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Developing quantum networks necessitates coherently connecting distant systems via remote
strong coupling. Here, we demonstrate long-distance coherence in cavity magnonics operating in the
linear regime. By locally setting the cavity near critical coupling with travelling photons, non-local
magnon-photon coherence is established via strong coupling over a 2-meter distance. We observe two
anomalies in this long-distance coherence: first, the coupling strength oscillates twice the period of
conventional photon-mediated couplings; second, clear mode splitting is observed within the cavity
linewidth. Both effects cannot be explained by conventional coupled-mode theory, which reveal the
tip of an iceberg of photon-mediated coupling in systems under critical driving. Our work shows the
potential of using critical phenomena for harnessing long-distance coherence in distributed systems.

Introduction.– Coherent dynamics enabled by strong
light-matter interactions [1–3] contributes significantly to
the advancements in quantum science and technology,
which are typically achieved by overlapping electromag-
netic fields. When systems are separated by macroscopic
distances, the direct coupling is hindered due to the re-
duced overlap of fields, posing a challenge for establishing
and preserving long-distance coherence.

To achieve long-distance coherence, several methods
are employed, such as optomechanical systems [4], su-
perconducting cavities [5], topological edge states [6] and
also surface acoustic waves [7]. One of the most interested
methods involves travelling photons in microwave waveg-
uides, laser beams, or optical fibers [8–11]. Indirect cou-
plings between distant resonators are generated through
their cooperation of dissipations to travelling photons
[12, 13], and have garnered broad interest in quantum
optics [14, 15] and waveguide quantum electrodynamics
[16–18].

The main difficulty for implementing this approach is
dissipation: in conventional systems where a pair of res-
onators are connected by travelling photons, the same
photons that mediate the coupling induce an extrin-
sic dissipation, causing photon-induced decoherence that
erases the photon-mediated coherence [19–22]. In or-
der to establish long-distance coherence, special meth-
ods are employed for either enhancing the coupling or
suppressing the dissipation. For example, long-distance
strong coupling has been demonstrated by terminating
the waveguide with mirrors [17, 23–25], adopting a light
loop [22, 26], constructing resonators as giant atoms [27–
29], or utilizing a gain-driven cavity [30, 31]. While these
methods enhance the cooperativity, they also come with
drawbacks such as bandwidth limitations, stability con-
straints, design challenges, and nonlinear disruptions.

Recently, cavity magnonics [2] has emerged as a ver-
satile platform for engineering light-matter interactions.
Among many advantages, it enables the incorporation of

critical phenomena, such as exceptional points and bound
states in the continuum in coupled systems. Experiments
have found that by using critical phenomena, dissipations
can be harnessed as a resource [32]. This sparks curios-
ity about whether cavity magnonics could pave the way
for establishing coherence over long distances by utilizing
critical phenomena.

This work experimentally explores such a frontier by
studying critically-driven cavity magnonics. A cylindri-
cal dielectric cavity [33] is used to study its remote cou-
pling with an yttrium iron garnet (YIG) sphere [34]. The
coupling is mediated by photons travelling in coaxial ca-
bles over 2 meters long. Near the critical-driving con-
dition where the cavity is critically coupled to travelling
photons, we observe a normal mode splitting that demon-
strates coherent energy exchange mediated by photons
travelling over a long distance. Moreover, by comparing
with standard theories for photon-mediated coupling, we
show that the observed coupling is anomalous in both
the coupling strength and its dependence on the phase of
the travelling photons.

Setup.– Our setup is shown in Fig. 1(a). The YIG
sphere with 1 mm diameter is placed on a 4.65 mm-
wide microstrip. It is biased by an external magnetic
field H applied parallel to the microstrip, which con-
trols the resonant frequency ωm = γeµ0(H + HA) of
the magnon mode. Here, µ0 is the vacuum permeabil-
ity. From calibrations [35], we get the gyromagnetic ratio
γe = 2π×22.4 GHz/T, the anisotropy field µ0HA = −7.1
mT, the intrinsic magnon damping rate α0/2π = 0.8
MHz, and the rates of extrinsic damping of the magnon
mode to the left-going (κm,L/2π = 8 MHz) and right-
going (κm,R/2π = 7 MHz) travelling waves (schemati-
cally shown in Fig. 1(b)).

