
Lattice Surgery for Dummies
Avimita Chatterjee

Department of Computer Science & Engineering
Pennsylvania State University

PA, USA
amc8313@psu.edu

Subrata Das
School of EECS

Pennsylvania State University
PA, USA

sjd6366@psu.edu

Swaroop Ghosh
School of EECS

Pennsylvania State University
PA, USA

szg212@psu.edu

Abstract—Quantum error correction (QEC) plays a crucial
role in correcting noise and paving the way for fault-tolerant
quantum computing. This field has seen significant advancements,
with new quantum error correction codes emerging regularly
to address errors effectively. Among these, topological codes,
particularly surface codes, stand out for their low error thresh-
olds and feasibility for implementation in large-scale quantum
computers. However, these codes are restricted to encoding a
single qubit. Lattice surgery is crucial for enabling interactions
among multiple encoded qubits or between the lattices of a
surface code, ensuring that its sophisticated error-correcting
features are maintained without significantly increasing the op-
erational overhead. Lattice surgery is pivotal for scaling QECCs
across more extensive quantum systems. Despite its critical
importance, comprehending lattice surgery is challenging due
to its inherent complexity, demanding a deep understanding of
intricate quantum physics and mathematical concepts. This paper
endeavors to demystify lattice surgery, making it accessible to
those without a profound background in quantum physics or
mathematics. This work explores surface codes, introduces the
basics of lattice surgery, and demonstrates its application in
building quantum gates and emulating multi-qubit circuits.

Index Terms—Quantum error correction codes (QECCs), en-
coding, transversal gates, lattice surgery

I. INTRODUCTION

Quantum computing leverages quantum mechanics princi-
ples to perform tasks unachievable by classical computing,
with applications spanning molecule simulation for drug devel-
opment, financial modeling improvements, machine learning
advancements, optimization task enhancements, and supply
chain management transformations [1]–[5]. Yet, the path to
commercializing these innovations faces hurdles, including
issues with qubit stability and quantum noise [6], [7]. Quantum
Error Correction Codes (QECCs) play a pivotal role in real-
izing fault-tolerant quantum computing amidst inherent qubit
noise [8], [9]. Unlike conventional error correction approaches
[10], quantum error correction encounters specific obstacles
due to the no-cloning theorem [11] and the phenomenon of
wave-function collapse during qubit measurement [12]. This
ongoing research has yielded a variety of quantum codes,
including five-qubit, Bacon-Shor, topological, surface, color,
and heavy-hexagon codes [13]–[18], each contributing to the
advancement towards fault-tolerant quantum computation.

A. Motivation

All QECCs are designed to encode a single qubit. When
faced with a circuit involving multiple qubits that require

QECC application, enabling interactions among these encoded
qubits becomes necessary. QECCs typically employ transver-
sal gates for this purpose which offer scalability but increase
gate overhead significantly diminishing the QECCs’ error-
correcting capabilities. This challenge is addressed by lattice
surgery [19], a technique that enables interactions between
multiple encoded qubits without compromising their error-
correcting properties while keeping the increase in overhead
manageable. Lattice surgery is essential to achieve fault-
tolerant quantum computing, as it ensures QECCs can scale
up to larger systems. Predominantly associated with surface
codes, among the most prominent QECCs due to their low
error thresholds and practicality for large-scale implementa-
tion, lattice surgery’s principles also lay the groundwork for
advancing other QECCs [20]. Examples of such work include
the qubit lattice surgery [21] and lattice surgery for color-
codes [20]. Understanding lattice surgery is thus crucial for
developing fault-tolerant quantum computing.

B. Contribution

While grasping lattice surgery is vital, it presents significant
challenges due to the sophisticated mathematical concepts of
quantum physics, especially concerning surface codes and
qubit interactions. The research papers on lattice surgery [22]–
[30] often assume a deep understanding of such concepts,
making it difficult for newcomers to follow. This work aims to
offer a clear and approachable overview of lattice surgery’s key
principles, tailored for researchers with limited experience in
quantum physics or its mathematical underpinnings. This work
provides a comprehensive overview of surface codes before
delving into the fundamental principles of lattice surgery. It
begins with the basics of lattice surgery, progresses through
the construction of quantum gates using this technique, and
ultimately demonstrates how lattice surgery can be used to
emulate multi-qubit circuits. Prior familiarity with surface
codes is not required for readers of this review. However, a
basic acquaintance with quantum circuit symbols, as outlined
in [31]—including fundamental measurement techniques, the
controlled-NOT (CNOT) gate, and the Hadamard (H) gate—is
presumed.

C. Paper Structure

The paper begins by laying a theoretical foundation on
QECCs, surface codes, and transversal gates in Section II. It

ar
X

iv
:2

40
4.

13
20

2v
2

 [
qu

an
t-

ph
]

 2
4

A
pr

 2
02

4

then outlines the objectives of lattice surgery and its classifi-
cations in Section III and the range of operations achievable
through lattice surgery in Section IV. The application of
QECCs to circuits involving multiple qubits, facilitated by
lattice surgery, is discussed in Section V. Conclusions are
drawn in Section VI.

II. THEORETICAL BACKGROUND

A. A Brief Overview of QECCs

Quantum Error-Correcting Codes (QECCs) are designed to
protect quantum information from errors due to decoherence
and other quantum noise, thereby enabling reliable quantum
computation [9], [32]. Understanding the interaction between
physical and logical qubits, the encoding process, the types
of errors encountered, and the use of stabilizers and ancilla
qubits is fundamental in implementing QECCs effectively.

