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INTEGRABILITY AND COMBINATORICS

PAUL ZINN-JUSTIN

Abstract. We discuss the use of methods coming from integrable systems to study prob-
lems of enumerative and algebraic combinatorics, and develop two examples: the enumer-
ation of Alternating Sign Matrices and related combinatorial objects, and the theory of
symmetric polynomials.

Keywords: quantum integrable systems, exactly solvable lattice models, enumerative com-
binatorics, algebraic combinatorics, six-vertex model

1. Introduction

1.1. Generalities. Combinatorics and mathematical physics have many points of contact.
Here, we focus on a specific form of interaction, which is the use of methods coming from
quantum integrable systems to solve problems of a combinatorial nature. A typical appli-
cation is to enumerative combinatorics. As the field of combinatorics is expanding rapidly,
problems of enumeration become more and more difficult and direct combinatorial proofs
are often extremely complicated and tedious. This is where physical ideas, and in particular
integrability, can come in to provide conceptually simpler proofs. In its most basic form,
one may hope that integrability, under the guise of exactly solvability of lattice of models
of statistical mechanics, allows us to perform exact computations of partition functions and
therefore enumerate the underlying combinatorial objects. Going beyond this naive view-
point, one observes that there is a deeper connection between integrability and combinatorics,
and more specifically algebraic combinatorics. In this short review, we can only give hints of
this connection, and of the shared underlying algebraic structures and representation theory.

1.2. Plan. In what follows, we shall give two examples, one for each of the two connections
outlined above, where these ideas turned out particularly fruitful:

• In §2, we discuss the connection between the Six-Vertex model with Domain Wall
Boundary Conditions, and various enumerative problems, in particular Alternating
Sign Matrices.

• In §3, we reinterpret the theory of symmetric polynomials, a classical topic of alge-
braic combinatorics, in terms of quantum integrable systems, and show some appli-
cations, focusing on the prototypical case of Schur polynomials.

1.3. The Six-Vertex model. In both these examples, a key role is played by the six vertex

model, an important model of classical statistical mechanics in two dimensions. It first
appeared as a model for (two-dimensional) ice, which was solved by Lieb [Lie67b] in 1967 by
means of Bethe Ansatz, followed by several generalizations [Lie67a, Lie67c, Lie67d, Sut67].

The six-vertex model is a statistical model defined on a (subset of the) square lattice; its
configurations are obtained by putting arrows (two possible directions) on each edge of the
lattice, with the additional rule that at each vertex, there are as many incoming arrows as
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a1 b1 c1

a2 b2 c2

Figure 1. Local configurations of the six-vertex model.

outgoing ones. Around a given vertex, there are only 6 configurations of edges which respect
this “arrow conservation” rule, see Fig. 1, hence the name of the model.

To each such a configuration one associates a Boltzmann weight which is a product of
local weights for each vertex, leading to six parameters a1, a2, b1, b2, c1, c2 as on Fig. 1. The
partition function is then defined as

Z =
∑

configurations

∏

x∈{a1,a2,b1,b2,c1,c2}

x#vertices of type x

2. The Six-Vertex model with Domain Wall Boundary Conditions

Domain Wall Boundary Conditions (DWBC) are specific boundary conditions for the Six-
Vertex model [Kor82] which turned out to possess remarkable properties [Ize87, ICK92], as
will be discussed below.

The connection to combinatorics appeared in 1996 in the work of Kuperberg [Kup96] who
noticed that configurations of the Six-Vertex model with DWBC are in bijection with Alter-
nating Sign Matrices, a famous object in combinatorics [Bre99], and used this bijection to
give a simple proof of the Alternating Sign Matrix conjecture, that is to solve the underlying
enumeration problem. We shall give a modified version of his result below.

In the 2000s, the Six-Vertex model with Domain Wall Boundary Conditions became pop-
ular again as a simple model to test sensitivity of lattice models to boundary conditions
[KZJ00]. In particular, it exhibits in the limit of large size limiting shapes, i.e., spatial phase
separation induced by the boundary, see [Sté21] and references therein.

2.1. Definition. Domain Wall Boundary Conditions (DWBC) consist in considering the
six-vertex model on a n × n square domain, and fixing all external edges: vertical (resp.
horizontal) external edges are fixed to be outgoing (resp. incoming). See Fig. 2 for a n = 4
example. We denote DWBCn the set of such configurations, and Zn the corresponding
partition function.

It is not hard to show (and the reader is encouraged to check using any of the alternative
representations of DWBCn given below) that the numbers of vertices of type a1 and a2 are
equal in a DWBC configuration, and similarly for b1 and b2; and that there are exactly n
vertices of type c1 more than there are of type c2 (one extra vertex c1 per row or per column).
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Figure 2. An example of configuration of the six-vertex model with Domain
Wall Boundary Conditions.

Figure 3. An example of a lattice path configuration.

Therefore, the partition function can also be written

Zn = (c1/c2)
n/2

∑

C∈DWBCn

a#vertices of type ab#vertices of type bc#vertices of type c

where a =
√
a1a2, b =

√
b1b2, c =

√
c1c2, and a vertex of type a is a vertex of type either a1

or a2, and similarly for b and c.