A dielectric cylinder [33], with a diameter of 9.1 mm,
a height of 3.7 mm and a dielectric constant of 34, is
placed on another 4.65 mm-wide microstrip. In the top
right of Fig. 1, the simulated cavity mode profile is plot-
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FIG. 1. Setup. (a) The YIG sphere is placed on a mi-
crostrip. An external magnetic field H applied parallel to the
microstrip drives the magnon mode with the uniform preces-
sion. The dielectric cylinder is placed on another microstrip.
The cavity mode profile in the top right resembles the TE01
mode. The lateral spacing d between the centers of the cav-
ity and the microstrip is tunable by using a step motor. The
magnon and cavity modes are coupled remotely via photons
travelling in coaxial cables that connect the microstrips. The
travelling phase Φ = ΦL + ∆Φ is controlled by an inserted
phase shifter that tunes ∆Φ, while ΦL = 2πL/λ is set by
the photon propagation distance L. The transmission spec-
tra S21(ω) are measured by connecting the end ports of the
microstrips to the Vector Network Analyzer. (b) Theoretical
model. The magnon and cavity photon modes are coupled to
the travelling photons with rates κm,L(R) and κc,L(R), respec-
tively, and measured by input ŝ+1 and output ŝ−2 fields.

ted, resembling the TE01 mode where a magnetic dipole
is along the vertical axis of the cylinder. The lateral
spacing d between the centers of the cavity and the mi-
crostrip is tunable by a step motor. The two microstrips
are connected by coaxial cables with a total length L,
and a phase shifter is inserted into the cables.

Our goal is to establish non-local coherence between
the magnon and cavity modes via photons travelling in
the coaxial cables. At ω/2π = 6.2 GHz (wavelength λ =
32.7 mm), the travelling phase between the magnon and
photon modes is Φ = ΦL + ∆Φ, where ΦL = 2πL/λ >
128π is the phase of the photons propagating over a dis-
tance of L > 2 m [35]. ∆Φ is controlled by the phase
shifter, precisely tuning Φ over a period of 2π. The
transmission spectra S21(ω) are measured by connecting
the end ports of the microstrips to the Vector Network
Analyzer. The experiments are performed in the linear
dynamics regime by setting the input power at -10 dBm.

Critical coupling.– We calibrate the critical coupling
[52] between the cavity and microstrip to construct

FIG. 2. Critical coupling. (a) The dielectric cylinder is
calibrated by tuning its lateral spacing d to the microstrip.
(b) The transmission amplitude |S21| and (c) group delay τg
reveal two critical coupling conditions marked by the green
dashed lines. (d) The effective damping rate β/2π and (e)
the extrinsic damping rate κc,L(R)/2π are extracted by fitting
the transmission using Eq. 1. The dotted line in (d) shows
the intrinsic damping rate β0/2π. The arrows in (d) and (e)
mark the cavity setting conditions for the data presented in
Figs. 3 and 4.

critically-driven cavity magnonics. The condition is
set by the lateral spacing d that controls the cavity-
microstrip coupling. In the calibration measurement, the
YIG sphere is unbiased by setting H = 0, and the phase
shifter is set at ∆Φ = π.

Figs. 2(b) and (c) plot the measured transmission am-
plitude |S21(ω)| and the group delay τg(ω) = −∂∠S21/∂ω
of the cavity, respectively, where ∠S21 is the transmis-
sion phase. By changing d, the cavity mode frequency ωc

shifts non-monotonically. Two sharp dips are observed
at d = 4.90 and 5.80 mm in Fig. 2(b), each marked by a
green dashed line. These are the critical coupling condi-
tions, as we explain below. At these conditions, |S21(ωc)|
approaches zero in the linear scale, while τg(ωc) switches
abruptly between positive and negative infinities. In the
region between the two dashed lines, τg(ωc) > 0; outside
of the region, τg(ωc) < 0.