In quantum computing, physical qubits are the basic units
of quantum information, analogous to bits in classical com-
puting. These qubits can exist in states represented by su-
perposition, allowing them to hold a combination of 0 and 1
simultaneously, and can become entangled with each other,
a property that underpins the power of quantum computing.
Logical qubits, however, are formed by encoding quantum
information across multiple physical qubits. This encoding
uses redundancy to enhance fault tolerance against noise and
errors [9], [33]. Logical qubits are thus more stable constructs
designed to implement the robust storage and manipulation of
information in a noisy quantum environment. The encoding of
quantum information into logical qubits involves distributing
the state of a single qubit across a group of physical qubits.
This distribution is managed through specific quantum gates
that entangle the qubits in a way that any error affecting a
single physical qubit can be detected and corrected without
collapsing the overall quantum state. The robustness of a
QECC is largely defined by how effectively it encodes and
preserves the state of logical qubits despite errors in physical
qubits.

Quantum computations contend primarily with two types
of errors: (i) Bit-flip errors that flip the state of a qubit from
|0⟩ to |1⟩ or vice versa. This type of error is analogous to
the classical bit flip and can disrupt computations by altering
the basic state of a qubit and (ii) Phase-flip errors that alter
the relative phase between the basis states of a qubit. In a
superposed state, this error can change the relative weighting
of |0⟩ and |1⟩, leading to a loss of coherence in the quantum
information. Stabilizers are operators used in QECCs to check
for errors without measuring the qubits directly, which would
otherwise collapse their quantum state. There are typically two
types of stabilizers used. Z-type stabilizers detect bit-flip errors
by checking for unexpected changes in the qubit states. X-type
stabilizers are used to detect phase-flip errors by observing
changes in the phase relationships between qubits.

Ancilla qubits are additional qubits included in a QECC
to aid in the error detection process [33]. They do not hold
quantum information themselves but are used to interact with
logical qubits to extract error syndromes—a form of indirect

measurement that indicates whether and where an error has
occurred. During syndrome measurement, ancilla qubits are
entangled with logical qubits and then measured. The outcome
of these measurements is used to diagnose errors based on
the known properties of the stabilizers. Through syndrome
measurement, the QECC can determine not just the presence
of an error but also its type and possible location (using suit-
able decoding algorithm), enabling targeted error correction
that restores the integrity of the quantum information without
needing to observe the logical qubits directly. This process
underscores the sophisticated interplay between encoding,
error detection, decoding and error correction that QECCs use
to maintain the fidelity of quantum computations amidst the
inherent fragility of quantum states.

B. Surface Codes

Surface codes are a significant advancement in the field
of quantum error correction, distinguished by their two-
dimensional lattice structure that contributes to their high
error tolerance [34]. Originating from the concept of toric
codes, surface codes are a type of topological quantum error-
correcting code that effectively utilizes the arrangement of
qubits on a grid to safeguard quantum information against
common quantum errors, specifically bit-flip and phase-flip
errors [17], [34].

These codes employ a unique strategy involving ancilla
qubits to monitor the integrity of the quantum state. These
ancilla qubits are integral to performing X and Z stabilizer
checks across the lattice, allowing for the detection of the two
primary error types without disrupting the quantum state of the
data qubits. The effectiveness of these stabilizers in diagnosing
errors is a key feature of surface codes, leveraging Pauli
operations to probe groups of qubits and thereby determine
the presence and locations of errors.

In the domain of quantum computing, the n-distance surface
code is depicted using an n × n lattice configuration, where
each position, or ‘blob’, represents a qubit that is crucial to
maintain the logical state of the system. The structure of this
lattice ensures that every qubit is monitored by both X and Z
stabilizers [35]. These stabilizers are essential for identifying
phase and bit-flip errors respectively, utilizing combinations
of Pauli operators (X or Z) that act on specific subsets of
qubits within the lattice. Should an error occur, it alters the
outcome of the stabilizer checks linked to the affected qubit.
By conducting these stabilizer checks, it becomes feasible to
pinpoint the timing and location of any errors using a decoding
algorithm [36]. Once the presence and position of errors are
confirmed, they can be rectified by applying quantum gates
to flip the affected qubits back to their intended states, thus
restoring the integrity of the quantum information.

The architecture of surface codes can be implemented in two
variations: unrotated and rotated, each with a distinct lattice
structure that affects their error-correction capabilities. The
unrotated version features a square lattice where data qubits
reside on the edges, and each square (or plaquette) links to a Z-
stabilizer, with X-stabilizers located at the vertices connecting

H HH H

XL XLZL
ZL

Fig. 1. Surface Codes. 1⃝: Structure of an unrotated surface code. 2⃝: Structure of an rotated surface code. 3⃝: Circuit representation of a Z-stabilizer acting
on four qubits and projecting its syndrome onto an ancilla qubit which is later measured. 4⃝: Circuit representation of an X-stabilizer acting on four qubits
and projecting its syndrome onto an ancilla qubit which is later measured. 5⃝: Visualization of transversal 2-qubit gates between two unrotated surfaces. 6⃝:
Illustration of transversal 2-qubit gates between two rotated surfaces.

the squares [35]. Figure 1 1⃝ shows an unrotated surface
code, where qubits represented by grey blobs are influenced
by Z-stabilizers depicted as purple squares and X-stabilizers
illustrated with orange lines.

Conversely, the rotated version uses a tilted lattice that
alternates X and Z stabilizers in a checkerboard pattern,
impacting the qubits at each box’s vertices [37]. The stabilizers
engage with the qubits located at the vertices of each specific
box. Figure 1 2⃝ displays a rotated surface code where purple
surfaces represent Z-stabilizers and orange surfaces indicate
X-stabilizers. Together, these stabilizers interact with all the
qubits depicted as grey blobs, which form the logical state.
This rotated arrangement often provides a slightly higher
error threshold and is simpler to implement, making it more
advantageous for robust quantum error correction over long
distances.