2.2. Alternate representations. We pause to discuss several mappings between configu-
rations of the six-vertex model with DWBC and other interesting combinatorial objects, as
well as their interrelations.

2.2.1. Lattice paths. Let us begin with a trivial bijection: let us relabel edges of the lattice
such that edges with right or up arrows are “occupied”, whereas those with left or down ar-
rows are “empty”. The configuration of Figure 2 is redrawn this way on Figure 3. This shows
that the six-vertex model can also be viewed as a model of lattice paths going North/East,
which can touch but not cross each other (such paths are also known as “osculating walkers”)
[Bra97]. The DWBC simply mean that the endpoints of the paths lie on the West and North
sides of the square lattice.

2.2.2. Rook placements. In each row (or column) of the n× n grid, given a configuration in
DWBCn, there must be at least one configuration of type c, because the boundary arrows are
opposite. There is therefore a natural subset of DWBCn, namely the configurations where
there is a single type c vertex per row (which implies the same property for columns); the c
vertices are all of type c1. These configurations are in obvious bijection with (complete) “rook
placements”, i.e., non-attacking configurations of n rooks on a n× n chessboard (where the
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0 1 2 3 4

1 2 3 2 3

2 3 2 1 2

3 2 3 2 1

4 3 2 1 0

Figure 4. An example of height function.

rooks sit at c vertices). Equivalently, these configurations are in bijection with permutations
of Sn, where recording row/columns of c vertices produces a permutation. In particular,
there are n! of them. We shall come back to these configurations shortly.

2.2.3. Height functions. A first nontrivial bijection, whose existence is directly related to the
arrow conservation law that is built-in the definition of the model, is to associate a height
to each face of the square lattice, in such a way that when one goes from one face to an
adjacent one, the height varies by +1 (resp. −1) if the arrow on the edge separating them
points left (resp. right). This only determines the height up to an overall constant, which
we fix by imposing that the height at the top left of the lattice is zero. The same example
of Fig. 2 is depicted as a height function on Fig. 4.

It is not hard to see that the set of height functions obtained this way from a DWBC
configuration is exactly

Hn =

{

(hij)i,j=0,...,n

∣
∣
∣
∣
∣

hi0 = i, h0j = j, hin = n− i, hnj = n− j, i, j = 0, . . . , n

hi+1j − hij, hij+1 − hij ∈ {−1, 1}, i, j = 0, . . . , n− 1

}

(where height functions are indexed as matrices), and that the mapping is bijective.
There is an additional structure on the set Hn above (that was perhaps not so apparent in

the original six-vertex formulation): it is a lattice (in the sense of ordered sets). That is, Hn

is a poset – the order relation is pointwise ≤ – such that any pair of configurations possesses
an infimum and a supremum (pointwise maximum, minimum).

The subset of “rook placements”, under this bijection, becomes a sub-poset of the poset
of height functions, which has a natural interpretation: it is the type A Bruhat poset, that
is, the symmetric group Sn endowed with its Bruhat order. From this point of view, one can
view the whole of Hn as the MacNeille completion of the type A Bruhat poset [LS96].

2.2.4. Alternating Sign Matrices. Permutations can be represented as permutation matrices
(matrices with a single 1 per row/column, and zero elsewhere); in view of the above, it
is natural to ask how one can reconstruct the permutation matrix from a configuration in
DWBCn of the rook placement type. This is easily done using height functions: indeed,
defining

(1) wij =
1

2
(hi j−1 + hi−1 j − hij − hi−1 j−1) i, j = 1, . . . , n

leads to the desired permutation matrix.
Let us now apply this mapping to the whole of Hn; for convenience, we reproduce on Fig. 5

the mappings between the local configurations. Also see Fig. 6 for our running example.
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Figure 5. Local configurations of the six-vertex model, their height function
and ASM formulation (the latter in red).

0 0 1 0

0 1 0 0

1 −1 0 1

0 1 0 0

Figure 6. An example of an ASM.

We observe that besides the values 1 for vertices of type c1 and 0 for vertices of type a and
b, another value is possible: −1 for vertices of type c2. In fact, it is easy to show that the
mapping (1) leads to a bijection of Hn (and therefore, DWBCn) with the set of Alternating
Sign Matrices

(2) ASMn =






(wij)i,j=1,...,n

∣
∣
∣
∣
∣

wij ∈ {0,±1}
+1s and -1s alternate on each row and column,
starting and ending with 1s







Alternating Sign Matrices (ASMs) were introduced by Robbins and Rumsey [RR86] in the
context of Dodgson’s condensation method for computing determinants. Following this
method naturally leads to an expansion of the determinant as a sum over ASMs, except the
coefficient of non-permutation matrices turns out to be zero. This can be remedied by intro-
ducing a deformation parameter into the formula, leading to the notion of λ-determinant,
defined by:

(3) detλM =
∑

A∈ASM(n)

