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ABSTRACT

There has been significant recent interest in the mechanics community to design structures that can
either violate reciprocity, or exhibit elastic asymmetry or odd elasticity. While these properties are
highly desirable to enable mechanical metamaterials to exhibit novel wave propagation phenomena,
it remains an open question as to how to design passive structures that exhibit both significant
non-reciprocity and elastic asymmetry. In this paper, we first define several design spaces for chiral
metamaterials leveraging specific design parameters, including the ligament contact angles, the liga-
ment shape, and circle radius. Having defined the design spaces, we then leverage machine learning
approaches, and specifically Bayesian optimization, to determine optimally performing designs within
each design space satisfying maximal non-reciprocity or stiffness asymmetry. Finally, we perform
multi-objective optimization by determining the Pareto optimum and find chiral metamaterials that
simultaneously exhibit high non-reciprocity and stiffness asymmetry. Our analysis of the underlying
mechanisms reveals that chiral metamaterials that can display multiple different contact states under
loading in different directions are able to simultaneously exhibit both high non-reciprocity and
stiffness asymmetry. Overall, this work demonstrates the effectiveness of employing ML to bring
insights to a novel domain with limited prior information, and more generally will pave the way for
metamaterials with unique properties and functionality in directing and guiding mechanical wave
energy.

1 Introduction

There has been significant recent interest in the topics of reciprocity (Nassar et al., 2020b), and elastic asymmetry
within the broader mechanics community. Reciprocity implies that if we push a structure on one side (X), the other side
(Y) will move by a certain amount. If we push the opposite side (Y) with the same force, side X will move the same
amount. This idea has been codified through the well-known Maxwell-Betti reciprocity, which can be written as

FXuY→X = FY uX→Y (1)

There is significant interest in finding structures that can break reciprocity, either statically (Coulais et al., 2017; Shaat,
2020), or dynamically (Wang et al., 2023; Nassar et al., 2017; Trainiti and Ruzzene, 2016; Wang et al., 2018; Goldsberry
et al., 2019; Fang et al., 2021; Lu and Norris, 2021, 2022; Patil et al., 2022; Wallen et al., 2018; Kuznetsova et al., 2017;
Attarzadeh et al., 2020). The major motivation for this has been related to non-reciprocal wave propagation, in which
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structures enable wave propagation in one direction, but support different levels of wave propagation in other directions.
Most approaches to accomplishing this have involved active structures, in which the elastic stiffness and/or density can
be actively modulated in space and time to enable non-reciprocal wave propagation (Nassar et al., 2017; Trainiti and
Ruzzene, 2016; Wang et al., 2018). In contrast, passive approaches to generating non-reciprocal structures have been
less studied, due to challenges in creating passive structures that violate reciprocity (Wang et al., 2023; Goldsberry
et al., 2019; Fang et al., 2021; Lu and Norris, 2022; Attarzadeh et al., 2020). This has generally been accomplished
using passive structures that exhibit a nonlinearity in which the elastic stiffness of a structure is bilinear, or different
depending on the direction of loading (Wang et al., 2023; Lu and Norris, 2022; Goldsberry et al., 2019).

In addition to non-reciprocal elasticity, there has recently emerged significant interest in creating structures that exhibit
asymmetric elasticity (Scheibner et al., 2020; Chen et al., 2021; Tan et al., 2022; Yin and Liu, 2023; Zhang et al., 2020a).
This interest has emerged because the mechanical behavior of linear elastic, isotropic solids is typically described by a
free energy function, which carries the implication that its elasticity tensor is symmetric. However, Scheibner et al.
recently proposed the notion of odd elasticity, for those linear elastic isotropic solids whose mechanical behavior cannot
be described by a free energy function (Scheibner et al., 2020). As a result, odd elastic solids have a non-symmetric
elasticity tensor, where the mechanical response to different loads (in contrast to the difference in mechanical response
to different directions for non-reciprocal elasticity) is not the same. For example, in such a solid extension could induce
shear, while the same shear would induce a different amount of extension. It has been shown that such odd elastic solids
could induce interesting dynamic phenomena, including non-Hermitian wave propagation (Chen et al., 2021). However,
similar to non-reciprocal solids, it has been considerably easier to achieve asymmetric elasticity using active, rather
than passive solids.

Recently, Shaat and Park (2023) proposed a chiral metamaterial which exhibits both non-reciprocal and asymmetric
elasticity. While chiral metamaterials have been widely studied over the past decade (Wu et al., 2019; Fernandez-
Corbaton et al., 2019; Liu and Hu, 2016; Liu et al., 2012; Chen et al., 2013; Nassar et al., 2020a; Shaat and Park, 2023),
the mechanism enabling this behavior is that of contact, in which the ligament connecting two rigid circles is initially in
a state of contact with both circles. Non-reciprocal (i.e. directional) elasticity is realized because while the ligament
remains in contact with both circles under tension, and thus is stiff, it loses contact with the circles under compression,
and is thus elastically soft. Similarly, asymmetric elasticity results because in certain directions of loading, the ligament
remains in contact, while in other directions of loading it does not. This, in conjunction with the chirality that couples
different deformation modes, enables asymmetric elasticity to occur.

An important open question that remains is whether we can create passive solids with tunable mechanical properties
that are both non-reciprocal and asymmetric, and further what the mechanisms are that would allow such a combination
of properties to be realized. Because the design space for the chiral metamaterial is relatively large, encompassing
potential factors such as circle diameter, ligament contact area, ligament geometry, one approach to realizing these
properties is by utilizing a machine learning model to learn the combination of factors enabling these properties to be
realized using starting with the base two circles, one ligament system.

In this paper, we first define several design spaces for chiral metamaterials leveraging specific design parameters,
including the ligament contact angles, the ligament shape, and circle radius. Having defined the design spaces, we
then leverage machine learning approaches, and specifically Bayesian optimization, to determine optimally performing
designs within each design space satisfying maximal non-reciprocity or stiffness asymmetry. Finally, we perform multi-
objective optimization by determining the Pareto optimum and find chiral metamaterials that simultaneously exhibit high
non-reciprocity and stiffness asymmetry. Our analysis of the underlying mechanisms reveals that chiral metamaterials
that can display multiple different contact states under loading in different directions are able to simultaneously exhibit
both high non-reciprocity and stiffness asymmetry. Overall, this work demonstrates the effectiveness of employing
ML to bring insights to a novel domain with limited prior information, and more generally will pave the way for
metamaterials with unique properties and functionality in directing and guiding mechanical wave energy.

2 Chiral Metamaterial

Shaat and Park (2023) introduced a chiral metamaterial that exhibits nonreciprocal and asymmetric elasticity due to
changes in the internal contact mechanism when forces are applied from different directions. The fundamental unit of
this chiral metamaterial consists of two rigid circles connected by an elastic ligament. The surface of the rigid circle is
frictionless. In Shaat and Park (2023), this building block is characterized by a straight ligament that has a fixed contact
angle with the rigid circles, as shown in Fig. 1. Note that the initial contact is stress-free so there is no contact pressure
between the ligament and the circle. In this paper, we will show that the response to force from different directions
is significantly influenced by the contact between the ligament and the rigid circles. To harness the potential of the
ligament-circle contact mechanism and facilitate programmability in the material’s reciprocity and stiffness asymmetry,
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we expand the chiral metamaterial design space by introducing additional variations in ligament shape, contact angle,
and circle radius. Here, we lay out the details of this mechanical system.

600

600

rigid circle

tie

ligament

contact angle

Figure 1: Illustration of the chiral metamaterial in Shaat and Park (2023). The ligament was tied to two rigid circles at
the ends. The ligament shape was fixed and the contact angle was 600 at both sides.

2.1 Stiffness Definition

Fig. 2 illustrates a representative structure undergoing four different types of deformation: extension, compression,
anti-clockwise rotation, and clockwise rotation. Finite Element Analysis (FEA) (Liu et al., 2021; Szabó and Babuška,
2021; Yang et al., 2022; Yuan et al., 2020, 2019) using the commercial software ABAQUS (Smith, 2009) was
conducted to obtain the force-displacement response for each deformation (see A for more details). For extension,
a displacement u+

x to the positive x direction was applied to the right rigid circle. From reaction forces computed
via FEA, we can get two stiffness values k+xx = Fx/u

+
x , where Fx is the reaction force in the x direction when

the displacement is in the x direction, and k+yx = Fy/u
+
x , where Fy is the reaction force in the y direction when

the displacement is in the x direction. For compression, we apply a displacement u−
x in the negative x direction.

