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Abstract

We explore the Casimir effect of a rough membrane within the framework

of theories that break Lorentz symmetry. We consider two constant Aether

vectors: one timelike and other spacelike, simultaneously. We employ an

appropriate change of coordinates such that the membrane assumes a com-

pletely flat border and the remaining terms associated with the roughness

are considered as part of the potential. Quantum fluctuations are induced

by a scalar quantum field subject to Dirichlet boundary conditions. The

spectrum is obtained through perturbation theory and regularized using the

ζ–function method. We provide an explicit example of a membrane with

periodic boundaries. The presence of Aether vectors has a significant impact

on the dominant term of the Casimir effect, while roughness only affects the

secondary terms. Additionally, we examine the finite-temperature case.

ar
X

iv
:2

40
4.

13
18

7v
1 

 [
he

p-
th

] 
 1

9 
A

pr
 2

02
4



1 Introduction

The Casimir effect is a physical manifestation predicted by quantum field theory
resulting from vacuum quantum fluctuations. H. B. Casimir demonstrated that
two parallel plates, uncharged and isolated separated by a distance much smaller
than their length, experience an attractive force between them due to quantum fluc-
tuation of the electromagnetic field under certain boundaries conditions [1]. This
phenomenon has been demonstrated with a high degree of accuracy, making it a
good experiment to study the properties of vacuum quantum fluctuations [2, 3].
Other geometries have been studied, and in some cases, the force is repulsive, in-
dicating that the Casimir effect depends on the geometry [4]. The Casimir effect
has been studied in various contexts, and it has been demonstrated that different
factors affect the spectrum. The research has revealed that boundary conditions,
which can represent some type of material, spacetime topology and temperature,
also modified the energy spectrum [5, 6, 7]. The dimensionality of spacetime plays
a fundamental role in the Casimir effect. For instance, studies on two-dimensional
materials as boundaries, such as the graphene family [8], are important for techno-
logical advancements in materials science.

Our objective is to study the three-dimensional spacetime Casimir effect in quan-
tum field theories considering the breaking of the Lorentz symmetry. The quantum
field theories are based on special relativity, hence they are invariant under Lorentz
transformations. This symmetry has been demonstrated both theoretically and
experimentally in the low-energy regime [9, 10]. Despite this, there is still the pos-
sibility that in high-energy regimes this symmetry can be broken [11], so some trace
of this breaking may remain at low energies [12, 13, 14, 15, 16, 17, 18, 19]. Recently,
P. Hořava proposed a quantum field theory of gravity which is heuristically renor-
malizable and unitarity, at least in power counting [20, 21]. The central idea is based
on the existence of an anisotropy between space and time in the ultraviolet, causing
general diffeomorphisms to be reduced and breaking in the Lorentz symmetry. The
Casimir effect has been analyzed within the framework of Hořava gravity theory in
a prior study [22]. Extensions to Klein-Gordon and fermionic field theories have
been formulated, known as Hořava-Lifshitz type theories [23, 24, 25, 26, 27, 28].
Other research on Lorentz violation has incorporated Aether-like vectors into the
Lagrangian, setting a preferred direction. [29, 30, 31, 32, 33, 34, 35]. Furthermore,
finite temperature effects in these theories have been explored [36, 37, 38]. Due to
the high experimental precision of the Casimir effect and the large number of the-
oretical works on the breaking of Lorentz symmetry, experiments associated with
the Casimir effect become good candidates for detecting this breakdown.

In this research, we analyze the modifications to the Casimir energy spectrum
produced by two contributions: the presence of roughness on the membrane embed-
ded in a three-dimensional spacetime manifold and the introduction of two timelike
and spacelike unit orthogonal Aether vectors. For a realistic application, we con-
sider roughness as a perturbation from the flat case, such that by performing an



appropriate change of coordinates, the membrane assumes a completely flat bor-
der and the remaining terms associated with the roughness are considered as part
of the potential. Likewise, we consider the presence of two orthogonal unit Aether
vectors that are included within low-energy terms in the modified Klein-Gordon La-
grangian. These act on the covariant derivatives of scalar quantum fields, causing
the breaking of Lorentz symmetry. To find the spectrum of eigenvalues, we employ
perturbation theory up to first order and utilize the ζ–function in the regularization
process [39]. Furthermore, we present a specific example of a membrane with pe-
riodic border. Additionally, we take into consideration the impact of temperature
through the effective action.