λν(A)(1 + λ)µ(A)
n∏

i,j=1

M
Aij

ij

where µ(A) is the number of −1s in A, and ν(A) =
∑

1≤i≤i′≤n
1≤j′<j≤n

AijAi′j′ is a generalization of

the inversion number of a permutation. At λ = −1, one recovers the usual determinant.
We note that via the bijection to DWBCn, µ(A) is nothing but the number of vertices of

type c1. Similarly, one can show [BDFZJ12] that ν(a) is the number of vertices of type a1,
or of type a2, that is to say half the total number of vertices of type a.
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Let us for example choose the constant matrix M = In with (In)ij = 1 in (3): we
immediately conclude from the above that its λ-determinant coincides with the DWBC
partition function for a particular choice of Boltzmann weights, namely,

(4) detλIn = Zn(a =
√
λ, b = 1, c1 = 1, c2 = 1 + λ)

Note that this is not the most general choice of six-vertex model parameters, even taking into
account the freedom to rescale all weights by a constant. In particular, a natural quantity to
compute is the number of ASMs, that is, #ASMn = #DWBCn; it is not a special case of (4).
The determination of #ASMn has a long and rich history, recounted in [Bre99, BP99]; here
we merely point out that the number of ASMs is equal to the number of (at least) two other,
a priori unrelated, families of combinatorial objects: Descending Plane Partitions [And80]
and Totally Symmetric Self-Complementary Plane Partitions [And94]. These equalities,
and various refinements thereof, can be proven using tools from quantum integrability, see
e.g. [Zei96b, CP06, FZJ08, BDFZJ12].

2.2.5. Monotone triangles. A DWBC configuration is entirely determined by the state of all
vertical (or horizontal) edges. Let us therefore record for each row the subset of up-pointing
arrows: we obtain this way a triangular array known as monotone triangle [MRR83] (or gog
triangle [Zei96a]). On our running example, one finds

1 2 3 4

1 2 4

1 4

2

In general, monotone triangles of size n are triangular arrays of integers of the form

1 < 2 < · · · < n− 1 < n

an−1,1 < an−1,2 < · · · < an−1,n−1

. . . . .
.

a2,1 < a2,2

a1,1

≤≤≤≤ ≤≤≤≤

≤≤

≤≤

≤≤

One can check once again that their set is in bijection with DWBCn; it also has an obvious
order relation (pointwise ≤) which is the same one that we have defined on Hn up to the
various bijections.

Monotone triangles are also called strict Gelfand–Tsetlin patterns (with fixed first row
12 . . . n), because if one replaces strict inequality along rows with weak inequality, then one
recovers the definition of Gelfand–Tsetlin patterns.

It is well-known that Gelfand–Tsetlin patterns are in bijection with Semi-Standard Young

Tableaux (SSYT) (see §3.1), where the first row determines the shape of the tableau. Drawing
tableaux with the French notation, we obtain on our running example:
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where the ith row of the pattern is the shape of the boxes with labels ≤ i.
In general, applying this mapping to strict Gelfand–Tsetlin patterns results in SSYTs with

triangular shape and one additional inequality due to strictness, namely that antidiagonals
are weakly increasing: removing the boxes for clarity, one gets a new triangular array of
integers of the form

1 ≤ bn−1,1 ≤ · · · ≤ b1,1

2 ≤ bn−2,2 · · · b2,2

...
. . .

n− 1 ≤ bn−1,n−1

n
< <≥ ≥

<

≥

< ≥

< ≥

which obeys the same rules (up to a rotation) that define monotone triangles. In fact, the
new monotone triangle obtained this way is nothing but the list of subsets of right-pointing
arrows along each column (numbered from bottom to top).

2.2.6. Fully Packed Loops. Another bijection of a fairly different nature is, given a DWBC
configuration, to replace the two types of decorations of the edges (arrow pointing one way
or the other) with another type, which we shall depict with two colours, say red or blue.
We require that at each vertex, arrows pointing in the same direction (in or out) should
be mapped to the same coloured state. By looking at the edge between two neighbouring
vertices, we conclude that the correspondence should be different depending on whether a
vertex is in the odd or even sublattice of the square lattice; indicating the sublattices by
colouring vertices red or blue alternatingly, the final mapping is that edges acquire the colour
of the vertex that they point to, e.g.,

7→

Such configurations are called Fully Packed loops (FPLs). The result on our running
example is shown on Fig. 7. The arrow conservation rule becomes the rule that every vertex
must have two adjacent edges of each colour. The boundary conditions are alternatingly
blue and red.

Note that red (resp. blue) lines form uninterrupted paths going from one boundary edge to
another (plus possibly closed loops); this leads to the possibility of refined counting beyond
what we have considered so far. We shall discuss this further in §2.5.

2.2.7. Bumpless pipe dreams. In a similar vein, let us revisit the lattice path representation
of §2.2.1: we now declare that paths cross at vertices rather than osculate. To conform with
the conventions of the literature, we also switch occupied and empty edges. The result is
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Figure 7. An example of Fully Packed Loop configuration.

Figure 8. An example of a Bumpless Pipe Dream.

depicted on Figure 8 for our running example; in general, one obtains a bijection between
DWBCn and what is known as Bumpless Pipe Dreams [LLS21, Wei21].

Green paths now go from the East boundary to the South boundary, giving rise to a
permutation (numbering rows from top to bottom and columns from left to right); in the ex-
ample, it is 3142. (If the configuration is a “rook placement”, this is the natural permutation
that we have already associated to it in §2.2.2, so every permutation appears at least once).
This means that we again have a refined counting by permutation; we shall not develop this
further and refer to the literature [Las, LLS21, Wei21].