Similarly, we compute the stiffness values k−xx = Fx/u
−
x and k−yx = Fy/u

−
x . To distinguish the stiffness values

obtained from the deformation of different directions, we use the symbol “+” when the displacement is in the positive
direction and the symbol “−” when the displacement is in the negative direction. For the anti-clockwise rotation,
the displacement u+

y was applied and two stiffness values k+xy = Fx/u
+
y and k+yy = Fy/u

+
y are calculated. For the

clockwise rotation, the displacement u−
y was applied and the two stiffness values k−xy = Fx/u

−
y and k−yy = Fy/u

−
y are

calculated. Considering all of these displacement directions, we summarize the eight stiffness values of the chiral unit
using an array K = [k−xx, k

−
xy, k

−
yx, k

−
yy, k

+
xx, k

+
xy, k

+
yx, k

+
yy]. We describe the material using the stiffness matrix:

K =

[
kxx kxy
kyx kyy

]
(2)

where the values of each element kij can be either k−ij or k+ij . For typical materials, the relationship k−ij = k+ij and
kij = kji holds due to the Maxwell–Betti theorem (Viesca and Rice, 2011; Coulais et al., 2017). When the stiffness
values are different in opposite directions of the same axis, i.e. k−ij ̸= k+ij , the reciprocity of linearity breaks and the
material behaves like a bilinear spring (Lu and Norris, 2022). When the stiffness matrix is asymmetric, i.e. kij ̸= kji,
the reciprocity of the stiffness matrix is broken, similar to the odd elasticity described recently (Scheibner et al., 2020).
Both scenarios lead to nonreciprocal effects in wave propagation. To distinguish between these cases, we refer to
k−ij ̸= k+ij as “non-reciprocity” and kij ̸= kji as “asymmetry”. In this work, we aim to design a chiral metamaterial to
break symmetry and reciprocity to the largest extent, e.g., k−ij >> k+ij or kij >> kji.

2.2 Contact Mechanism

In this Section, we investigate how loads applied from various directions can induce distinct contact modes between
the rigid circle and the elastic ligament. An analogy can be drawn between these diverse contact modes and varying
the boundary conditions of an elastic beam where adding and removing support conditions can dramatically change
the mechanical state of the structure, resulting in asymmetrical properties under different loading modes. To further
elucidate this concept, Fig. 3 presents an example of an identical structure subjected to forces from two opposing
directions – compressive and extensional loading. In Fig. 3, ligament deformation was obtained through finite element
simulation and magnified by a factor of 10 to aid in visualization.
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Clockwise Rotation

Anti-clockwise Rotation

Compression

Extension

Initial Configuration

rigid circle
tieligament

Figure 2: Illustration of the chiral metamaterial undergoing displacement from four directions. The reaction force of
the right rigid circles in the x and y directions are denoted as Fx and Fy. The stiffness values are calculated using the
formula kij = Fi/uj when uj is nonzero. A superscript “+” is added to the displacement and stiffness symbol when
the displacement is positive, and “−” when the displacement is negative.

Fig. 3(a-i) shows the deformed structure under compressive load. The left circle remains fixed while the right circle
is subject to a displacement load u−

x towards the left. Following the deformation, the left circle and the ligament are
detached while the right circle and the ligament have a small area of contact. As the circle is frictionless, the ligament
in the contact area only experiences pressure from the perpendicular direction. Consequently, the mechanics of the
structure can be equivalent to a beam fixed at both ends with a frictionless roller in the middle, as illustrated in Fig.
3(b-i). In this context, the bending moment around the roller support does not change since roller supports do not
contribute to bending moments. Specifically, if a roller support is positioned at the midpoint of a beam, the bending
moment will attain its maximum value and undergo an abrupt transition. To validate this, Fig. 3(c-i) shows the evolution
of the bending moment and axial force along the beam from the left end to the right end. Notably, the bending moment
around the roller support (point A) reaches a maximum, aligning well with the proposed model in Fig. 3(b-i) that
describes the mechanism of the chiral structure.

Fig. 3(a-ii) shows the deformed structure under an extension load. The left circle is fixed and the right circle is subject
to a displacement load u+

x towards the right. Following the deformation, the right circle and the ligament are detached
while the left circle and the ligament establish two contact areas. Similarly, the Fig. 3(b-ii) presents an equivalent model
of Fig. 3(a-ii). The two contact areas, one from point A to point B, and another around point C, are also equivalent to
roller supports. Fig. 3(c-ii) shows the evolution of the bending moment and axial force along the beam for the extension
load. The bending moment remains constant in the area of rollers.

While the ligament is linear elastic, variations in boundary conditions occur under loads from different directions,
leading to varying stiffnesses in different directions. The goal of this paper is to maximize these discrepancies to achieve
extreme mechanical behaviors. In the following Section, we will elaborate on the details of these objectives.
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Figure 3: Mechanical model of the chiral structure under compression and extension. (a) Chiral structure under (i)
compression load and (ii) extension load. The contact area of the deformed structure is highlighted with red color. (b)
Equivalent mechanical model illustrating the contact mechanism with roller supporters substituting the contact area. (c)
Distribution of Bending Moment and Axial Force along the beam.

2.3 Strain Energy Components

In the previous Section 2.2, we provided a qualitative analysis of the contact modes of the chiral structures. Specifically,
the non-reciprocity and asymmetry of chiral metamaterials are produced by the variation in contact modes leading to
different boundary conditions of the equivalent beam models. In this Section, we conduct a quantitative examination of
the stiffness disparities. Specifically, we delve into the mechanics of the deformation under different loading directions
to understand how stiffness is either enhanced or weakened depending on the direction of applied loads.

Fig. 4(a) shows a representative design where the value of k−xx and k+xx are different. Regardless of the directions, when
the only nonzero displacement is ux, the stiffness kxx of the structure is determined by evaluating the total change in
strain energy by the equation below

Estrain =
1

2
kxxu

2
x (3)

Following the finite element analysis of this structure, the strain energy is 0.007764 after compression and 0.1064 after
extension, with the ux set constant as −0.08 for compression and +0.08 for extension. Through Eq. 3, we derive the
stiffness k−xx = 2.42 for compression and k+xx = 33.25 for extension. It’s evident that the strain energy during extension
significantly surpasses that of compression, resulting in markedly higher stiffness during extension. Considering that
bending and stretching energies are the primary components of strain energy for a linear elastic beam, we investigate
the stiffness disparities by analyzing the stretching and bending energy distribution along the elastic ligament in Fig.
4(b)(c). During compression, the stretching energy is negligible compared to the bending energy, whereas during
extension, the stretching energy dominates over the bending energy. This disparity indicates that ligament deformation
is predominantly bending during compression, whereas stretching dominates during extension. Given the inherent
difficulty in stretching a beam compared to bending it, the stretching energy is generally much larger than the bending
energy, leading to a substantially greater resistance to external forces during extension. As a result, the stiffness value
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in extension is much larger than that of compression for this structure. By manipulating the geometry of the chiral
structures, we can control the stretching and bending behavior under different loads, allowing us to discover optimal
chiral structure designs capable of exhibiting extreme non-reciprocity and asymmetry.

Bending Energy Stretching Energy

(a)

(c)

(b)
Compression

Extension

and

E
n

er
g

y
E

n
er

g
y

x coordinate along the ligament

x coordinate along the ligament

Figure 4: Bending and Stretching Energy distribution along the elastic ligament. (a) The schematic of the chiral
structure. The design has a smaller stiffness k−xx under compression loads, and a larger stiffness k+xx under extension
loads. (b) The bending and stretching distribution along the ligament under compression load. (c) The bending and
stretching distribution along the ligament under extension load. The three figures (a)(b)(c) share the same x coordinates.

2.4 Optimization Objectives

As briefly introduced in Section 2.1, this work aims to enhance the nonreciprocity and asymmetry of the chiral
metamaterial. This section provides additional details on the formalization of these objectives. Furthermore, the scope
of the investigation will be extended to multi-objective optimization, allowing for the identification of optimal designs
that simultaneously exhibit both nonreciprocity and elastic asymmetry.

