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CHOW TRACE OF 1-MOTIVES AND THE LANG-NERON GROUPS

LONG LIU
With an appendix by Bruno Kahn

ABSTRACT. We show that in the case of primary field extensions, the extension of scalars of
Deligne 1-motives admits a left adjoint, called Chow image, and a right adjoint, called Chow
trace. This generalizes Chow’s results on abelian varieties. Then we study the Chow trace
in the framework of Voevodsky’s triangulated categories of (étale) motives. With respect to
the 1-motivic ¢-structure on the category of Voevodsky’s homological 1-motives, the zero-th
direct image of an abelian variety is given by the Chow trace, and the first direct image is the
0-motive defined by the (geometric) Lang-Néron group.
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1. INTRODUCTION

1.1. Background. Let K/k be a field extension, K; be a separable closure of K and k; be the
separable closure of k in K;. For a finite separable field extension K/k, the field k; is K itself
and the absolute Galois group Gal(K;/K) is canonically an open subgroup of Gal(ks/ k). Then
the extension of scalars of discrete Galois modules admits a left adjoint and a right adjoint,
both of which are given by the induced modules in the sense of [Ser02, Chapter I, 2.5]. A
deeper result is the existence of a left adjoint and a right adjoint to the extension of scalars
of abelian varieties, both of which are given by the Weil restriction. See, for example, [Kah18,
Th. 4.2 and 4.3].

Another interesting case is when K/ k is a primary extension of fields, which means that the
algebraic closure of k in K is purely inseparable over k. Then the canonical homomorphism
of absolute Galois groups Gal(K;/K) — Gal(k,/k) is surjective. The extension of scalars of
discrete Galois modules admits a left adjoint and a right adjoint, given by Gal(K/Kk;) co-
invariants and Gal(K;/Kks) invariants respectively. A deeper result ([Cho55]) is the existence
of a left adjoint and a right adjoint to the extension of scalars of abelian varieties, called
Chow image and Chow trace respectively. Lang and Néron ([LN59]) proved a relative version
of Mordell-Weil theorem using Chow’s trace: Let K/k be a finitely generated regular field
extension. Let A be an abelian variety over K and 7, A be its K/ k-trace. Then the Lang-Néron
group

LN(A,K/k) := A(K)/ (.« A) (k)

is a finitely generated abelian group. See [Con06] and [Kah06, Appendices A and B] for
‘modern’ proofs using Grothendieck’s theory of schemes and fpqc descent.

1.2. Main results. The existence of Chow’s trace can be generalized to Deligne 1-motives.
Recall [Del74, 10.1.10] that a Deligne 1-motive over k is a two-term complex of group
schemes [L — GJ], where L is a lattice and G is a semi-abelian variety. Here, a lattice
means a commutative étale group scheme L over k such that L(k;) is a finitely generated
free Z-module, and a semi-abelian variety is a commutative algebraic group which is an
extension of an abelian variety by a torus. A morphism of Deligne 1-motives is defined to
be a commutative square in the obvious sense. Denote the category of Deligne 1-motives
by M; (k). The base change of group schemes induces a base change functor of Deligne
1-motives. The following result answers positively the expectation from [Kah18, bottom of
p- 82].

Theorem 1 (Theorems 2.3.8 and 2.4.2). Let K be a primary field extension of k. Then
(1) the extension of scalars of Deligne 1-motives
" My (k) — M (K)
[L — Gl — [Lx — Gk]

is fully faithful;
(2) n* has a left adjoint n:iv'l and a right adjoint .

Our functors n;ivll and n'l/ll recover some classical constructions (Corollary 2.4.4), such as
Chow’s image and trace of abelian varieties. Thus we call these two functors Chow image
and Chow trace respectively. A key ingredient of the existence of Chow image and Chow
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trace is the fact that primary field extensions will not bring new semi-abelian subvarieties
(Theorem 2.3.12).

We also want to study the derived functors of .. However, the category of Deligne 1-
motives is neither abelian nor big enough. Let A be Z[1/p], the localization of Z by inverting
p the exponential characteristic of k. Thanks to the work of Voevodsky, Orgogozo, Barbieri-
Viale, Kahn and Ayoub ([Voe00], [Org04], [BVK16], [Ayol1]), M; (k) ®7 A is a full subcategory
of the heart of a 1-motivic ¢-structure on Voevodsky’s triangulated category DM« (k, A) of
étale homological 1-motives, i.e., the localizing subcategory of DME{f(k, A) generated by the
motives M (X) fordim X < 1.

By the work of Ayoub and Barbieri-Viale [ABV09], DM (k, A) is canonically equivalent to
the unbounded derived category of (étale) 1-motivic sheaves Hl; (k, A), which is the smallest
co-complete Serre subcategory of the category of étale sheaves with transfers containing
lattices and étale sheaves represented by semi-abelian varieties. And every smooth curve
C defines a 1-motivic sheaf hgt(C), which will form a system of generators of Hl<; (k, A). The
category of 1-motivic sheaves contains the category Hl<o(k, A) of 0-motivic sheaves, which
is equivalent to the category of sheaves of A-modules on the site (Speck)s. Ayoub and
Barbieri-Viale showed that the inclusion §: Hl<yg — Hl<; admits a left adjoint 7y, which is
constructed using the scheme of connected components. Then we will have an analogue of
the connected-étale exact sequence

0— Z° = Z - 1y(F) —0.
Let K/k be a field extension. Then the inverse image functor
e*: Hl<i(k,A) — HI< 1 (K, A)
K& (C) — K (Ck)
admits a right adjoint e., which has a total right derived functor Re.. Similarly, we also have

a direct image functor €. for 0-motivic sheaves.

Theorem 2 (Theorem 3.6.13). For.%# € Hl-o(K, A), we have a canonical isomorphism
SR'e,.7 = R'e.5.7.

In particular, if Kk is primary, then R'e,8.7 is the 0-motivic sheaf associated with the

Gal(ks/k)-module H' (T', ), whereT' = Gal(K;/Kks).

The key point of the proofis a smooth base change theorem for non-torsion étale sheaves
(Corollary A.2.5), whose proof will be given in Appendix A. Besides, we shall need some
knowledge about model categories to study the unbounded derived functors used in the
proof.

Theorem 3 (Theorems 3.8.7 and 3.8.10). Let K/k be a field extension.
(1) IfA is an abelian variety over K, then R'e, A is a torsion 0-motivic sheaf fori = 1.
(2) IfK/k is a primary field extension, then the connected-étale exact sequence associated
with e, A is
0—m,A— e, A—LN(A Kks/ks)p — 0.

To prove the first assertion, we shall use the fact that H ét(X ,-#) is torsion for i > dim X,
Raynaud’s theorem that Hélt(X, A) is torsion for X noetherian regular and A an abelian
scheme over X, and Suslin’s rigidity theorem [MVWO06, Theorem 7.20]. For the second
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assertion, we shall check that Chow trace is the connected component of the direct image
by using a structure theorem of 1-motivic sheaves, which is due to Ayoub, Barbieri-Viale and
Kahn, and using the universal property of Chow trace. The Lang-Néron theorem now can be
used to deduce the finiteness of e. A when K/k is a finitely generated regular extension (see
Corollary 3.8.8).

We shall refine the 1-motivic ¢-structure with Q-coefficients in [Ayo11] to Z[1/ p]-integral
coefficients. An object in D(HI<; (k, A)) is in the heart of the 1-motivic ¢-structure if and only
if it is quasi-isomorphic to a two-term complex [L — G] concentrated in degrees 0,1 with
ker(L — G) a 0-motivic sheaf and coker(L — G) a connected 1-motivic sheaf. We will call it
a 0-motive if it is quasi-isomorphic to [L — 0] with L a 0-motivic sheaf. Using a proposition
(4.1.9) comparing the two ¢-structures on D(Hl<;), we can translate the above theorems to
some results on the higher direct images relative to the 1-motivic ¢-structure.

Denote by R'e,. (resp. "R’e, = [L' — G']) the cohomology of Re. relative to the standard
(resp. 1-motivic) t-structure on D(Hl<; (k, A)).

Theorem 4 (Theorem 4.2.3). Let K/k be a field extension and let L be a 0-motivic sheaf over
K. Then . .

"R'e.[L— 0] =[R'e.L— 0],
In particular, "R’ e, [L — 0] is a torsion 0-motive fori = 1.

Theorem 5 (Theorem 4.2.8). Let K/k be a primary field extension and let A be an abelian
variety over K. Then

' [0—m. Al ifi=0;
MR'e, [0 — Al ={ [LN(A,Kks/ks) — 0], ifi=1;
[Ri7le, A— 0], ifi =2.

In particular, "R%e,.[0 — A] is a constructible 1-motive, and ™R'e.[0 — A] are torsion 0-
motives for i = 2. Moreover, if K/ k is a finitely generated regular extension, then "R'e, [0 — A]
is a constructible 0-motive.

The story in the case when K/k is a finite extension can be found in [PL19, A.17 and
Lemma 2.22]. In fact, he studied it in the more general setting when f: X — Y is a finite
étale morphism.

1.3. Conventions and notations. We shall use the following categorical notions in the spirit
of [KS06, Definition 8.3.21].

Definition 1.3.1. Let A be an abelian category and B be a full subcategory of .A.

(1) We say that B is a Serre subcategory of A if it is closed under subobjects, quotients
and extensions.

(2) We say that B is a thick subcategory of A if it is closed under kernels, cokernels and
extensions.

(3) We say that B is a fully abelian subcategory of A if it is additive and closed under
kernels and cokernels, equivalently, B is an abelian category and the embedding
functor is exact.

Remark 1.3.2. (1) Clearly, a Serre subcategory is thick, and a thick subcategory is a fully
abelian subcategory.
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In [Stacks, Definition 02MO], a (strictly full) thick subcategory is called a weak Serre
subcategory.

We list some notations used in this paper:

k, field of exponential characteristic p

A, the ring Z[1/ p]

Mo(k) (resp. ‘Mg(k)), category of lattices (resp. of constructible group schemes)
(2.1.1)

Tori(k), category of tori

AV (k) (resp. SAV(k)), category of abelian varieties (resp. of semi-abelian varieties)
»G, kernel of the multiplication by 7z on a semi-abelian variety

M (k), category of Deligne 1-motives

Sm/k, category of smooth schemes separated of finite type over k

(Sm/k) <y, full subcategory of Sm/k consisting of schemes with dimension < n
Shvg(C, A), category of sheaves of A-modules on the étale site Cg

Shvgt(k, M), category of étale sheaves with transfers on Sm/k (reviewed in §3.2)
Shvgt(ksn, A), category of étale sheaves with transfers on (Sm/ k)<, (reviewed in §3.2)
Hlg:(k, A), category of homotopy invariant sheaves (reviewed in §3.3)

Hl<,(k, A), category of n-motivic sheaves (reviewed in §3.4)

DMgff(k, ), Voevodsky category of effective étale motives

DMy, (k, A), the localizing subcategory of DMgff(k, A) generated by the motives M(X)
fordinX <n

7 Mi(k) — M{(K), extension of scalars of Deligne 1-motives induced by base
change of schemes

7., right adjoint to 7*, i.e., Chow trace

my, left adjoint to 7, i.e., Chow image

¥+ : Shvi(k, A) — Shvg (Sm/k, A), the forgetful functor

Y*, left adjoint to .

v: HIZ (k, A) — Shvi. (k, A), the inclusion functor

hét: Shvi(k, A) — HI (k, A), a left adjoint to ¢

tn: Hl<u(k, A) — HI (k, A), the inclusion functor

oy Shvgt(ksn, NS Shvgt(k, A): 05+, extension and restriction functors

ey, e, inverse image and direct image functors of sheaves with transfers on Sm

ez, ez, inverse image and direct image functors of sheaves (with transfers) on
(Sm)<p

ey e, inverse image and direct image functors of homotopy invariant sheaves

e, enx, inverse image and direct image functors of n-motivic sheaves

7o Shvgt(k, A) — Hl<o(k, A), left adjoint to the inclusion functor

1.4. Acknowledgements. I especially thank my supervisor Bruno Kahn for introducing me
to this subject, for many helpful discussions and suggestions, for his reading and comments
on earlier drafts of this paper, and for permission to include his appendix. I also thank Joseph

Ayoub,

Denis-Charles Cisinski, Annette Huber, Zhenghui Li, Xinyu Shao and Yicheng Zhou

for some helpful discussions or e-mail exchanges.
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2. CHOW IMAGE AND CHOW TRACE OF DELIGNE 1-MOTIVES

In this section, we study the extension of scalars of Deligne 1-motives. More precisely, we
will show some full faithfulness results and will construct the Chow image and Chow trace of
Deligne 1-motives.

2.1. Commutative étale group schemes. In this subsection, we fix our notations and recall
some well-known and not so well-known facts on étale group schemes over a field.
Let k be a field and let k; be a separable closure of k.

Definition 2.1.1. Let L be a commutative étale group scheme over k.
(1) We say that L is a constructible group scheme if L(k;) is a finitely generated abelian
group.
(2) We say that L is a lattice if L(k;) is a finitely generated free abelian group.
(3) Denote the category of constructible group schemes (resp. lattices) over k by ‘M (k)
(resp. My (k)), where morphisms are homomorphisms between group schemes.

Remark 2.1.2. Constructible group schemes are called discrete group schemes in [BVK16].
We call such group schemes constructible to emphasize the finiteness and to avoid the
confusion with discrete Galois modules.

Remark 2.1.3. By [DG70, Chapitre II, §5, Proposition 1.4], a group scheme G locally of finite
type over k is étale if and only if G° = Speck. Thus if G is étale, then every subgroup scheme
is also étale. Moreover, if G is a constructible group scheme (resp. a lattice, resp. a finite étale
group scheme), then so is every subgroup scheme.

The following result gives a concrete way to study commutative étale group schemes over
k:
Proposition 2.1.4 ([DG70, Chapitre II, §5, Proposition 1.7]). The functor L — L(ks) is an
equivalence from the category of étale group schemes to the category of discrete Gal(k/k)-
groups. Moreover, via this functor, constructible group schemes (resp. lattices, resp. commu-
tative finite étale group schemes) correspond to finitely generated (resp. finitely generated free,
resp. finite) abelian groups with continuous Gal(k;/ k) -actions.

Let S be a scheme. For a commutative group scheme G over S, we have a group functor
G": Sch/S — {abelian groups}
X — HOInX(GX,Gm'X);

called Cartier duality of G.

Recall that a group scheme over k is called a torus if T = G" T for some n € N. Tori are

m,

commutative, connected, affine, smooth and of finite type over k. Denote by Tori(k) the
category of tori over k. We have the following duality theorem:

Theorem 2.1.5. The functors T — TV and L — LV are anti-equivalences, quasi-inverses of
each other, between Tori(k) and My (k).

Proof. In fact, [DG70, Chapitre IV, §1, Corollaire 3.3] says that these two functors are anti-
equivalences, quasi-inverses of each other, between the category of the group schemes of
multiplicative type over k and the category of commutative étale group schemes over k. Then
by [DG70, Chapitre IV, §1, Corollaire 3.9 (a)], tori correspond to lattices. O



CHOW TRACE OF 1-MOTIVES AND THE LANG-NERON GROUPS 7

2.2. Semi-abelian varieties. In this subsection, we shall work in the abelian category of
commutative algebraic groups (i.e., group schemes of finite type) over a field k; see [SGA 3,
Exposé VI, Théoreme 5.4.2] for a proof that this category is abelian. By [DG70, Chapitre
II, §5, Théoreme 2.1], an algebraic group over k is smooth if and only if it is geometrically
reduced.

Lemma 2.2.1. Let T be a smooth connected affine algebraic group over k and let A be an
abelian variety over k. Then there is neither a nontrivial homomorphism from T to A nor a
nontrivial homomorphism from Ato T.

Proof. For any homomorphism f: T — A, the quotient T/ker(f) inherits the properties of
being smooth connected and affine from T by [SGA 3;, Exposé VIg, Proposition 9.2(xii) and
Théoréme 11.17]. Since A is proper, its closed subgroup T/ker(f) is also proper. Because
T/ker(f) is both proper and affine, it is finite. Since T/ ker(f) is finite étale and connected, it
is isomorphic to Spec k, which means that f is trivial.