2.2.8. Domino Tilings. Finally, a mapping that is not bijective is the following. A Domino

Tiling of the Aztec Diamond of size n is a filling of a staircase domain as on Fig. 9 with
dominos, i.e., 1 × 2 rectangles; denote their set DTn. This terminology is due to Propp,
who studied extensively domino tilings of the Aztec diamond [EKLP92a, EKLP92b, JPS98],
in particular because they were the first known model to exhibit the “limiting shape” phe-
nomenon as n → ∞. Note that such domino tilings had already appeared in the physics
literature under the guise of dimer model, cf [GCZ80] which conjectured #DTn and pointed
out the sensitivity of the model to varying boundary conditions.
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Figure 9. An example of Domino Tiling of the Aztec Diamond.

The dotted grid is a helper for the mapping which we define now. Given a tiling of DTn,
apply the following local substitutions:

The result is a configuration in DWBCn. Applying this mapping to Fig. 9 takes us back to
our running example of Fig. 2.

This mapping is clearly not bijective since two local configurations are sent to one. From
the point of view of partition functions, this can be absorbed in a doubling of the appropriate
Boltzmann weight, namely c1. In particular the number of domino tilings of the Aztec
Diamond is equal to the DWBC partition function with Boltzmann weights a = b = c2 = 1,
c1 = 2.

2.3. The Izergin determinant formula. We now proceed to compute the partition func-
tion of the six-vertex model with DWBC.

We choose the following convenient parameterisation of the local Boltzmann weights:

a(x, y) = qx− q−1y

b(x, y) = x− y(5)

c1(x, y) = (q − q−1)y c2(x, y) = (q − q−1)x

(i.e., c(x, y) = (q − q−1)(xy)1/2, but we have avoided the use of square roots by introducing
c1, c2). Here q, x and y are formal parameters, which can be chosen to be nonzero complex
numbers. If we want the Boltzmann weights to be real (up to overall normalisation), then
one should choose q and z to be either real or of modulus one. This traditionally leads to
a division into 3 regimes (q real positive, real negative, of modulus one) which will not be
discussed here.
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Though all three weights depend on all parameters q, x, y, we emphasise in the notation
the dependence on x, y; the reason is that it is useful to make the model inhomogeneous by
varying x and y (but not q) depending on the row/column of the vertex. Namely, at the
vertex at row i and column j of the square n×n domain, we use the Boltzmann weights (5)
with the substitution x = xi, y = yj, where x1, . . . , xn, y1, . . . , yn are fixed parameters.

With this choice of Boltzmann weights, denoting Zn(x1, . . . , xn; y1, . . . , yn) the partition
function of the six-vertex model with DWBC:

Zn(x1, . . . , xn; y1, . . . , yn) =
∑

C∈DWBCn

n∏

i,j=1

{
a
b
c1
c2

}

(xi, yj)

one has the following beautiful formula:

Theorem 1 (Izergin [Ize87]).

Zn(x1, . . . , xn; y1, . . . , yn) =
n∏

j=1

yj

∏n
i,j=1(xi − yj)(qxi − q−1yj)

∏

1≤i<j≤n(xi − xj)(yj − yi)
det

i,j=1,...,n

(
q − q−1

(xi − yj)(qxi − q−1yj)

)

The proof is by now standard and can be found in e.g. [ICK92, KZJ00], and we only
give a sketch of it. The main ingredient is that the local Boltzmann weights satisfy the
Yang–Baxter equation (YBE), which using our parameterisation takes the simple form:

zy

x =

zy

x

Each picture stands for the corresponding partition function; more precisely, the convention
is that the labelling of external edges is arbitrary but fixed (so the YBE is really 26 =
64 equations, though many are trivial or redundant), whereas the arrows of the internal
edges are summed over. The Boltzmann weights used at each vertex involve the parameters
attached to each line, namely, (x, y), (x, z), (y, z).

The YBE can be used repeatedly, showing symmetry of Zn under interchange of the yjs
(and similarly for the xis):

a(yj+1, yj)Zn(. . . , yj, yj+1, . . .) =
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yj+1 yj

=

yj+1 yj

= a(yj+1, yj)Zn(. . . , yj+1, yi, . . .)

Finally, one finds by inspection that setting xn = yn leads to a recurrence relation for Zn,
namely

Zn(x1, . . . , xn; y1, . . . , yn)|xn=yn = c1(yn, yn)

n−1∏

i=1

a(xi, yn)

n−1∏

j=1

a(yn, yj) Zn−1(x1, . . . , xn−1; y1, . . . , yn−1)

By symmetry, this provides the value of Zn at n distinct specialisations of xn, and since it
is not hard to show that Zn is a polynomial of degree at most n− 1 in xn (because each row
has at least one vertex of type c1), this specifies it uniquely. Only remains to check that the
provided expression satisfies this recurrence relation.