This paper is organized as follows. In section 2, we present the problem of
the rough membrane considering two orthogonal constant Aether vectors and the
solution to the eigenvalue problem through the perturbation theory. In section 3,
we apply the regularization method using the ζ–function and determine the energy
and force density in the limit of infinite length. We present an explicit example of a
membrane with periodic border. In section 4, we consider the effects of temperature
on the membrane. Finally, in section 5, we present our conclusions.

2 Modified spectral values by rough membrane

and Aether vectors

We analyze the low-energy case where the Klein-Gordon scalar field theory is mod-
ified by the presence of two parameters σ1 y σ2. These parameters define a priv-
ileged direction in spacetime, thus leading to the violation of Lorentz symmetry.
The Lagrangian density of the modified Klein-Gordon theory by two orthogonal
unit Aether vectors is given by

L =
1

2
(∇µϕ∇µϕ+ σ1u

µ
1∇µϕu

ν
1∇νϕ+ σ2u

µ
2∇µϕu

ν
2∇νϕ) , (2.1)

where σ1, σ2 ≪ 1 are dimensionless constants, uµ
1 and uµ

2 are unit Aether vectors.
∇µ is the covariant derivative depending of the spacetime metric. The equation of
motion of the modified Klein-Gordon field is given by1(

∇µ∇µ + σ1 (u
µ
1∇µ)

2 + σ2 (u
µ
2∇µ)

2
)
ϕ = 0 . (2.2)

With these modifications on the Klein-Gordon equation, we extend the study done
in [28] with the presence of Aether vectors [29, 30].

Our aim is to investigate the Casimir effect resulting from the quantum fluc-
tuations of a scalar field acting on a rough membrane embedded in a flat three-
dimensional spacetime manifold including two orthogonal unit timelike and space-
like Aether vectors, simultaneously. The membrane is modeled by the following

1Where the metric signature has been considered as (+,−,−).



coordinates:
0 ≤ x ≤ L , 0 ≤ y ≤ a+ h(x) , (2.3)

where L denotes the length of the membrane, a represents its width and h(x) con-
tains all the information about the roughness of the membrane, with the assumption
that h(x) ≪ a ≪ L. Taking these conditions into account, we implement a change
of variables in such a way that, in the new variables, the membrane exhibits a flat
border. Then, we consider the coordinates x and y = ρ (1 + h(x)/a), where

0 ≤ x ≤ L , 0 ≤ ρ ≤ a , (2.4)

hence we can formulate the spatial metric in the new variables

gij =

1 +
(

h
′
ρ

a

)2 (
1 + h

a

)
h
′
ρ

a(
1 + h

a

)
h
′
ρ

a

(
1 + h

a

)2
 . (2.5)

From this metric, we can construct the Laplace-Beltrami operator. The roughness
of the membrane is considered perturbatively, hence the Laplace-Beltrami operator
can be expanded to second order in perturbations in terms of h(x)/a. The remaining
terms associated with the roughness are included in a potential term. Moreover,
in order to operate with dimensionless coordinates we implement the following
parameterization:

x = uL , 0 ≤ u ≤ 1 ,

ρ = va , 0 ≤ v ≤ 1 .
(2.6)

Since we consider L ≫ h(x), we can discard several terms from the operator in the
new coordinates, leading to a helpful simplification. Finally, the Laplace-Beltrami
operator has the form

−P ≡ 1

L2
∂2
u +

1

a2
∂2
v −M(u)∂2

v , (2.7)

where

M(u) =

(
2ĥ

a3
− 3ĥ2

a4

)
, (2.8)

with ĥ = h(uL). In this new coordinates, we impose the following Dirichlet bound-
ary conditions for the scalar field:

ϕ(u, 0) = ϕ(u, 1) = 0 ,

ϕ(0, v) = ϕ(1, v) = 0 .
(2.9)

The presence of the Aether vectors in Eq. (2.2) modify the general structure of
the operator P in Eq. (2.7). In this study, we choose temporal u1 = (1, 0, 0) and



spatial u2 vectors simultaneously, where u2 can be: u2 = (0, 1, 0) or u2 = (0, 0, 1),
which correspond to parallel and perpendicular vectors to the membrane length,
respectively [29, 30]. The modifications made by the Aether vectors define two
new spatial operators: P∥ and P⊥. To solve this eigenvalue problem associated to
spatial operator in the presence of a rough membrane and the Aether vectors, we
use the perturbation theory. For the zeroth order in perturbations, the parallel and
perpendicular spatial operators are respectively:(