2.4.1 Non-Reciprocity

Following the definition in Section 2.1, enhancing the non-reciprocity of metamaterials equals maximizing the variance
of stiffness values along opposite directions, i.e. k−ij ̸= k+ij . To achieve this, we aim to maximize the ratio between the
absolute values of the stiffness. The optimization task includes eight objectives to be maximized, outlined below:

① f1 = |k
−
xx

k+
xx
|, ② f2 = |k

+
xx

k−
xx
|, ③ f3 = |k

−
xy

k+
xy
|, ④ f4 = |k

+
xy

k−
xy
|, ⑤ f5 = |k

−
yx

k+
yx
|, ⑥ f6 = |k

+
yx

k−
yx
|, ⑦ f7 = |k

−
yy

k+
yy
|, ⑧ f8 = |k

+
yy

k−
yy
|.
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Note that when the value of these objectives is equal to 1, i.e. the stiffness in opposite directions is the same, the
corresponding structure exhibits reciprocity. Additionally, for each pair of stiffness k−ij and k+ij that we aim to maximize
the difference between, we can either design a structure that k−ij is larger k+ij , or k+ij is larger k−ij . For instance, to
maximize the disparity between k−xx and k+xx, objective f1 aims to identify an optimal design where k−xx significantly
exceeds k+xx, whereas objective f2 seeks an optimal design where k+xx significantly exceeds k−xx. Consequently, when
searching for optimal designs that maximize non-reciprocity objective f1 to f8, only designs with objective values
greater than 1 are considered. In summary, our goal can be formalized as below:

max fi, where fi > 1 and i ∈ {1, 2, . . . , 8} (4)

2.4.2 Elastic Asymmetry

Following the definition in Section 2.1, the asymmetry of chiral metamaterial is characterized by an asymmetric stiffness
matrix, i.e. kij ̸= kji. Similarly to the approach outlined in Section 2.4.1, we aim to maximize the ratio between the
stiffness values. The eight objectives for asymmetry optimization are summarized below:

① g1 = |k
−
xy

k−
yx
|, ② g2 = |k

−
xy

k+
yx
|, ③ g3 = |k

+
xy

k−
yx
|, ④ g4 = |k

+
xy

k+
yx
|, ⑤ g5 = |k

−
yx

k−
xy
|, ⑦ g6 = |k

+
yx

k−
xy
|, ⑥ g7 = |k

−
yx

k+
xy
|, ⑧ g8 = |k

+
yx

k+
xy
|.

A more general form of these objectives is as below:

max gi, where gi > 1 and i ∈ {1, 2, . . . , 8} (5)

2.4.3 Multi-Objective

In Sections 2.4.1 and 2.4.2, a single objective was employed to assess the performance of the chiral structures.
However, optimizing a single objective guarantees design optimality in only one dimension. For multiple competing
objectives, maximizing a single dimension may compromise the performance concerning another objective. To discover
a chiral metamaterial that exhibits multiple novel functionalities, we strive to optimize the material to exhibit both
non-reciprocity and elastic asymmetry.

The problem of searching for optimal designs that excel in multi-objectives is broadly known as determining the
Pareto front Schulz et al. (2018a); Riquelme et al. (2015); Li et al. (2024). The design solutions to the multi-objective
optimization are referred to as Pareto optimal. Specifically, a Pareto optimal design is one for which any adjustment
cannot improve all the objectives simultaneously. In other words, for any Pareto optimal design, there is no alternative
design that surpasses it in all performance functions. The set containing all the Pareto optimal designs is the Pareto set.
The corresponding performance of the Pareto set in a performance space is the Pareto front. To facilitate understanding
these concepts in the context of our problem, Fig. 5 illustrates a schematic performance map of design solutions.
Each data point on the map is randomly generated and depicts performances fi and gi of a design solution, where fi,
representing an objective of non-reciprocity in Section 2.4.1, and asymmetry gi, representing an objective of asymmetry
in Section 2.4.2. In our problem setting, the objective values of the optimal designs must be larger than 1. Consequently,
the designs not satisfying this constraint will not be considered and are denoted as ’Archive’. The design solutions
colored red are the Pareto optimal, as no other feasible solutions can achieve larger values for both fi and gi. All other
feasible solutions are colored grey. Our goal is to identify the Pareto optimal designs and the corresponding Pareto front
to enhance both non-reciprocity and asymmetry. We expressed this goal mathematically as below:

max{fi, gj}, where fi, gj > 1, i, j ∈ {1, 2, . . . , 8} (6)

2.5 Design Spaces

As illustrated in Fig. 6(a), the programmable chiral structure consists of two rigid circles with the same radius R. The
distance between the two circles is L, which has a constant value 20. An elastic ligament initiates its connection with
the left circle at an angle θ0 and forms a contact angle θ1. Similarly, the ligament establishes a connection with the right
circle from an angle θ00 and forms a contact angle θ11. Positive values for the contact angle indicate an anti-clockwise
orientation from the connecting point and vice versa for negative values. For the part of the ligament that is not in
contact with the circle, there is a half circle with radius Rs at the transition point for both sides. The ending point for
the small half circle on the ligament is denoted as points M and N. The middle part from M to N is continuous and each
point is sampled from the following function:
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Figure 5: Illustration of Pareto front for the multi-objective optimization of chiral metamaterial.
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Design Space 1 - Example Design Space 2 - Example

Design Space 3 - Example Design Space 4 - Example

(b)

Figure 6: Illustration of (a) the design parameters and (b) the design spaces of the chiral metamaterial.

h(x) =

n−1∑
i=0

aihi(x) = a0h0(x) + a1h1(x) + · · ·+ an−1hn−1(x) (7)

where x is the Cartesian coordinates with the midpoint of the two circles as the origin of the coordinates, and
h0(x), h1(x), . . . , hn−1(x) are continuous and pre-selected functions. To ensure the smoothness of the ligament,
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we require the the zeroth, first, and second derivatives of the h(x) to be continuous at the two ends M and N. The
coordinates of M are represented as (xM , yM ) and N as (xN , yN ). Consequently, we have six known constraints on
h(x):



h(xM ) = yM
h

′
(xM ) = y

′

M

h
′′
(xM ) = y

′′

M

h(xN ) = yN
h

′
(xN ) = y

′

N

h
′′
(xN ) = y

′′

N

(8)

where yM , y
′

M , and y
′′

M denote the zeroth, first, and second derivatives at point M, and yN , y
′

N , and y
′′

N denote the
zeroth, first, and second derivatives at point N. Given that the midpoint of the two circles is the origin, the center of the
left circle is at (−L/2, 0), and the center of the right circle is at (L/2, 0). Thus, we have:



xM = −L/2 + (R+ 2Rs) · cos(θ0)
yM = (R+ 2Rs) · sin(θ0)
y

′

M = −1/ tan(θ0)
y

′′

M = −R2/y3M
xN = L/2 + (R+ 2Rs) · cos(θ00)
yN = (R+ 2Rs) · sin(θ00)
y

′

N = −1/ tan(θ00)
y

′′

N = −R2/y3N

(9)

Consider that the number of coefficients to be determined for h(x) is n and we only have 6 boundary conditions in Eq.
8. By solving Eq. 7 with Eq. 8, h(x) has a unique solution when n is equal to 6 and multiple solutions when n exceeds
6. In this work, we set n to 7 to add one more degree of freedom to the shape of the ligament by fixing a randomly
selected point (x∗, y∗) on the ligament, denoted as a red star point in Fig. 6(a). Then we have one more constraint:

h(x∗) = y∗ (10)

The coefficients a0, a1, . . . , a6 of h(x) can be identified by Eq. 8 and Eq. 10.

In summary, we have 8 design parameters X = [R, θ0, θ1, θ00, θ11, Rs, x
∗, y∗]. Notably, Rs can take the value of zero,

and the subfunction components h0(x), h1(x), . . . , h6(x) of the ligament can be either polynomial or trigonometric.
To search for optimal designs for the objectives defined in Section 2.4, we explore four different design spaces, as
illustrated in Fig. 6(b). The range of the design parameters [R, θ0, θ1, θ00, θ11 ] of each design spaces are presented
in Table 1. The details of the value of Rs and the sampling function h(x) for the ligament in each design space are
summarized below:

1. Design Space 1

• Rs = 0 for both left and right side
• h(x) =

∑n−1
i=0 aix

i

2. Design Space 2

• 0.1 ≤ Rs ≤ R/10 for both left and right side

• h(x) =
∑n−1

i=0 aix
i

3. Design Space 3

• Rs = 0 for both left and right side
• h(x) = a0 + a1x+ a2sin(x) + a3sin(x) + a4x

4 + a5x
5 + a6x

6.

4. Design Space 4

• Rs = 0 for right side and 0.1 ≤ Rs ≤ R/10 for left side

• h(x) =
∑n−1

i=0 aix
i

9
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Table 1: Design parameter ranges within each design space.

R θ0 θ1 θ00 θ11

Design Space 1 [3,7] [-90, -20] [-90, -20] [90, 160] [-90, -20]

Design Space 2 [3,7] [-90, 0] [20, 90] [90,180] [20,90]

Design Space 3 [3,7] [-90, -20] [-90, -20] [90, 160] [-90, -20]

Design Space 4 [3,7] [-90, 0] [20, 90] [90,180] [-90,-20]

As discussed in Section 2.2, diverse contact mechanisms can induce varying non-reciprocity and asymmetry properties.
The choice of the four design spaces shown in Fig. 6(b) aims to encompass a broad range of contact mechanisms. In
design space 1, the ligament and the right circle are prone to establish contact when it is subjected to extension. In
design space 2, the ligament and the right circle tend to make contact under compression. Design space 3 introduces
alterations to the subfunctions of the ligament shape compared to design space 1, allowing us to investigate the impact
of the ligament shape on the properties of the chiral metamaterial. In design space 4, the left circle and the ligament
tend to contact under compression, while the right circle and the ligament tend to contact under extension loads.