2.4. Homogeneous limit. Note that the expression in Theorem 1 is indeterminate when
all xis (or yis) are equal. By applying L’Hôpital’s rule, one can find an expression for Zn

when xi → x and yi → y, as an n× n determinant.
This determinant can be re-expressed in various ways, see e.g. [ZJ00, CP04, BDFZJ12].

It can then be evaluated at special values of a, b, c, cf [Kup96, CP05]; two such evaluations
will be discussed below.

Finally, one can compute asymptotics of Zn in the “thermodynamic limit” n → ∞; we
shall not discuss this here and refer to the extensive literature [KZJ00, ZJ00, CP08, BL14].

2.4.1. The ice point and exact enumeration. By setting a = b = c = 1, the partition function
is simply the cardinality of DWBCn, or of any of the sets in bijection such as ASMn. This
can be achieved by choosing parameters q = eiπ/3, x = e−iπ/6/

√
3, y = −qx (or their complex

conjugate).
Following [Str06, Oka06], we may compute Zn as follows: we first set q = eiπ/3, leaving

the parameters xi and yj free. Then it turns out that the recurrence relation becomes
identical to one satisfied by the Schur polynomial sλ(n) associated to the partition λ(n) =
(n − 1, n − 1, n − 2, n − 2, . . . , 1, 1). We refer to §3.1 below for an introduction to Schur
polynomials. Taking care of various prefactors in the recurrence relations, we have the
identification

Zn(x1, . . . , xn; y1, . . . , yn)|q=eiπ/3 = q−n(n−1)/2(q − q−1)nsλ(n)(−qx1, . . . ,−qxn, y1, . . . , yn)

Now we can specialise xi = x = e−πi/6/
√
3, yj = −qx and find, using the homogeneity

property of Schur polynomials, Zn = (−q)−n(n−1)/2(q−q−1)n(−eiπ/6/
√
3)n(n−1)sλ(n)(1, . . . , 1).
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Simplifying the prefactor and taking into account the extra phase arising from (c1/c2)
n/2,

we obtain the formula

#DWBCn = #ASMn = 3−n(n−1)/2sλ(n)(1, . . . , 1
︸ ︷︷ ︸

2n

)

The evaluation of a Schur polynomial at 1, . . . , 1 is known (see (8)); simplifying the resulting
product, we obtain our final identity

#ASMn =

n−1∏

i=0

(3i+ 1)!

(n + i)!
= 1, 2, 7, 42, 429 . . .

which is the famous formula for the number of ASMs (OEIS sequence A005130).

2.4.2. The free fermion point. Consider the λ-determinant of (4). In order to achieve the

Boltzmann weights there, one can pick x = (1− i
√
λ)/2, y = −(1 + i

√
λ)/2, q = i, resulting

in a =
√
λ, b = 1, c =

√
c1c2 =

√
1 + λ.

As a special case, if we set λ = 1, we recognize the choice of weights a = b = 1, c =
√
2

that is relevant to the counting of domino tilings, cf §2.2.8.
As in the previous section, let us first set q to its value, namely i (this is known as the

free fermion point of the six-vertex model; some justification for this terminology will be
given in §3.2). The determinant in Theorem 1 then turns into a Cauchy determinant, and
the partition function factorises as

(6) Zn(x1, . . . , xn; y1, . . . , yn)|q=i = (2i)n(−1)n(n−1)/2
n∏

j=1

yj
∏

1≤i<j≤n

(xi + xj)(yi + yj)

We can now take the homogeneous limit as above; reintroducing the extra factor (−i+
√
λ)−n

needed for the separate weights c1 and c2 as in (4), we obtain

detλIn = (1 + λ)n(n−1)/2

an equality which can be easily derived from the definition of the λ-determinant.
To obtain the weights of §2.2.8, we need to set λ = 1 and to multiply by the factor (1+ i)n,

resulting in
#DTn = 2n(n+1)/2

which is the well-known formula for the number of Domino Tilings of the Aztec Diamond
[EKLP92a].

2.5. The Razumov–Stroganov correspondence. Let us now redraw the 7 configurations
in DWBC3 as Fully Packed Loop configurations, cf §2.2.6:

https://oeis.org/A005130
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Though blue and red paths play symmetric roles, we focus on the red paths, hence the
dotting of the blue paths.

We remark that we can group together configurations according to the connectivity of the
external (red) edges, i.e., the pairing between them induced by the paths. In the list above,
each column corresponds to a different connectivity. We can then do a refined counting
according to connectivity, leading for n = 3 to (2, 2, 1, 1, 1).

A first observation is that if we rotate the connectivity (as unnatural as it may seem
considering we are on the square lattice), then the counting remains the same: here the 2s
and the 1s form an orbit each under connectivity rotation. Such a statement can be proven
(for all n) [Wie00], by defining a “gyration” operation on FPLs.

Furthermore, Razumov and Stroganov conjectured in [RS04] that the vector of FPL num-
bers, e.g. (2, 2, 1, 1, 1) at n = 3, is the eigenvector of a matrix that is easy to write explicitly;
in fact, this matrix is nothing but the Hamiltonian of a quantum integrable system! See
the review [dG09] for a full statement of this correspondence, as well as generalisations.
This conjecture was proven in [CS11] by a nontrivial use of the gyration of [Wie00], though
various generalisations are still open.