Similarly, for any homomorphism g: A — T, the quotient A/ ker(g) inherits the properties
of being smooth connected and proper from A. Since T is affine, its closed subgroup A/ ker(g)
is also affine. Because A/ker(g) is both proper and affine, it is finite. Since A/ker(g) is finite
étale and connected, it is isomorphic to Spec k, which means that g is trivial. U

Remark 2.2.2. When T is a torus, we can also use [Mil86, Corollary 3.9] to see that there exists
no nontrivial (homo)morphism from T to A.

Let G be a smooth connected commutative algebraic group over k. By Chevalley’s theorem
(see, e.g., [Con02]), ka is uniquely an extension of an abelian variety by a smooth connected

affine group G%ff. By Lemma 2.2.1, these are functorial in G.

Definition 2.2.3. A commutative algebraic group G over k is called a semi-abelian variety if
it can be represented by an extension

0—-T—-G—A—0,

where T is a torus and A is an abelian variety. Since T and A are both smooth and connected,
sois G.

Remark 2.2.4. (1) We call T and A the toric part and abelian part of G respectively. By
Lemma 2.2.1, these are functorial in G. In particular, the groups T and A are uniquely
determined by G.

(2) By [BLR90, bottom of p. 178], a smooth connected commutative algebraic group G is
semi-abelian if and only if G%ff is a torus.

Lemma 2.2.5. (1) The quotients and smooth connected subgroups of a torus are tori.

(2) The quotients and smooth connected subgroups of an abelian variety are abelian
varieties.

(3) The quotients and the smooth connected subgroups of a semi-abelian variety are semi-
abelian varieties.

Proof. (1) This assertion follows from [DG70, Chapitre IV, §1, Corollaires 2.4 and 3.9 (a)].
(2) The closed subgroups of abelian varieties are proper over k. If they are smooth con-
nected, then they are abelian varieties by definition. The quotients of abelian varieties
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inherit the properties of being smooth connected and proper over k (see [SGA 3i,
Exposé VIg, Proposition 9.2(xii)]). Thus they are abelian varieties.

(3) By Remark 2.2.4 (2), we may and do assume that k is algebraically closed. Let G be a
semi-abelian variety over k, i.e., G is a torus.

If G' is a smooth connected subgroup of G, then G is a closed subgroup of the torus
G, Thus G™ is also a torus, which implies that G’ is a semi-abelian variety.

Let f: G — G" be asurjection. Let H be the categorical image of the induced morphism
G — G" in the abelian category of commutative algebraic groups over k. Since
G/G* is an abelian variety, its quotient G”/H is also an abelian variety. Then the
smooth connected subgroup G/ H of G"/ H is an abelian variety. But G/ H inherits
the property of being affine from G"2, Thus G"2/H is trivial, which implies that the
morphism G — G"a is an epimorphism. Then G" inherits the property of being a
torus from G2, Thus G" is a semi-abelian variety. O

Lemma 2.2.6. Let k be a field and G be a semi-abelian variety over k. Let n be a positive integer
prime to char(k) and let ,G be the kernel of multiplication by n on G. Then ,,G is finite étale
over k.

Proof. See [BLR90, §7.3, Lemmas 1 and 2]. O

Lemma 2.2.7. Let k be an algebraically closed field and let G be a semi-abelian variety over k.
Let n be a positive integer prime to char(k). Then

#nG(k) — nt+2a’
where t (resp. a) is the dimension of the toric part (resp. abelian part) of G.

Proof. Consider the following commutative diagram with exact rows in the abelian category
of commutative algebraic groups

0 T G A 0
R
0 T G A 0.

Using the snake lemma and noting that n: T — T is an epimorphism, we have the following
exact sequence

0—,T— ,G— ,A—D0.
By Lemma 2.2.6, the group schemes ,T, ,G and , A are finite étale over k. Using Proposi-
tion 2.1.4, we obtain the following exact sequence of finite abelian groups

0— ,T(k) — nG(k) — ,A(k) — 0.

Since k is algebraically closed, we have T = (an and #,T (k) = n'. By [Muml14, p.60] or [Mil86,
Theorem 8.2], the map n: A — A is finite étale of degree n?%. So #,A(k) = n*“. Hence, we
obtain #,G(k) = #, T (k) - #,A(k) = n'*?4 O

Lemma 2.2.8. Let G be a semi-abelian variety over a field k and let H be a semi-abelian
subvariety of G. Let a (resp. ay) be the dimension of the abelian part and let t (resp. ty) be
the dimension of the toric part of G (resp. H). Then we have

a=agandt=t.



CHOW TRACE OF 1-MOTIVES AND THE LANG-NERON GROUPS 9

Proof. We may and do assume that k is algebraically closed. By Remark 2.2.4 (1), we can write
the closed immersion i: H — G as the following commutative diagram with exact rows

0 S H B 0
]
0 T G A 0,

where S and T are tori, and A and B are abelian varieties. Using the snake lemma and noting
that i is a closed immersion, we obtain that j is a closed immersion and that the connecting
homomorphism &: ker(f) — coker(j) is a closed immersion. The fact that j is a closed
immersion implies that ¢ = #. Note that the reduced connected component ker( f)(r’e q of
ker(f) is a smooth connected closed subgroup’ of the abelian variety A. Using Lemma 2.2.5
(2), we get that coker(j) is a torus and ker( f)(r)e d is an abelian variety. By Lemma 2.2.1, the
composition of closed immersions
ker(f)° , — ker(f) g, coker(j)

red

is trivial. Thus ker(f) ?e 4 is trivial and ker(f) has dimension 0, which implies that g < a. [

We will reduce some problems about semi-abelian varieties to relevant ones of finite étale
group schemes by using the following result.

Proposition 2.2.9. Let G be a semi-abelian variety over a field k. Then the collection of
closed subschemes {,G} 21 char(kypn IS (topologically) dense in G, where ,G is the kernel of
multiplication by n on G.

Proof. Tt suffices to prove the assertion for k = k and from now on, we assume that k is
algebraically closed. Let X < G(k) be the union of all ,,G(k), where char(k) { n and let H
be the reduced closed subscheme of G whose underlying space is the Zariski closure of X.
Then by our construction, it is easy to verify that H is a subgroup scheme of G.

The connected component H? of the unit is a smooth connected subgroup of the semi-
abelian variety G. So H° is also semi-abelian by Lemma 2.2.5. Let N be the number of
connected components of H. Let a (resp. ag) be the dimension of the abelian part and let
t (resp. tp) be the dimension of the toric part of G (resp. HY). By Lemma 2.2.7, we have that

#,G(k)=n**t and #,H°(k) = n?%th,

the second one of which implies #, H(k) < Nn?%*%_ By construction, H contains all torsion
points of G of order prime to char(k). So #,H (k) = #,G(k) = n?**!. Now, we have n?**! <
Nn?%+h for every positive integer n prime to char(k). Taking n very large, we obtain 2a+ t <
2ap+ tp. By Lemma 2.2.8, we have a = gy and ¢ = ty. Thus

a=ay and t=1.
So the irreducible variety G has the same dimension as the closed subvariety H’. Hence

H°=G. O

1Here, we used [DG70, Chapitre II, §5, Corollaire 2.3] that if G is a group scheme locally of finite type over a
perfect field k, then G,eq is a subgroup scheme of G. We shall show that for connected subgroups of semi-abelian
varieties, it is unnecessary to assume k to be perfect. See Proposition 2.2.11.
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Lemma 2.2.10. Let H be a group scheme over a field k. If Hyeq is geometrically reduced, then
Hieq is a closed subgroup scheme of H.

Proof. The argument of [DG70, Chapitre II, §5, Corollaire 2.3] works here. For readers’
convenience, we repeat it: Since Hyq is geometrically reduced, the scheme H;cq x x Hyeq is
reduced. Thus the restriction of the multiplication law m: H x H — H to Hyeq X ;. Hyeq factors
through Hyeq — H:

Myed
Hyed % Hred — Hyed-

Similarly, the unit morphism and the inverse morphism of H induce morphisms on Hyeq, and
it follows that (Hyed, Mred) is a closed subgroup of (H, m). U

Proposition 2.2.11. Let G be a semi-abelian variety over a field k and H be a connected closed
subgroup of G. Then

(1) the collection of closed subschemes {n H} 21 char(kytn IS (topologically) dense in H;
(2) Hyeq is geometrically reduced;
(3) Hyeq is a semi-abelian subvariety of G.

Proof. Let n be a positive integer with char(k) { n. By Lemma 2.2.6, the commutative group
scheme ,,G is finite étale over k. Since , H is a closed subgroup of ,,G, it is also finite étale over
k. Let Hy be the reduced closed subscheme of G whose underlying space is the Zariski closure
of Uchar(k){n nH. By [EGA 1V3, Corollaire 11.10.7], (Ho) is the reduced closed subscheme of
G whose underlying space is the Zariski closure of Ucpar(k)tn n Hy- Since (Hpred is a smooth
connected closed subgroup of Gz it is a semi-abelian subvariety of G;.. By Proposition 2.2.9,
the collection {,, (Hp)red)}char(kytn 1S topologically dense in (Hpred. Since (Hpred is a closed
subgroup of HE' we have that n((H?)red) is a closed subgroup of ”HE' which implies that as
topological spaces
(Hprea € (Ho) € Hy.

Because HE and (Hz)red have the same underlying topological space, the above three
topological spaces are the same. Thus

dim Hy = dim(HO)E =dim Hy= dim H.

Because H is irreducible, we conclude that Hy = H as topological spaces, which completes
the proof of the first assertion.

Clearly, Hy = H.eq as schemes. Since (HO)E is reduced, the scheme H.eq is geometrically
reduced.

By Lemma 2.2.10, H,q is a closed subgroup of H. Since H,¢q is a smooth connected closed
subgroup of the semi-abelian variety G, it is a semi-abelian subvariety by Lemma 2.2.5. [

2.3. Base change and descent of Deligne 1-motives. In the case of primary field extensions,
we show that the extension of scalars of Deligne 1-motives is fully faithful. We will also prove
some descent results on Deligne 1-motives.

Definition 2.3.1 ([Del74, 10.1.10]). (1) A Deligne 1-motive over k is a complex of commuta-
tive group schemes
M=[L=G],

where L is a lattice and G is a semi-abelian variety.
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(2) A morphism of Deligne 1-motives from M = [L = G] to M’ = [L' % G'] is a commuta-
tive square

L——=G
(.
L/ L G/
in the category of group schemes. Denote by (f,g): M — M’ such a morphism.
(3) Denote the category of Deligne 1-motives over k by M (k).
Definition 2.3.2. (1) An extension of fields K/k is called primary if the algebraic closure of k
in K is purely inseparable over k.
(2) An extension of fields K/k is called regular if K/k is separable and k is algebraically
closed in K.

Remark 2.3.3. Clearly, regular extensions are primary. If k is perfect, then any primary
extension of k is automatically regular.

Let K/ k be a field extension, K; be a separable closure of K and k; be the separable closure
of k in K;. Denote Gal(Ks/Kks) by I.

- KS
7
Ve
Gal(KS/K)/ 4 r
/ Kk
I \
I
| /
I
]
/
Knks /
/
7 Gal(ks/k)
7
7
k -~

If K/ k is primary, then K N ks = k and the restriction map
7n: Gal(K;/K) — Gal(Kks/K) = Gal(ks/ k), o= 0lgk,— Olg,
is continuous and surjective with kernel I

Proposition 2.3.4. Let K/k be a primary extension.

(1) The extension of scalars m*: "My (k) — ‘Mo (K) is fully faithful. The same result holds
for My and Tori.
(2) The extension of scalars ©*: "Mo(k) — "Mo(K) has a right adjoint 7™ and a left

adjoint n;MO. The same result holds for My and Tori.

Proof. Thanks Proposition 2.1.4, we identify commutative étale group schemes with the
associated discrete Galois modules.
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Because the restriction map
n: Gal(K;/K) — Gal(Kks/K) = Gal(ks/ k), o= 0lgk,— Olg,
is surjective, it induces a fully faithful functor
7" : "M (k) — ‘Mo (K)
L — L’
which corresponds to the extension of scalars of constructible group schemes. The essential
image of 7™ is the full subcategory of modules on which I" acts trivially. The functor 7* admits
aright adjoint
et "Mo(K) — "Mo (k)
L— 1L,
and a left adjoint
7y "Mo(K) — "My (k)
L—Lr,
where LI ¢ L denotes the submodule of ['-invariants and Ly := L/(hx—x | heT,x € L) is the
space of I'-coinvariants.
Restricting to lattices, we have a fully faithful functor z*: My(k) — My(K). Since LVisa

lattice over k for any L € Mg (K), the functor 7* admits a right adjoint 77, : L — L'. On the other
hand, for any L € M(K), the Gal(k;/k)-module Ly can be represented by a unique extension

0— (LF)tor —Lr— (LF)fr -0,

where (Lr)tor is a finite abelian group with a continuous Gal(k;/k)-action and (Lr) is an
object of My(k). Since there exists no non-trivial homomorphism from (Lr)¢ to any L' €
Mg (k), we can see that

Hompm, k) (L), L') = Homp, k) (Lr, L) = Homp, k) (L, 7*L').

In other words, the functor L — (Lr)s; is the left adjoint of 7*: Mg (k) — Mg (K).
By Cartier duality (Theorem 2.1.5), we get the assertions for tori from the ones for lattices.
O

Denote the category of abelian varieties (resp.semi-abelian varieties) by AV(k) (resp.
SAV(k)), where morphisms are the homomorphisms between group schemes.

Theorem 2.3.5 (Chow). Let K be a primary field extension of k. Then the extension of scalars
" AV (k) — AV(K),
A— Ak
is fully faithful.
Proof. For a modern proof using fpqc descent, see [Con06, Theorem 3.19]. O
Deligne [Del74, 10.2.11-13] defined a self-duality on the category M (k), that he called

Cartier duality. Let M = [L X G] be a Deligne 1-motive, and let T and A be the toric and
abelian part of G respectively. Then

MY = [TV —G",
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where G* is an extension of AY by LV.
Lemma 2.3.6. Cartier duality commutes with extension of scalars.

Proof. Following [BVSO01, p.17], we use the symmetric avatar (L, TV, A, AY,u,v,y) to de-
note a Deligne 1-motive [L — G], where T and A are the toric and abelian part of G
respectively. The symmetric avatar of Cartier dual is (TV,L, AY, A, v,u,w"). Since all these
L, TY,A AY,u,v,y,y" are compatible with the extension of scalars, we conclude that Cartier
duality commutes with the extension of scalars. U

Lemma 2.3.7. Letn: S' — S be a faithfully flat morphism of schemes.
(1) The base change functor
n*:Sch/S — Sch/§/,
X—na*X:=Xxg§
is faithful, where Sch/S (resp. Sch/S’) is the category of schemes over S (resp. S').
(2) Assume moreover that n is quasi-compact. If X is a group scheme over S and Z is a

closed subscheme of X, then Z is a subgroup scheme of X if and only if Zg is a subgroup
scheme of Xg'.

Proof. The first assertion is [EGA IV;, Corollaire 2.2.16], and the second one is part of [Con06,
Theorem 3.5]. O

Theorem 2.3.8. Let K be a primary field extension of k. Then the extension of scalars of Deligne
1-motives

n*: My (k) — M1 (K)
[L— G]— [Lg — Gkl
is fully faithful.
Proof. By Lemma 2.3.7 (1), it is clear that n* is faithful. Now, we prove that it is also full. Let
M‘i‘b be the full subcategory of M; whose objects are [L — A] with A an abelian variety.

(a) First, we show that the induced functor 7*: M*l‘b(k) — M‘I‘b(K) is full. Consider the
morphisms of the form

where A and A’ are abelian varieties over k. By Proposition 2.3.4 (1) and Theorem 2.3.5,
there exist homomorphisms

fo:L—L'and go: A— A’

such that f (resp. g) is the base change of f; (resp. go). Since (f, g) is a morphism of
Deligne 1-motives, we have that

(wfo)k = vk f = guk = (goWk-.
By Lemma 2.3.7 (1), we obtain that
l/f() = 8olU.

It means that (fy, go) is @ morphism of Deligne 1-motives, whose base change is (f, g).
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(b) By Lemma 2.3.6, the Cartier duality of M; gives an anti-equivalence between M*l‘b and
SAV which commutes with extension of scalars. It follows from (a) that the extension of
scalars 1% : SAV (k) — SAV(K) is fully faithful.