Using the input-output theory [53, 54], we derive [35],

S21 =
ω − ωc + i(β0 + κc,L/2− κc,R/2)

ω − ωc + i(β0 + κc,L/2 + κc,R/2)
, (1)

where the intrinsic damping rate of the cavity mode is
calibrated as β0/2π = 17 MHz. κc,L/2π and κc,R/2π are
the rates of extrinsic damping of the cavity mode to the
left-going and right-going travelling waves, respectively.
Both of them depend on d.
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Eq. 1 shows that 1/|S21(ω)| has a Lorentzian line
shape with HWHM = |β|, where β is an effective damp-
ing rate defined as

β = β0 + κc,L/2− κc,R/2. (2)

It models the cavity as a loaded oscillator with ω̃c =
ωc−iβ, where the loading effect of the travelling photons
impacts both HWHM and τg. At the resonance, τg(ωc) ∝
− 1

β , so that β determines the sign of τg(ωc): when β >

0, we have τg(ωc) < 0, the cavity is under coupled to
the travelling photons; when β < 0, the cavity is over
coupled, leading to τg(ωc) > 0; at β = 0, the cavity
is critically coupled, which is a singularity where τg(ωc)
approaches infinity [52].

Using Eq. 1 to fit the measured S21 spectra [35], we de-
duce the fitting parameters κc,L and κc,R and plot them
in Fig. 2(e). β is determined from Eq. 2 and plotted
in Fig. 2(d). Note that due to an interference effect
[27, 28, 55–59], when d decreases, κc,L and κc,R increase
differently with the enhanced field overlapping of the cav-
ity and microstrip, so that β oscillates which leads to two
critical coupling conditions at d = 4.90 and 5.80 mm [35].
Near both critical conditions, the cavity mode dynami-
cally functions as a loaded high-Q oscillator with nearly
zero effective damping, which is extremely sensitive to
detect long-distance coherence, as we demonstrate below
in two experiments.

Photon-mediated long-distance coupling.– The 1st ex-
periment, performed at different Φ while setting the H-
field at ωm = ωc, searches for the evidence of mode
splitting caused by photon-mediated coupling. Typical
results are comparatively presented for d = 4.92 mm
[marked by the red arrow in Fig. 2(d)] and d = 6.90
mm (blue arrow). Table I lists the cavity parameters at
these settings.

TABLE I. Cavity parameters at typical settings near or away
from the critical coupling (c.c), calibrated at ∆Φ = π.

Cavity Setting near c.c. away from c.c.
d (mm) 4.92 6.90

ωc/2π (GHz) 6.181 6.203
κc,L/2π (MHz) 332.4 37.0
κc,R/2π (MHz) 370.0 37.0
β/2π (MHz) -1.8 17.0

At d = 4.92 mm, three key features are observed: (i)
mode splitting is found in |S21| plotted in Fig. 3(a),
which depends on the phase Φ = ΦL +∆Φ (without loss
of generality, we denote ∆Φ = π at the maximum mode
splitting). This feature demonstrates that the magnon
and cavity photon modes are coupled remotely by the
travelling photons. Such a non-local hybridization leads
to two normal modes ω̃± = ω± − iδ±, where ω± and
δ± are the resonant frequencies and damping rates, re-
spectively. (ii) the measured group delay of the hy-

FIG. 3. Long-distance coupling: the phase depen-
dency. The left and right panels compare the results mea-
sured at d = 4.92 and 6.90 mm, respectively. (a) & (d) Trans-
mission amplitude |S21|, (b) & (e) group delay τg measured
as a function of the frequency detuning ∆ = (ω − ωc)/2π at
different phase setting ∆Φ. The dashed curves in (a) and (b)
are calculated by using Eq. 5 with η = 2 and δ = 0.996. (c)
The real and imaginary components of the complex coupling
strength G = J + iΓ are plotted as blue and red circles, while
the solid sinusoidal curves are added to guide the eye. (f) The
measured inverse amplitude 1/|S21(ωc)| are plotted in com-
parison with the result calculated using Eq. 5 with η = 1 and
δ = 1.

bridized modes exhibits antisymmetric phase dependence
as shown in Fig. 3(b). For ∆Φ < π, we observe τg > 0 for
the higher-frequency mode ω̃+, and τg < 0 for ω̃−; when
∆Φ > π, the results are reversed. This feature is associ-
ated with the anomalous phase period that we will show
below. (iii) for both modes, τg switches abruptly be-
tween positive and negative infinities at ∆Φ ≃ π, where
the non-locally hybridized modes are critically coupled
with the travelling photons.