3. Symmetric polynomials and quantum integrability

Let Λn = Z[z1, . . . , zn]
Sn be the ring of symmetric polynomials in n variables. The study

of Λn is a classical subject of algebraic combinatorics [Mac79].1 The most famous basis of Λn

(as a free Z-module) consists of Schur polynomials, whose definition will be reviewed below.
The first connection to integrability can be traced back to work of the Kyoto school, see

[JM83] and references therein, where it is observed that Schur polynomials are particular
solutions of the KP hierarchy. Classical integrability is not directly related to the present
lattice models; however, the key ingredient of this construction is (quantum mechanical)
free fermions, suggesting that perhaps our free-fermionic six-vertex model (cf §2.4.2) may
be relevant.

Such a connection between Schur polynomials and a particular case of the free-fermionic
six-vertex model, namely the free fermionic five-vertex model, was indeed found in [ZJ09a].
The connection to the work [JM83] can be found in [ZJ09b].

The most general free-fermionic six-vertex, as well as a comprehensive overview of the
connection to Schur polynomials, can be found in [Nap23].

It is important to stress that the connection between solvable lattice models and sym-
metric polynomials extends beyond free-fermionic models, and there is by now an extensive
literature on the subject; see for example the lattice models of [MS13, WZJ19] related to
symmetric Grothendieck polynomials or of [Tsi06, WZJ16] for Hall–Littlewood polynomials;
and the two applications that we mention in what follows, namely the Cauchy identity (§3.4)
and product rule (§3.5) can be extended to these other families of polynomials.

There is also a deep connection to geometry which we cannot develop here; see e.g. [GK17,
Kor14, Kor21, KZJ17] for a connection between various cohomology rings, their Schubert
classes and their polynomial representatives, to quantum integrable systems. In this lan-
guage, the example of Schur polynomials which we develop now is related to the (ordinary)
cohomology of Grassmannians.

1A closely related concept is that of symmetric functions, that is loosely, of symmetric polynomials in an
infinite number of variables. Although such an n → ∞ limit can be taken in our lattice models, we shall not
discuss it here.
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3.1. Schur polynomials. Define Schur polynomials as follows. A partition with n parts is
a weakly decreasing sequence of nonnegative integers λ = (λ1 ≥ · · · ≥ λn ≥ 0) (zero parts
can be omitted, so that partitions with less than n parts are implicitly padded with zeroes).
To such a λ we associate the polynomial

(7) sλ(z1, . . . , zn) =
deti,j=1,...,n(z

λj+n−j
i )

∏

1≤i<j≤n(zi − zj)

(Jacobi’s bilalternant formula, which is a special case of Weyl’s character formula).
It is easy to see that sλ is a homogeneous symmetric polynomial in the zi, of degree

|λ| =
∑n

i=1 λi. Also note the specialisation

(8) sλ(1, . . . , 1) =
∏

1≤i<j≤n

λi − i− λj + j

j − i

(hook-length formula).
We shall take (7) as a definition of sλ and obtain as a byproduct of our lattice model

formulation of sλ two equivalent expressions.
The first one is the Jacobi–Trudi formula. Introduce the generating series

(9) h(u) =
n∏

i=1

1

1− uzi
h(u) =

∞∑

k=−∞

hku
k

Then one has

(10) sλ(z1, . . . , zn) = det
i,j=1,...,n

hλj−j+i

Secondly, recall that a partition can be viewed as a Ferrers diagram, e.g., (4, 1) = .
A Semi-Standard Young tableau with shape λ and alphabet {1, . . . , n} is a filling of the

diagram of λ with those integers which is weakly increasing along rows and strictly decreasing
along columns. Denote their set SSYTn(λ). Then one has

(11) sλ(z1, . . . , zn) =
∑

T∈SSYTn(λ)

n∏

i=1

z
#{occurrences of i in T}
i

3.2. Partial DWBC. We consider the six-vertex model with boundary conditions which
generalise the DWBC. Note that all the alternate representations of §2.2 can be adapted
to the present setting, and in what follows we shall use the path representation of §2.2.1 to
describe our configurations.

We fix a positive integer n and a partition λ1 ≥ · · · ≥ λn ≥ 0, as well as an integer
p ≥ n + λ1 (whose value will turn out to be irrelevant). We then consider the six-vertex
model on a n× p grid, where the boundary conditions associated to λ are the following: on
West, South, and East sides, we have the same as for DWBC, that is in terms of paths, n
paths entering from the West and none entering/exiting from South/East; and on the North
side, the paths exit in such a way that the ith path counted from the right is λi steps to
the right of its leftmost position (i.e., exits at column n + 1 − i + λi). See Figure 10 for an
example.

The Boltzmann weights are the same as in 2.4.2, except we use a slightly different nor-
malisation:

(12) a = 1 b = z c1 = 1 + z2 c2 = 1
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Figure 10. An example of a lattice path configuration with top boundary
given by λ = (4, 1, 0, 0).

Figure 11. An example of an extended lattice path configuration with top
boundary given by λ = (4, 1, 0, 0).

In terms of paths, this means that vertices where paths go straight through have a weight
of z, and bends to the right when there is no path touching have a weight of 1 + z2.