(c) Now, consider n*: M (k) — M;(K). Repeating the argument of (a) except for replacing
Chow’s Theorem 2.3.5 with (b), we conclude that the extension of scalars of Deligne 1-
motives is fully faithful. (]

Remark 2.3.9. In [Yul9, Theorem 1.2], Yu uses the same strategy as in [Con06, Theorem
3.19] to show that extension of scalars of semi-abelian varieties is fully faithful in the case
of primary extension. Our result is a generalization of theirs, and our proof is an alternative
to Yu’s.

Lemma 2.3.10. Let K/k be a primary field extension. Let L be a discrete Gal(ks/ k) -module and
L' be a discrete Gal(K;/ K)-submodule of L. Then L' is also a discrete Gal(k/ k) -submodule of
L.

Proof. Since Gal(K;/K k) acts trivially on L, its action on the submodule L' is also trivial. Thus
L' is a Gal(ks/ k)-submodule of L. O

Proposition 2.3.11. Let K/k be a primary field extension. Let L be a commutative étale group
scheme over k and let L' be a subgroup scheme of Lx. Then the closed immersioni: L' — Lg is
defined over k.

Proof. By the equivalence between discrete Galois modules and commutative étale group
schemes (Proposition 2.1.4), this proposition is a reformulation of the above lemma. ([

We have a similar result for semi-abelian varieties.

Theorem 2.3.12. Let K/k be a primary field extension. Let G be a semi-abelian variety over
k and H be a semi-abelian subvariety of Gx. Then the closed immersion i: H — Gg of semi-
abelian varieties is defined over k.

Proof. Let n be a positive integer with char(k) { n. By Lemma 2.2.6, the commutative group
scheme ;G is finite étale over k. Then , H is a finite étale closed subgroup scheme of ,,Gg. By
Proposition 2.3.11, the closed immersion , H — G is the base change of a closed immersion
nH — ,G of finite étale group schemes over k. Let Hy be the reduced closed subscheme
of G whose underlying space is the Zariski closure of the union of such ,H"’s. By [EGA 1V3,
Corollaire 11.10.7], (Hp)k is the reduced closed subscheme of Gx whose underlying space is
the Zariski closure of Ucpar (k)1 nH. Thus we obtain that (Ho)x = H by Proposition 2.2.11. By
Lemma 2.3.7 (2), the subscheme Hj is a closed subgroup of G. Moreover, the smoothness
and connectedness of H descend to Hy. By Lemma 2.2.5, Hj is a semi-abelian subvariety of
G. O

The following lemma is a simple corollary of the above theorem. It is a key ingredient in
the construction of Chow image and Chow trace of Deligne 1-motives.

Lemma 2.3.13. Let K/k be a primary extension. By Proposition 2.3.4, n*: Mg(k) — M (K)
admits a left adjoint név"). Let (f,g): [L — G] — [L' — G'lx be a morphism of Deligne 1-
motives over K. Then (f, g) factors as

(€,80)
L— G —— (1" L~ Golx ——— [L' - G'lx,
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wheree: L — (Jr:jv"’L)K is the unit morphism and gy: G — (Go) is a surjection.
Proof. By Theorem 2.3.12, the morphism g: G — G} factors as
G & (Gyx & Gy

where (Gp)k is the image of g in the abelian category of commutative algebraic groups over
K. Let Ly be the base change of L' through the closed immersion i: Go — G'. Then Ly is a
closed subgroup of L’ and thus is a lattice by Remark 2.1.3. Using the universal property of
fiber products, we can see that the morphism of Deligne 1-motives (f, g) factors as

T LIy pam—
G 2~ (Gox —— G}

Then the homomorphism fy: L — (Lg) x factors through the unit morphism €: L — (n;\/l "Dk,
which completes the proof. [l

2.4. Chow image and Chow trace of Deligne 1-motives.

Lemma 2.4.1. Let (P,<) be a pre-ordered set (i.e., < is reflexive and transitive, but not
necessarily anti-symmetric) satisfying the following conditions:
(1) P isfiltered, i.e., for x,y € P, there exists an element z€ P withx <z andy < z;
(2) there exists a subset Q c P such that
(@) foranyxe P, thereexistsye Qwithx <y;
(b) Q has a maximal element m in the following sense: if m < t, then t < m.

Then m is an upper bound of P, i.e., x < m for all x € P.

Proof. For any x € P, there exists an element y € P with m < y and x < y by (1). Then there
is an element z € Q such that y < z by (2). Thus m < z. It follows from (3) that z < m. Hence
x<m. O

Theorem 2.4.2. Let K/k be a primary extension. Then the extension of scalars n*: M, (k) —
M1 (K) has a left adjoint névll and a right adjoint 7" called Chow image and Chow trace
respectively.

Proof. Let M = [L — G] be a Deligne 1-motive over K. Let P be the set of morphisms of
Deligne 1-motives ¢: M — n* N with N a Deligne 1-motive over k. Let Q be the subset
consisting of morphisms of the form

(e,8): [L— Gl — [m"L—Gl,

with g: G — G} surjective. Consider the following pre-order: ¢’ < ¢ if there exists a
morphism y: N — N’ such that ¢’ = 1*y o ¢.
The pre-ordered set (P, <) satisfies all the conditions in Lemma 2.4.1:
(1) Let 1: M — n* Ny and ¢2: M — n* N> be two elements in P. Then the induced map
(p1,02): M — (N1)g x (N2)g = (N1 x No)g is a supremum of these two morphisms.
(2) (a) Thisis Lemma 2.3.13.
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(b) Consider the set of closed subgroup schemes of G which are of the form ker(g) for

some (¢, g) in Q. Because G is a noetherian scheme, this set has a minimal element

m with respect to inclusion. Say G/m = G, where G’ is a semi-abelian variety over

k. Then the corresponding morphism (¢, g): [L — G] — [n;jv'OL — G’k is a maximal
element of Q.

Hence by Lemma 2.4.1, the set P has a upper bound which is an element of Q. In other words,

there exists a Deligne 1-motive N over k and a morphism ¢: M — n* N such that for every

morphism ¢': M — n* N’ there exists a morphism y: N — N’ such that ¢’ = 7%y o ¢. Note

that ™ is fully faithful by Theorem 2.3.8, and that such ¢ has the form (g, g) with € the unit

morphism and g a surjection. Thus the morphisms y satisfying ¢’ = 7% o ¢ is unique. For

some formal reasons ([KS06, Theorem 1.5.3]), it means that the functor 7* has a left adjoint
n;vl '

By Lemma 2.3.6, Cartier duality for Deligne 1-motives commutes with extension of scalars.
Thus the existence of the right adjoint is obvious by dualizing 7;(M") and using the dual of

its universal morphism. ([

Corollary 2.4.3. Let K/k be a primary field extension and M € My (k). Then we have the

following canonical isomorphisms
th/' ‘"M — M
and

M= MM
Proof. This result holds because 7* is fully faithful according to Theorem 2.3.8. (]

1

M M . . .
The functors 7, and 7, ' recover some classical constructions, such as Chow’s image

and trace of abelian varieties. From now on, we sometimes write them simply as 7y and 7.
respectively.
Corollary 2.4.4. Let K be a primary field extension of k.

(1) ForanyL e My (K), we have
my([L—0]) = [JTLVIO(L) —0] and m.(L—0))=[7y°(L) — 0],
where n;\% and m° are left and right adjoints to extension of scalars of lattices in
Proposition 2.3.4.
(2) The extension of scalars n*: SAV (k) — SAV(K) has a left adjoint nﬁSAV and a right

adjoint w3V . Moreover, for any G € SAV (K), we have
10— G =10—N (@) and 7,(10—G)=(0—7V(G).

(3) The extension of scalars n*: AV (k) — AV(K) has a left adjoint nfv and a right adjoint
ﬂfv. Moreover, for any A € AV (K), we have
m((0— AN =[0— 7}V (A)] and  7.([0— A =[0— 72 (A)].
Tori

(4) The extension of scalars n*: Tori(k) — Tori(K) has a left adjoint 7, and a right

adjoint nI“i. Moreover, for any T € Tori(K), we have

my (10— T) =10 —7""(T)] and 7.(0—T))=1[0— " (T)].
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Proof. Keep the notations in the proof of Theorem 2.4.2. Then for any Deligne 1-motive M
over K, the unit morphism ¢: M — ﬂ*ﬂn (M) is a maximal element of Q. By definition, for
M = [L — 0] with L € My(K), the elements of Q are the morphisms

(6,8): [L—0] — " L— Gl

where g is surjective. So G’ = 0 and Q has a unique element (¢,0): [L — 0] — [n:iv"’ (L) — O]g.
So
m4(IL— 0) = [y (L) = 0],

Similarly, for M = [0 — G] with G € SAV(K), the elements of Q are the morphisms
(€,8): [0— G — [0— Gk,

where g is surjective. Thus the left adjoint 73(M) has the form [0 — Gg] for some Gy € SAV (k)
and the canonical morphism G — 7*Gy is surjective. So 7*: SAV(k) — SAV(K) has a left

adjoint nﬂSAV and we have

410 — GI) = [0 — ;Y (G)).
By Lemma 2.2.5, if G is an abelian variety (resp. a torus), then nﬁSAV(G) is an abelian
variety (resp. a torus) because the canonical morphism G — ﬂ*nuSAV(G) is surjective. Hence
7*: AV(k) — AV(K) has a left adjoint 77V, and for an abelian variety A/ K, we have that

my((0— A]) = [0 — 7, (A)].

The same results hold for tori.
Finally, by Cartier duality, we can obtain the assertions on the right adjoints. ]

Remark 2.4.5. The functors an and 74V are Chow’s K/k-image and K/k-trace of abelian
varieties. So our result recovers Chow’s image and trace. This justifies the name of Chow
image and Chow trace of Deligne 1-motives.

3. DIRECT AND INVERSE IMAGES OF 1n-MOTIVIC SHEAVES

In the remaining part of this paper, we will study the Chow trace of Deligne 1-motives
in the framework of Voevodsky’s triangulated categories of (étale) motives. In this section,
we study Voevodsky’s category of homotopy invariant sheaves ([Voe00], [MVWO06]) and some
subcategories defined in [ABV09]. We are mainly interested in the direct and inverse images
of such sheaves.

Throughout this section, k is a field of exponential characteristic p, i.e., p = 1 if char(k) is
zero, and p = char(k) otherwise. Let A be the ring Z[%].

3.1. Presheaves with transfers. Let Sm/k be the category of smooth separated schemes of
finite type over k. Recall Voevodsky’s category of finite correspondences [MVWO06, Lecture
1]: Given X,Y € Sm/k, an elementary correspondence from X to Y is an integral closed
subschemes W of X x Y which is finite and surjective over a connected component of
X. We denote by Cori(X,Y) the group of finite correspondences, i.e., the free abelian
group generated by the elementary correspondences. Given elementary correspondences
Ve Corr(X,Y)and W € Cory (Y, Z), the composition W o V is defined to be the pushforward
of the intersection product (V x Z) - (X x W) of the corresponding cycles in X x Y x Z, along
the projection p: X x Y x Z — X x Z. Here, the intersection product and the pushforward
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of cycles are defined in [Ful98]. See [MVWO06, p. 4] for the verification that W o V is a finite
correspondence from X to Z. Extending this composition linearly, we get the composition of
arbitrary finite correspondences, which is associative and bilinear and has Ax as the identity
of Cor(X, X). Let Cor(k) be the (additive) category whose objects are the same as Sm/k and
whose morphisms from X to Y are elements of Cory (X, Y). The graph of a morphism yields a
functor yj: Sm/k — Cor(k). We consider the category PST (k, A) of presheaves with transfers
of A-modules on Sm/k, i.e., the category of additive contravariant functors from Cor(k) to
the category of A-modules. For X € Sm/k, we denote by A (X) the presheaf with transfers

A(X)(U) := Corg (U, X) ®7 A.

Let K/k be a field extension. Then we have an obvious extension of scalars functor
e: Cor(k) — Cor(K) taking X to Xg and Z € Cori(X,Y) to Zg € Corg(Xg, Yx). It induces a
direct image functor

e™>T. PST(K) — PST(k), Z — Foe.
The functor ef>T is clearly exact.

Proposition 3.1.1. (1) The functor e?>" admits a left adjoint epsts

2) eEST (Au(X)) = Aw(XK);
(3) The functor e;ST is exact.

Proof. Everything is formal except the left exactness in (3). See [Sus17, Proposition 1.1 and
Theorem 4.1]. O

3.2. Etale sheaves with transfers. Recall that a presheaf with transfers .# is called an
étale sheaf with transfers if its underlying presheaf .% oy is an étale sheaf on Sm/k. We
denote by Shvg (Sm/k, A) the category of étale sheaves of A-modules on Sm/k, and denote
by Shvtért(k, A) the full subcategory of PST(k, A) whose objects are the étale sheaves with
transfers. By [MVWO06, Lemma 6.2], A (X) is an étale sheaf with transfers.

Proposition 3.2.1. The category of étale sheaves with transfers has the following properties:
(1) The inclusion functor Shvi,(k, A) — PST(k, A) has an exact left adjoint

ag: PST(k, A) — Shvg (k, A).

(2) The category Shvgt(k, A) is a Grothendieck abelian category generated by the sheaves
Ay (X).

(3) The forgetful functory.: Shvgt(k, A) — Shvg(Sm/k, A) is conservative and commutes
with all small limits and colimits.

(4) The functory. admits a left adjointy*: Shvg(Sm/k,A) — Shvgt(k, A).

Proof. See [IMVWO0B6, 6.18 and the proof of 6.19]; see also [CD19, 10.3.3, 10.3.9, 10.3.11]. (]

We consider some categories introduced in [ABV09]. For n € N, we denote by (Sm/ k)<, the
full subcategory of Sm/k whose objects are the smooth schemes over k of dimension less than
or equal to n. Similarly, we denote by Cor (k<) the full subcategory of Cor(k) having the same
objects as (Sm/k)<,. We consider the A-additive dual PST (k<p, A) of (Sm/k)<y. As above,
we have the notion of étale sheaves with transfers on (Sm/k)<,. We denote by Shvgt(ks n\)
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the full subcategory of PST (k<,, A) whose objects are the étale sheaves with transfers. For
X € (Sm/k)<pn, we denote by A<, (X) the presheaf with transfers
A<, (X)(U) := Cor (U, X) ®7 A, where U € (Sm/k)<y,.

Let K/k be a field extension. Then we have the following commutative diagram

(Sm/k)<n > Sm/k
Cor(k<p) ‘ > Cor(k)
l
(Sm/K)<p > Sm/K
. ™~
Cor(Kzp) > Cor(K)

where the vertical arrows are base change functors induced by the morphism SpecK —
Speck, the horizontal arrows are inclusions, and the arrows towards the lower right are graph
functors. Note that the four functors on the back side are continuous functors for the étale
topology in the sense of [SGA 4;, Exposé III, Définition 1.1], i.e., the corresponding direct
images of sheaves are still sheaves. So the above diagram induces the following commutative
diagram

Shvi (K, A) > Shvg (Sm/K, A)
\
Shvi (K<p, A) > Shve(Sm/K)<p, A)
|
Shv¥i (k, A) > Shvg (Sm/k, A)
\
Shvi (k<p, A) > Shve(Sm/k)<n, A)

where the vertical arrows e, are direct images of sheaves, the horizontal arrows y, are
forgetful functors, and the arrows towards the lower right o, are ‘restriction functors. In
particular, A<y, (X) = 0« A (X) is an étale sheaf with transfers for X € (Sm/k)<,. Noting that
the inclusion functor (Sm/ k)<, — Sm/k is also co-continuous. Thus o, is exact.

Lemma 3.2.2 ([ABV09, Lemma 1.1.12]). The functor o . : Shv,(k, A) — Shv§ (k<p, A) has a
left adjoint

oy,: Shvg (k<p, A) — Shvg (k, A)

F— lim A,
Asn(X)_’y

where the colimit is computed in Shvgt(k, A).