As the first step for understanding these intriguing fea-
tures, we model the non-local hybridization as two har-
monic oscillators (ω̃m = ωm − iα and ω̃c = ωc − iβ)
coupled by a complex rate G. Here, α ≡ α0 + κm,L/2−
κm,R/2 = 1.3 MHz is the effective damping rate for the
magnon mode. Fitting 1/|S21| with the lineshapes in-
volving two resonances, we determine ω̃± = ω± − iδ±,
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FIG. 4. Long-distance coupling: the field dependency.
The left and the right panels compare the results measured
at d=4.92 and 6.90 mm, respectively. (a) & (c) |S21| mapping
plotted as a function of the probing frequency ω and the field
detuning ∆m, showing level repulsion caused by remote cou-
pling. (b) & (d) Transmission spectra plotted with the same
colorbar as in the top panel. Hybridized modes are indicated
in (b) by the red arrows at ∆m = 0. The black dotted curves
and the red dashed curves are theoretical calculations using
Eq. 5 with η = 1, δ = 1 and η = 2, δ = 0.996, respectively.

from which we extract [35],

G = J + iΓ =
√

(ω̃+ − ω̃−)2 − (ω̃c − ω̃m)2. (3)

Fig. 3(c) plots the phase dependence of the real (|J |) and
imaginary (|Γ|) components of G. Both J and Γ follow
a sinusoidal solid curve, and G changes from purely real
(coherent coupling) to purely imaginary values (dissipa-
tive coupling) when Φ changes π. This is surprising, since
conventional photon-mediated coupling theory predicts
that G ∼ eiΦ, changing from purely real to purely imagi-
nary values when Φ changes π/2 [60, 61]. The anomalous
doubled phase period is also observed by setting the cav-
ity near the 2nd critical coupling condition at d = 5.87
mm [35].

In contrast, at d = 6.90 mm, the result is different as
shown in Figs. 3(d)-(f). Here, no mode splitting is found,
instead, a single resonance with a negative group delay
τg is observed. A noteworthy feature is that 1/|S21(ωc)|
shows a phase-dependent oscillation, which we will ana-
lyze later by using the coupled mode theory.

To confirm these typical features, we perform the 2nd
experiment at different field detuning ∆m = [ωm(H) −
ωc]/2π, while fixing ∆Φ = π. Here, we compare the field
dispersions measured at d = 4.92 and 6.90 mm.
At d = 4.92 mm, the measured dispersion plotted in

Fig. 4(a) reveals level repulsion between the remote
magnon and cavity modes, and the spectra plotted in
Fig. 4(b) show anti-crossing with amplitudes exchange.
This demonstrates coherent energy exchange between the
two remote modes. From the splitting measured at ∆m =
0, we determine the coupling rate |G| = 4.18 MHz, corre-
sponding to a cooperativity C = |G|2/|βα| = 7.5, which
confirms that the critically-driven cavity magnonics op-
erates in the strong-coupling regime [2]. In contrast, at
d = 6.90 mm, neither level repulsion nor anti-crossing
are observed. The magnon mode appears to be superim-
posed on the broad background of the cavity mode.
Thus, two sets of experiments consistently reach the

same conclusion: by setting the cavity near the critical
coupling condition, long-distance coherence is established
between the remote magnon and photon modes, revealing
an anomalous long-distance strong coupling mediated by
travelling photons.
Phenomenological model.– Exploring beyond the sim-

ple model of Eq. 3, we now quantitatively analyze the
data using the coupled mode theory [19]. As depicted in
Fig. 1(b), the magnon (m̂) and cavity (ĉ) modes, with in-
trinsic damping rates α0/2π and β0/2π, respectively, are
coupled to the travelling photons with rates κm,L(R)/2π
and κc,L(R)/2π, respectively. The remotely coupled sys-
tem is driven by the input field ŝ+1 and probed by the
output field ŝ−2. The coupled equations for ĉ and m̂ are:(