When examining the functionality of these stabilizers in a
quantum circuit, there are typically two main methodologies
employed to demonstrate their interaction with the qubits.
Figure 1 3⃝ illustrates the creation of a Z-stabilizer using
a combination of CZ and Hadamard gates. This method
enhances the Z-stabilizer’s capability to effectively detect bit-
flip errors through a sophisticated manipulation of the quantum
state. The configuration affects an ancillary qubit, which is
visually depicted as a purple blob within the diagrams. After
the interaction facilitated by the CZ and Hadamard gates, the
state of this ancillary qubit is measured to provide a syndrome
measurement, denoted as Sz. This measurement is crucial as
it reflects any errors detected across the qubits that the Z-
stabilizer governs, showcasing the effectiveness of this gate
combination in maintaining the integrity of the quantum state.

Figure 1 4⃝ demonstrates the construction of an X-stabilizer
through the use of CNOT and Hadamard gates. This arrange-
ment is designed to detect phase-flip errors, employing these
gates to adjust the quantum state of another ancillary qubit,
represented by a orange blob. The influence of the CNOT
and Hadamard gates projects the outcome of this stabilizer
operation onto the ancillary qubit, altering its state. Subse-
quently, the modified state of the ancillary qubit is measured
to ascertain the syndrome value Sx. This setup not only allows
for precise error detection but also ensures that the corrections
needed can be accurately determined and applied to maintain
the quantum system’s overall fidelity.

In all cases, the interaction between the stabilizers and
the ancillary qubits is critical for detecting errors effectively
without altering the logical state of the quantum system. These
visual and operational details highlight the intricate and precise
nature of error correction strategies employed in quantum
computing, specifically within the framework of surface codes.
Although surface codes offer substantial benefits in error cor-
rection, their implementation demands a considerable number
of physical qubits and sophisticated control systems. These
requirements pose substantial hurdles in the development of a
fault-tolerant quantum computer.

C. Transversal Gates

Surface codes are designed around a two-dimensional
nearest-neighbor (2DNN) architecture, where qubits are ar-
ranged to interact primarily with their direct neighbors. This
configuration aligns well with the physical layout of qubits on
quantum chips, simplifying quantum operations and minimiz-
ing error probabilities due to its unity with the quantum chip’s
architecture. The inherent design of surface codes ensures that
error correction is efficiently achieved through interactions
among nearest-neighbor qubits. Despite this, there has been
a proposal to execute multi-qubit gate operations transversally
across different surface codes [14], [38], [39]. Simplifying the
concept, if an initial circuit contains an X gate, implementing
it transversally means applying X gates to every qubit in
the lattice. Likewise, suppose the original circuit involves a
CNOT gate between two qubits. In that case, the transversal
approach necessitates executing several CNOT gates from
all qubits in one encoded lattice to those in another. Figure
1 5⃝ and 6⃝ illustrates the application of 2-qubit interactions
transversally from one lattice to another in both unrotated and
rotated surface codes.

Nonetheless, the necessity for transversal two-qubit gates
has historically rendered planar encoding impractical in several
scenarios where physical qubits are limited to 2D configu-
rations and can only engage in nearest-neighbor interactions.
This limitation is particularly evident in systems such as quan-
tum dots [40], [41], superconducting qubits [42], [43], trapped
atoms [44], nitrogen-vacancy centers in diamonds [45], and
certain ion trap setups [46], [47]. Implementing transversal
gates in a surface code can challenge the 2DNN structure for
several reasons: 1 Breaking Locality: To perform a transversal

gate, one needs to apply operations across potentially distant
qubits simultaneously. In a strict 2D lattice, this means reach-
ing beyond immediate neighbors, which disrupts the locality
principle inherent to surface codes. Maintaining only nearest-
neighbor interactions is crucial for minimizing error rates and
implementation complexity. 2 Increased Error Propagation
Risk: While transversal gates are designed to prevent error
propagation within their definition, the act of physically imple-
menting these gates in a surface code setting—where we might
have to engage non-neighbor qubits—increases the risk of
spreading errors. This contradicts the surface code’s principle
of localizing errors for easier detection and correction. 3 Im-
plementation Complexity: The surface code’s error correction
relies on inherently local measurements. Introducing transver-
sal gates necessitates control and synchronization across a
wider array of qubits, complicating the implementation and
potentially introducing more points of failure, which can
degrade the error correction capabilities of the surface codes.
4 Limited Set of Transversal Gates: Not all quantum gates
can be implemented transversally in a way that maintains the
2DNN structure of surface codes. This limitation means that
some desired quantum operations cannot be performed without
compromising the local interaction model, thus forcing a trade-
off between the types of operations one can perform and the
preservation of the 2DNN structure.

In conclusion, although transversal gates contribute to fault
tolerance, their integration within surface codes disrupts the
2DNN architecture by requiring interactions beyond immedi-
ate neighbors. This necessity introduces complexities in phys-
ical implementation, elevates the potential for error spreading
and restricts the variety of operations that can be executed
while adhering to the principle of locality. These issues have
been addressed through the innovative approach of lattice
surgery, which involves the strategic ‘cutting’ and ‘merging’ of
code surfaces. This method effectively preserves the integrity
of standard nearest-neighbor interactions and fault tolerance,
offering a solution to the challenges posed by transversal gates
within the framework of surface codes.

III. LATTICE SURGERY

A. Pivotal Idea

Lattice Surgery involves the strategic manipulation of a
lattice’s structure to obtain specific outcomes, utilizing two
fundamental techniques: merging and splitting. Merging two
lattices entails combining them into one unified surface. This
process is facilitated by the measurement of joint stabilizers
along the surfaces’ edges as part of error correction cycles.
The behavior of the operation varies based on the edges that
are connected. Conversely, splitting a lattice separates one
surface into two by severing joint stabilizers, thereby creating
additional boundaries. The characteristics of the newly formed
boundaries dictate the properties of the resultant states. Every
surface code has a rough edge and a smooth edge. They
describe the boundaries of a two-dimensional lattice that
encodes qubits. Visually, the rough edges are identified by
the explicit termination of qubits at the lattice boundary.

R
ough Edge

XLXL

Fig. 2. Rough surface merging. Two logical surface codes are unified by a
row of transitional qubits (green blobs) initialized in the |0⟩ state, facilitating
a merged surface encoded by the operation XLXL.