Definition 3.2.3 ([ABV09, Definition 1.1.13]). An étale sheaf with transfers .% € Shvgt(k, A) is
said to be strongly n-generated if the co-unit

%

is an isomorphism. Denote by Shv¥, (k, A) the category of strongly n-generated étale sheaves.
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Lemma 3.2.4 ([ABV09, Lemma 1.1.171). The functor o}, is fully faithful and induces an
equivalence between Shvgt(ksn, A) and Shvgn (k,A).

Lemma3.2.5. (1) The direct image functor e : Shv{ (K, A) — Shv§,(k, A) has a left adjoint

eg: Shvi(k, A) — Shvi (K, A)
and e, A (X) = Agr(Xk)-

(2) The direct image functor ex": Shvgt(Ksn, A) — Shvgt(ksn, M) has a left adjoint

eX,: Shvi (k<n, A) — Shv§ (K<p, A)
and ez, (A<n(X)) = A<p(Xk).
(3) We have the following natural isomorphism
onoel,=e,o0).

Proof. (1) Clearly, ag o epq is left adjoint to e, where ag is the functor in Proposi-

tion 3.2.1(1). We have

agt(epst (A (X)) = et (A (XK)) = Au(Xx),
where the second equality holds because Ay (Xk) is already an étale sheaf with transfers.

(2) The proofis similar to (1).
(3) This is a direct corollary of 0, 0 e = e5" 00 .. ([

Proposition 3.2.6. The inverse image functor e/ Shvtért(k, A) — Shvgt(K ,\) is exact.

Proof. Note that e}, = agt o ejo. By Proposition 3.1.1 (3) and Proposition 3.2.1, the functors
epct and ag are both exact. Thus ey is also exact. O

3.3. Homotopy invariant sheaves.

Definition 3.3.1 ((IMVWO06, Definitions 2.15 and 9.22]). Let k be a field.
(1) A presheaf with transfers .% is said to be homotopy invariant if the projection X x
A}C — X induces an isomorphism
F(X) — F (X xpAp.
(2) An étale sheaf with transfers .% is said to be strictly homotopy invariant if the
projection X x A}C — X induces isomorphisms
H (X, 7) = H, (X x AL, F) forall i = 0.
We denote by Hlg(k,A) the full subcategory of Shvtért(k, A) whose objects are homotopy
invariant sheaves.
Theorem 3.3.2 (Voevodsky, Suslin). Let k be a field of exponential characteristic p and let A
be thering Z[1/ p].

(1) If.% is a homotopy invariant presheaf with transfers, then ag (%) is strictly homotopy
invariant.

(2) The category Hlg (k, A) is a thick subcategory of Shvgt(k, N). In particular, Hlg (k, A) is
abelian.
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Proof. The first assertion is essentially due to Voevodsky and Suslin. In fact, Voevodsky
established this result for the Nisnevich topology and perfect fields k ((IMVWO06, Theorem
24.1]), and Suslin generalized Voevodsky’s result to arbitrary fields ([Sus17, Theorem 3.4]).
Then one can deduce the result for the étale topology by using Suslin’s rigidity theorem
[MVWO06, Theorem 7.20]. See [BVK16, Proposition 1.7.5] and [ABV09, Proposition 1.1.2].

The second assertion follows immediately from the first one and the five lemma. (]

Lemma 3.3.3 ([ABV09, Lemmas 1.1.1 and 1.1.2]). The inclusion t: Hlg(k, A) — Shvgt(k, A)
admits a left adjoint )

hg': Shvi(k, A) — Hlg(k, A).
Here, hgt (:F) is given by the étale sheaf with transfers associated with the 0-th homology of the
Suslin complex C..% (IMVWO6, Lecture 2]).

For X € Sm/k, we let ) )
h§'(X) := h§' (Ag(X)).

Lemma 3.3.4. The direct image e* maps homotopy invariant sheaves to homotopy invariant
sheaves. In other words, we have a functor et Hlg (K, A) — Hlgi(k, A) such that the following
diagram is commutative

et

l
Y

Hlét(k,A);”C) Shvgt(k, N).

Hige (K, A) %> Shvi (K, A)

Proof. For X € Sm/k, we have the following commutative diagram

(K % Ap) x g (K % X) — K x (A} x X)

T )

KXkX,

where f is the base change of the projection Ak xr X — X and g is the projection to
K xj X. For .Z € Hlg(K, A), the morphism .% (g) is an isomorphism. Thus .% (f) is also an
isomorphism, i.e., the morphism (e.%)(X) — (e.%) (Ak x X) induced by the projection is
an isomorphism, which means that e.% is homotopy invariant. U

Lemma 3.3.5 ([Susl17, Proposition 4.9]). The functor e;‘,ST preserves homotopy invariant
presheaves with transfers.

Proposition 3.3.6. The inverse image e;, maps homotopy invariant sheaves to homotopy
invariant sheaves. In other words, we have a functor e,’f”: Hlg (k, A) — Hlg (K, A) such that
the following diagram is commutative

ét

* *
ST letr
Y

Hlét(K,A)# Sthért(K,A).

Hige (k, A)—%~ Shvf (k, A)

Moreover, the functor e,’f” is exact.
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Proof. Notethat e/, = ago e;ST. By Lemma 3.3.5 and Theorem 3.3.2 (1), the functors e;ST and
ag: preserve homotopy invariance. Thus e, maps homotopy invariant sheaves to homotopy
invariant sheaves.

By Proposition 3.2.6, the functor e/, is exact. Note that i and g are both exact by
Theorem 3.3.2 (2). Thus the functor e:” is exact. O

Corollary 3.3.7. (1) The functor e}, is left adjoint to et

(2) The unitid — i hgt induces a natural isomorphism
hiter. — hi'efirhs' = efy hS'.
; et ~ L6t
In particular, e, (hg' (X)) = hg' (Xk).

Proof. 1tis clear that e}, is left adjoint to et by the adjunction (e, e'). Taking left adjoint to

1poetl = e oy, we get the second assertion. O

The following result is established by Suslin [Sus17] for the Nisnevich topology and the
Zariski topology. We deal with the étale topology.

Proposition 3.3.8. Let k be a field of characteristic p > 0 and let K/ k be a purely inseparable
extension. Then

(1) the functor e?ST: PST(K,A) — PST(k,A) is an equivalence of categories with quasi-
inverse ejc1;

(2) the functor el : Shvgt(K ,A\) — Shvgt(k, M) is an equivalence of categories with quasi-
inverse e;, = el’;ST;

(3) the functor e*"": ngt(K, A) — ngt(k, A) is an equivalence of categories with quasi-
inverse e},

Proof. (1) This is [Sus17, Corollary 1.14].
(2) First, assume that K is a perfect closure of k. It suffices to show that if ¢ is an étale sheaf,

then ejc¥ is also an étale sheaf. Since ¥ = eESTeEST% by (1), it suffices to check that

if .7 is a presheaf with transfers over K such that e?>T.Z is an étale sheaf with transfers,
then .% itself is also an étale sheaf. Suppose that U € Sm/K and {V; — U} is an étale
covering. We check the sheaf condition for .%. It suffices clearly to deal with the case
when U is irreducible. Then by [Sus17, Lemma 1.12], there exist an irreducible X € Sm/k
and a finite surjective purely inseparable’ morphism U — Xg. By [SGA 4;;, Exposé VIII,
Théoréme 1.1], the étale morphisms V; — U descend to étale morphisms Y; — Xk, and
then descend to étale morphisms Z; — X, i.e., we have the following Cartesian squares:

Vi Y; i
U Xk X
Spec K —— Speck.

2Purely inseparable morphisms are also called radicial or universally injective morphisms in other literatures.
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By our assumption, efSTﬂ is a sheaf on (Sm/k)g. Thus we have the following exact
sequence

0—FXx) = [[Z (V) = [[F (Vi xx, Y.
Using [Sus17, Lemma 2.4], we obtain the following exact sequence from the above one
0—ZFW)—[[ZWV) —=][ZWVixuV)),
which means that .% is a sheaf.

For a general purely inseparable extension K/k, a perfect closure kP of k is also a
perfect closure of K. Thus the inverse image functor from k to kP®'f is an equivalence and
so is the inverse image functor from K to kP°™. It follows that the inverse image functor
from k to K is also an equivalence.

(3) The last assertion is a combination of Lemma 3.3.4, Proposition 3.3.6 and the second
assertion. 0

3.4. n-motivic sheaves.

Definition 3.4.1 ([ABV09, Definition 1.1.20]). A homotopy invariant sheaf .# € Hlg(k, A) is
said to be n-motivic if the natural morphism

Wotope T — W (F) = .F
is an isomorphism. We denote by Hl, (k, A) the full subcategory of n-motivic sheaves.
Remark 3.4.2. In [Ayol1], n-motivic sheaves are called n-presented H-sheaves.

Remark 3.4.3. As explained in [ABV09, Remark 1.1.21], a homotopy invariant sheaf is n-
motivic if and only if it is isomorphic to hf'c,.# for some .7 € Shvgt(ks ).

Lemma 3.4.4. We have a pair of adjoint functors
hgta’; : Shvgt(ksn, A) 2 Hl,(k,A): 04ty

where iy, : Hl<y,(k, A) — Hlg(k, A) andi: Hlg (k,A) — Shvgt(k, A) are the inclusions. Moreover,
the functor

Onslin: Hl<p(k, A) — Shvgt(ksn,A)

is fully faithful.

Proof. The adjunction follows from the adjunctions (hgt,t) and (0}, 0,+). By definition, the
co-unit
(hgtafl)(an*un)ﬁ — F

is an isomorphism for every .% € Hl.,(k, A), which implies that 7., is fully faithful. O

Lemma 3.4.5. The functor e}, maps n-motivic sheaves to n-motivic sheaves. More precisely,
there exists a functor e},: Hl<, (k, A) — Hl<, (K, A) such that the following diagram is commu-
tative

ét ok
0~ n

Shvg; (k<n, A)
eé"t e e
h(é)to':; V Iy
Hl<n (K, A) — Hlg (K, A).

Hlzn(k, A) —— Hlgc(k, A)

Shvg; (K<, A)
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In particular, for X € (Sm/k)<,, we have
ey (h6' (X)) = hi (Xx).
Proof. Let.# € Hl<y(k, A). By Remark 3.4.3, we write .# = hyo ¥ for ¥ € Shv ¢ (k<n, A). Then
efyinZ = efyinhi'ord = hi'el a9 = hlohes, 9,

where the second isomorphism holds by Corollary 3.3.7 (2), and the last isomorphism holds
by Lemma 3.2.5 (3). Then by Remark 3.4.3 again, e}, 1% is n-motivic. U

Definition 3.4.6. We call e}, the inverse image functor of n-motivic sheaves. We define the
direct image functor e, . of n-motivic sheaves to be the composition

HI

HI (K, A) 2 Hlge (K, A) s Hlge (e )™

nn*

Hl<, (k, A).
Lemma 3.4.7 ([ABV09, Lemma 1.1.23]). We have natural isomorphisms

(O nat) = (O na) (BT (O nat) = (O D).
Lemma 3.4.8. (1) The functor hgtaflon*t is right adjoint to 1,,: Hl<;, — Hlg.

(2) We have a commutative diagram

ét %
O pxlln

Hlg (K, A) Hi<n(K, A) Shvll (K<p, A)

e*HI l €k l lefn
h&'o o st

Hlge(k, A) ——"—"— Hi<,(k, A) —"~"— Shv{: (k<p, A).
(3) The functor ey, is right adjoint to e,.

Proof. Tt is easy to check the first two assertions by using Lemma 3.4.7. Then the third
assertion can be checked easily by using the first assertion. U

3.5. 0-motivic sheaves. In this subsection, we consider sheaves on the small étale site
(Et/ k)t = (Sm/k) <o ¢t

The obvious inclusion of sites o: (Et/k)st — (Sm/k)s is continuous and co-continuous
and preserves fiber products and the final object Speck. Thus it gives an adjunction of
categories

0" : Shvg (Et/k, A) < Shvg(Sm/ik, A): 0.,

where 0..% = .# oo. These two functors are both exact and ¢* is fully faithful. See
Lemma A.2.1 for more details. By Theorem 3.2.1 (4), the forgetful functor y.: Shvtr (k,\) —
Shvg (Sm/k, A) has a left adjoint y*. We have the following result.

Lemma3.5.1. (1) The functor
y*o™*: Shvg(Et/k, A) — Shv c(k, A)
is exact and fully faithful.
(2) We have an equivalence
¥+ : Shvg (k<o, A) — Shve(Et/k, A)

with quasi-inverse ay.y*c*, where ggs: Shvtr (k,A) — Shvtr(k<o,A) is the restriction
functor.
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Proof. The first assertion is [CD16, Proposition 3.1.4]. Thus y*c* induces an equivalence
between Shvg(Et/k, A) and the category Shvgo(k, A) in Definition 3.2.3 with quasi-inverse
0.7Y«. Then the second assertion is clear by Lemma 3.2.4. O

By [DG70, Chapitre I, §4, Proposition 6.5], for a scheme X locally of finite type over a field k,
there exists an étale k-scheme 7 (X) and a morphism gx: X — m(X) satisfying the following
universal property: for any morphism f: X — Y from X to an étale k-scheme Y, there exists
aunique g: mo(X) — Y such that f = go gx. Moreover, the morphism gy is fully faithful and
its fibers are the connected components of X.

Thus we have a functor

7o: Smik — (Sm/k)<g,

which is left adjoint to the inclusion functor. As usual, for a presheaf .# on (Sm/k)<g, the
presheaf .% oy on Sm/k will be denoted by 7. (-#). The following result is stated and used
in [ABV09, 1.2.1]. We give a proof here for completeness.

Lemma 3.5.2. Fora sheaf.7 on (Sm/k)<o e, the presheaf mo.(F) is a sheaf on (Sm/k)g;.

Proof. Let U be asmooth variety and let {V; — U} be an étale covering. Then {ry(V;) — 7o (U)}
is an étale covering of 7o (U). We claim that 7o (V; xy V) — m0(V;) x5y u) 70 (V) is surjective.
Consider the following commutative diagram

F (o)) —[1; F (mo(Vy)) —=I1;,; F (o (Vi) X mo(u) Mo (V)

F (o)) — [1; F (mo (V)

[1;,; 7 (mo (Vi xu V).

Since .7 is a sheaf, the first row is exact and the last vertical arrow is an injection. It follows
that the second row is also exact, which means that ¢, (%) is a sheaf.

Now, we prove the claim: for étale morphisms ¥V}, — U and V> — U, the canonical
morphism

@: mo(V1 xy Vo) — 70(V1) X o) o (V2)

is surjective. Since my commutes with field extensions ([DG70, Chapitre I, §4, Proposition
6.7]) and commutes with disjoint unions, we may assume that k is separably closed, and
Vi, Vo and U are connected. Then it suffices to show that V; xy V, is nonempty. Since the
morphism f;: V; — U is étale, it is an open mapping. Because U is connected and is smooth
over k, it is irreducible. So the intersection of two open subsets f1 (V1) N f>(V>) is nonempty,
ie., fi(V) xy fo(V») # &. Since the canonical morphism

Vi xy Vo — fi(W1) xy f2(V2)
is surjective, we obtain that V; xy V5 is nonempty. U

Remark 3.5.3. This lemma means that 7y: (Sm/k)¢ — (Sm/k)<g ¢ is a continuous functor
in the sense of [SGA 41, Exposé III, Définition 1.1]. But it is not a continuous functor in the
sense of [Stacks, Definition 00WV], which is stronger. In general, the canonical morphism
o (X xy V) — mo(X) Xz, To(V) is not an isomorphism even if V — U is an étale morphism.
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For example, we have the following Cartesian square

1, — Speck

L

Gm —n> Gm;
where the morphism Speck — G, is the zero section. If n = 2 is prime to the characteristic
of k, then u, — Speck is étale and 7o (u,) = 1, # Spec(k).

If Z is an elementary correspondence from X to Y, then 7y(Z) is an elementary corre-
spondence from 7y (X) to mo(Y) by using the canonical isomorphism ([DG70, Chapitre I, §4,
Corollaire 6.10])

o (X % ¥) — 1o (X) x 1 70 (Y)
and the fact that gx: X — mo(X) is surjective. So 7y induces a functor
th: Cor(k) — Cor(k<0)

which is compatible with the graph functor:

Sm/k — = (Sm/k)<o

|

Cor(k) —= Cor(k<p).