3 Machine Learning Methods

Machine learning (ML) methods have been extensively applied to complex engineering challenges, demonstrating their
efficiency in uncovering intricate relationships within data (Lee et al., 2023; Ha et al., 2023; Buehler, 2023b; Yuan et al.,
2022; Arzani et al., 2023; Nguyen and Lejeune, 2024). Through sufficient training on diverse datasets, an effectively
trained ML model exhibits rapid and accurate predictions on unseen data, drastically reducing the time required to
characterize material properties by orders of magnitude compared to conventional experimental or simulation methods.
This capacity enables it to efficiently explore a large pool of candidates in the search for optimal designs. In the context
of chiral metamaterial design, the design space is practically infinite because the design parameters governing the initial
contact angle and the shape of the ligament shape are continuous. Consequently, we employed ML methods to guide
our exploration of nonreciprocal and asymmetric stiffness chiral metamaterials. The following parts of this section
elaborate on our approach to data collection, the details of the ML model, and the data-driven optimization methods
utilized to discover optimal designs.

3.1 Data Collection

3.1.1 Data Representation

Figure 7: Illustration of the feature representation of a chiral metamaterial

In Section 2.5, we outlined each design space using eight design parameters, denoted as X =
[R, θ0, θ1, θ00, θ11, Rs, x

∗, y∗]. However, due to the diversity in the subfunctions of h(x) that define the ligament
shape, these parameters cannot fully characterize the geometry of the chiral structure across all design spaces. Addition-
ally, given the efficacy of machine learning methods in pattern recognition (Bishop, 2006), we aim to represent the
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chiral structure focusing on its shape and geometric features. As Fig. 7 shows, we note the points where the ligament
and the rigid circles initiate connection as (x0, y0) and (x00, y00), and coordinates of the two ends of the ligament as
(x1, y1) and (x11, y11). Furthermore, we uniformly sample 100 points along the x direction from the elastic ligament.
Therefore, we employed the coordinates of 104 points to uniquely describe the geometry of each chiral structure. The
208 features of a single chiral structure are summarized as feature vector X as follows:

X = [x0, x1, . . . , x99, y0, y1, . . . , x99, , x1, y1, x0, y0, x00, y00, x11, y11] (11)

The second step is to label each chiral structure with its mechanical properties by running a finite element simulation.
As the goal of this study is to maximize the nonreciprocity and asymmetry defined in Section 2.4, the label of each
material will be the objectives f1:8 and g1:8 defined in Section 2.4.1 and Section 2.4.2. To get this, it is necessary
to first calculate the stiffness values for each chiral structure. Fig. 8 provides an example of how we obtained the
stiffness values of each structure. Each row shows the contact region of the structure under the loads from four different
directions and the corresponding force-displacement response. The stiffness, i.e. the slope of the response curve, is
obtained by fitting the finite element simulation results using least squares.

(a)

(b)

(c)

(d)

Compression

Extension

Anti-clockwise 

Rotation

Clockwise 

Rotation

Figure 8: Illustration of a representative chiral structure subjected to loads from four different directions and the
corresponding force-displacement response obtained from finite element (FEM) simulation. The contact area is
highlighted in pink. Stiffness is determined as the coefficient of linear fitting applied to the FEM data using the least
squares method.

In Fig. 8(a)(b), due to the different contact regimes in compression and extension, we obtain k+xx = 14.95 and
k+yx = 12.53 for extension, and k−xx = 10.15 and k−yx = 4.36 for compression. In Fig. 8(c) where the structure is
subject to an anti-clockwise rotation load, we obtain k+yy = 13.03 and k+xy = 12.59. Notably, the contact regime under
the anti-clockwise rotation load in Fig. 8(c) closely resembles that of extension in Fig. 8(a), which results in the values
of k+xy = 12.59 and k+yx = 12.53 being nearly equal. In Fig. 8(d) where the structure is subject to a clockwise rotation
load, we obtain k−yy = 2.53 and k−xy = 4.34. Similarly, the contact mode of clockwise rotation in Fig. 8(d) closely
resembles the compression mode in Fig. 8(b), and k−xy = 4.34 is nearly equal to k−yx = 4.36. These observations align
with the discussion of the contact mechanism in Section 2.2, indicating that the contact modes play a pivotal role in
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governing the non-reciprocity and asymmetry properties of the chiral structures. Subsequently, we can identify the
non-reciprocity and asymmetry objectives f1:8 and g1:8 defined in Section 2.4.1 and Section 2.4.2 for this design in Fig.
8. The value are listed below:
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+
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−
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k+
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+
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+
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3.1.2 Data Augmentation

Data augmentation is a technique used to increase the diversity and the size of the training dataset. New training samples
are generated by applying transformations or modifications to existing data, such as flipping, rotating, and scaling
(Shorten and Khoshgoftaar, 2019; Rebuffi et al., 2021). Given the computational expense of acquiring mechanical
properties via finite element simulation, data augmentation becomes essential for chiral metamaterial design. Across all
design spaces, the stiffness properties of a chiral material remain invariant under a 180-degree rotation, as Fig. 9 shows.
Leveraging this property, we apply the rotation transformation to each of the chiral metamaterial data points and double
the size of the dataset.

Original Geometry Augmented Geometry

1800 Rotation

Figure 9: Illustration of the rotation transformation for data augmentation. The augmented geometry is obtained by
rotating the original geometry by 180 degrees. The original and the augmented structure have the same properties in
terms of their stiffness values in all directions.

3.2 Bayesian Optimization

During the search for optimal chiral structures, obtaining properties such as non-reciprocity and asymmetry by FEM
is a challenging and computationally expensive task. Moreover, the physics of the relationship between the design
and the properties of the chiral structure is nonlinear, which makes it challenging to obtain analytic solutions for
the optimization objective. To address these challenges, we propose leveraging a data-driven approach - Bayesian
Optimization (Polyzos et al., 2023). This method is a model-based optimization technique that excels in efficiently
determining optimal designs for objective functions that are black-box and costly to evaluate. In the framework of
material design, the goal of Bayesian Optimization is to address the optimization problem presented below:

x∗ = argmax
x∈X

f(x) (12)

where X compromise all feasible designs, and f(x) represents the objective function to be maximized. For each design
point x that belongs to X , the goal is to identify the optimal point x∗ at which the objective f(x) attains its maximum
value. To achieve this, we must select a probabilistic surrogate model f(x) and an acquisition function α(x). The
surrogate model f(x) evaluates the objective value of each design point, and the acquisition function α(x) determines
which point to query next. The query process involves obtaining the ground truth property for the selected point through
experiments or simulation tools.
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To conduct Bayesian Optimization, we start with an observed data collection Dt = {(xi, yi)}ti=1, where yi denotes the
measured objective value corresponding to point xi. The first step is to fit the surrogate model with the dataset Dt. The
second step is selecting the next point xt+1 that maximizes the acquisition function, querying the value of the yt+1, and
adding (xt+1, yt+1) to the observed dataset. The final solution to Eq. 12 is obtained by repeating these two steps until
reaching a maximum iteration limit N . Below is a pseudo-code outlining the process of Optimization Routine using
Bayesian Optimization:

Algorithm 1 Optimization Routine
Require: initial observations D0, maximum iterations N , surrogate model f(x), acquisition function α(x)

1: for t = 0, 1, 2, . . . , N − 1 do
2: fit the model f(x) with Dt

3: calculate the acquisition function α(x) with f(x)
4: select the next point xt+1 ← argmaxx α(x)
5: perform experiment or simulation to evaluate the objective values yt+1 at point xt+1

6: Dt+1 ← {Dt, (xt+1, yt+1)}
7: end for
8: return best y and the corresponding x in DN

When employing Bayesian Optimization for chiral metamaterial design, we begin by conducting simulations for 5
randomly selected designs in each of the four design spaces. Thus we establish an initial dataset with a total of 20
points. We then generate a pool of 400, 000 design candidates, with 100, 000 in each design space, without conducting
FEM simulation. Subsequently, we perform the Bayesian Optimization for 10 iterations. In each iteration, the top 10
points in the design pool with the highest values determined by the acquisition function are selected for running FEM
simulations using Abaqus. This approach of acquiring ten points rather than one in each iteration is adopted due to our
simulation setup, where multiple simulation jobs are submitted as a batch in the computing center. Therefore, querying
10 points per iteration takes the same amount of time as querying a single point. Moreover, expanding the dataset faster
enables us to get a more accurate surrogate model, expediting the discovery of optimal designs.