Sm
ooth Edge

ZLZL

Fig. 3. Smooth surface merging. The unification of two logical surface
codes through transitional qubits (yellow blobs) prepared in the |+⟩ state,
culminating in a merged surface characterized by ZLZL.

While, the smooth edges are defined by the absence of qubit
termination, implying a conceptual continuation of the lattice
structure beyond its physical confines. Rough edges, through
the termination of qubits, provide a structural basis for the
application of X-stabilizers. Smooth edges, characterized by
the non-termination of qubits, facilitate the deployment of
Z-stabilizers. The configuration of these qubits about the
lattice’s boundary defines the operational dynamics of the
code, particularly in the correction of bit-flip and phase-flip
errors.

B. Lattice Merging

Consider the setup depicted in Fig. 2, comprising two
logical surface codes, each encoding a single qubit, and a
separate row of ‘transitional’ uninitialized physical qubits,
marked in green. Initially, these qubits are set to the |0⟩ state.
Subsequently, the two surfaces are unified by positioning the
transitional qubits between them. Additional stabilizers are
created around the new qubits to incorporate them within
the system. The entire system then undergoes error correction
as a unified data surface. The logical operation X, denoted
as the old boundary, remains unchanged and is represented
by the product of the logical operators from the two initial
surfaces, thus denoted as XLXL. Consequently, this merging
process, which combines the rough edges of the two surfaces,
is identified as rough surface merging, resulting in a single,
unified surface. In the second merging technique, referred to
as smooth surface merging (Fig. 3), the transitional qubits
(depicted as green blobs) are initialized in the |+⟩ state. The
resulting merge is characterized by the measurement of ZLZL,
distinguishing it from the rough surface merging by the initial
state of the transitional qubits and the nature of the logical
operation measured post-merge.

R
ough Edge

Fig. 4. Rough surface splitting. Division of a single quantum surface into
two separate entities via the measurement of transitional qubits (yellow blobs).

Sm
ooth Edge

Fig. 5. Rough surface splitting. The central row of qubits is measured to
create separate surfaces with distinct boundary conditions.

C. Lattice Splitting

Lattice splitting, entails dividing a single surface into two
by measuring a central row of qubits, effectively excising them
from the lattice. This measurement results in the formation of
two distinct surfaces upon completion of the operation. Similar
to merging, splitting can occur along two types of boundaries:
rough or smooth. In the case of a rough split, illustrated
in Fig. 4, the central row of qubits—visually denoted as
yellow blobs — are measured in the Pauli-X basis, effectively
partitioning the surface into two independent lattices. This
division can alter the code’s distance, potentially affecting
its error-correcting capabilities. Likewise, during a smooth
split, as depicted in Fig. 5, the central row of intermediate
qubits—again represented as yellow blobs—is similarly mea-
sured out with similar effect as rough split.

IV. OPERATIONS WITH LATTICE SURGERY

In this section, we describe the emulation of fundamental
gate operations using lattice surgery. Familiarity with the
logical X and Z behaviors is extended to examine additional
gates.

A. The CNOT Gate

The CNOT gate creation process is a technique used to
perform logical operations between qubits encoded in surface
codes. The entire process is shown in Fig. 6. We begin with
with two logical qubits of distance d, the control (C) and the
target (T), each encoded on separate surfaces. The control is in
an arbitrary state while the target is initialized in the state |+⟩.
Just as ancilla qubits are utilized, we introduce an auxiliary
surface known as the transitional logical surface (TRN). The
TRN mirrors the structure of the surfaces of C and T , and
is therefore a surface with a distance d. This entire surface is
initialized in the |+⟩ state at the start of the operation. This
TRN surface is used to bridge the control and target qubits
and facilitate the CNOT operation.

C C

T T

TRN TRN

Unita
ry CNOT

Opera
tio

n

Fig. 6. Implementation of the CNOT gate using lattice surgery. The
process involves merging and splitting logical qubits C (control) and T
(target) with a transitional surface TRN , strategically applying quantum
operations to achieve the gate function within a surface code environment.

The first operation is a smooth merge between the surfaces
C and TRN . The smooth merge is used here because it
conserves the phase relationship, which is necessary for the
control functionality of the CNOT gate. After the merge,
a logical state dependent on the measurement outcome is
formed. The merged surface is then split back into C and
TRN . This split is also a smooth split. The purpose of the
split is to ‘separate’ the control and the intermediary while
preserving the state information transferred during the merge.
Finally, the transitional TRN is merged with the target T . This
merge effectively performs the controlled-NOT operation: if
the control qubit was in the state |1⟩, the target’s state will be
flipped. If the control was in |0⟩, the target remains unchanged.
After the final merge between TRN and T , we achieve the
CNOT operation between the control and target qubits. In
the end, we are left with two logical qubits of distance d. The
CNOT operation is also completely reversible.

The series of merges and splits are not redundant but rather
a systematic way to transfer and manipulate the quantum
information between the qubits to realize the CNOT gate.
Each merge and split has a purpose: The first merge is to
entangle the control qubit’s state with the intermediary. The
split is necessary to retain the control’s state while preparing to
apply its effect to the target. The second merge then applies the
control qubit’s state to the target qubit, completing the CNOT
operation. The process exploits the properties of quantum me-
chanics to implement computational logic in a fundamentally
different way than classical logic gates. After completing this
series of operations, the TRN becomes inactive, freeing the
qubits for further use. We can either reinitialize the surface
to the |+⟩ state for a forthcoming CNOT operation in the
circuit, or reset the qubits for a different purpose.

B. The Hadamard Gate

Executing a Hadamard gate across an entire surface of
qubits transversally, through the application of the H oper-
ation to each qubit individually, results in a planar surface
that is correct state-wise. However, this approach alters the
physical orientation of the planar surface relative to its initial
configuration, as depicted in Fig. 7. Such reorientation is
acceptable if the qubits require no additional manipulation.
Nonetheless, should subsequent operations be necessary, or if
the preservation of the qubits’ interconnectivity is essential for

H H H

H H H

H H

H H

H H H

Fig. 7. Orientation disruption post-transversal Hadamard gate. Resulting
configuration after applying a transversal Hadamard gate: The individual H
operations reorient the planar surface, diverging from its original layout as
demonstrated in this figure.