The above commutative diagram induces the following one:

tr

T *
Shv¥ (k<o, A) ———— Shv¥ (k, A)

Y*L Y*l
Shvet((Sm/k) <o, A) = Shvg (Sm/k, A),
where 7y and 7, are the direct image functors and y. are the forgetful functors.

Corollary 3.5.4. We haveo™ = mo. and o =~ th*.

Proof. Forasheaf.7 € Shvg(Et/k, A), the inverse image o *.% is the sheaf associated with the
presheaf
U—lim .7 (V),
%

where V are the étale schemes over k such that U — Spec k factors through them. By the
universal property of ¢, the above colimit is in fact .% (o (U)). So the above presheafis in fact
7o+, which is already a sheaf by Lemma 3.5.2. Hence 0*.% = m¢..%. Using Lemma 3.5.1, we
can check that y,o = 0*y., where the latter one is 7.y« = y.7j,. Since y, is conservative
by Proposition 3.2.1 (3), we get oy = n{), . O

Proposition 3.5.5. (1) The functor y*o*: Shvg (Et/k,A) — Shvf;t(k,A) induces an equiva-
lence of categories between Shvg (Et/ k, A) and Hl<o(k, A).

(2) The embeddingHl<(k, A) — Shvtért(k, A) admits a left adjoint m§ with

7'[3 Az (X)) = A (o (X)).
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; t
(3) The category Hl<o(k, A) is a Serre subcategory of Shvért(k, A).
Proof. See Lemma 3.5.1 and [ABV09, 1.2.2,1.2.5,1.2.7]. (]
From now on, we shall write the functor 7 simply as 7.

3.6. Derived direct image of 1-motivic sheaves. To study the unbounded derived functors,
we use the descent model structure on chain complexes developed by Cisinski and Déglise.
For readers’ convenience, we recall the machinery:

Definition 3.6.1 ([CD09, Definition 2.2]). Let A be a Grothendieck category. Let G be an
essentially small set of objects of A and H be a subset of C(A). For E € G, let D(E) be the

complex [E q E], concentrated in degrees 0 and 1, and let fr: E[-1] — D(E) be the map
given by the identity in degree 1.

(1) A morphism in C(A) is defined to be a G-cofibration if it is contained in the smallest
class of maps in C(A) closed under pushouts, transfinite compositions and retracts,
generated by the morphisms fg[n] for any integer n and any E in G.

(2) A chain complex C € C(A) is said to be G-local if for any E in G and any integer n,
there is a canonical isomorphism

Homg 4 (E[n],C) — Homp4)(E[n], C).
(3) An object C of C(A) is said to be H-flasque if for any integer n and any H in H,
Hompg4)(H,Clnl]) = 0.

(4) The pair (G, H) is called a descent structure on A if
(a) elements in H are G-cofibrant acyclic complexes;
(b) every H-flasque complex is G-local.

Theorem 3.6.2 ([CD09, Theorem 2.5]). Let A be a Grothendieck category endowed with a
descent structure (G,’H). Then the category C(A) is a proper cellular model category with
quasi-isomorphisms as weak equivalences, and G-cofibrations as cofibrations. Furthermore,
a complex C € C(A) is fibrant if and only if it is H -flasque, or equivalently, G-local.

Definition 3.6.3 ([CD09, p. 228]). Let A and A’ be two Grothendieck categories. Suppose
that (G, H) (resp. (G',H)) is a descent structure on A (resp. A’). A functor f*: A" — A is said
to satisfy descent (with respect to the above descent structures) if it satisfies the following
conditions:

(1) the functor f* commutes with small colimits, or equivalently, it has a right adjoint f;;

(2) f*(E") is a direct sum of elements of G for any E’ in G';

(3) f*(H") isinH forany H in H'.

Theorem 3.6.4 ([CD09, Theorem 2.14]). If f*: A" — A satisfies descent, then the pair of
adjoint functors

fr:chAh=CA: fu
is a Quillen adjunction with respect to the descent model structure. In particular, the functors
f* and f. have the functors

Lf*: D(A)—D(A) and Rf.: D(A) — DA
as left and right derived functors respectively, and Lf* is left adjoint to R f..
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Remark 3.6.5. Let A, A’ and A" be three Grothendieck categories endowed with descent
structures. Let f"*: A" — A’ and f*: A" — A be two functors satisfying descent, and let
fiand f,. be their right adjoints. Then it follows easily from general abstract nonsense about
Quillen adjunctions and the preceding theorem that we have canonical isomorphisms of total
derived functors

Lf*oLf™ =L(f*of™) and R(flof.)=Rf.oRf.

In fact, under the above assumptions, the functor f. preserves fibrant objects and fibrant
resolutions compute right derived functors. The condition that f* satisfies descent can be
viewed as an unbounded generalization of the condition that f.: A — A’ preserves injective
objects, or flasque sheaves in sheaf theory.

We come back to motivic sheaves.
Lemma 3.6.6. Let K/k be a field extension. Then we have the following commutative diagram

D(Shvg ((Sm/k)<p, A)) L—Y> D(Shv (k<n, A) — D(Shv Lk, )

Le;ﬂ l Le;" L Le:rl
Ly* Loy,

D(Shvg ((Sm/K)<p, A)) . D(Shv {(K<n, A)) — D(Shv (K, A).

Proof. The non-derived version of this commutative diagram can be found in §3.2. In [CD09,
Example 2.3], using Verdier’s computation of hypercohomology [SGA 4y, Exposé V, §7],
Cisinski and Déglise showed that there is a descent structure (G, H) on Shvg ((Sm/k)<n, A),
where G is the essentially small family consisting of sheaves A(X) with X € (Sm/k)<, and H
is the family of mapping cones of A(Y.) — A(X) for any étale hypercover Y, — X on the small
étale site X4;. By [CD16, Proposition 2.2.3], there are similar model structures on Shvtért(k, A)
and Shvgt(kS n, \) by replacing A(X) with A« (X). By definition, all the functors in the above
diagram satisfy descent. Then the expected result follows from Remark 3.6.5. U

Recall Voevodsky's triangulated category of effective étale motives over a field*: Meff(k A)
is the homotopy category of the Bousfield localization of C (Shv (k A)) with respect to the
class of arrows A (X x AD)[n] — Ay(X)[n] for X € Sm/k and n € Z. By the general theory
of Bousfield localizations ([Hir03, 4.3.1]), DMeff(k A) is the full subcategory of D(Shv (k,\))
whose objects are the A'-local complexes (also called motivic complexes), i.e., the complexes
C such that

HomD(Shv‘éﬂ(k,A)) (Aex(X),Clm]) = HomD(Shv;(k,A)) (Atr(A}(), Clm]).

Denote by L1 the Al-localization functor, which is left adjoint to the obvious inclusion
DMEX(k, A) — D(Shv¥ (k, A)).

Definition 3.6.7. (1) Denote M(X) the object Ly (A4(X)[0]) for X € Sm/k and call it the
homological motive of X.

3In fact, Voevodsky defined and studied the triangulated subcategory DMfiffét consisting of complexes that
are bounded above over perfect fields (with finite cohomological dimension) in’[VonOJ, [MVWO06]. Unbounded
motivic complexes (over a base scheme) were studied in some other places, for example, [ABV09], [Ayo11], and
the six-functor formalism in the motivic world (e.g., [Ayo07a], [Ayo07b], [Ayo14], [CD19], [CD16]).
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(2) Denote by DM<,(k, A) the localizing subcategory of DM (k, A) generated by M(X)

et
for X € (Sm/k)<p. We will call it the triangulated category of n-motives.

Lemma 3.6.8. Let K/k be a field extension. Then we have the following commutative diagram

Ly "

* " LyioLoy,
D(Shvg((Sm/k)<p, A)) ——= D(Shv (k<p, A)) “— DM, (k, A)

* * *
Lesn Lesn j eDM
aroLoy,

* L
D(Shve((SM/K) <y A)) —= DShVE (Kzp, A)) 2t DMy (K, A),

where eBM maps M(X) to M(Xg).

Proof. By [CD16, 2.2.4], we have the following commutative diagram

r La it
D(Shvg (k, A)) —— DM (k, A)

Let*rl eE)M l

L
D(Shv (K, A)) —= DMS(K, A),
where e, , maps M(X) to M(Xg). By [ABV09, §2.2], Lyi10Lo’,: D(Shve (k<y, A)) — DME(k, A)

takes values in the subcategory DM<, (k, A) — Dl\/Igff(k, A). Then this assertion follows from
Lemma 3.6.6. O

Now, we focus on 1-motivic sheaves.

Proposition 3.6.9 ([ABV09, Corollary 1.3.5]). The category Hl<1(k, A) is a Serre subcategory of
Shvgt(k, A). In particular, the inclusion uy : Hl<; (k, A) — Shvgt(k, A) is exact.

Corollary 3.6.10. (1) Hl<o(k,A) is a Serre subcategory of Hl<1 (k, A).
(2) The fully faithful functor 0.1 : Hl<y (k, A) — Shvi (k<1, A) is exact.
(3) The inverse image functor ej : Hl<;(k, A) — Hl<1 (K, A) (in Lemma 3.4.5) is exact.

Proof. By Propositions 3.5.5 and 3.6.9, Hl<o(k, A) and Hl<;(k, A) are Serre subcategories of
Shvgt(k, A), which implies the first assertion.

The second assertion holds because the functors . and u; are both exact.

By Propositions 3.6.9 and 3.3.2, the inclusion functor ¢;: Hl<; — HIg is exact. By
Proposition 3.3.6, the inverse image functor for Hlg, is exact. Then the exactness of e} follows

from the natural isomorphism ¢ o e] = e:j” ot (Lemma 3.4.5). O

Since the functors in the above lemma are exact, they can be derived trivially.
Theorem 3.6.11 ([ABV09, Theorem 2.4.1 and Corollary 2.4.9]). The derived functor
wr: D(HI<; (k, A)) — D(Shv, (k, A))
is fully faithful, and the essential image is the subcategory DM« (k, A).

The following result reduces the study of higher direct images of 1-motivic sheaves to the
study of higher direct images of sheaves on the site (Sm/k) <1 ¢t.
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Proposition 3.6.12. The following diagram is commutative

O1xlhy

D(Hl< (K, A)) —— D(Shvg (K<, A) L~ D(Shve(Sm/K)<1, )

Rey. Re! l Rez!

T4l Y«

D(Hl<; (k, A)) —— D(Shv{;(k<1, A)) —— D(Shve ((Sm/k)<1, A)).
Proof. Since ej is exact by Corollary 3.6.10 (3), the functor eI*DM: DM« (k,A) = DM<1(K,A)
corresponds to the derived functor
e; : D(Hl<1(k, A)) — D(Hl<1 (K, A)).

Then we get the expected commutative diagram by taking right adjoint to the one in
Lemma3.6.8forn=1. (]

Denote by 6 the inclusion functor Hlcy — Hl<;, and denote by 6 the obvious inclusion
of étale sites Et/k — (Sm/k)<;. Then 6*: Shvg (Et/k, A) — Shvg((Sm/k)<1, A) is canonically
isomorphic to the composition of the following functors

O1xlly

Shvec(Et/k, A) = Hizg(k, A) < Hi<y (k, A) "2 Sl (ke1, A) L Shve(Sm/ k)<, A).

The higher direct images of 0-motivic sheaves are compatible with the higher direct images
of 1-motivic sheaves in the following sense:

Theorem 3.6.13. For.% € Hl.o(K, A), we have a canonical isomorphism
5Ri6()*g - Riel*éﬂ,

where en. are the direct images of n-motivic sheaves in Definition 3.4.6. In particular, if
Kk is primary, then R'e1.0.7 is the 0-motivic sheaf associated with the Gal(ks/k)-module
H' (T, Fk,), whereI’ = Gal(Ks/Kks).

Proof. By Corollary A.2.5, for 4 € Shvg (Et/K, A), the base change morphism
0*R'ex'9 — R'eZ'0*9
is an isomorphism for any i. Then by Proposition 3.6.12, we have
Y015 18R €0y 0" Y =y, 01,1187 0" R eZ'9
~0*Rie09
~R'e'0*y
~ Ry, 01,07 0"Y
=~ y*al*tuRiel*&/*a*%.

Since y.014tt1: Hlz1(k, A) — Shvg((Sm/k)<1,A) is conservative by Proposition 3.2.1 and
Lemma 3.4.4, we get a canonical isomorphism

SR eg.y*0*Y — R'e),.67*0*Y.
By Proposition 3.5.5 (1), every .# € Hl<(K, A) is of the form y*o*¥, which completes the
proof.

The last assertion follows from the fact that if K/k is primary, then ey. corresponds to the
functor M — M", which has been used in the proof of Proposition 2.3.4. O
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Corollary 3.6.14. (1) If.# € Hl¢(K, A), then Riel*gf are 0-motivic sheaves for all i and are
torsion sheaves fori = 1.

(2) For.Z € Hl<1(K,A), we have R'e,..Z are torsion 0-motivic sheaves for all i = 2.

Proof. If 7 € Hl<(K, A), then R’ e .7 are 0-motivic sheaves for all i by Theorem 3.6.13.
For arbitrary .% € Hl<; (K, A), consider the exact sequence of 1-motivic sheaves

0-F' - F-70Q—-ZF"-0.

By Suslin’s rigidity theorem ([MVWO06, Theorem 7.20]), the torsion sheaves .’ and .#" are
0-motivic sheaves. Thus Rie;,..%#' and R'e;..Z" are 0-motivic sheaves for all i and are in fact
torsion sheaves by [SGA 41, Exposé IX, Proposition 1.2(v)]; see also [Stacks, Lemma 0DDD].
Note that R iefl (Y«01:11.F ® Q) is the étale sheaf associated with the presheaf

(Sm/k)<; — A-Mod
X — H (Xi,Y+01:111.7 Q).
For X € (Sm/k)<; and i =2,
HY (X, Y+ 010111 F Q) = H (X, Y+ 01:11.F Q) =0,

where the first isomorphism holds by [MVWO06, Proposition 14.23], and the second one holds
because the Nisnevich cohomological dimension is bounded by the Krull dimension ([MV99,
§3.1, Proposition 1.8]). By Proposition 3.6.12, for i = 2,

Vs R e (FoQ) =R'es' (y,01.1.7 Q) = 0.

Since y.014tt1: Hlz1(k, A) — Shvg((Sm/k)<1,A) is conservative by Proposition 3.2.1 and
Lemma 3.4.4, we get
Rlel.(FoQ) =0 for i=2.

Then split the above exact sequence to two short exact sequences and consider the induced
long exact sequences of cohomology. Noting that Hl.y is a Serre subcategory of Hl<;
(Corollary 3.6.10 (1)), we obtain that Rie,..Z are torsion 0-motivic sheaves for i = 2.

In particular, if .7 is a 0-motivic sheaf, then all the sheaves in the above exact sequence are
in fact 0-motivic sheaves and Rie; (% ® Q) = 0 for i = 1. Then the same argument as above
shows that R'e; ,.Z are torsion 0-motivic sheaves for i = 1. O

3.7. Inverse images of semi-abelian varieties. We consider sheaves defined by commutative
group schemes.

Definition 3.7.1. Let G be a commutative group scheme over k. Denote G the abelian sheaf
on (Sm/k)g defined by G, i.e.,

G(U) =Morsy/x(U,G) for UeSm/k.
Denote G, = G ®z A the presheaf tensor product, i.e.,
G, (U) =Morsm/x(U,G)®z A for UeSm/k.
Then G, is a sheaf of A-modules on (Sm/k)¢.

There are transfer structures on such sheaves.
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Lemma 3.7.2 ([SS03, Proof of Lemma 3.2], [Org04, Lemmas 3.1.2 and 3.3.1]). Let G be a
commutative group scheme over k. Then G, has a canonical structure of étale sheaves with

. . . . . . P . t
tmi;lsfzrs, which is functorial. More precisely, there exists a unique étale sheaf with transfers G
such that

o
Y*Q/{ =G,,

wherey . : Shvtért(k, A) — Shvg(Sm/k, A) is the forgetful functor. Moreover, if G is a commuta-
tive étale group scheme or a semi-abelian variety, then GY is homotopy invariant.

The aim of this subsection is to show the following result.

