves a performance within 2 dB of the
cancellation achieved by the UWF method for more than
99% of the time. Another improvement is evident in the
reduction of the percentage of time the cancellation al-
gorithm introduces noise instead of subtraction in the 20
— 25Hz band. This is reduced to below one percent of
the time. The histograms of DEEi‘RLS corresponding to
the frequency bands 10 — 15Hz, 15 — 20Hz, and 20 —
25Hz are shown in Figure [[7 Similar to the LMS tests,
the total number of observations are 60,480 correspond-
ing to the seven day analysis window between August 01
and August 07, 2023. Each of the three distributions are
centered around zero, which is an improvement over the
LMS performance. All the three distributions also have
a much smaller standard deviation compared to that ob-
served in the LMS implementations. The third column
in Table [l details several of these performance statistics.

Based on the performance statistics presented in Table
[ of the three different adaptive noise-cancellation meth-
ods, we find that the FTF-RLS method performs the
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FIG. 16. Comparison of noise cancellation performance be-
tween the FTF-RLS algorithm (red curve) and the UWF
method (blue curve) for August 01, 2023 data, across fre-
quency bands: (a) 10 — 15Hz, (b) 15 — 20Hz, and (c) 20
-—25 Hz.

best. Moreover, the time complexity is also suitable for
low-latency applications. However, there are certain av-
enues of improvement that have not been addressed so
far, and we present these possibilities in the next section.
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FIG. 17. Comparison of the histograms of D?lT ?Z'RLS corre-

sponding to the frequency bands 10 — 15 Hz, 15 — 20 Hz, and
20 — 25 Hz.

VII. FUTURE DEVELOPMENTS

All of the adaptive noise-cancellation methods that
have been implemented in this article perform the best
when the inputs are uncorrelated. In a Virgo-like seis-
mic environment where all the input channels are lo-
cated within tens of meters of each other, strong correla-



tions between the inputs are observed at lower frequen-
cies while correlations are weaker at higher frequencies
(the turning point between these two regimes is around
15 Hz ﬂﬂ]) This necessitates the exploration of decor-
relation techniques for reducing the correlation between
nearby input channels. A simple nonlinear method is
that of a half-wave rectifier @] so that the nonlinearly
transformed signal becomes

where k is a parameter used to control the nonlinearity.
An improved version of the decorrelation technique that
makes use of alternating positive and negative half-wave
rectifiers have been discussed in Chapter 1 in @] A
performance analysis of several other methods like the
‘Hard Limiter’, ‘Square-Sign’, and ‘Square-Law’ for in-
troducing nonlinearities between the input signals can be
found in @] However, utmost care must be taken while
introducing these nonlinearities, which might as well de-
grade the cancellation performance. As an alternative to
the generic decorrelation techngiues, one might explore
solutions tailored to the NNC case. However, while a
frequency-dependent decorrelation is easy to design in
frequency domain, it is challenging to solve the problem
in the context of causal time-domain filters as needed for
NNC.

An assumption under which the FTF-RLS algorithm
was developed was that the input signals are ‘persistently
exciting’. This condition again points to the problem
associated with the non-whiteness of the input signals.
The algorithm used in this article is based on a soft-
constrained rescue mechanism, that handles the situa-
tion of eventual instability. The instability can be at-
tributed to the condition number of some of the matri-
ces becoming very large. In the current re-initialization
method, these matrices are reset to the values as if the
algorithm were started for the first time. Although, the
other variables like the filter coefficients are retained, the
re-initialization leads to suboptimal performance of the
algorithm for a few seconds. In our seven day continu-
ous run, this was encountered four times, and was not
a huge problem. However, some researchers have made
use of a mix of NLMS and FTF-RLS for handling such
situations [71]. They switch to the NLMS algorithm for
filter updates at the time when the FTF-RLS encoun-
ters instability. After a few hundred seconds when the
FTF-RLS has stabilized, the method switches back to
FTF-RLS instead of the NLMS algorithm. We did not
implement such a mixed scheme, but it is something that
could be explored.

Finally a detailed study of the impact of these adaptive
noise subtraction schemes on gravitational-wave searches
needs to be performed. Even if an adaptive NNC reduces
noise on average, its effect on the transient background
might be different. In addition, according to equation
@I and similarly for all adaptive algorithms, the filter
itself is susceptible to transients in the data (in the target
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as well as witness channels), which is most relevant to
filters based on the stochastic gradient descent. It will
be important to carefully characterize adaptive Wiener
filters in terms of their effect on the transient background
of the target channel.

VIII. CONCLUSION

In this paper, we analyzed algorithms for adaptive
Wiener filtering. We found that they all outperform the
static Wiener filter. The reason for the advantage of
adaptive filters is that the properties of the seismic field
at the Virgo site change with time. Most importantly,
the day-night cycle must be tracked by the filter for im-
proved performance. All adaptive algorithms perform
similarly even though the RLS algorithm had the most
consistent performance across the entire NN band from
10Hz - 25 Hz.

We discussed fundamental performance limitations of
noise cancellation with Wiener filters and derived a lower
limit on the residuals due to filter bias from statistical
errors in the correlation estimates. This lower limit be-
comes more stringent with increasing number of filter
coefficients, which puts in question NNC strategies rely-
ing on an increasing number of sensors and increasingly
complex noise-cancellation filters. Mathematics rewards
economical filter designs.

At this point, the adaptive algorithms are understood
well enough to implement them in NNC systems. How-
ever, their effect on the detector data must be investi-
gated. The filters are designed to provide a noise reduc-
tion on average, but their impact on the transient noise
background is unknown. The adaptive filter itself can be
disturbed by transients in the data.

Finally, there are several efforts to introduce machine-
learning algorithms for noise cancellation. While these
methods obey the same limits on noise residuals and in
most cases increase the complexity of the training com-
pared to adaptive Wiener filters, there might be inter-
esting applications when it comes to clever adaptation
to more complex time-variations of the seismic field. For
example, a seismic field might have different states that
repeat and one could imagine to switch between different
filters adapted to the different states. This can in prin-
ciple be done with Wiener filters as well, but it might
be possible to realize it as a fully automatic process with
machine learning.
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