3.2.1 Surrogate Model

The Gaussian Process (GP) model (Schulz et al., 2018b; Deringer et al., 2021; Wang, 2023) is commonly favored as
a surrogate model choice in Bayesian Optimization due to its capability to estimate prediction uncertainty directly.
However, its efficacy diminishes notably in high-dimensional problems (Shahriari et al., 2015; Binois and Wycoff, 2022).
Additionally, the intuition behind GP begins with kernel-encoded prior assumptions about the dataset distribution,
then obtains a posterior distribution function given the observed data (Marrel and Iooss, 2024; Schulz et al., 2018b).
However, in the case of intricate chiral material systems, where prior dataset knowledge is absent and the feature
dimension is high, extra challenges arise when selecting appropriate kernels for GP regression models. In contrast, deep
learning models like Multilayer Perceptron (MLP) are efficient at capturing black-box, unknown nonlinear relationships
within high-dimensional data. Nonetheless, MLP models do not inherently provide uncertainty estimates for predictions.
To address this, we employ ensemble learning methods (Ganaie et al., 2022; Mienye and Sun, 2022; Mohammadzadeh
et al., 2023) to train a single MLP model multiple times with different seeds on observed data and utilize the variance
across model predictions as an indication of uncertainty.

The MLP model is designed with four layers comprising 1024, 1024, 64, and 1 neurons, respectively. Following each
hidden layer, Rectified Linear Unit (ReLU) activation functions were applied to introduce non-linearity into the model.
The training was performed using a batch size of 16 over 250 epochs, with a learning rate set to 0.001. We train the MLP
model k = 15 times, each utilizing a different seed for training-validation dataset splitting and weight initialization.
The prediction of objective values and the uncertain estimation are calculated below:

{
µ(x) = 1

k

∑k
1 ŷi

σ(x) =
√

1
k

∑k
1(ŷi − µ(x))2

(13)

where µ(x) is the averaged prediction across all MLP models, σ(x) is the standard deviation of the predictions, and ŷi
is the predicted value from the ith model.
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3.2.2 Acquisition Function

In the framework of Bayesian Optimization, various acquisition functions are available for selection, such as the
probability of improvement (PI) (Kushner, 1964; Ruan et al., 2020), entropy search (ES) (Hennig and Schuler, 2012;
Wang and Jegelka, 2017), expected improvement (EI) (Zhan and Xing, 2020; Qin et al., 2017), and upper confidence
bound (UCB) (Carpentier et al., 2011; Simchi-Levi and Wang, 2023). In this paper, we focus on introducing two
specific methods we employed in our study: EI and UCB.

Expected Improvement

The Expected Improvement (EI) method is a versatile choice for many optimization scenarios. It is efficiently designed
to trade-off between the global search (exploration) and local minimization (exploitation) (Brochu et al., 2010). The
acquisition function of EI is:

αEI(x) = E[max(0, f(x)− fmax)] (14)

where fmax is the best performance observed so far. The acquisition function αEI(x) calculates the expectation of
the improvement for each unseen point. In essence, the equation evaluates each point by how much performance it
can enhance compared to the current best point. If the potential improvement surpasses the best point, the expected
improvement is the amount of improvement. If the potential improvement cannot surpass the best point, the expected
improvement is zero. Assuming the target y follows a Gaussian distribution N (µ(x), σ(x)), the formulation of EI can
be written explicitly as (Jones et al., 1998; Brochu et al., 2010)

αEI(x) = (µ(x)− fmax − ξ)Φ(λ) + σ(x)ϕ(λ) (15)

where λ = (µ(x)− fmax − ξ)/σ(x). Φ(λ) and ϕ(λ) are the cumulative distribution function (CDF) and probability
density function (PDF) of the standard normal distribution respectively. The first term in Eq. 15 emphasizes exploitation
by favoring points with higher expected objective values, while the second term promotes exploration by favoring
points with greater uncertainty. Thus, Eq. 15 strikes a balance between exploitation and exploration controlled by the
hyperparameter ξ, with higher ξ leading to more exploration. In our study, we set ξ to 0.002 to achieve a balanced
exploration-exploitation strategy.

Upper Confidence Bound

The Upper Confidence Bound (UCB) calculated the upper bound for the prediction by adding the uncertainty to the
estimation, offering a straightforward approach to balancing exploration and exploitation. The acquisition function for
UCB is defined as (Shahriari et al., 2015; Cox and John, 1992):

αUCB(x) = µ(x) + βσ(x) (16)

Similar to EI, the first component of the equation favors exploitation, and the second component for exploration. The
hyperparameter β serves to balance the weights between exploitation and exploration, with higher values leading to
more exploration.

In our problem, we apply EI to single objective optimization considering that the algorithm has already proven
efficient in material discovery in many other studies (Gongora et al., 2020; Zhang et al., 2020b; Kotthoff et al., 2021).
Although the EI acquisition function form of Eq. 15 is typically associated with the Gaussian Process Model, we
adopted the acquisition function Eq. 15 to our problem with the assumption that the observed data are sampled from a
Gaussian Distribution with mean and variance derived from the predictions of ensembled MLPs, i.e. y ∼ N (µ, σ),
as formalized in Eq. 13. This assumption is grounded in the evidence that MLPs (or Neural Networks) are well-
calibrated models (Niculescu-Mizil and Caruana, 2005), thus allowing us to treat the mean and variance of prediction as
the posterior distribution of objectives. While the detailed exploration of uncertainty estimation of deep ensembled
regression models is not the primary emphasis of this paper, readers interested in a more comprehensive and rigorous
discussion on this topic can refer to the literature (Lakshminarayanan et al., 2017; Nix and Weigend, 1994; Abdar et al.,
2021).

However, in the scenario of multi-objective optimization, fewer valid candidates meet the criterion due to the increased
number of objectives to optimize and all objectives have to be larger than 1 (refer to Section 2.4.3). The EI method is
unable to filter out invalid designs in this context. Hence, we employ the Upper Confidence Bound (UCB) acquisition
method to guide the multi-objective optimization. The acquisition value calculated by UCB acts as an upper bound for
the objective value, enabling us to disregard candidates whose objective values fall below 1. The hyperparameter β is
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set to 3 to increase the upper confidence bound for potential optimal designs, thereby allowing more valid candidates to
be considered.

3.2.3 Pareto Front

In Section 2.4.3, we outlined our approach to addressing the multi-objective optimization challenge in chiral metamate-
rial design by searching for the Pareto front across all designs. In this Section, we elaborate on the methodology of
discovering the Pareto front and its utilization within Bayesian Optimization. During each iteration of multi-objective
Bayesian optimization, we determine the acquisition value of each unseen data point using the Upper Confidence Bound
(UCB) method. Provided that we aim to optimize a total of m objectives simultaneously, the acquisition value of points
i, calculated by Eq. 16, is denoted as αi = [αi

1, α
i
2, . . . , α

i
m], where αi

j represents the acquisition value for the unseen
data point i in terms of maximizing objective j. Therefore, if we have n unseen points in the pool of design candidates,
we can obtain a matrix An×m with row i representing αi, where i ∈ {1, 2, · · · , n}. The next points to be acquired will
be the design points whose performances form the Pareto front of An×m. The Pareto front is identified through an
efficient algorithm available in the Python package artemis-ml (QUVA-Lab, 2017). The algorithm iteratively eliminates
the points that are dominated by at least one other point until only non-dominated points remain, thus yielding the set of
Pareto front. The algorithm can be summarized as follows:

Algorithm 2 Find Pareto Front
Require: Acquisition value An×m for m objectives of unseen points 1, 2, · · · n

1: choose the first point i1 = 1
2: while i1 <= n do
3: for i2 = 1, 2, . . . , n do
4: remove point i2 if ci2j < ci1j for all j ∈ {1, 2, · · · ,m} ▷ i2 is removed because it is dominated by i1
5: end for
6: update n as the size of the rest points
7: re-index the rest points as 1, 2, · · · , n without changing the order
8: i1 ← the index of the next point on the order
9: end while

10: return the rest points (i.e. nondominated points)

4 Results and Discussion

In this Section, we present the optimal designs discovered using the Bayesian Optimization detailed in Section 3.2. In
Section 4.1, we present the results and analysis for the optimal designs that exhibit extreme non-reciprocity. In Section
4.2, we present the results and analysis for the optimal designs that exhibit extreme elastic asymmetry. Finally, in Section
4.3, we present optimal designs that were discovered by maximizing both elastic asymmetry and non-reciprocity.