Proposition 3.7.3. Let K/k be a field extension and let G be a commutative étale group scheme
or a semi-abelian variety over k. Then

ef(Gy) = Gy

We start with the analogue for sheaves without transfers. Denote e, (resp. e*) the direct
image (resp. inverse image) functor of sheaves on the smooth-étale sites. The following result
is standard and well-known.

Lemma 3.7.4. Let K/ k be a field extension and G be a commutative smooth group scheme over
k. Then we have a canonical isomorphism

e’ (Gy) = Gk -

Proof. In this proof, by abuse of notation, we use Sm/k to mean the category of smooth
separated schemes locally of finite type over k rather than the full subcategory of smooth
separated schemes of finite type over k, which is used in other places of this paper. By [SGA 4;,
Exposé III, Théoreme 4.1], these two categories give the same category of étale sheaves.

For X € Sm/k, denote A(X) the étale sheaf associated with the presheaf mapping U € Sm/k
to the free A-module generated by Morg (U, X). By Yoneda’'s lemma, we have that

e*A(X) = A(Xg).
Recall the following exact sequence of étale sheaves
A(G % G) — A(G) — G, — 0,

where the first map sends a generator [(ay, a2)] to [a1] + [az] — [a; + a], and the second map
sends a generator [g] to g. Then the following commutative diagram with exact rows

e*A(G x; G) —— e*"A(G) ——=¢"(G,) —=0

S

A(Gk xx Gk) A(Gk) Gk, 0

gives us the desired isomorphism. O

We use the Frobenius and Verschiebung morphisms to deal with the direct images of
commutative (flat) group schemes in the case of purely inseparable field extensions.
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Lemma 3.7.5. Let k be a field of characteristic p > 0 and let K/k be a purely inseparable
extension. Let G be a commutative group scheme locally of finite type over k. Then we have
a canonical isomorphism

QA = ey (%A)’

In other words, for X € Sm/k, there is a canonical isomorphism

Mor (X, G) ®7 A — Morg (Xk, Gx) ®7 A.

Proof. We divide the proof into several steps:

(@)

(b)

(©

Let us start with the case K = k'/?. Note that the map k''? — k, x — x” is an
isomorphism with inverse x — x'/”. So we reduce to show the isomorphism

Mor (X, G) ®7 A — Morp(XP,GP) &7 A,

where XP) (resp. G'P)) is the base change of X (resp. G) along the absolute Frobenius of
Speck. By Lemma 2.3.7 (1), this map is injective. Now, we show that it is surjective. Let
f: X%P) — GP) be a morphism of k-schemes. Denote Fx,: X — X (resp. Fg/i: G —
G'P)) the relative Frobenius of X/k (resp. G/k). Note that G is always flat over k. Thus
by [SGA 31, Exposé VII, 4.3], there exists a Verschiebung morphism Vg,: G’ — G such
that
Veiko Foix =pidg and  Fgipo Vg = pidgm -

Let fy be the composition

f

Vark

G(p) G,

Fxk

X xw

and let fo(p): X — GP) be the base change of fy: X — G. Then

faP o Fxji = Fgyio fo = Foeo Voo fo Fxyi = po fo Fxyk,

Note that X? is reduced (because X is smooth), G'P is separated over Spec k, and Fy,j
is surjective. By [EGA IVs, Propositions 11.10.4 and 11.10.1 (d)], we obtain

(»)
I op =pof.
We deal with the case K = kPef = Unen KUP" a perfect closure of k. By (a), we have
the expected isomorphisms for K = k!/P". Note that X — Speck is quasi-compact and
quasi-separated and that G — Speck is locally of finite presentation. Thus by [EGA V3,
Théoreme 8.8.2], there is a canonical isomorphism
li_n;lMOI'kllp” (Xkllpn y lelpn) S Morkperf (kaerf, kaerf),
n
which implies the expected result.
Now, we prove the assertion for general purely inseparable field extensions. Let kPe'f
be a perfect closure of k. Then kP°" is also a perfect closure of K because K/k is
purely inseparable. By (b), we have the two isomorphisms in the following commutative
diagram

MOI‘k(X, G) ®7 A Morg (Xg, GK) ®7 A\

\/

Morkperf (kaerf, kaerf) ®Z A
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It follows that the horizontal arrow is also an isomorphism. O

Remark 3.7.6. The above lemma is false before inverting p. For example, let X = Spec k and
G = G,4. Then Mor (X, G) = k and Morg (Xg, Gx) = K. The natural inclusion k — K is not an
isomorphism in general.

Lemma3.7.7. Let K/k be a field extension and G be a commutative smooth group scheme over
k. Then ) )
efyho Y Gy =hy'y" Gk,
Proof. In fact, we have
etuhy'y" Gy = hi'eqy" Gy = hy'y"e" Gy = hi'y* G,
where the first and the last isomorphisms hold by Corollary 3.3.7 (2) and Lemma 3.7.4

respectively, and the second isomorphism is obtained by taking left adjoint to y.el = e.y.
(part of the commutative diagram before Lemma 3.2.2). O

Lemma 3.7.8. Let G be a commutative étale group scheme or a semi-abelian variety over k.
Then
ét, * ot
ho v Gp =Gy

Proof. For a perfect field k, Barbieri-Viale and Kahn [BVK16, Lemma 3.9.2] showed that the
composition of the forgetful functors

is fully faithful. Thus we have a natural 1somorphlsm
RSy y.u(GY) — GY.
In other words, we have the expected isomorphism over perfect fields.

Now, we extend it to the general field k. Let K be a perfect closure of k. Reformulating
Lemma 3.7.5, we have y. Qtr Y. el GK Since y . is conservative, we have

tr . JHI tr
QA =e, GKA'

Consider the following commutative diagram

hStY*QA QK

eHIe;f“hetY*G —>€H|het}/ G —>€HIG tr

Here, the left vertical arrow is an isomorphism by Proposition 3.3.8, and the two horizontal
arrows at the bottom are isomorphisms successively by Lemma 3.7.7 and the assertion over
perfect fields. Thus the horizontal arrow on top is also an isomorphism. U

Remark 3.7.9. In [AHPL16, Proposition 3.10], they proved using qfh topology that if S is an
excellent scheme and G is a commutative smooth group scheme over S, then the co-unit

* tr tr
Y v«Gg— Gy

is an isomorphism of étale sheaves with transfers.
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We are now ready to prove the main result of this subsection:

Proof of Proposition 3.7.3. Consider the following commutative diagram

eﬁ|hgtY*QA — ey (G

| |

ét,, * = tr
By G, —— Gi

where the two horizontal isomorphisms hold by Lemma 3.7.8 and the left vertical isomor-
phism holds by Lemma 3.7.7. Thus the right vertical arrow is also an isomorphism. (]

From now on, we shall write the étale sheaves with transfers Q}{ as G,, orevenas G, G for
simplicity if it does not cause confusion.

3.8. Chow trace revisited. In this subsection, we show that the Chow trace of a semi-abelian
variety is the “connected component" of its direct image.

Following [ABV09], we call a commutative group scheme G over k a semi-abelian group
scheme if its connected component of the identity G° is a semi-abelian variety and 7¢(G) is
a constructible group scheme. As explained in [ABV09, comments before 1.3.1 and Corollary
1.3.5], semi-abelian group schemes are 1-motivic sheaves.

Definition 3.8.1 ([ABV09, Definition 1.3.7]). A 1-motivic sheaf .% is said to be finitely
generated if there exist a semi-abelian group scheme G and an epimorphism q: G, — 7.
Moreover, if ker(q) is finitely generated, then .7 is said to be finitely presented.

Proposition 3.8.2 ([ABV09, Proposition 1.3.8]). (1) Let ¥ be a finitely presented 1-motivic
sheaf. Then there is a unique and functorial exact sequence
whereJ is a semi-abelian group scheme and £ is a lattice.

(2) Let.# be al-motivic sheaf. Then % is a filtered colimit of finitely presented 1-motivic
sheaves.

Remark 3.8.3. See also [BVK16, Chapter 3] for some basic properties of finitely presented
1-motivic sheaves.

Corollary 3.8.4 (cf. [BVK16, Proposition 3.3.4] and [ABV09, Theorem 1.3.10]). Let .# be a
finitely presented 1-motivic sheaf. Then there exists an exact sequence in Hl<; (k, A):

where L is a lattice, G is a semi-abelian variety and E is a constructible group scheme. Moreover,
E, = 7mo(F), where my: Shvgt(k, A) — Hl<o(k,A) is a left adjoint to the inclusion functor
(Proposition 3.5.5).

Proof. By Proposition 3.8.2, there is a unique and functorial exact sequence

where ¢ is a semi-abelian group scheme and .Z is a lattice. Let G be the identity component
of 4 and let my(¥) be the quotient group scheme ¥ /%99, Let L and E be the kernel and
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cokernel of the induced morphism .Z — 7((¥) respectively. Applying the snake lemma to
the following commutative diagram with exact rows

0 £, g, F 0

]

0— (@), —> 1), —=0—>0,

we get the expected exact sequence. Applying 7y to the top row of the above diagram, we
have the following exact sequence

T ﬂo(g)A — mo(F) — 0.
Thus m¢(.#) is the cokernel E,, . O
Definition 3.8.5. (1) For .% € Shvgt(k, A), we denote .Z9 := ker(Z# — my(.%)) and call it the
connected component of .%.
(2) A sheaf .7 is called connected if 79(#) = 0. Denote by HI, (k,A) the category of
connected 1-motivic sheaves.
Lemma 3.8.6. (1) Let .7 € Hl<(k,A) be a 1-motivic sheaf. Then F 0 js connected. In
particular, there is no nontrivial morphism from .Z° to any 0-motivic sheaves.
(2) Every connected 1-motivic sheaf .% is a filtered colimit of finitely presented connected

1-motivic sheaves.

Proof. By Proposition 3.8.2 (2), we write .% as a filtered colimit of finitely presented 1-motivic
sheaves .7 = @i %;. Since my commutes with colimits (as a left adjoint) and filtered colimits

are exact, we have that .0 = lim, Z?. By Corollary 3.8.4, mg(#) = 0. Thus mo(F°) =
lim 770(F}) = 0.

If 7 is connected, then .#° ~ .Z . By the above argument, the sheaf .%? is a filtered colimit
of finitely presented connected 1-motivic sheaves. Thus .7 is also. (]

Let K/k be a field extension. Then the composition

€1x

Hi<1 (K, A) 25 Hizy (6, A) 2 HI2, (K, A)

is right adjoint to the composition

HI2, (k, A) — Hlz1 (k, A) == Hl<y (K, A).

Theorem 3.8.7. Let K/k be a primary field extension and G/ K be a semi-abelian variety. Then
the connected 1-motivic sheaf (e1+(G A))0 is represented by the Chow trace n.G, and the 0-
motivic sheaf o(e1+(G,)) is the sheaf associated with the Gal(k;/ k)-A-module

LN(G, Kks/kg)p := G(Kk;)/ (m.G) (ks) ®7 A.
In other words, we have an exact sequence of 1 -motivic sheaves

0—>7T*GAael*G*LN(Gkas/ks)A — 0.
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Proof. By Proposition 3.7.3 and Lemma 3.4.5, we have

ef (m:G,) = .Gk .

Then the co-unit 7%, — id induces a morphism e’f .G A) — G, . It suffices to show that
for # € ngl(k, M), there exists a unique morphism f: .% — .G A such that the following

diagram commutes
0y \
v

e’f(n*GA) —G,.
By Lemma 3.8.6, we may and do assume that .# is a finitely presented connected 1-motivic
sheaf. Let
0—Ly>G, Lz_o

be the presentation of .% in Corollary 3.8.4. By Corollary 3.6.10 (3), the inverse image e] of
1-motivic sheaves is exact. Thus we get another exact sequence

0—ef(Ly) —ef (G ) — ] (F)—0.

Denote by [L, — G’,] the complex of 1-motivic sheaves concentrated in degrees 0 and 1.
Other similar notations below have a similar meaning. Then

Homyo o ) (F, .G ) = Homegi, (k0 (ILy — GI\L 10— 7. G ])
=~ Homp, (5 ([IL — G'1,[0 = 7. G]) ®7 A
=~Homwm, () ([Lxk — G1,[0 — G]) ®7 A
=HomcHi,, & a)([Lk, — G_%A], 0—G,D
=~ Homc i, k) ([e] (L) — €] (G' )1, 10— G, )
= Homp_, k,n) (e)-7,G ),

where the first and the last isomorphism holds by the above exact sequences, the second
and the fourth isomorphisms hold by [BVK16, 3.3.4 d)], the third isomorphism holds by
construction of Chow trace, and the second to the last isomorphism holds by Proposition
3.7.3.

By the above argument, we have 7..G A (e1+G A)O. Consider the exact sequence

0— H*GA — €1« (QA) - nO(el*(QA)) — 0.
Taking the stalk at the geometric point Spec ks — Spec k, we get
0— (1 G)(ks)n — G(Kks)a — mo(e14(Gp)k, — 0,

which means that 7¢(e1«(G,)) is the 0-motivic sheaf associated with the Gal(k;/ k)-A-module
G(Kks)! (m+G) (k) ®7 A. O

Corollary 3.8.8. Let K/k be a finitely generated regular extension and let A be an abelian
variety over K. Then the 1-motivic sheaf ey« (A,) is finitely presented.
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Proof. The Lang-Néron theorem ([Con06, Theorem 7.1]) says that A(Kks)/(m.A)(ks) is a
finitely generated abelian group. This means that 7mo(e1.(A,)) is a finitely presented 1-
motivic sheaf. Since every extension of two finitely presented 1-motivic sheaves is still finitely
presented, the 1-motivic sheaf e;.(A,) is finitely presented as well. O

It is well-known that an étale sheaf which is an extension of two separated group schemes
is represented by a separated group algebraic space and that separated group algebraic
spaces over a field are represented by group schemes. In the special case of the exact
sequence in Theorem 3.8.7, we can prove the representability without using algebraic spaces.
See Proposition B.0.4. Thus we have the following result.

Corollary 3.8.9. Let K/k be a primary extension of fields of characteristic0 and let G be a semi-
abelian variety over K. Then the 1-motivic sheaf e, . G is represented by a semi-abelian group
scheme over k.

‘For an abelian variety A over K, we have gotten some information about e;.(A) and
R'e;.(A) for i = 2 by Theorem 3.8.7 and Corollary 3.6.14. The following result is about the
first direct image. It uses Raynaud’s results on torsors under abelian schemes.

Theorem 3.8.10. Let K/k be a field extension, and let A be an abelian variety over K. Then
R'e;.(A) is a torsion 0-motivic sheaf fori = 1.

Proof. We use the same argument as in the proof of Corollary 3.6.14. It suffices to show that
R! efl (A®Q) =0, where efl is the direct image functor for étale sheaves on (Sm)<;. Note that
Rlef1 (A®Q) is the étale sheafification of the presheaf

(Sm/k)<; — A-Mod,
X — H} (Xx, A) @ Q.

Since X is noetherian and regular, torsors under the abelian scheme Ay are torsion, i.e.,
H élt(X K, A) is a torsion group by [Ray70, Proposition XIII 2.6.(ii) and Proposition XIII 2.3.(ii)].
Thus H} (Xk, A) ® Q = 0, which implies that R'e5'(A® Q) = 0. O

4. THE 1-MOTIVIC £-STRUCTURE

In this section, we use Ayoub’s way of perverting ¢-structures to get a new ¢-structure from
the standard one on D(Hl<;). This new t-structure will be called the 1-motivic z-structure,
and the objects in its heart will be called 1-motives. We shall translate the results on higher
direct images of 1-motivic sheaves to results on 1-motives.

4.1. Perverting ¢-structures. Recall that a ¢-structure on a triangulated category D is a pair
of full subcategories satisfying three simple axioms ([BBD82, Définition 1.3.1]). Let D be a
triangulated category endowed with a ¢-structure (D=°,D=%). We denote by DY its heart
D<0"D>0. For n € Z, we denote by 7=" and 7" the truncation functors with respect to
this ¢-structure. We also write H" X = t="7=" X[n], which is an object of DY,

We consider full subcategories of DV with the following properties.

Hypothesis 4.1.1 ([Ayol1, Hypothesis 2.1]). (1) A is a Serre subcategory of DY, i.e., stable
under subobjects, quotients and extensions.