Fig. 8. Restoration of planar surface orientation. Corrective process
to realign the planar surface following a transversal Hadamard operation:
Merging with auxiliary qubits and subsequent contraction through Z-basis
measurements returns the surface to its original orientation, as depicted here.

scaling the system, an alternative strategy must be employed
to realign the planar surface to its original layout.

To realign the planar surface post-Hadamard operation and
preserve its original orientation—necessary for further quan-
tum computations or to maintain the qubits’ connectivity for
scalable quantum systems—specific corrective steps can be
undertaken, as outlined in Fig. 8. The process begins with the
rotated surface, which is subsequently merged with additional
qubits (depicted as green blobs). This merger creates an
enlarged, stable surface, which compensates for the reorienta-
tion caused by the initial Hadamard operations. Subsequently,
this expanded surface is methodically reduced back to its
original size by measuring certain qubits (marked in yellow)
in the Z-basis, effectively reversing the rotation. Through this
series of splits, the planar surface’s alignment is restored.
This corrective sequence of merges and splits functions due
to the topological nature of surface codes, where logical
operations like the Hadamard can be mimicked by altering the
connectivity and layout of the qubits. The final outcome, after
contracting the surface, is a qubit array that has effectively
undergone a Hadamard transformation and is realigned to its
initial configuration, ready for subsequent quantum processing
steps.

C. Arbitrary Qubit Rotation Gates

Having grasped the principles of integrating CNOT and
Hadamard gates within lattice structures, we can now extend
our exploration to the technique of state injection across a
whole lattice. Consider a quantum state Ψ = α |0⟩+β |1⟩. The
application of an arbitrary quantum gate to this state effectively
‘rotates’ it, transitioning it to a new state Φ = α′ |0⟩+ β′ |1⟩.
This transformation is due to the fact that all quantum gates
act as rotations in the state space. While transversal operations

Fig. 9. State injection into a quantum lattice. Sequential steps illustrating
the injection of an arbitrary quantum state Φ into a lattice: starting with
initialization, performing CNOT operations, swapping syndrome with data
qubits, and spreading the state to achieve α′ |0⟩L + β′ |1⟩L.

Fig. 10. Scaling the injected state in a higher distance lattice. The
process of expanding an injected state across a larger lattice to form a high-
distance logical state, depicted through the inclusion of additional |0⟩ qubits
and stabilization to reach α′ |0⟩L′ + β′ |1⟩L′ .

could be employed to achieve this effect, they would only
result in an altered orientation of the lattice’s surface. To
incorporate a specific arbitrary state into a given lattice,
and to accomplish the desired quantum gate’s effect without
altering the lattice orientation, we employ lattice surgery. This
technique allows for the precise and controlled introduction of
the rotated state into the quantum computing framework.

The procedure for state injection is illustrated in Fig. 9. To
inject a state Φ into a lattice, we begin with all qubits in the
lattice initialized to the state |0⟩, except for one, which is in the
state Φ. As shown in the first panel of the diagram, the grey
qubits represent those in the state |0⟩, and the orange qubit is
in the state Φ. CNOT operations are conducted between the
orange qubit and the adjacent syndrome qubits. These syn-
drome qubits are subsequently swapped with the neighboring
data qubits to create a three-qubit state α′ |000⟩+β′ |111⟩, as
indicated in the second panel of Fig. 9. The lattice undergoes
routine stabilizer operation, effectively spreading the encoded
state across the entire structure, as depicted in the third
step of Fig. 9. This distribution is facilitated by syndrome
measurements, which function as repeated applications of
CNOT gates. This series of operations culminates in the
injection of the state onto the entire lattice, through progressive
entanglement, yielding a new logical state α′ |0⟩L + β′ |1⟩L.

Let us imagine a single qubit influenced by one rotational
gate, Rx(θ). This qubit is allocated its own dedicated surface.
We then select a single qubit from this surface and apply the
same rotational gate, Rx(θ), as used on the original qubit.
Following the procedure outlined in 9, we proceed with the
stabilizer operations or CNOT gates until the entire surface
replicates the effect of the rotational X gate on the qubit.
Once an injected surface is established, it can be scaled up
to a surface with a higher distance. This scalable approach

H S

T

T

S

H

Z

X

Millions of gates

10
0

qu
bi

ts
q1 q2 q3

q1

q2

q3

qn qn

Fig. 11. Integration of QECC in large-scale quantum circuits. Depiction of a complex quantum circuit comprising 100 qubits, each represented by
individual surface codes in a tiled layout. This diagram illustrates how each tile (or surface) interacts with others through operations like merging, splitting,
expanding, and contracting to faithfully emulate the gate operations of the original quantum circuit, ensuring fault tolerance in large-scale applications.

extends the injected state Φ across a larger lattice to achieve
a higher error-correcting distance. As illustrated in Fig. 10,
the expansion of the injected state onto a broader lattice is
facilitated through the incorporation of extra qubits (marked
in green) initialized in the state |0⟩. Subsequent rounds of
stabilizer measurements are then performed, allowing the state
Φ to permeate the enlarged lattice. This process culminates in
the formation of an augmented logical state, represented as
α′ |0⟩L′ + β′ |1⟩L′ , across the new, higher distance surface.

V. APPLICATION OF QECC ON MULTI-QUBIT CIRCUITS

A. Moving Towards Fault-Tolerant Quantum Computing

We have explored how lattice surgery facilitates quantum
operations, focusing primarily on single-qubit tasks and ex-
tending up to two-qubit computations, such as implementing a
CNOT gate between two-qubit lattices. However, as quantum
computing scales up to include circuits with a larger number of
qubits, the complexity of applications also grows, demanding
numerous qubits and gates. To achieve fault tolerance in these
expansive applications, utilizing multiple QECC surfaces, each
corresponding to individual qubits within the circuit is neces-
sary.