− 1

L2
(1− σ2) ∂

2
u −

1

a2
∂2
v

)
ϕ(0) = (1 + σ1)λ

(0)
∥ ϕ(0) , (2.10)

(
− 1

L2
∂2
u −

1

a2
(1− σ2) ∂

2
v

)
ϕ(0) = (1 + σ1)λ

(0)
⊥ ϕ(0) . (2.11)

The constant σ1 reflects the existence of a preferred temporal direction and it is
global factor. For both cases the normalized solution is

ϕ(0)
n,m(u, v) = 2 sin (nπv) sin (mπu) , (2.12)

and by considering the Dirichlet boundary conditions in (2.9), the eigenvalues cor-
respond to

λ
(0)
n,m,∥ =

1

1 + σ1

[
(1− σ2)

2
(mπ

L

)2
+
(nπ

a

)2]
,

λ
(0)
n,m,⊥ =

1

1 + σ1

[(mπ

L

)2
+ (1− σ2)

2
(nπ

a

)2]
.

(2.13)

In general, to find the first order eigenvalues in perturbation theory, we must cal-
culate the following integral

λ(1)
n,m =

∫ 1

0

∫ 1

0

du dvϕ(0)∗
n,m(u, v)M∂2

vϕ
(0)
n,m(u, v) . (2.14)

By including the Aether vectors in the general operator (2.2), the function M is
modified, thus, for the parallel and perpendicular cases, the following is established

M∥ = M , M⊥ = (1− σ2)M . (2.15)

The coupling constant σ2 indicates that the Aether term contributes to the first
order in perturbation theory only when the Aether vector is perpendicular to the
length of the membrane. Therefore, from Eqs. (2.2), (2.7) and the zeroth-order
eigenvalues in (2.13), the total eigenvalues up to the first order in perturbation are
given by

λn,m,∥ =
1

1 + σ1

[(nπ
a

)2
+ (1− σ2)

2
(mπ

L

)2
− (nπ)2

∫ 1

0

duM∥

]
, (2.16)

λn,m,⊥ =
1

1 + σ1

[
(1− σ2)

2
(nπ

a

)2
+
(mπ

L

)2
− (nπ)2

∫ 1

0

duM⊥

]
. (2.17)



3 Casimir effect: ζ–function regularization

We will address the regularization of the spectrum generated by both parallel and
perpendicular spatial operators using the ζ–function method, which are respectively
given by

ζP∥(s) = (1 + σ1)
s
∑

n,m∈N

[(nπ
a

)2
+ (1− σ2)

2
(mπ

L

)2
− (nπ)2

∫ 1

0

duM∥

]−s

, (3.1)

ζP⊥(s) = (1 + σ1)
s
∑

n,m∈N

[
(1− σ2)

2
(nπ

a

)2
+
(mπ

L

)2
− (nπ)2

∫ 1

0

duM⊥

]−s

. (3.2)

These ζ–functions have the structure of the Epstein ζ–function and can be repre-
sented in the general integral form

ζP∥,⊥(s) =
(1 + σ1)

s

Γ(s)

∫ ∞

0

dt ts−1
∑

n,m∈N

exp
[
−t
(
r1n

2 + r2m
2
)]

, (3.3)

where the r1 and r2 functions for the parallel and perpendicular cases are

r1,∥ = π2

(
1

a2
−
∫ 1

0

duM∥

)
, r2,∥ = (1− σ2)

2
(π
L

)2
, (3.4)

r1,⊥ = π2

(
(1− σ2)

2

a2
−
∫ 1

0

duM⊥

)
, r2,⊥ =

(π
L

)2
. (3.5)

To continue with the regularization we must perform an analytical extension on the
ζ–function in (3.3), through the Poisson summation technique [39]

ζP∥,⊥(s) =
(1 + σ1)

s

4Γ(s)