4.1 Non-Reciprocity Optimization

For the eight non-reciprocity objectives defined in Section 2.4.1, we search for the optimal design that maximizes each
objective by conducting the Bayesian Optimization methods detailed in Section 3.2. Each objective is maximized
individually through separate Bayesian Optimization runs. The designs achieving the highest objective value after
optimization are shown in Fig. 10. We present a summary of the optimal performance for each objective below

f1 = |k
−
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k+
xx
| = |39.66/3.11| = 12.75, f2 = |k

+
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| = |33.24/2.43| = 13.68,

f3 = |k
−
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k+
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+
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| = |32.09/1.34| = 23.95,

f5 = |k
−
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k+
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| = |5.16/0.01| = 516.00, f6 = |k

+
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k−
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| = |26.00/0.97| = 26.80,

f7 = |k
−
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k+
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| = |22.22/1.19| = 18.67, f8 = |k

+
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k−
yy
| = |30.93/0.71| = 43.56,

It is clear that the optimal designs for objectives f1, f3, f5, f7 in Fig. 10(a)(c)(e)(g) share some similarities, and are all
discovered from design space 2. Referring to the stiffness definition illustrated in Fig. 2, these objectives necessitate
either that the stiffness values for compression (−x) are greater than those for extension (+x), or the stiffness values
for clockwise rotation (−y) are greater than those for anti-clockwise rotation (+y). By looking into the deformation
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Figure 10: Optimal designs for maximizing eight non-reciprocity objectives after 10 iterations of Bayesian Optimization.
Each figure shows the optimal design for the (a) objective f1, (b) objective f2, (c) objective f3, (d) objective f4,
(e) objective f5, (f) objective f6, (g) objective f7 and (h) objective f8. The title above each structure indicates the
corresponding stiffness values.

process of these structures under various loads, we observe that during compression (−x) and clockwise rotation (−y),
contact is established between the ligament and the rigid circle. Conversely, during extension and anti-clockwise
rotation, the ligament and the rigid circle detach, resulting in no contact forces during deformation. This mechanism
can be understood through intuitively imaging the deformation process of these geometries. Here, we select the optimal
structure for objective f1 = |k−xx/k+xx| as an example and show its contact behavior during deformation in Fig. 11(a).
Notably, there exists a substantial contact area when the structure is subject to compression load (see Fig. 11(a-i)) and
no contact area for the extension load (see Fig. 11(a-ii)). The optimal designs for objectives f3, f5, and f7 exhibit
similar contact modes, which are visualized in B, Fig. 18.

Essentially, higher stiffness values are typically observed during contact, as illustrated in Fig. 11 and Fig. 18, while
lower stiffness values are observed when there is no contact. Additionally, based on the design parameters outlined
in Table 1, the initial contact angles between the ligament and the circle, denoted as θ1 and θ11, range from 20 to 90
degrees. Notably, the initial contact angles of the optimal designs depicted in Fig. 10 (a)(c)(e)(g) are all closer to
the upper bound, i.e., 90 degrees, which enables the establishment of a larger contact area under loads. Therefore,
maximizing the difference between higher and lower stiffness promotes a larger initial contact area between the ligament
and the rigid circle. Upon closer inspection of the optimal designs, it is evident that the area where the ligament and the
circle connect is large and towards the center of the structure provides stronger resistance during compression loads.
Thus, we can see that the larger initial connecting area between the ligament and the circle tends to enhance the stiffness,
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as it will increase the contact area under loads from certain directions. Moreover, the shape of the ligament for the
designs depicted in Fig. 10(a)(c)(e)(g) tends to be curved in the middle, which provides additional resistance against the
compression load.

The optimal designs for objectives f2, f4, f6, f8 in Fig. 10(b)(d)(f)(h) represent the reversed versions of those in Fig.
10(a)(c)(e)(g). Specifically, for the four objectives f2, f4, f6, and f8, the goal is to design material such that the stiffness
values for extension (+x) are greater than those for compression (−x), and the stiffness values for anti-clockwise
rotation (+y) are greater than those for clockwise rotation (−y). Accordingly, the optimal geometries for these
objectives in Fig. 10(b)(d)(f)(h) are also alike but in contrast with those of the optimal designs in Fig. 10(a)(c)(e)(g).
Concretely, in this set of optimal designs, the contact areas are situated away from the central region, and the ligaments
are straight rather than curved. In addition, contact occurs during extension and anti-clockwise rotation, while no
contact is observed during compression and clockwise rotation, which contrasts with the structures in Fig. 10(a)(c)(e)(g).
We present the contact modes of the optimal structure for objective f4 = |k−yy/k+yy| in Fig. 11(b). Here, we observe a
substantial contact area during anti-clockwise rotation (see Fig. 11(b-i)), and no contact area during clockwise rotation
(see Fig. 11(b-ii)). The high k−yy is attributed to the contact force being in the opposite direction of the applied force,
enhancing the structure’s resistance to external forces and resulting in increased stiffness. Additionally, the straight
ligament facilitates stretching strain energy when subjected to extension or anti-clockwise rotation. The contact modes
of optimal designs for objectives f2, f6 and f8 are visualized in B, Fig. 18.

(b-i)

(b-ii)

(a-i)

(a-ii)

Compression

Extension Clockwise Rotation

Anti-Clockwise Rotation

Figure 11: Two examples of contact modes under loads from different directions. The highlighted pink color indicates
the contact areas after the deformation. (a) The contact modes for the optimal design of objective f1 = |k−xx/k+xx|.
The stiffness value k−xx is obtained during the (a-i) compression, and k+xx is obtained during the (a-ii) extension. (b)
The contact modes optimal design of objective f4 = |k−yy/k+yy|. The stiffness value k+yy is obtained during the (b-i)
anti-clockwise rotation, and k−yy is obtained during the (b-ii) clockwise rotation.

4.2 Elastic Asymmetry Optimization

The optimal designs we discovered for the asymmetry objectives g1:8 defined in Section 2.4.2 are presented in Fig. 12.
A summary of the optimal performance for each objective is below
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In contrast to the optimal solutions for non-reciprocity, not all of the optimal designs for asymmetry achieve notably
high objective values, as defined by cases where the stiffness of the numerator is larger than the denominator by at least
one order of magnitude. Specifically, the optimal designs for g2, g3, g6, and g7 achieve high objective values, where
the stiffness values in the numerator significantly surpass those in the denominator. These optimal designs exhibit a
substantial contact area for one direction but no contact for the other. As a result, the stiffness value for the loading
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Figure 12: Optimal designs for maximizing eight asymmetry objectives after 10 iterations of Bayesian Optimization.
Each figure shows the optimal design for the (a) objective g1, (b) objective g2, (c) objective g3, (d) objective g4,
(e) objective g5, (f) objective g6, (g) objective g7 and (h) objective g8. The title above each structure indicates the
corresponding stiffness values.

direction where contact is established tend to be much higher, as the contact provides increased resistance to the loads.
For a detailed visualization of the contact modes under different load directions, please refer to B, Fig. 19.

In contrast, the objective values for g1, g5, and g8 are relatively small. This is primarily attributed to the challenge of
finding designs capable of exhibiting large contact areas in the desired direction while maintaining no contact in the
other. In design spaces 1 and 3, contact is more likely to occur during the extension and anti-clockwise rotation loads,
while no contact is expected for loads from the other two directions. Conversely, in design space 2, contact is more
probable during compression and clockwise rotation, with no contact expected for loads from the other two directions.
In design space 4, contact is likely to occur for loads in all directions. Upon scrutinizing objectives g1, g5, and g8, it can
be found that the required contact modes are not commonly found within these design spaces. For instance, achieving a
high value of objective g1 = |k−xy/k−yx| necessitates a large contact area for clockwise rotation loads and no contact
for compression, which is not a common scenario within the four design spaces. Nevertheless, we managed to find
the optimal design for objective g1 from design space 1. While contact still occurs during compression loading and
there is no contact during clockwise rotation, the contact area is very small, mitigating the stiffness value k−yx during
compression. As a result, the final asymmetry results in k−xy being slightly larger than k−yx.

To facilitate the visualization of contact in these optimal structures, we present two examples: the optimal designs for
objectives g1 = |k−xy/k−yx| and g8 = |k+yx/k+xy|, in Fig. 13. For both structures, contact modes at the two load directions
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are different, leading to an asymmetry in the stiffness values. However, the contact area is significantly smaller for the
loading direction for which we anticipate the stiffness value to be smaller.

Finally, the optimal design for g4 yields an objective value of nearly 1, indicating the absence of designs meeting
the criterion where the stiffness value k+xy exceeds k+yx. To maximize objective g4 = |k+xy/k+yx|, an ideal design
should feature a substantial contact area under anti-clockwise rotation while exhibiting no contact under extension. As
discussed above, such a contact mode is not prevalent within the existing design spaces. The exploration of alternative
design spaces capable of accommodating optimal designs meeting the requirements of objective g4 remains a topic for
future investigation.

(b-i)

(b-ii)

(a-i)

(a-ii)

Compression Extension

Clockwise Rotation Anti-Clockwise Rotation

Figure 13: Two examples of contact modes under loads from different directions. The highlighted pink color indicates
the contact areas. (a) The contact modes for the optimal design of objective g1 = |k−xy/k−yx|. The stiffness value k−yx is
obtained during the (a-i) compression, and k−xy is obtained during the (a-ii) clockwise rotation. (b) The contact modes
for objective g8 = |k+yx/k+xy|. The stiffness value k+yx is obtained during the (b-i) extension, and k+xy is obtained during
the (b-ii) anti-clockwise rotation.