This multi-surface approach is just the beginning. There is
also a critical need to orchestrate interactions among these
QECC surfaces to accurately replicate the gate operations
found in the original quantum circuit. Figure 11 illustrates an
arbitrary quantum circuit with 100 qubits, encompassing mil-
lions of gates. Here, each qubit is represented by a distinct tile-
like surface code, where each tile corresponds to a logical sur-
face associated with specific qubits. The interaction between
these tiles — merging, splitting, expanding, or contracting —
is crucial for emulating the intended gate operations within
the circuit, ensuring that the larger-scale quantum computing
applications remain robust and error-resistant. Executing a
quantum circuit on a surface-code-based quantum computer
as efficiently as possible involves an optimization challenge.
This challenge, which has been proven to be NP-hard [28],
focuses on minimizing both the number of surface code tiles
and the number of time steps required to implement quantum
algorithms. The objective is to achieve the most efficient use
of resources in terms of both space and time.

TABLE I
QUANTUM GATES AND THEIR PAULI ROTATIONAL FORM

Quantum Gates Rotational Form

Single
Qubit

X Xπ

Y Yπ

Z Yπ

RX Xθ

RY Yθ

RZ Zθ

H Zπ/4 ·Xπ/4 · Zπ/4

S Zπ/4

T Zπ/8

Multi
Qubit

CNOT (Z ⊗X)π/4 · (1⊗X)−π/4 · (Z ⊗ 1)−π/4

C(P1, P2) (P1 ⊗ P2)π/4 · (1⊗ P1)−π/4 · (P2 ⊗ 1)−π/4

B. Simplification of the Circuit

One effective method to sequentially execute all interactions
from the original circuit is to decompose them into simpler
subproblems. We recognize that each quantum gate can be
expressed in terms of a Pauli rotation, denoted as Pϕ = e−iPϕ,
where P represents a Pauli product operator such as Z, X , Y
or Y⊗X , among others and ϕ is an angle [24]. Table I provides
a list of quantum gates along with their corresponding forms
in Pauli rotations. By utilizing these rotational forms, we can
simplify a quantum circuit, which facilitates the application of
techniques like lattice surgery later on. To illustrate how lattice
surgery can be effectively integrated into a quantum circuit,
let us examine a specific example, as depicted in Fig. 12. This
example circuit comprises various single-qubit and multi-qubit
gates. The initial step involves decomposing all the circuit’s
gates into their Pauli rotational forms. This decomposition is
crucial as it facilitates the injection of quantum states into
the appropriate surface codes where needed. The decomposed
version of this circuit is presented in the second figure of
Fig. 12. Since the circuit involves five qubits, there will
correspondingly be five surface codes, each linked to one of
the qubits. The surface codes illustrated here are distance 3
rotated codes, although the specific type of code used can
vary based on the physical error characteristics of the quantum
system.

H S

T

T

S

H

Z

Xq1

q2

q3

q4

q5

Zπ/8

Zπ/8

Xπ/4

Zπ/4

X-π/4

Z-π/4

Zπ/4 Xπ/4 Zπ/4

Xπ

Zπ/4

Zπ/4 Xπ/4 Zπ/4

Xπ/4

Zπ/4 Z-π/4

X-π/4

Xπ/4

Zπ/4 Z-π/4
X-π/4

Zπ
Zπ/4

q1

q2

q3

q4

q5

q1 q2 q3

q4 q5

Fig. 12. Quantum circuit decomposition and surface code mapping. Illustration of the process of decomposing a complex quantum circuit (first circuit)
into its Pauli rotational forms (second circuit) and the subsequent integration with lattice surgery through surface codes (third diagram). Each qubit in the
circuit is associated with a surface code, shown here as distance 3 rotated codes.

q1 q2 q3

q4 q5

q1 q2 q3

q4 q5

q1 q2 q3

q4 q5

q3 q4

q1 q2TRN

q5

C

T

q3 q4

q1 q2TRN

T

C

q5 q3 q4

q1 q2

q5

C

T

q1

q5

q2

q3 q4

TRN

TC

q1 q2

q5q3 q4

TRN

C T

q1

q5

q2

q3 q4

TRN

C T

q1 q2 q3

q4 q5TRN

C T

q1 q2 q3

q4 q5TRN

TC

q1 q2 q3

q4 q5TRN

C T

Fig. 13. Detailed steps of lattice surgery in a quantum circuit. This figure demonstrates the step-by-step integration of lattice surgery techniques in a
decomposed quantum circuit (second circuit of Fig. 12). Starting with state injections for the T and H gates in the first step, the diagram progresses through
the creation of CNOT and CZ gates, and concludes with logical operations on specific qubits. Each step corresponds to the placement of state injections
and logical gate operations, illustrating how lattice surgery manipulates and measures stabilizers to maintain the fidelity of the quantum state throughout the
process.