{∫ ∞

0

dt ts−1 +
2π

√
r1r2

∫ ∞

0

dt ts−2

[
1

2
+

∞∑
n=1

e
−π2n2

tr1 +
∞∑

m=1

e
−π2m2

tr2

+2
∞∑

n,m=1

e
−π2

t

(
n2

r1
+m2

r2

)]
− 2

√
π

∫ ∞

0

dt ts−3/2

[
1

2

(√
r1 +

√
r2√

r1r2

)

+
1

√
r1

∞∑
n=1

e
−π2n2

tr1 +
1

√
r2

∞∑
m=1

e
−π2m2

tr2

]}
. (3.6)

The Casimir energy is calculated by evaluating the ζ–function at s = −1/2. The
consequences of evaluating this condition is that the integrals generate divergent
terms, which we must remove in order to obtain a finite result. In this way, the
Casimir energy is expressed as EC = 1

2
ζP∥,⊥(−1/2), hence we have for both cases



EC∥,⊥ = −(1 + σ1)
− 1

2

8π2

{
1

2
ζR(3)

(
r1√
r2

+
r2√
r1

)
+ r1r2

∞∑
n,m=1

(
r2n

2 + r1m
2
)−3/2

−ζR(2)
(
r
1/2
1 + r

1/2
2

)}
. (3.7)

The energy density per unit length is considerably reduced by tending L to infinity,
thus, we have

EC∥ = −(1 + σ1)
−1/2

1− σ2

ζR(3)

16π
lim
L→∞

[
1

a2
−
∫ 1

0

duM∥

]
, (3.8)

EC⊥ = −(1 + σ1)
−1/2 ζR(3)

16π
lim
L→∞

[
(1− σ2)

2

a2
−
∫ 1

0

duM⊥

]
. (3.9)

Consequently, we obtain the Casimir force density by deriving the energy density
with respect to the width a of the membrane

FC∥ = −(1 + σ1)
−1/2

1− σ2

ζR(3)

8π
lim
L→∞

[
1

a3
− 3

a4

∫ 1

0

ĥdu+
6

a5

∫ 1

0

ĥ2du

]
,

(3.10)

FC⊥ = − 1− σ2

(1 + σ1)1/2
ζR(3)

8π
lim
L→∞

[
(1− σ2)

a3
− 3

a4

∫ 1

0

ĥdu+
6

a5

∫ 1

0

ĥ2du

]
.

(3.11)

To illustrate these results we will proceed to calculate the Casimir effect for
a specific case of a membrane with periodic roughness. Considering the original
coordinates, we choose the following periodic function

h(x) = ϵ cos(αx+ θ) , (3.12)

where α has inverse length units, θ is an arbitrary phase and ϵ correspond to a
small parameter with length unit that represents the perturbative nature of h. The
coefficients σ1,2 associated with the vectors that break the Lorentz symmetry are
treated perturbatively, therefore, we must expand around these terms. The Casimir
force densities are given by

FC∥ = −1

8

ζR(3)

πa3

(
1− 1

2
σ1 + σ2 +

3

8
σ2
1 + σ2

2

)
− 3

8

ζR(3)ϵ
2

πa5
, (3.13)

FC⊥ = −1

8

ζR(3)

πa3

(
1− 1

2
σ1 − 2σ2 +

3

8
σ2
1 + σ1σ2 + σ2

2

)
− 3

8

ζR(3)ϵ
2

πa5
. (3.14)



In both scenarios, the effects generated by temporal and spatial Aether vectors
directly impact the primary term a−3, making their effects significant. In contrast,
roughness only influences the secondary term a−5 (see Ref. [28]), hence the effects
of the perturbative coefficients σ1,2 arise independently of ϵ. The magnitude of the
parallel force density is always greater than the magnitude of the perpendicular
force density by a proportional factor σ2(3 − σ1) (see Figure 1). We can see that
the equality between the magnitudes of the forces occurs when σ2 = 0 or σ1 = 3,
however, the latter must be discarded because the coefficients have a perturbative
nature, that is, σ1 ≪ 1.
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Figure 1: Both graphs represent the Casimir force density versus separation dis-
tance a. In figure (a), the effect of Lorentz breaking without considering roughness
is shown. The dashed and dotted curves represent the perpendicular and parallel
forces, respectively, considering σ1 = 0.2 and σ2 = 0.3. In figure (b), we consider
the roughness of the membrane ϵ = 0.25 using the same values for σ1,2 as in figure
(a). In both figures the solid curves represents the case σ1 = σ2 = 0 and without
roughness.