(2) The inclusion A — DY admits a left adjoint F: DY — A.
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(3) If0 —» X’ — X — X" — 01is an exact sequence in DV with X" € A, then F(X') — F(X)
is a monomorphism.

Definition 4.1.2 ([Ayoll, Definition 2.3]). An object X € DY is said to be F-connected if
F(X)=0.

Remark 4.1.3. There is no nontrivial morphisms from F-connected objects to objects in .A.
In fact, if X’ is F-connected and X" is in A, then

Hompo (X', X") ~ Hom 4 (FX', X") = 0.

As aresult, if 0 — X’ — X — X" — 0 is an exact sequence in D” where X' is F-connected and
X"e A, then X" ~FX.

Definition 4.1.4. We define two full subcategories of D as follows:

o D=0 is the full subcategory consisting of P € 7 such that H(P) = 0 for i > 1 and
H!(P) is F-connected.

« DY is the full subcategory consisting of N € 7 such that H(N) = 0 for i < 0 and
HY(N) e A.

Proposition 4.1.5 ([Ayol1, Proposition 2.4]). The pair (‘D=°,"D>%) is a t-structure onD.

Definition 4.1.6. The f-structure (‘D=°,/D>%) defined above is called the .A-perverted ¢-
structure. We denote by ‘DY its heart D=0 n?D>°, For n € Z, we denote by ‘=" and ‘7>"
the truncation functors with respect to this ¢-structure. We also write the cohomology with
respect to this ¢-structure as 'H”.

Remark 4.1.7 ([Ayo1l1, Remark 2.6]). By definition, an object X of D is in DY if and only if it
satisfies the following properties:

(1) H'(X)=0fori¢{0,1};
(2 H'X) e A
(3) HY(X)is F-connected.

Remark 4.1.8. By definition, if the old z-structure on D is non-degenerate, i.e.,
ﬂ Dsnz ﬂ Dzn:(),
nez nez

then so is the A-perverted ¢-structure.

The following result is a generalization of [BVK16, Proposition 3.11.2].
Proposition 4.1.9. Keep the above notations and assumptions. Let X be an object of D. For
anynel,

(1) H™"('t="1X)=0form=n+1;and H"('1®"X) =0 form=<n-1;
(2) form=n+1,

H™(X) = H™('t"X);
(3) form=n-1,
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(4) we have
HOCH'X) =~ H'(‘72"X), H"(1=""'X) =~ H'(H" ' X).
and a short exact sequence in D
0— H'(H"X) — H™'(X) — HO(CH"™ ' X) — 0;
5) HO(CH"™1X) = F(H"(X)).

Proof. The first assertion is clear by definition.
Consider the following distinguished triangle in D

ITSI’l—lX —_— X — tTEnX _ thn—lX[l].
It induces a long exact sequence in DY
AN HM(ITSI’Z—IX) _ Hm(X) . HI’}’I(ITZ}’IX) _ Hm+1(l’TSn—1X) — e,

Combining it with (1), we get (2) and (3).
Now, consider the following distinguished triangle in D

"H"X)[-n) — ‘73" X — 2 X S THY(X) [-n+ 1]
It induces the following exact sequence in DY

PN Hn—l(tT2n+1X) _ Hn(tHn(X) [_n]) _ Hl’l(tTZI’lx) . Hn(tT2n+1X)

. Hn+1(tHnX[_n]) - Hl’H‘l(tTan) N Hn+1(tT2n+1X) N Hn+2(tHnX[_n]) e

By (1), H*"'(*72"*1X) and H"(*t>"""1 X) both vanish. Note also that
H" 2 ("H"X[-n]) = 0.
Thus we get the isomorphism
HO(Z’HHX) ~ Hn(t.[an)
and the exact sequence in (4).
Using the above argument for the distinguished triangle

thn_ZX . thn—IX _ tHn—lx[_n + 1] _ thn—ZX[l]’

we get H'('t=""1X) = H'({H" 1 X).
The last assertion follows from Remark 4.1.3.

O

4.2. 1-motives and the higher direct images. We consider the unbounded derived category
D(HI<1(k,A)). The standard z-structure on D(Hl<;(k, A)) = DM<;(k, A) is called the homo-

topy t-structure. The homotopy ¢-structure on DMgff

the above ¢-structure on D(HI<; (k, A)), which justifies the name.

(k, A) with heart Hlg (k, A) restricts to

The following result is proved in [Ayol1] for Q-coefficients, and we refine it to integral

coefficients here (at least inverting the exponential characteristics).

Proposition 4.2.1. The subcategory Hl<o(k, A) — Hl<1(k, A) satisfies Hypothesis 4.1.1. More

precisely,

(1) Hl<o(k, A) is a Serre subcategory of Hl<1 (k, A);
(2) theinclusion Hloo(k, A) — Hl<1 (k, A) admits a left adjoint

7o Hl<i(k, A) — Hl<o(k, A);
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@ if
q

i

0 F! F F 0
is an exact sequence in Hl<, (k, A) with " € Hl<o(k, N), then o (i): mo(F') — mo(F)
is a monomorphism.

Proof. The first assertion has been proved in Corollary 3.6.10.

Clearly, the restriction of 7y to Hl<;(k, A) is a left adjoint of the inclusion Hl<(k, A) —
Hi<; (k, A).

Now, we prove the last assertion. Since .#" is 0-motivic, the composition .#° — .F — .Z"
is trivial. Thus the morphism .#° — .% factors through .#'. The morphism .#° — .%' factors
through .%#" because every morphism from .%#° to 7o (.%#") is trivial (Lemma 3.8.6). So we get
the following commutative diagram

Lg[/O—f>yO
.
0 F! T F" 0

L

7o(F') —— 1o (F)

It is easy to check that f and g are inverses of each other. Applying the snake lemma to the
top two rows of the above diagram (with zero being the third term of the first row), we get that
7o(F') — mo(.¥) is a monomorphism. O

We apply the construction from the previous subsection.

Definition 4.2.2. The 1-motivic ¢-structure on D(HIl<;(k, A)) is the Hl<o(k, A)-perverted ¢-
structure associated with the homotopy #-structure. The heart of this 1-motivic ¢-structure
will be denoted by MM (k, A). We call objects in MM (k, A) 1-motives.
As explained in Remark 4.1.7, an object X in D(HI<;(k, A)) is a 1-motive if and only if it

satisfies the following properties:

(1) H{(X)=0fori¢{0,1};

(2) H°(X) is a 0-motivic sheaf;

(3) H'(X) is a connected 1-motivic sheaf.
By truncation, in fact, we may and do represent X by a two-term complex concentrated in
degrees 0,1. We write it as [L — G] with Deligne 1-motives as main examples. We call it a 0-
motive if it is quasi-isomorphic to [L — 0] with L a 0-motivic sheaf. We will call it constructible
if H°(X) and H!(X) are finitely presented 1-motivic sheaves in the sense of Definition 3.8.1.

Let K/k be a field extension. By abuse of notation, we denote the direct image functor of
1-motivic sheaves as e, which is the functor e;, in Definition 3.4.6. Denote by Rie, (resp.
Mpie. = [L! — G']) the cohomology of Re, relative to the homotopy (resp. 1-motivic) ¢-
structure on D(HIl<; (k, A)).

Theorem 4.2.3. Let K/k be a filed extension and let L be a 0-motivic sheaf over K. Then
MR'e,[L— 0] = [R'e.L— 0],
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In particular, MRie. [L— 0] is a torsion 0-motive fori = 1.

Proof. By Corollary3.6.14 (1), R’ e, L are 0-motivic sheaves for all i and are torsion forall i > 1.
Applying Proposition 4.1.9 (5) to Re. L, we get that for all i
ker(L' — G") = mo(R'e.L) = R'e, L
are 0-motivic and thus
coker(L' — G') = (R e, 1)’ =0.
This means that [L} — G] is quasi-isomorphic to [Rie.L— 0]. O
By Theorem 3.6.13, if K/k is primary and .% is a 0-motivic sheaf, then R’e..# can be

described by Galois cohomology. Thus we can use results on cohomology of profinite groups
to deduce some properties of the higher direct images of 0-motivic sheaves.

Lemma 4.2.4. Let I be a profinite group and L be a discrete I -module which is a finitely
generated free abelian group. Then H' (T, L) is finite.

Proof. This result is well-known to experts. For example, it is [Har20, Exercise 4.10]. For
readers’ convenience, we give a proof. By definition of discrete I'-modules, for any x € L,
the stabilizer I'y = {g€I'| gx = x} isopenin I'. Since L is finitely generated, the group

U:={gel'|gx=x, forallxe L}

is an open normal subgroup of I'. The Hochschild—Serre spectral sequence [Ser02, Chapter I,
2.6 b)] gives us the exact sequence

0—H'(T/U,LY) - H'(T,L) - H (U,1)""Y.

We claim that H!(U, L) vanishes. Then it suffices to show the finiteness of H'(I'/U, LY). It is
finitely generated because LU is finitely generated. Then it is finite as the higher cohomology
groups are torsion groups.

Now, we prove the claim. By [Ser02, Chapter I, 2.2, Corollary 1], we have

H'(U,L)=limH"(U/V,L"),

where V runs over all open normal subgroups of U. Thus we reduce to show H' (U/V, L") = 0.
By construction, the group U acts trivially on L. So U/V acts trivially on LY = L. It follows that
HY(U/V, L") is the group of homomorphisms from U/V to L. Since U/V is finite and L is free,
this group vanishes. O

Remark 4.2.5. It is necessary to assume that L is free in Lemma 4.2.4. A counterexample is
that T’ = Gal(ks/k) and L = p,(ks) = {x € ks | x" = 1} for n prime to char(k). Taking the long
exact sequence of cohomology associated with the Kummer exact sequence

0— pnks) — kX — kX —0,

and applying Hilbert’s theorem 90, we obtain H L(Gal(ks/ k), Un(ks)) = k™ /k*™. Tt is not finite
in general.

So we have the following result.

Lemma 4.2.6. Let K/k be a primary field extension and let L be a lattice over K. Then
Mmple. [L — 0] is a constructible 0-motive.
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Proof. By Theorems 4.2.3 and 3.6.13, ™R'e,[L — 0] = [H'(Gal(K,/Kks), L) — 0], which is a
constructible 0-motive by Lemma 4.2.4. (]

Lemma 4.2.7. Let K/k be a field extension and let G be a connected 1-motivic sheaf over K.
Then

, [0— (e~ G)], ifi=0;
"R'e.[0— Gl =3 [m(R'e.G)—0l, ifi=2;
[R"-le,G—0], ifi=3.
and we have an exact sequence
0— (e« G) — L' — G' — (R'e,3)° — 0.
In particular, "R" e, [0 — G] are0-motives for i = 2 and are torsion fori = 3.
Proof. By Theorem 3.6.14, Rle, G are torsion 0-motivic sheaves for i > 2, i.e., R'e,[0 — G] are
torsion 0-motivic sheaves for i = 2. Applying Proposition 4.1.9 (5) to Re. [0 — A], we get that
foralli=3 . . . ‘
ker(L! — G') = my(R'e,[0 — G]) = R" le,G,
are 0-motivic and . . '
coker(L'™ ' - Gl = (R'e, [0 — G))* = 0.
This means that [L} — G'] is quasi-isomorphic to [Ri"le,G — 0] for i = 3, and coker(L? —
G2) = 0. Note that
ker(L? — G?) = my(R%e. [0 — G]) =~ mp(R' s G).
Thus [L? — G?] is quasi-isomorphic to [7y(R'e.G) — 0]. We also have
ker(L® - G% = 7y(R 'e.G) =0,
and
coker(L0 — GO) =~ (e, G)O.
Thus [L° — G°] is quasi-isomorphic to [0 — (e, G)°]. O
Theorem 4.2.8. Let K/k be a primary field extension and let A be an abelian variety over K.
Then

‘ [0 — 7. Al ifi=0;
"R'e.[0—~ Al =4 [LN(A Kks/ks) =01, ifi=1;
[R"le, A— 0], ifi=2.

In particular, MROe. [0 — A] is a constructible 1-motive, and ™R'e,.[0 — A] are torsion 0-
motives for i = 2. Moreover, if K/ k is a finitely generated regular extension, then "R' e, [0 — A]
is a constructible 0-motive.

Proof. By Lemma 4.2.7, it suffices to compute "Re, and "R'e,. This involves the informa-
tion of e, A and Rle, A. By Theorem 3.8.7,

(e, A’=7,A and mo(es A) = LN(A, Kk/ k).
Thus "R%, [0 — A] = [0 — 7. A] and
ker(L' — G') = my(R e, [0 — A]) = m(ex A) = LN(A, Kks/ks).
By Theorem 3.8.10, Rle, A is a torsion 0-motivic sheaf. So
coker(L' — G') = (R'e. A’ =0.
Hence [L! — G']is quasi-isomorphic to [LN(A, Kks/ kg) — 0]. O
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We can also describe the higher direct images of more general Deligne 1-motives.

Lemma 4.2.9. Let K/k be a field extension let M = [L — G] be a Deligne 1-motive over K.
(1) R'e.M are0-motivic sheaves fori =0 and i = 3, and they are torsion fori = 3.
(2) IfG is an abelian variety, then R*e. M is also a 0-motivic sheaves.
(3) If G is an abelian variety and K/ k is a finitely generated regular field extension, then
R'e. M is a finitely presented 1-motivic sheaf.

Proof. The distinguished triangle
G[-1]-M—-L—-G
induces the following long exact sequence
0—R%,M— R%,L— R%.,G—R'e.M — .

By Theorem 3.6.14, Rie, (L) are torsion 0-motivic sheaves for i = 1 and R*(G) are torsion 0-
motivic sheaves for i = 2. By Theorem 3.8.10, Rle, G is also a torsion 0-motivic sheaf if G is
an abelian variety. By Corollary 3.8.8 and Lemma 4.2.6, if G is an abelian variety and K/k
is a finitely generated regular field extension, then e, G and R'e, L are finitely presented 1-

motivic sheaves. Recall from Corollary 3.6.10 that Hl< is a Serre subcategory of Hl<;. Then
the expected result follows from the above long exact sequence. (]

Proposition 4.2.10. Let K/k be a field extension and let M = [L — G] be a Deligne 1-motive

over K.
(1) We have

[mo(R%*es M) — 0], ifi=2;

[Rie, M — 0], ifi=3.

(2) IfG = Ais an abelian variety, then we have

[mo(R'e. M) — 0], ifi=1;

[Rie.M — 0], ifi=2.

(3) If G = A is an abelian variety and K/ k is a finitely generated regular field extension,
then ™R'e, M is a constructible 1-motive.

’”Rie*[L—>G]:{

mRie*[L—»A]:{

Proof. The proof is similar to the one in Lemma 4.2.7 by using Lemma 4.2.9. We omit the
details here. O

APPENDIX A. SOME RESULTS ON ETALE COHOMOLOGY

In this appendix, we prove a smooth base change theorem for non-torsion sheaves and use
it to compare the small-étale and smooth-étale topoi.

A.1l. A smooth base change theorem for non-torsion étale sheaves. Recall the classical
smooth base change theorem:

Theorem A.1.1 ([SGA 4y, Exposé XVI, Corollaire 1.2]). Consider the Cartesian diagram of

schemes

% 4
|
T

—°. X

S[f

)

e
—_—
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where f is smooth and e is quasi-compact and quasi-separated. Let A be the localization of Z
by inverting the exponential characteristics of all local residue fields of S. If % is a sheaf of sets
(resp. of torsion A-modules) on Tg;, then the base change morphism

as: f*Re.7 — R g, W F
is an isomorphism for i =0 (resp. for everyi).

In [Den88], Deninger proved a proper base change theorem for non-torsion sheaves. Using
the same strategy, we prove the following version of smooth base change theorem.

Theorem A.1.2. Consider the Cartesian diagram of noetherian schemes

y 5. x

I

T——38,

and assume that f is smooth and T is excellent. Let A be the localization of Z by inverting the
exponential characteristics of all local residue fields of S. If 7 is a sheaf of A-modules on Ty,
then the base change morphism

i . pxpi i *
ay: f"R'e.¥ — R'g.h"F
is an isomorphism for every i.