We use a superscript (1) to denote partition functions with such a choice of Boltzmann
weights, for reasons to become clear below. Furthermore we want the weights row- (but not

column-) dependent: we set z = zi at row i of the lattice. We thus define Z
(1)
λ (z1, . . . , zn)

to be the partition function with boundary conditions associated to λ. Note that the same

YBE argument that we used for DWBC shows here that Z
(1)
λ (z1, . . . , zn) is a symmetric

polynomial in the zi.
We have the following formula (as a special case of a result first stated in [ZJ12]; see also

[BBF11] for a similar special case of the latter):

Theorem 2.

(13) Z
(1)
λ (z1, . . . , zn) =

∏

1≤i<j≤n

(1 + zizj) sλ(z1, . . . , zn)

We give here a sketch of proof. First, it is convenient to extend the configurations: define
“extended” boundary conditions associated to λ by adding n columns to the left, resulting
in a n× (n + p) grid, and having paths start on the South side at the n leftmost locations,
see Figure 11.

It is easy to see that all paths go through the dashed line separating the new region from

the old one, so that the partition function Z̃
(1)
λ satisfies Z̃

(1)
λ = Z

(1)
n Z

(1)
λ , where Z

(1)
n is nothing

but the DWBC partition function which we have already computed in §2.4.2, cf (6); adapting
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the result to our new conventions, we find Z
(1)
n =

∏

1≤i≤j≤n(1 + zizj), and therefore

Z̃
(1)
λ (z1, . . . , zn) =

∏

1≤i≤j≤n

(1 + zizj) Z
(1)
λ (z1, . . . , zn)

The “free fermionic” nature of the Boltzmann weights which we have chosen means that
we can apply Wick’s theorem, also known as the LGV formula in the context of lattice
paths [GV85, Lin73]: the partition function is the determinant of partition functions of a

single path coming from a given starting point to a given endpoint. Denote by h
(1)
k the

partition function of a single path whose endpoint is k + n steps to the right of its starting
point (because our Boltzmann weights are independent of the column, only the horizontal
distance between the starting and end points matter; the shift by n is chosen for convenience).

Introduce the generating series h(1)(u) =
∑

k h
(1)
k uk. A simple calculation shows that

h(1)(u) =

n∏

i=1

1 + u/zi
1− uzi

Conversely, given h(1)(u), one can recover h
(1)
k by writing h

(1)
k =

∮
du
2πi

u−k−1h(1)(u) where the
contour is around zero. A standard calculation based on residues then leads to

Z̃
(1)
λ (z1, . . . , zn) = det h

(1)
λj−j+i =

∑

σ∈Sn

(−1)ℓ(σ)
∮ n∏

j=1

duj

2πi
u
−λj+j−σ(j)
j

n∏

i,j=1

1 + uj/zi
1− ujzi

=

∮ n∏

j=1

duj

2πi
u
−λj+j
j

∏

1≤j<k≤n

(uj − uk)

n∏

i,j=1

1 + uj/zi
1− ujzi

=
∑

σ∈Sn

(−1)ℓ(σ)z
λj−j

σ(j)

∏

1≤j<k≤n

(zj − zk)

∏n
i,j=1(1 + (zσ(j)zi)

−1)
∏n

i,j=1
i 6=σ(j)

(1− zi/zσ(j))

=
n∏

i,j=1

(1 + zizj)
det(z

λj+n−j
i )

∏

1≤i<j≤n(zi − zj)

which is the desired formula by comparing with (7).

3.3. The five-vertex model limit. We shall now consider the limit where the zi are small,

so that Z
(1)
λ ∼ sλ. In terms of lattice paths, it means that paths which have as few straight

parts as possible are favoured: the leading configurations are those in which the paths only
go East or North-East.

We can formalise this reasoning as follows. We want to rescale weights (12) by z 7→ √
αz,

but as usual we want to get rid of the square root by separating b1 and b2. It is easy to see
that in a configuration with boundary conditions given by λ, there are |λ| more vertices of
type b2 than of type b1; this means that if we choose the weights

(14) a = 1 b1 = αz b2 = z c1 = 1 + αz2 c2 = 1

and denote the corresponding partition functions with the superscript (α), then one has

Z
(α)
λ (z1, . . . , zn) = α−|λ|/2Z

(1)
λ (

√
αz1, . . . ,

√
αzn)

Plugging this into (13) and using the homogeneity property of Schur polynomials, one finds

Z
(α)
λ (z1, . . . , zn) =

∏

1≤i≤j≤n

(1 + αzizj) sλ(z1, . . . , zn)
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Figure 12. From a five-vertex lattice path configuration to a SSYT.

and similarly, Z̃
(α)
λ (z1, . . . , zn) =

∏n
i,j=1(1 + αzizj) sλ(z1, . . . , zn).

We can now set α = 0, which means the vanishing of the vertex b1 (paths cannot go
straight North): the resulting model is called the (free-fermionic) five-vertex model.

In this limit, we recover directly the two alternative definitions of Schur polynomials.

Firstly, note that Z̃
(α)
λ = det h

(α)
λj−j+i with the generating series given by h(α)(u) = 1+αu/zi

1−uzi
.