4.3 Multi-Objective Optimization

In this Section, our goal is to identify optimal designs that exhibit both non-reciprocity and asymmetry, as defined in
Section 2.4.3. Therefore, we aim to optimize two objectives, selecting one from f1:8, and another from g1:8. Based on
the results of single objective optimization in Sections 4.1 and 4.2, we observed that the optimal designs for objectives
f1, f3, f5, f7, g2, and g7 exhibit similarities, which we designate as Group 1 since the objectives are not contradictory.
Similarly, the optimal designs for objectives f2, f4, f6, f8, g3, and g6 share similarities and are classified as Group 2.
It’s important to note that the objectives in Group 1 and Group 2 are contradictory because their optimal designs for
single objective optimization exhibit opposite characteristics. Additionally, we assign objectives g1, g5, and g8 as Group
3 due to their relatively small optimal values discovered in Section 4.2. Objective g4 does not have an optimal design in
the single objective optimization, so it is not considered in the multi-objective optimization scenario. The three groups
of objectives are summarized below.

• Group 1 (non-contradictory): f1, f3, f5, f7, g2, g7
• Group 2 (non-contradictory): f2, f4, f6, f8, g3, g6
• Group 3 (challenging): g1, g5, g8

Based on the different groups established above for the objectives, we explore three different cases for multi-objective
optimization. In the first case, we consider non-contradictory objectives in the same group, where both objectives
are chosen from Group 1 or both chosen from Group 2. As a representative case, we select f1 and g2 from Group
1. In the second case, we choose two contradictory objectives, one from Group 1 and another from Group 2. The
representative case we use is f1 and g3. In the third case, we choose one challenging objective from Group 3 and one
relatively feasible objective from Group 1 or Group 2. The representative case we use is f1 and g1. The distribution
of the objectives for the three cases can be found in Fig. 20 - 22. Below is a summary of the three representative
multi-objective optimization cases:
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• Multi-Objective 1 (non-contradictory): f1 and g2

• Multi-Objective 2 (contradictory): f1 and g3

• Multi-Objective 3 (challenging): f1 and g1

After 10 iterations of Bayesion Optimization, we identified three Pareto optima for Multi-Objective 1, one Pareto
optimum for Multi-Objective 2 and four for Multi-Objective 3. The Pareto front of each multi-objective and its
corresponding designs can be found in D. For each Multi-Objective, we selected the Pareto optima with the largest
modulus (i.e. square root of the sum of all the objective values) and presented them in Fig. 14. In Multi-Objective 1,
where the objectives f1 and g2 are not contradictory, both objectives achieved relatively high values with magnitudes
larger than ten, as depicted in Fig. 14(a). However, Multi-Objective 2 presents a challenge as it involves two
contradictory objectives, f1 and g3, where increasing one objective results in a decrease in the other, as illustrated in
Fig. 21. The optimal design discovered by ML methods shows a trade-off between asymmetry and non-reciprocal
properties, albeit with relatively smaller values for both objectives, as shown in Fig. 14(b). Similarly, Multi-Objective
3 includes a challenging objective, g1, and an easily attainable objective, f1. As shown in Fig. 22, the high value of
g1 is observed only when f1 is small, indicating a contradiction between the two objectives. The optimal design after
balancing these conflicting objectives is presented in Fig. 14(c). Notably, the optimal designs for the contradictory
multi-objectives 2 and 3 are both found in Design Space 4 (refer to Fig. 6), while all the optimal design are obtained
from Design Space 1-3 when we optimize each single objective. This highlights that optimizing a single objective does
not necessarily ensure high performance across all dimensions. Leveraging the Pareto Front and Bayesian Optimization
facilitates the discovery of designs that exhibit multiple desirable properties simultaneously.

Multi Objectives 1 Multi Objectives 2 Multi Objectives 3
(a) (b) (c)

Figure 14: The Pareto front and the corresponding designs for optimizing (a) Multi-Objective 1: f1 and g1, (b) Multi-
Objective 2: f1 and g3, (c) Multi-Objective 3: f1 and g1. The title above each structure indicates the corresponding
objective values for the structure.

Upon scrutinizing the contact modes of these optimal designs, we observed a notable distinction in the optimal
design depicted in Fig. 14(c) for Multi-Objective 3 compared to the others. Specifically, while the majority of chiral
structures typically exhibit only two distinct contact states under loads from four different directions, as illustrated
in the example case in Fig. 8, the structure in Fig. 14(c) displays four different types of contact states under loads
from four different directions. The four distinct contact statuses are illustrated in Fig. 15, where the highlighted
pink areas denote the contact regions under each load. Notably, the contact areas vary depending on the applied
loads. Since each contact mode corresponds to beam models with different boundary conditions, as discussed
in Section 2.2, the stiffness values vary in all directions, resulting in [k−xx, k

−
xy, k

−
yx, k

−
yy, k

+
xx, k

+
xy, k

+
yx, k

+
yy] =

[5.72, 3.05, 2.38, 3.51, 1.78, 0.42, 1.13, 2.11]. Consequently, this structure can satisfy the most objectives in terms
of achieving both non-reciprocity and asymmetry, summarized below:

f1 = |k
−
xx

k+
xx
| = 5.72/1.78 = 3.21, f3 = |k

−
xy

k+
xy
| = 3.05/0.42 = 7.26, f5 = |k

−
yx

k+
yx
| = 2.38/1.13 = 2.10,

f7 = |k
−
yy

k+
yy
| = 3.51/2.11 = 1.66, g1 = |k

−
xy

k−
yx
| = 3.05/2.38 = 1.28, g2 = |k

−
xy

k+
yx
| = 3.05/1.13 = 2.69,

g7 = |k
−
yx

k+
xy
| = 2.38/0.42 = 5.66, g8 = |k

+
yx

k+
xy
| = 1.13/0.42 = 2.69.

5 Conclusion

In this paper, we utilized machine learning (ML) techniques in conjunction with Finite Element Simulation to engineer
chiral metamaterials exhibiting significant directional non-reciprocity and stiffness asymmetry. We elucidated the
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(a) (b)

(c) (d)

Compression Extension

Clockwise Rotation Anti-Clockwise Rotation

Figure 15: The contact modes for the optimal design shown in Fig. 14(c). The highlighted pink color indicates the
different contact areas between the rigid circle and the elastic ligament under (a) Compression, (b) Extension, (c)
Clockwise Rotation, and (d) Anti-Clockwise Rotation. The structure satisfies the most objectives in terms of achieving
both non-reciprocity and asymmetry that are summarized in Section 4.3.

mechanisms underlying non-reciprocity and asymmetry by qualitatively analyzing the contact behavior under various
loads through equivalent beam models. Additionally, through quantitatively analysis of strain energy changes during
chiral metamaterial deformation, we uncovered that stretching deformation of the elastic ligament in the chiral structures
leads to higher stiffness, while the bending structures result in lower stiffness values. This insight explains the heuristic
behind programming the chiral metamaterial geometry to achieve desired non-reciprocity and asymmetry properties.

Our study encompassed optimization of eight non-reciprocity objectives, eight asymmetry objectives, and three multi-
objectives incorporating both non-reciprocity and asymmetry. To formalize the problem under the framework of ML, we
defined the design freedom of chiral structures and characterized each structure by its geometric features. We proposed
four different design spaces, with each being governed by a different contact mechanism. To reduce the computational
cost, we implemented Bayesian Optimization algorithm facilitated with ensemble learning to efficiently search the
optimal structures for each objective by balancing between the exploration and exploitation. Particularly, we achieve the
multi-objective optimization by searching the Pareto Front of the performance spaces and obtained the corresponding
optimal structures that can exhibit both non-reciprocity and asymmetry. Following the completion of the optimization,
we presented the discovered optimal designs for each single objective and analyzed their similarities and disparities,
highlighting the role of contact in enhancing chiral structure stiffness. Leveraging insights from single-objective
optimization, we focused on three distinct types of multi-objectives, including both contradictory and non-contradictory
combination of multi-objectives. Among the discovered optimal designs for multi-objectives, we found a structure
that demonstrates the maximum diversity in non-reciprocity and asymmetry, which we attributed to the various contact
behavior of the structure under different loads.

In contrast to the majority of the current ML and mechanics literature focusing on testing the applicability of machine
learning (ML) methods in solving conventional mechanics problems, where their effectiveness can be validated against
known solutions (Brunton et al., 2016; Chen and Gu, 2021; Jiao et al., 2024), our study employed ML to a novel domain
with limited prior information. With the aid of ML, we uncovered a compelling relationship between contact behaviors
and the non-reciprocity and asymmetry of chiral metamaterials through qualitative, quantitative, and case-based analyses.
A noteworthy observation from our results is the presence of extreme non-reciprocity and asymmetry in the discovered
optimal designs. For instance, as illustrated in Fig. 12(g), the optimal designs for the objective g7 have a stiffness
k−yx that is 1763 times larger than k+xy. The extreme and diverse non-reciprocity and asymmetry observed in our
optimized chiral structures pave the way for metamaterials capable of novel wave propagation characteristics, including
unidirectional wave propagation and non-Hermitian wave phenonena (Wang et al., 2024), which offers promising
prospects for applications in non-reciprocal wave propagation.