4 Casimir effect at finite temperature

To investigate the effects of temperature on the energy spectrum, we must employ
the path integral, where temperature is represented by the imaginary part of time.
The path integral for the scalar quantum field is given by

Z =

∫
Dϕ exp (S(ϕ)) . (4.1)

From the path integral we can obtain the effective action associated to some dif-
ferential operator O. The effective action for the parallel and perpendicular spatial
Aether vectors are given by

Γ =
1

2
ln det[(−∂2

τ + P∥,⊥)/µ] =
1

2
ln det[O∥,⊥/µ] , (4.2)



where τ ∈ C and µ is an arbitrary parameter with mass dimension, introduced to
render the ζ–function dimensionless. Eventually, the ζ–function will be independent
of this parameter µ, hence we set µ = 1 for simplicity. Therefore, the Casimir energy
is defined by

EC =
∂

∂ξ
Γ = −1

2

∂

∂ξ

(
d

ds
ζO∥,⊥(s)

)∣∣∣∣
s=0

, (4.3)

where ξ = 1/T is the inverse of the temperature.
The eigenvalue problem associated to the operator O∥,⊥ is expressed by(

−∂2
τ + P∥,⊥

)
ϕ = ωϕ . (4.4)

The solution we propose for the scalar quantum field is

ϕk,n,m(τ, x
i) =

1

ξ
e

2πik
ξ

τφn,m(x
i) , (4.5)

where the eigenvalues from the time derivative are defined by periodic border, and
correspond to ωk = 2πk

ξ
, with k ∈ Z. Then, the total eigenvalues associated with

the operator O∥,⊥ are given by

ωk,n,m = (1 + σ1)

(
2πk

ξ

)2

+
(
r1n

2 + r2m
2
)
,

where r1 and r2 are defined by (3.4)–(3.5). We use the integral representation of
the ζ–function to rewrite the spectral function as

ζO∥,⊥(s) =
1

Γ (s)

∫ ∞

0

dt ts−1

∞∑
k=−∞

∞∑
n,m=1

exp

{
−t

[
(1 + σ1)

(
2πk

ξ

)2

+
(
r1n

2 + r2m
2
)]}

.

(4.6)

As was done in the case of zero temperature, it is possible to use Poisson resum-
mation in (4.6),

ζO∥,⊥(s) =
ξ√
4π

Γ (s− 1/2)

Γ (s)
ζP∥,⊥(s− 1/2)

+
ξ√

π
√
1 + σ1Γ(s)

∞∑
k,n,m=1

∫ ∞

0

dt ts−3/2 exp

[
− ξ2k2

4(1 + σ1)t
−
(
r1n

2 + r2m
2
)
t

]
.

(4.7)

The coupling constant
√
1 + σ1 is absorbed in ζP∥,⊥ , thus it is the same as in Eq.

(3.6). The energy is obtained by taking the derivative of the ζ–function with respect



to s and evaluating it at s = 0. Then, by integrating the exponential function with
respect to t, we obtain

ζ ′O∥,⊥
(0) = −ξζP∥,⊥(−1/2) + 2

∞∑
k,n,m=1

1

k
exp

[
−ξk

(
r1n

2 + r2m
2
)1/2

/
√
1 + σ1

]
.(4.8)

The sum over k can be explicitly performed using a geometric series, hence the
Casimir energy is

EC∥,⊥ =
1

2
ζP∥,⊥(−1/2) +

1√
1 + σ1

∞∑
n,m=1

 (r1n
2 + r2m

2)
1/2

exp
(
ξ (r1n2 + r2m2)1/2 /

√
1 + σ1

)
− 1

 .

(4.9)

In this result, it is crucial to remember that we need to consider the finite terms of
ζP∥,⊥ when we evaluated at s = −1/2 (see Eq. (3.6)).