After decomposing the circuit, we describe lattice surgery
which is a six step process as showcased in Fig. 13. At
each stage of the process, the yellow tiles indicate the active
surfaces involved in the operation of that specific step, while
the other blurred surfaces represent those that are inactive
during that step. The first step starts with a state injection
into the qubit, q1 and q2 for the T gates and another state
injection into qubit, q5 for the first decomposed gate of H
gate. The second step creates the CNOT gate between the
lattices of qubits, q1 and q3. For this we need to initialize a

transitional lattice marked as TRN . To emulate the CNOT
gate, the TRN is initially merged with qubit q3. Subsequently,
they are separated, allowing the TRN to then merge with
qubit q1. In the final arrangement, q3 serves as the control and
q1 as the target, while the TRN becomes inactive. Although
the TRN qubits can be repurposed for other uses, in this
example we will reinitialize the TRN surface to the |+⟩ state
each time it becomes inactive. This ensures that the surface
is ready to function as a TRN surface for subsequent multi-
qubit operations. The third step contains four substeps - the

first applies a logical X gate on the lattice of qubit, q1, then it
proceeds to three state injections - into the lattice of q2 for the
S gate, then into q3 for the first decomposed gate of the H gate
and lastly on q5 for the last decomposed gate of the H gate.
The fourth step mimics the CNOT gate between the lattices
of qubits, q1 and q2, by using a transitional lattice marked
as TRN , followed by a state injection into q3 for the second
decomposed gate of the H gate. To simulate the CNOT gate,
the TRN first merges with qubit q1. After this, the TRN and
q1 are separated, which then allows the TRN to merge with
qubit q2. In the concluding setup, q1 acts as the control qubit
and q2 as the target, while the TRN becomes inactive. The
fifth step establishes a CZ gate between the lattices of q4 and
q5 making use of the transitional lattice TRN . To replicate
the CZ gate, the TRN initially combines with qubit q4. They
are then separated, enabling the TRN to subsequently merge
with qubit q5. In this final configuration TRN is rendered
inactive. This step also involves a state injection on qubit, q3
for the last decomposed gate of the H gate. The final or the
sixth step involves applying a logical Z operator onto qubit,
q4 and a final state injection onto qubit, q5 for the last S gate.
With this we finish all the steps of lattice surgery and the final
stabilizers after all sorts of merging, splitting, expanding and
contracting, that can be measured, mimics the true nature of
the original five qubit circuit.

Lattice surgery, as depicted for smaller quantum circuits,
scales up to encompass systems with hundreds of qubits,
marking a critical progression towards fault-tolerant quantum
computing. In large-scale implementations, lattice surgery
involves the intricate manipulation of a vast network of qubits,
each encoded and interconnected through surface codes or
other error-correcting codes to form a robust quantum lattice.
By extending the principles observed in smaller setups—such
as sequential state injections, logical operations mapped across
multiple qubits, and adaptive merging and splitting of sta-
bilizers—lattice surgery on hundreds of qubits allows for
complex computational tasks that are beyond the reach of
classical computers. The modular nature of lattice surgery aids
in efficiently managing quantum resources, enabling selective
entanglement and disentanglement of qubits as required by
the algorithmic demands. Furthermore, the ability to execute
error correction through merging and splitting surface code
patches without the need to physically relocate qubits or
disrupt the entire quantum state highlights the practicality of
lattice surgery in large-scale applications.

VI. CONCLUSION

This paper attempts to simplify the complex topic of lattice
surgery in the field of fault tolerant quantum computing. It
explores surface codes and demonstrates the practical appli-
cation of lattice surgery in constructing quantum gates and
simulate multi-qubit circuits to address this complex subject.
As quantum computing scales to encompass larger and more
complex systems, lattice surgery provides a critical framework
, thereby enhancing the robustness and operational capabilities
of quantum computers. The continued evolution of this field

will likely see lattice surgery not only adapting to new
quantum architectures but also inspiring analogous method-
ologies across various error-correcting paradigms, which will
be crucial for achieving scalable and fault-tolerant quantum
computing.

ACKNOWLEDGMENT

The work is supported in parts by the National Sci-
ence Foundation (NSF) (CNS-1722557, CCF-1718474, OIA-
2040667, DGE-1723687, and DGE-1821766) and gifts from
Intel.

REFERENCES

[1] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Eluci-
dating reaction mechanisms on quantum computers,” Proceedings of the
national academy of sciences, vol. 114, no. 29, pp. 7555–7560, 2017.

[2] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 2019.

[3] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum
machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185,
2015.

[4] P. Gachnang, J. Ehrenthal, T. Hanne, and R. Dornberger, “Quantum
computing in supply chain management state of the art and research
directions,” Asian Journal of Logistics Management, vol. 1, no. 1, pp.
57–73, 2022.

[5] A. Ajagekar and F. You, “Quantum computing for energy systems
optimization: Challenges and opportunities,” Energy, vol. 179, pp. 76–
89, 2019.

[6] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J.
Schoelkopf, “Introduction to quantum noise, measurement, and ampli-
fication,” Reviews of Modern Physics, vol. 82, no. 2, p. 1155, 2010.

[7] G. Mouloudakis and P. Lambropoulos, “Entanglement instability in the
interaction of two qubits with a common non-markovian environment,”
Quantum Information Processing, vol. 20, pp. 1–15, 2021.

[8] H.-K. Lo, T. Spiller, and S. Popescu, Introduction to quantum compu-
tation and information. World Scientific, 1998.

[9] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for
beginners,” Reports on Progress in Physics, vol. 76, no. 7, p. 076001,
2013.

[10] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
system technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[11] W. K. Wootters and W. H. Zurek, “The no-cloning theorem,” Physics
Today, vol. 62, no. 2, pp. 76–77, 2009.

[12] J. Von Neumann, Mathematical foundations of quantum mechanics: New
edition. Princeton university press, 2018, vol. 53.

[13] N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G. Harper,
T. Thorbeck, A. W. Cross, A. D. Córcoles, and M. Takita, “Matching
and maximum likelihood decoding of a multi-round subsystem quantum
error correction experiment,” arXiv preprint arXiv:2203.07205, 2022.

[14] M. Abobeih, Y. Wang, J. Randall, S. Loenen, C. Bradley, M. Markham,
D. Twitchen, B. Terhal, and T. Taminiau, “Fault-tolerant operation of
a logical qubit in a diamond quantum processor,” Nature, vol. 606, no.
7916, pp. 884–889, 2022.

[15] D. Bacon, “Operator quantum error-correcting subsystems for self-
correcting quantum memories,” Physical Review A, vol. 73, no. 1, p.
012340, 2006.

[16] A. Y. Kitaev, “Quantum computations: algorithms and error correction,”
Russian Mathematical Surveys, vol. 52, no. 6, p. 1191, 1997.