While we have optimized the chiral metamaterial to achieve various level of non-reciprocity and asymmetry, we noticed
that some of the asymmetry objectives did not achieve notably high objective values, and the objective g4 resulted in no
qualified optimal design within the current scope of design spaces. Additionally, although the optimal design for the
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multi-objective optimization displayed diverse non-reciprocity and asymmetry characteristics, as depicted in Fig. 15, the
absolute magnitudes of most objective values remained relatively small. We attribute this to the current confined design
spaces, i.e., the rigid body of the structure can only be circles, and the shape of partially connected elastic ligament are
well-defined by certain base functions, as detailed in Section 2.5. Looking ahead, we aim to broaden the design scope to
explore a wider range of possibilities and search for designs capable of exhibiting extreme multi-objective performance.
Furthermore, leveraging deep generative models such as GANs (Generative Adversarial Networks) (Wang et al., 2022;
Kobeissi et al., 2022), Transformers (Buehler, 2024, 2023a), and Diffusion Models (Ni et al., 2024; Luu et al., 2023),
we anticipate for advanced AI-designed structures with non-conventional properties, providing insights not only into
the field of odd elastic materials but also into other emerging novel domains.

6 Additional Information

The data supporting this study and the code to optimize chiral metamaterial designs and reproduce simulation on
ABAQUS are openly available from https://github.com/lingxiaoyuan/chiral.
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A Finite Element Simulation

The properties of the chiral metamaterial were acquired through the Finite Element Method (FEM). In this section,
we provide detailed information on the FEM settings. The two rigid circles are set as discrete rigid surfaces, while
the elastic ligament of each chiral structure is modeled as linear elastic Bernoulli–Euler beam. The cross section of
the ligament is rectangular with a fixed width of 30 and a fixed thickness 1.5. The ligament material is linear elastic
with a fixed Elastic modulus E = 70 and Poisson ratio ν = 0.3. The left circle is fixed, while the right rigid circle is
only allowed to move under the applied displacement load with same magnitude 0.08. Both the circle and the ligament
are meshed in a graded fashion, where the area closer to the connecting region has a finer mesh compared to areas
farther away. The finest mesh size is set as 0.02 and the coarsest mesh size is 20 times the finest mesh size. On average,
there are approximately 270 mesh elements on each of the rigid circles and approximately 714 mesh elements on the
elastic ligament, as calculated from 12 randomly generated chiral structure finite element models. Fig. 16, exported
from the sofware ABAQUS, illustrates the distribution of mesh size on the rigid circles and the elastic ligament for
a representative example. Each circle has 254 R2D2 (two node 2D linear discrete rigid element) elements and the
ligament has 920 B23 (two node cubic Euler-Bernoulli beam element) elements (AbaqusAnalysis, 2016). The mesh
size at the ligament-circle contact regions is smaller than other regions. The finest mesh size 0.02 was determined
by conducting mesh sensitivity analysis. Fig. 17 demonstrates how stiffness values change depending on the mesh
size. Choosing an appropriate mesh size involves balancing computational cost and FEM accuracy. It is worth noting
that excessively fine mesh sizes, such as 0.01, can lead to more simulation failures due to convergence difficulties.
Therefore, a mesh size of 0.02, where simulation results become converged and nearly independent of mesh size, was
adopted for all chiral metamaterial simulations in this paper. Nonetheless, we note that a few simulation cases still fail
to converge for certain chiral structures with a mesh size of 0.02. These failed examples were disregarded during the
Bayesian Optimization data acquisition process. For more details on the finite element modeling, readers can refer to
the open-source code we published on GitHub, as detailed in Section 6.

B Contact modes for optimal designs

In Section 4.1 and Section 4.2, we presented the optimal designs for the eight objectives of non-reciprocity and
eight objectives of asymmetry. In this Section, we presented the contact status for each design under different loads.
Specifically, Fig. 18 shows the optimal chiral structures and the corresponding contact status for objectives f1 to f8,
Fig. 19 shows the optimal chiral structures and the corresponding contact status for objectives g1 to g8.
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Figure 16: Visualization of the mesh on a representative chiral structure. The finest mesh size is 0.02 and the coarsest
mesh size is 0.4. Graded meshing was performed using the commercial software ABAQUS.

Mesh Size Mesh Size Mesh Size Mesh Size

Mesh Size Mesh Size Mesh Size Mesh Size

Figure 17: The relationship between calculated stiffness values and the selected finest mesh size for the chiral structure
depicted in Fig. 16. The final adopted finest mesh size is 0.02, highlighted in red.

C Data distribution for multi-objectives

We illustrated the trade-off between asymmetry and non-reciprocity in multi-objective optimization in Section 2.4.3,
depicted in Fig. 5, where we aim to optimize two objectives with values exceeding 1 while maintaining good performance
for both. With eight non-reciprocity and eight asymmetry objectives defined in Sections 2.4.1 and Section 2.4.2
respectively, there are 64 comprehensive combinations of non-reciprocity and asymmetry multi-objective optimization.
In Section 4.3, we categorized multi-objective optimization into three cases: non-contradictory, contradictory, and
challenging. To provide insight into this categorization, we randomly sampled 500 chiral structures obtained in the
single-objective optimization process and plotted their distribution of non-reciprocity and asymmetry properties in
Fig. 20-22, where the red dashed lines represent thresholds of x = 1 and y = 1 for valid designs. Any design
having a non-reciprocity or asymmetry property below 1 was not considered further. Fig. 20 demonstrates 16 pairs of
non-reciprocity and asymmetry where the properties are not contradictory, allowing for simultaneous improvement
of both. Conversely, Fig. 21 exhibits 16 contradictory pairs, where high performance in one property corresponds to
low performance in the other. Fig. 22 illustrates the data distribution of 24 pairs of multi-objectives, introducing a
challenging asymmetry property that makes it difficult to achieve good performance in non-reciprocity simultaneously.
Notably, the non-reciprocity of all materials generally falls below 3. Note that the the total number of pairs displayed
in Fig. 20-22 is less than 64 due to the exclusion of objective g4 = k+xy/k

+
yx, for which no optimal design was found

during the single-objective optimization process, as discussed in Section 4.2 and Section 4.3.
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(a-i)

(           )
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(a-ii)

Figure 18: The contact modes for the optimal designs of the eight nonreciprocity objectives (a-i) f1, f2, f3, f4 and (a-ii)
f5, f6, f7, f8. For each objective, the optimal design and the contact modes during the loading in which the stiffness
values are obtained are depicted.

.
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(a-ii)

Figure 19: The contact modes for the optimal designs of the eight asymmetry objectives (a-i) g1, g2, g3, g4 and (a-ii)
g5, g6, g7, g8. For each objective, the optimal design and the contact modes during the loading in which the stiffness
values are obtained are depicted.

.
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Figure 20: The data distribution of 16 pairs of non-contradictory multi-objectives for non-reciprocity and asymmetry
multi-objectives. The red dashed lines indicate thresholds of x = 1 and y = 1 for valid designs. The x-axis denotes one
non-reciprocity objective and the y-axis denotes one asymmetry objective, as defined in Sections 2.4.1 and Section
2.4.2 respectively.

D Pareto Front for multi-objective optimization

In Section 4.3, we investigated three Multi-Objectives and discussed about the Pareto front for each. Although there can
be more than one Pareto Optimum for for each multi-objective, we specifically analyzed the optimal design with largest
modulus. Here we present all the Pareto optima for multi-objectives optimization in Fig. 23, from which it is evident
that the optimal designs for the same multi-objectives share common features, i.e., the shape of the ligament and the
connecting area of the circles and ligament appear similar.
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Figure 21: The data distribution of 16 pairs of contradictory multi-objectives for non-reciprocity and asymmetry
multi-objectives. The red dashed lines indicate thresholds of x = 1 and y = 1 for valid designs. The x-axis denotes one
non-reciprocity objective and the y-axis denotes one asymmetry objective, as defined in Sections 2.4.1 and Section
2.4.2 respectively.
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Figure 22: The data distribution of 24 pairs of challenging multi-objectives for non-reciprocity and asymmetry multi-
objectives. The red dashed lines indicate thresholds of x = 1 and y = 1 for valid designs. The x-axis denotes one
non-reciprocity objective and the y-axis denotes one asymmetry objective, which is the objective that is challenging to
optimize. The definition of non-reciprocity and asymmetry can be found in Sections 2.4.1 and Section 2.4.2.
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Multi Objectives 1 Multi Objectives 2 Multi Objectives 3
(a) (b) (c)

(          )

Figure 23: Optimal designs for the three multi-objectives outlined In Section 4.3. (a) Three Pareto optimal designs for
Multi-Objective 1, discovered from design space 2. (b) One Pareto optimal design for Multi-Objective 2, discovered
from design space 1. (c) Four Pareto optimal designs for Multi-Objective 3, discovered from design space 4.
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