The argument in [Den88] works almost word by word in our case, except that we shall use
the smooth base change theorem for torsion sheaves (Theorem A.1.1) instead of the proper
base change theorem, and that we need some additional conditions on the torsion order of
the sheaves, i.e., we use sheaves of A-modules rather than abelian sheaves.

For completeness and for readers’ convenience, we give a proof of Theorem A.1.2 in this
subsection. A key ingredient is the following result.

Lemma A.1.3 ([Den88, 2.2]). Let T be a normal scheme and e: T — S be a morphism of
noetherian schemes. Then R'e,(QQ) =0 fori = 1.

We use it to prove the smooth base change theorem for the constant sheaves defined by
finitely generated A-modules.

LemmaA.1.4 (cf. [Den88, 2.3]). Consider the Cartesian diagram of noetherian schemes
y —£-x
hl Lf
T——S§,

ans assume that f is smooth and T is normal. Let A be the localization of Z by inverting the
exponential characteristics of all local residue fields of S, and let C be a finitely generated A-
module. Then the base change morphism

ab: f*R'e.C— R'g.h*C

is an isomorphism for every i = 0.
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Proof. Note that e is quasi-compact and quasi-separated since T is noetherian. In view of
the smooth base change theorem for torsion sheaves (Theorem A.1.1), we may assume that
C = A. Consider the exact sequence

0-A—-Q—-Q/A—0.
By our assumptions, # is smooth and T is normal. Thus Y is also normal. It follows from
Lemma A.1.3 that
R'e,Q=0 and Rig*(@=0 for i=1.

Thus the above short exact sequence gives us a commutative diagram with exact rows

0 — f*e, A — f*e,Q —— f*e.(Q/A) — f*R'e,A —= 0

afy j “9(11 L a?Q/A l ay L

0—— g h*A —— g.h*Q — g.h*(Q/A) — R'g. h*A —0,
and a commutative diagram for every i = 2

f*Ri7e, (Q/A) — f*Rie.A

anj/lA l a’, l

Ri"1g,h*(Q/A) — Rig.(h*A).

By the smooth base change theorem for torsion sheaves (Theorem A.1.1), the a(’@ re

a
IA

isomorphisms for all i. Hence a/, is an isomorphism for i > 2. By Theorem A.1.1 again, for
every sheaf of sets .#, the base change morphism f*e..# — g, h*.% is an isomorphism. Note
that the inverse images and the direct images for sheaves of A-modules are compatible with

taking the underlying sheaves of sets ([Stacks, Proposition 00YV]). Thus af, a?Q and af’Q /) are
isomorphisms. Hence a}\ is also an isomorphism. U

Lemma A.1.5 (cf. [Den88, 2.4]). Consider the Cartesian diagram of noetherian schemes

Y
|
T
ans assume that f is smooth. Let A be the localization of Z by inverting the exponential
characteristics of all local residue fields of S, and let . be a sheaf of A-modules on Tg. If

F is of the form 1.C wheret: U — T is a finite morphism with U normal and C is a finitely
generated A-module, then the base change morphism

g

—°.x

S[f

)

e
—_—

ay: f*Re.7 — R g, W F

is an isomorphism for every i = 0.


https://stacks.math.columbia.edu/tag/00YV
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Proof. Consider the following commutative diagram of Cartesian squares

,[./

7. v-8.x

00

U——T——8.

By [SGA 411, Exposé XII, Proposition 4.4(ii)], we have a morphism of spectral sequences

EP7T=f*RPe,RIT,C=—=> f*RP*4(e1),C

| <

RPg.RIt\ h'*C ——= RP*9(g1"). h'*C.

Since 7 and 7’ are finite morphisms, the direct images 7. and 7/, are exact. Thus we have a
commutative diagram

f*Rie.(1.C) —— f*Ri(er).C

i
lar*C

Rig.h*(1.0) al.

0

Rig,(t'.W*C) —— Ri(g7").W'*C.

By Lemma A.1.4, the base change morphisms a% and aé in the diagram are isomorphisms.
Hence the base change morphism a’ . is an isomorphism, i.e., @', is an isomorphism. [

Now we prove the main theorem of this subsection.

Proof of Theorem A.1.2. (cf. [Den88, 2.5]). By [SGA 4y, Exposé IX, Corollaire 2.7.2], every
sheaf of A-modules .% on Tg is a filtered colimit of constructible sheaves of A-modules.
Since e and g are quasi-compact and quasi-separated by our assumptions, the higher direct
images Rie, and R’ g+« commute with filtered colimits ([SGA 4y;, Exposé VII, Corollaire 5.11]).
So we may assume that .% is a constructible sheaf of A-modules. Because T is excellent, it
is a universally Japanese scheme by [EGA IV,, Scholie 7.8.3(vi)]. Then according to [SGA 4y,
Exposé IX, Remarques 2.14.2], there exists a monomorphism

n
F — @Ti*ci;
i=1

where C; is a finitely generated A-module and 7;: U; — T is a finite morphism with U;
normal. Denote ¢ the constructible sheaf of A-modules @7, 7;.C;, and denote .77 the
cokernel of above inclusion % — ¢. Then 7 is also a constructible sheaf of A-modules.
The short exact sequence

0-F -9 —H—0
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induces the following commutative diagram with exact rows:

f*R'e,9 —— f*R'e,. ' — f*R'*'e,.F —— f*R""e,d —— f*Ri* e,

i ~ i i+1 i+1 | ~ i+1
“gj_ “K%l Xz L Ay L_ “K%l

R'g.h*9 — R'g.h*# — R g. h*.¥ —— R*'g.h*Y —— Rl g, n* .

We prove by induction on i that a’ is an isomorphism for every constructible sheaf of A-
modules. For i < 0, this is trivial. Assume that the assertion holds for a fixed i. Then (x’%ﬂ isan
isomorphism. By Lemma A.1.5, the base change morphisms a{ig and af’;'l are isomorphisms.
Thus afgl is a monomorphism. Since .# is an arbitrary constructible sheaf of A-modules,
a;;;l is a monomorphism as well. It follows from the five lemma that ag;l is an isomorphism,
which completes the proof. ([

A.2. Comparing small and smooth étale topoi. We use the smooth base change theorem
for non-torsion sheaves (Theorem A.1.2) to compare the small and smooth étale topoi. The
reader may want to compare this subsection with [Stacks, Section 0757].

Let S be a noetherian scheme. Let Sm/S be the category of smooth separated schemes
of finite type over S. For n € N, we denote by (Sm/S)<,, the full subcategory of Sm/S whose
objects are the smooth schemes over S of relative dimension less than or equal to n. We
sometimes write (Sm/S)<g as Et/S*.

Let C/S be the category Sm/S or (Sm/S)<,. Let A be the localization of Z by inverting the
exponential characteristics of all local residue fields of S. Denote Shvg (C/S, A) the category
of étale sheaves of A-modules on C/S.

For f: X — Sin C, the natural inclusion o r: (Et/X)g — (C/S)¢ is a continuous functor,
i.e., we have a functor’

0 f.: Shvgt(C1S, A) — Shve(Et/ X, A),
ﬂ — fOO'f.

*

By [SGA 4y, Exposé 1II, Proposition 1.2], o ¢. admits a left adjoint o P We sometimes denote

Oidg by 05 (or o if there is no risk of confusion).
Let e: T — S be a morphism of noetherian schemes. Then the base change functor C/S —
C/T induces a continuous functor of étale sites®. Thus we have a pair of adjunctions

ef: Shvgt(C/S, N) = Shvg (C/T, A): €€,

where ¢.Z = .Z o e. When C = Et, we write e, (resp. eC) as e* (resp. e,).

41n fact, we consider here the étale schemes separated and of finite type over S rather than all the étale schemes
over S. However, by [SGA 4yj, Exposé VII, 3.1 and 3.2], they give the same category of étale sheaves. Because we
are mainly interested in étale sheaves here, we do not distinguish between these two categories.

SThe notations used here are in the same spirit as in [SGA 4y, Exposé VII, §4], but are different from the ones
in [SGA 41, Exposé II1]. See also [Stacks, Section 0CMZ] for a comparison of notations.

6Waming: For C = Sm, this continuous functor does not induce a morphism of sites in general. See [Ols16,
2.2.30] or [Stacks, Section 07BF] for some examples that egm is not exact.


https://stacks.math.columbia.edu/tag/0757
https://stacks.math.columbia.edu/tag/0CMZ
https://stacks.math.columbia.edu/tag/07BF

CHOW TRACE OF 1-MOTIVES AND THE LANG-NERON GROUPS 49

The following Cartesian square
4

—°. X

Et/X —— Et/Y

Ufl Uhl
cls—%.cir.

By definition of the direct images, the above diagram induces the following commutative
diagram

e
—_—

induces a commutative diagram

C

Shvg(C/ T, A) —~—= Shvg (C/S, A)

Shvg (Et/ Y, A) —> Shvg (Et/X, A).
In particular, if f = idg, then g, €S = e,o 7 and oret =e;0y.
LemmaA.2.1. (1) The functorso ¢, and a}i are exact.
(2) The functor a; is fully faithful.
@) orog=f".
Proof. This result is well-known. In fact, the inclusion o¢: (Et/X)g — C¢ is not only

continuous but also co-continuous in the sense of [SGA 4;, Exposé III, Définition 2.1]. It
follows from [Stacks, Lemma 04BH] and [Stacks, Lemma 0771] that o F and U;’Z are exact and

that a;‘c is fully faithful (o 7. is the g7 !, and 0; is the g in loc. cit.).
Now, we prove the last assertion. Note that o ¢ can be factored as
Et/X 2% CIX —CIS.

Thus o ¢, = 0 xxlx, Where L FUIX)=ZUIS). Since f: X — S in a morphism in C/S, the
functor ¢, is in fact f;. It follows that

Uf*(f§ ZUX*fC*U; =ox.0xf"=f"
where the last isomorphism holds by (2). O

Now, we study the derived functors. First, we derive the diagram before Lemma A.2.1. By
Lemma A.2.1 (1), the functors o ¢, and 0. are exact.

Lemma A.2.2. For K € D(Shvg(C/ T, A)), we have a canonical isomorphism
07+ RCK = Rg.op. K.

Proof. By Lemma A.2.1, the functor 0, admits an exact left adjoint o, . Thus by some formal
reason, the functor o, preserves K-injective complexes in the sense of [Spa88]. Then this
lemma follows because K-injective resolutions compute unbounded right derived functors.

(]


https://stacks.math.columbia.edu/tag/04BH
https://stacks.math.columbia.edu/tag/077I
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Theorem A.2.3. Lete: T — S be a morphism of noetherian schemes with T excellent. Then for
F € Shvg (Et/ T, A), the base change morphism
az:oiRe,F — ReSaF
is an isomorphism in D(Shvg (C/S, A)).
Proof. Let A(X) the étale sheaf associated with the presheaf mapping U € C/S to the free A-

module generated by Mors(U, X). Consider the following commutative diagram

Hompshv (c/s,a) (A(X)[n],05Re..F) —a Hompshvgcrs,a) (AX)[n], Refﬁ}ﬁ)

zlﬁl |2

Hom p(shv,Et/x,A) (A(X)[],0 p. 05 Re..F) BERY Homp shv,, (Et/x,A)) (A(X)[n],af*Rer’}ﬁ).

Here, a; and a, are induced by the base change morphisms; f; and S, are adjunction
isomorphisms. Consider the pullback of the base change morphism
[*Re..7 = o0f.05Re.T

—0rRETLT

= Rg.op,07.F

= Rg.h*Z,
where the first and the last arrows are isomorphisms by Lemma A.2.1 (3) and the third
arrow is an isomorphism by Lemma A.2.2. According to the smooth base change theorem
(Theorem A.1.2), f* Re..# — Rg.h*.% is an isomorphism, which implies that @, and then a;

are isomorphisms. Since {A(X)[n]} is a system of generators in D(Shvg (C/S, A)), we obtain
the expected isomorphism in the derived category. U

Remark A.2.4. Using a spectral sequence argument like [Stacks, Lemma 0F09], we can also
establish Theorem A.1.2 and Theorem A.2.3 for bounded below complexes of sheaves of A-
modules on Ty.

Note that the spectrum of a field is an excellent scheme. So we have the following result:

Corollary A.2.5. Let k be a field of exponential characteristic p, and let A = Z[%]. Let K/k
be a field extension. Write e: SpecK — Speck the induced morphism. Let ¥ be a sheaf of
A-modules on (Spec K)gt.

(1) For a Cartesian diagram

Xy —2 o x
|l
SpecK — Speck

with f smooth and of finite type, the base change morphism
as: f*Re.7 — R g, W' F

is an isomorphism for every i.


https://stacks.math.columbia.edu/tag/0F09
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(2) The base change morphism
az:0Re.F — ReSopF

is an isomorphism in D(Shvg (C/k, A)), whereC is Sm or Sm<,, for some n € N.

APPENDIX B. A REPRESENTABILITY RESULT
by BRUNO KAHN

For a field k, let Sm;(k) be the category of smooth separated k-schemes locally of finite
type, and Sm(k) the full subcategory of those which are of finite type. We provide them with
the étale topology. and write Shv;(k) and Shv(k) for the corresponding categories of sheaves
of sets.

Lemma B.0.1. The restriction functor Shv;(k) — Shv (k) is an isomorphism of categories.

Proof. The inverse functor sends a sheaf F to U — [];c; F(U;), where the U; are the
connected components of U. O

LemmaB.0.2. Let F € Shv(k). If F # @, then F (Spec E) # @ for some finite separable extension
E/k.

Proof. The assumption means that there exists U € Sm(k) such that F(U) # @¢. But U has
a closed point u with separable residue field E (this follows from the characterisation of
smoothness in [SGA 1, I, Def. 1.1]), hence F(SpecE) = F(u) # @. O

Lemma B.0.3. Let E be a finite separable extension of k, and let L € Shv(k) be the étale sheaf
represented by L = Spec E. Then there is an isomorphism of categories

Shv(E) = Shv(k)/L.
This isomorphism transports a representable sheaf F € Shv(E) to F — L € Shv(k)/L.

Proof. Let F LA L e Shv(k)/L. For U € Sm(k) and 7 € L(U) = Morg(U, L), let F(U) = p_l(n)

so that 7 (U) = [lrer ) F»(U). The isomorphism of categories is now clear: writing U — Uy,

for the forgetful functor Sm(E) — Sm(k),

In one direction: Let F 2 L € Shv(k)/L. For U € Sm(E), let F'(U) = Fy,(U)) where my :
U — SpecE is the structural morphism.

In the other direction: Let 7' € Shv(E). For U € Sm(k), let F(U) = [ e @) F' (U, ), and let
p(U) : F(U) — L(U) be the obvious projection. N

If F e Sm(E) and U € Sm(k), a k-morphism f : U — F induces a unique E-structure on U
through which f factors; hence the claim for representable sheaves. (]
Proposition B.0.4. Let F € Shv(Sm(k)) be a sheaf of groups. Suppose that there is an exact
sequence

1-G-FL -1
where G is representable by a smooth connected algebraic k-group G and L is locally constant.
Then F is representable by a k-group scheme in Sm;(k), whose identity component is G.

(The assertion makes sense thanks to Lemma B.0.1.)
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Proof. Tt suffices to show that F is representable as a sheaf of sets, the group structure
taking care of itself by Yoneda’s lemma as well as the claim on the identity component.
Since L is locally constant, it is representable by an étale k-scheme locally of finite type
L =1l;e; L; where L; = SpecE; for a finite separable extension E;/k [Mil80, VIII, p. 54, Rem.
1.12]. Then F = [l;¢; F; where F; = p‘l(Li) with L; the sheaf represented by L;; since a
coproduct of representable sheaves in Shv; (k) is representable, it suffices to show that each
Fiis representable.

Recall (e.g. [SGA 71, Exposé VII, §1]) that the action of G on F by left translations defines
a G-torsor over £, whence a G-torsor structure on F; = F x. L, over L;. By transport of
structure, this makes the sheaf l’ € Shv(E;) associated to F; by Lemma B.0.3 a G-torsor
over the point.

By Lemma B.0.2, F] is trivial over a finite separable extension of E, therefore it is
representable by descent [SGA 1, VIII, Cor. 7.6] since G is quasi-projective [Cho57]. If F;
is the corresponding E;-scheme, F; is then represented by (F;) ) by applying Lemma B.0.3
again. O
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