˙̂c
˙̂m

)
=− i

(
ωc − iβ0 − iκc −ieiΦ/η√κc,Rκm,R

−ieiΦ/η√κc,Lκm,L ωm − iα0 − iκm

)(
ĉ
m̂

)
− i

(
eiΦ/η√κc,R

δ
√
κm,R

)
ŝ+1,

ŝ−2 = ŝ+1 − i
(
e−iΦ/η√κc,R δ

√
κm,R

)( ĉ
m̂

)
,

(4)

where κc(m) = [κc(m),L+κc(m),R]/2. We introduce η and
δ as two phenomenological parameters to account for the
anomalous period and coupling rate, respectively.
Using Eq. 4, the transmission S21 = ŝ−2/ŝ+1 of cou-

pled system is derived as,

S21 =
[ω − ω̃m + i(1− δ2)κm,R](ω − ω̃c)−G2

0

(ω − ω̃m + iκm,R)(ω − ω̃c + iκc,R) +Kei2Φ/η
,

(5)

where G2
0 = −κc,Rκm,R(1 − δ)

(
ei2Φ/η

√
κc,Lκm,L

κc,Rκm,R
− δ

)
and K =

√
κc,Rκm,Rκc,Lκm,L.

Setting η = 1 and δ = 1, Eqs. 4 and 5 reproduce
the standard theory describing photon-mediated cou-
pling [19]. Using the parameters calibrated in Table I
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for d = 6.90 mm and setting Φ = (2n + 1)π with n
as an integer [35], the calculated |S21(ω)| spectra plot-
ted by the dotted curves in Fig. 4(d) qualitatively agree
with the measured spectra. Furthermore, as shown by
the dotted curve plotted in Fig. 3(f), the Φ-dependence
of 1/|S21(ωc)| calculated for Φ ∈ [2nπ, 2(n + 1)π] qual-
itatively agrees with the measured data [62], showing
that the observed oscillation originates from the photon-
mediated coupling term Kei2Φ in Eq. 5. Smoking guns
of deviation from the standard theory are evident, but
hard to verify from the experiments performed at such
non-critical coupling settings.

In contrast, at d = 4.92 mm, |S21(ω)| calculated from
the standard theory (η = 1 and δ = 1) fails completely to
reproduce the observed splitting at ∆m = 0, as shown by
the black dotted curve plotted in Fig. 4(b). Moreover,
it fails to explain the observed amplitude of the magnon-
like mode measured at ∆m ̸= 0. Here, we have to set
δ = 0.996 to reproduce the observed mode splitting at
∆m = 0, as shown by the red dashed curve plotted in Fig.
4(b). Furthermore, we need to set η = 2 to account for
the anomalous phase period, as shown by the red dashed
curves plotted in Figs. 3(a) and (b). Setting η = 2 also
reproduces the amplitude of the magnon-like mode, as
shown by the dashed curves plotted in Fig. 4(b). Thus,
critically-driven cavity magnonics reveals two anomalous
features in contrast to conventional cases [19–22]: (i) the
photon-mediated coherence is no longer exactly erased
by the photon-induced decoherence, and (ii) the phase
period of the coupling strength is doubled.

Currently, there is no theory suitable for explain-
ing these anomalies. To exam whether our discov-
ery is limited to special cavities with specific geomet-
ric parameters, we replace the 3D cylindrical cavity
with a 2D complementary split-ring resonator. Near the
critically-driven condition, the experimental results [35]
well reproduce both anomalies, indicating that the phase-
dependent anomalous coupling may be universal and de-
serves deep investigation.

Conclusion.– By coupling a YIG sphere remotely
through cables over 2 meters long with either a cylindrical
cavity or a ring resonator, we discover an anomalous long-
distance strong coupling. Our experiments show that
critically-driven cavity functions as a loaded high-Q os-
cillator with nearly zero damping, which is extremely sen-
sitive to detect long-distance coupling. Phase-dependent
measurements show unambiguously that the observed re-
mote coupling is mediated by the travelling photons, and
the field-dependent measurements directly demonstrates
coherent energy exchange between a pair of local oscil-
lators separated by a macroscopic distance. We find
that the coupling strength oscillates exactly twice the
period of conventional photon-mediated couplings. Both
anomalies are found independent of specific geometric
parameters of the cavity, demonstrating that critically-
driven cavity magnonics is a robust platform for harness-

ing long-distance coherence, which may open new hori-
zons for developing cavity magnonics network. The ob-
served anomalies may intrigue broad interest for theoret-
ical and experimental studies of photon-mediated coher-
ence and remote sensing in coupled system of distributed
oscillators.
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