The Casimir force is obtained by deriving the energy with respect to the width
a of the membrane. To simultaneously analyze the effects of roughness, Aether
vectors and temperature, we will proceed with numerical calculations. In Figure
2, both graphs represent the Casimir force density with respect to the separation
of the membrane. In Figure 2 (a), the effect of temperature, without considering
roughness, increases both parallel and perpendicular force density. In this case the
parallel force magnitude always greater than the perpendicular force magnitude. In
Figure 2 (b), we see that roughness affects the same way, increasing the intensity
of the forces. In Figure 3 (a) we can see several behaviors of the force density for
different values of temperature. The parallel force remains greater than the perpen-
dicular force even when considering the temperature. In Figure 3 (b), it illustrates
how the force varies in relation to the values of the constant σ2 associated with the
spatial Aether vectors, for two different values of σ1 considering temperature and
roughness. The solid and dotted curves represent the perpendicular and parallel
force density respectively, for the case σ1 = 0.3. Both curves coincide when the
value of σ2 is zero. As the value of σ2 increases, the perpendicular force density de-
creases, unlike the parallel force, which increases in absolute value. When the value
of the constant σ1 decreases, both force densities increase in absolute magnitude.
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Figure 2: Both graphs depict the Casimir force density versus separation distance
a while taking temperature into account. In Figure (a), the impact of Lorentz
symmetry breaking is illustrated without considering roughness. The solid curve
represents the scenario where σ1 = σ2 = 0 and T = 0, indicating the absence of
Lorentz symmetry breaking. The dashed and dotted lines respectively represent
the perpendicular and parallel forces, considering σ1 = 0.2 and σ2 = 0.3, both at
the temperature T = 1000. In Figure (b), we incorporate the roughness ϵ = 0.25 of
the membrane using the same parameters as in Figure (a).
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Figure 3: The Figure (a) shows the Casimir force density versus separation distance
a, considering roughness ϵ = 0.25, σ1 = 0.2, σ2 = 0.3 and different temperatures.
The solid and long-dashed curves represent the perpendicular force for T = 10 and
T = 100, respectively. The dashed and dotted curves show the parallel force for
T = 10 and T = 100. In the Figure (b), we evaluate the Casimir force density in
function of σ2 for both parallel and perpendicular forces considering temperature
T = 100 and roughness ϵ = 0.25. The solid and long-dashed curves represent the
perpendicular force for the cases σ1 = 0.3 and σ1 = 0.2. The dotted and long-dotted
curves are the parallel forces for the cases σ1 = 0.3 and σ1 = 0.2, respectively.



5 Conclusions

In this research, we investigate the influences of roughness, Aether vectors, and
temperature. We analyze the scenario of a rough membrane inserted into a three-
dimensional spacetime manifold, where Lorentz symmetry is broken by the presence
of both temporal and spatial unit Aether vectors. Vacuum quantum fluctuations are
induced by a scalar quantum field whose Lagrangian density is formulated within
the framework of theories with Lorentz symmetry breaking. To address rough-
ness, we perform a change of variable such that the membrane becomes completely
flat border, and the remaining terms associated with perturbative roughness are
treated as a potential. The Lagrangian density of the modified Klein-Gordon field
incorporates two types of Aether vectors: one temporal and one spatial. The con-
sidered spatial vector has two possible orientations: parallel or perpendicular to the
length of the membrane. We regularize the obtained spectrum using the ζ–function
method. Then, we present a specific case of a membrane with periodic border that
satisfies Dirichlet boundary conditions. With this we derive two spectra, one associ-
ated with the parallel spatial vector and another perpendicular to the length of the
membrane. Finally, considering all the previous geometric aspects, we introduce
the temperature through the effective action.

The coefficient associated with the timelike vector emerges as a global factor
of the standard Casimir effect. On the other hand, for the spacelike vector, the
modification on the force and energy is more delicate, because the components
parallel and perpendicular have different behavior with respect to the coefficient σ2.
In the perpendicular force density we can see that σ2 directly affects the primary
term, as shown in Eq. (3.11). When we consider the coefficients σ1,2 perturbatively,
our results indicate that the parallel force density is greater than the perpendicular
force density. Modifications that break Lorentz symmetry through Aether vectors
affect the primary term of Casimir energy and force, while the effects of roughness
remain isolated, manifesting only in the second order in a secondary term. Thus,
the effects of perturbative coefficients σ1,2 arise independently of ϵ. Consequently,
the effects induced by the Aether vectors exert a significant influence on the Casimir
effect, both in its parallel and perpendicular components, and in different ways. We
can appreciate this by increasing the value of the parameter σ2, the perpendicular
force density decreases compared to the parallel case. For both types of force,
reducing the value of σ1 increases both magnitudes. Considering the effects of
temperature in all cases, we observe an increase in the magnitude of the force
density.
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