[17] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux,
C. Hellings, S. Lazar, F. Swiadek, J. Herrmann et al., “Realizing repeated
quantum error correction in a distance-three surface code,” Nature, vol.
605, no. 7911, pp. 669–674, 2022.

[18] H. Bombin and M. A. Martin-Delgado, “Topological quantum distilla-
tion,” Physical review letters, vol. 97, no. 18, p. 180501, 2006.

[19] D. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,” New Journal of Physics, vol. 14,
no. 12, p. 123011, 2012.

[20] A. J. Landahl and C. Ryan-Anderson, “Quantum computing by color-
code lattice surgery,” arXiv preprint arXiv:1407.5103, 2014.

[21] A. Cowtan, “Qudit lattice surgery,” arXiv preprint arXiv:2204.13228,
2022.

[22] A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker,
M. Stadler, V. Negnevitsky, M. Ringbauer, P. Schindler, H. J. Briegel
et al., “Entangling logical qubits with lattice surgery,” Nature, vol. 589,
no. 7841, pp. 220–224, 2021.

[23] A. G. Fowler and C. Gidney, “Low overhead quantum computation using
lattice surgery,” arXiv preprint arXiv:1808.06709, 2018.

[24] D. Litinski, “A game of surface codes: Large-scale quantum computing
with lattice surgery,” Quantum, vol. 3, p. 128, 2019.

[25] D. Herr, A. Paler, S. J. Devitt, and F. Nori, “Lattice surgery on the
raussendorf lattice,” Quantum Science and Technology, vol. 3, no. 3, p.
035011, 2018.

[26] C. Chamberland and E. T. Campbell, “Circuit-level protocol and analysis
for twist-based lattice surgery,” Physical Review Research, vol. 4, no. 2,
p. 023090, 2022.

[27] ——, “Universal quantum computing with twist-free and temporally
encoded lattice surgery,” PRX Quantum, vol. 3, no. 1, p. 010331, 2022.

[28] D. Herr, F. Nori, and S. J. Devitt, “Optimization of lattice surgery is
np-hard,” Npj quantum information, vol. 3, no. 1, p. 35, 2017.

[29] N. de Beaudrap and D. Horsman, “The zx calculus is a language for
surface code lattice surgery,” Quantum, vol. 4, p. 218, 2020.

[30] C. Vuillot, L. Lao, B. Criger, C. G. Almudéver, K. Bertels, and B. M.
Terhal, “Code deformation and lattice surgery are gauge fixing,” New
Journal of Physics, vol. 21, no. 3, p. 033028, 2019.

[31] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press Cambridge, 2001, vol. 2.

[32] A. Chatterjee, K. Phalak, and S. Ghosh, “Quantum error correction
for dummies,” in 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE), vol. 1. IEEE, 2023, pp. 70–81.

[33] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. Blakestad,
J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer et al., “Realization
of quantum error correction,” Nature, vol. 432, no. 7017, pp. 602–605,
2004.

[34] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–
4505, 2002.

[35] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[36] V. Kolmogorov, “Blossom v: a new implementation of a minimum cost
perfect matching algorithm,” Mathematical Programming Computation,
vol. 1, pp. 43–67, 2009.

[37] Y. Tomita and K. M. Svore, “Low-distance surface codes under realistic
quantum noise,” Physical Review A, vol. 90, no. 6, p. 062320, 2014.

[38] M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum
codes,” Foundations of Computational Mathematics, vol. 1, pp. 325–332,
2001.

[39] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with
boundary,” arXiv preprint quant-ph/9811052, 1998.

[40] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D.
Ladd, and Y. Yamamoto, “A layered architecture for quantum computing
using quantum dots,” arXiv preprint arXiv:1010.5022, 2010.

[41] D. A. Herrera-Martı́, A. G. Fowler, D. Jennings, and T. Rudolph,
“Photonic implementation for the topological cluster-state quantum
computer,” Physical Review A, vol. 82, no. 3, p. 032332, 2010.

[42] D. P. DiVincenzo, “Fault-tolerant architectures for superconducting
qubits,” Physica Scripta, vol. 2009, no. T137, p. 014020, 2009.

[43] P. Groszkowski, A. G. Fowler, F. Motzoi, and F. K. Wilhelm, “Tunable
coupling between three qubits as a building block for a superconducting
quantum computer,” Physical Review B, vol. 84, no. 14, p. 144516, 2011.

[44] J. Kruse, C. Gierl, M. Schlosser, and G. Birkl, “Reconfigurable site-
selective manipulation of atomic quantum systems in two-dimensional
arrays of dipole traps,” Physical Review A, vol. 81, no. 6, p. 060308,
2010.

[45] N. Y. Yao, L. Jiang, A. V. Gorshkov, P. C. Maurer, G. Giedke, J. I. Cirac,
and M. D. Lukin, “Scalable architecture for a room temperature solid-
state quantum information processor,” Nature communications, vol. 3,
no. 1, p. 800, 2012.

[46] M. Kumph, M. Brownnutt, and R. Blatt, “2 dimensional arrays of rf ion
traps with addressable interactions.”

[47] D. Crick, S. Donnellan, S. Ananthamurthy, R. Thompson, and D. Segal,
“Fast shuttling of ions in a scalable penning trap array,” Review of
scientific instruments, vol. 81, no. 1, 2010.

	Introduction
	Motivation
	Contribution
	Paper Structure

	Theoretical Background
	A Brief Overview of QECCs
	Surface Codes
	Transversal Gates

	Lattice Surgery
	Pivotal Idea
	Lattice Merging
	Lattice Splitting

	Operations with Lattice Surgery
	The CNOT Gate
	The Hadamard Gate
	Arbitrary Qubit Rotation Gates

	Application of QECC on multi-qubit circuits
	Moving Towards Fault-Tolerant Quantum Computing
	Simplification of the Circuit

	Conclusion
	References