By setting α = 0, we find sλ = Z̃
(0)
λ = det h

(0)
λj−j+i; but h

(0)(u) = h(u) (cf (9)) and we recover

the Jacobi–Trudi formula (10).
Secondly, five-vertex model configurations with boundary conditions given by λ (extended

or not – the extension is unique at α = 0) are in bijection with SSYTs of shape λ. For each
path (from bottom to top), record the rows where the path goes East and turn this into one
row of the tableau, see Figure 12 for an example. Since a weight zi is assigned to each such
East move on row i, this clearly matches with formula (11).

Remark. Such five-vertex configurations are also in bijection with pipe dreams of Grass-
mannian permutations [BB93, FK96], see [ZJ09b, §5.2.5].

3.4. Cauchy identity. A classical identity is that

(15)
∑

λ

sλ(w1, . . . , wm)sλ(z1, . . . , zn) =
1

∏m
i=1

∏n
j=1(1− wizj)

(for purposes of convergence, we assume |wizj | < 1 for all i, j). It is tempting to try to
interpret the l.h.s. as a partition function. An example of a configuration contributing to
such a partition function can be found on Figure 13. For simplicity, we use the five-vertex
model of the previous section (though the same reasoning would work with the more general
free-fermionic six-vertex model). The boundary conditions are empty on all sides except the
West side on which m red paths and n green paths enter. We mark vertices with a coloured
dot indicating which type of path can go through them: the green vertices have the usual
five-vertex Boltzmann weights, i.e., a weight of zj for each step to the right on green row j,
whereas the configurations around red vertices are obtained by vertical flip from the usual
ones, with a weight of wi per step to the right on red row i. The width p needs to be taken
to infinity in order to accommodate for arbitrarily large partitions.
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Figure 13. A configuration contributing to sλ(w1, . . . , wm)sλ(z1, . . . , zn) with
λ = (3, 1).

We still have the Yang–Baxter equation for green vertices, and similarly for red vertices,
but also a mixed YBE:

=

where the extra multicoloured crossing is given by the Boltzmann weights

1 1− wz z w 1 1

(A second mixed YBE can be written with roles of green and red vertices switched, but is
trivially related to the first one.)

Let us now show how to obtain (15) for m = n = 1. We have

pppp

= (1− wz)

pppp

+

pppp

= (1− wz)

p−1
∑

k=0

s(k)(w)s(k)(z) + (wz)p

=

p

=

p

= 1

where in the last line, we used the fact that green (resp. greered) paths can only go
North/East (resp. South/East). This allows to compute the sum in the second line, and
by taking p to infinity, one recovers (15). The case of general m and n can be treated
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similarly, by introducing a 45 degree rotated m × n block of multicoloured crossings to the
right of the partition function representing the l.h.s. of (15), noting that up to vanishingly
small terms as p → ∞ one obtains

∏

i,j(1 − wizj) times the l.h.s., then applying the YBE
repeatedly and finding that the only option is the empty configuration, with weight 1.

3.5. Product rule. Because Λn is a ring, given a basis such as the sλ, one can define
structure constants (which turn out to be independent of n):

sλsµ =
∑

ν

cνλ,µsν

These are the celebrated Littlewood–Richardson coefficients, for which a plethora of formulae
exists. For example, s2(1) = s(2) + s(1,1). In general, they are known to be nonnegative and
enumerate various combinatorial objects such as Littlewood–Richardson tableaux.

One can ask whether methods from integrability can be used to compute the cνλ,µ. The
answer is that one can, but on condition that one use a model of rank 2 (i.e., with two
conserved quantities at each vertex) [ZJ09a], in line with the general philosophy that to
multiply and expand two partition functions, the model should have the sum of ranks of the
models associated to the two partition functions [KZJ17].

Consider a model on a size n triangular region of a honeycomb lattice (so, with n2 vertices).
The boundary conditions are the ones associated to λ using green paths on the NorthWest
side, the ones associated to µ using red paths on the NorthEast side, and a new one on the
South side, namely that green paths have ending locations given by ν as usual, except the
remanining spots are taken by red paths. The allowed vertices are:

(note that both red and green paths are conserved across vertices). Then cνλ,µ is the number
of configurations with such rules (i.e., all Boltzmann weights are 1).

A few comments are in order. The model above was actually introduced earlier in the
physics literature in the context of random tilings: in [Wid93], Widom showed its equivalence
to a model of square-triangle tilings and proved its integrability. Secondly, there is an
easy bijection between the configurations of this model and Knutson–Tao puzzles [KT03],
whose enumeration is known to reproduce Littlewood–Richardson coefficients. The bijection
consists in replacing every edge with a label 0, 1, 10 according to: (see also [Pur08] for a
bijection between puzzles and square-triangle tilings, completing the loop of equivalences)

0 1 10

For example, here are the configurations contributing to s2(1) and the corresponding puzzles:



20 PAUL ZINN-JUSTIN

(1)(1)

(2)

(1) (1)

(1, 1)

01
10

11
1

00
0

110
0

00
0

100
1

11
1

01
10

11
1

00
0

01
10

11
1

01
10

11
1

00
0

110
0

00
0

11
1

00
0

100
1
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