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Abstract

The human tear film (TF) is thin multilayer fluid film that is critical for clear
vision and ocular surface health. Its dynamics are strongly affected by a floating
lipid layer and, in health, that layer slows evaporation and helps create a more
uniform tear film over the ocular surface. The tear film lipid layer (LL) may have
liquid crystalline characteristics and plays important roles in the health of the
tear film. Previous models have treated the lipid layer as a Newtonian fluid in
extensional flow. We extend previous models to include extensional flow of a thin
nematic liquid crystal atop a Newtonian aqueous layer with insoluble surfactant
between them. We derive the resulting system of nonlinear partial differential
equations for thickness of the LL and aqueous layers, surfactant transport and
velocity in the LL. Evaporation is taken into account, and is affected by the LL
thickness, internal arrangement of its rod-like molecules, and external conditions.
Despite the complexity, this system still represents a significant reduction of the
full system. We solve the system numerically via collocation with finite difference
discretization in space together with implicit time stepping. We analyze solutions
for different internal LL structures and show significant effect of the orientation.
Orienting the molecules close to the normal direction to the TF surface results in
slower evaporation, and other orientations have an effect on flow, showing that
this type of model has promise for predicting TF dynamics.
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1 Introduction

As a result of each eye blink, the ocular surface is coated with thin multi-layer liq-
uid film that typically stabilizes rapidly after each blink [1]. In health, the tear film
helps protect the eye from foreign particles and aids clear vision [2]. The normal tear
film structure may fail to form initially, or may, sometime after a blink, develop tear
breakup, where the tear film fails to coat the ocular surface [3, 4]. Tear breakup (TBU)
and associated hyperosmolarity (excessive saltiness of the local tears) is thought to
play an important role in the development of dry eye disease (DED), which affects
millions of people [5–7]. In this work, we study a model for the dynamics for TBU
in a small area of the tear film. We study one possible model for how the lipid layer
internal structure may be incorporated and affect the hyperosmolarity in TBU.

We begin with a brief primer on the tear film’s structure. A sketch of a cross section
of a small part of the tear film is shown in Fig. 1. Proceeding inward from air, the
outermost layer is the tear film lipid layer (LL); it averages on the order of tens of
nanometers in thickness [1, 8, 9]. The LL is insoluble in water and thus floats upon the
next layer inward, the aqueous layer (AL). The aqueous layer averages a few microns
in thickness [10, 11], and coats a layer of transmembrane mucins and other molecules
at the ocular surface called the glycocalyx [12–15]. Finally, the outer surface of the
corneal epithelium is the beginning of the ocular surface itself [16].

Simultaneous imaging of the LL and the aqueous layer [17] shows a strong corre-
lation between LL dynamics and TBU. The LL is typically thought to be a barrier to
evaporation, thus providing an important function to preserve the tear film between
blinks [18, 19]. However, the lipid layer composition [20] and structure [21–23] are
complex and not yet fully understood. Meibum, an oily secretion from meibomian
glands in the eyelids [24], is the primary component of the lipid layer; it is not uncom-
monly used as a model for the lipid layer. X-ray scattering methods applied to in vitro

meibum films have suggested that there are ordered particles in the meibum films
with layered structures [23]; these particles may have liquid crystal structure. Hot-
stage imaging of meibum droplets have shown birefringence [20], another sign of order

Fig. 1 A sketch of the tear film on the ocular surface. Here LL denotes the lipid layer, AL the
aqueous layer, G the glycocalyx, and E is the outermost layer of the corneal epithelium.
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within the meibum. And in the meibomian glands [24] in the rat eyelid, freeze fracture
with electron microscopy shows a layered structure of the lipids inside the cells that
are the source of the meibum [25]. We interpret this evidence to suggest that the tear
film lipid layer could be an extended liquid crystalline layer (possibly with defects)
[26, 27]. It is not known whether the entire lipid layer has these qualities, or whether
isolated chunks or lamellae of structured material float in the layer; however, there
is general agreement that the LL has non-Newtonian properties [20, 22, 23, 28, 29].
These areas of structure in the lipid layer are thought to provide the barrier against
evaporation of the aqueous layer [20, 23, 27].

Imaging of ocular surface shows cooling during the interblink [30–32] and typically
a correlation between TBU and tear breakup [33, 34]. Cooling of liquid crystals facil-
itates orientation of the molecules in the same direction [21, 35]. The ocular surface
cools about 1 to 2 ◦C during the interblink period when the eye is open [30–32], and
is heated during the blink; thus there is thermal cycling [36, 37] of the ocular surface
as well as the mechanical cycling from blinks. The cooling of the lipid layer may also
encourage the formation of liquid crystal structure in vivo [21, 23].

Measurements of AL thinning rates show dependence on LL thickness [38].
Increased evaporation is observed at sufficiently thin LL thickness. Typical rates for
a healthy LL were around 1 to 2 µm/min, but rates increased significantly for LL
thickness below 20 nm. Measurement of thinning rates for 20 subjects and four mea-
surements each showed a distribution of thinning rates up to about 25 µm/min [38].
Thickness is not the only LL property that affects AL thinning rate [39, 40].

Turning to mathematical approaches, various mathematical models for tear film
dynamics have been developed in the last 40 years or so. We briefly mention a sample
of them proceeding from largest scale to smallest. There have been several papers
solving for flow over the open eye-shaped domain between blinks [41–45] and including
blinking [46] to gain insight into overall flows and imaging of them. Flow over whole
open eye including blinking has been addressed by compartment models of the tear
film [47, 48]. Flows on one-dimensional domains spanning the open eye (vertically
crossing its center) were early efforts to study tear film dynamics [49–53]. A moving
end was incorporated into modeling of tear film dynamics in one-dimensional domains
in order to study a variety of effects: deposition of the TF [49, 54, 55]; insoluble
surfactants representing polar lipids [56–58]; heat transfer [36, 37]; curvature of the
ocular surface [59, 60]; the nonpolar lipid layer [61, 62]; shear thinning and eye drop
design [63, 64]. Local models of TBU have used 1D models on a smaller region near
where the tear film fails [65–74]. Including fluorescein dye transport and fluorescence
has enabled fitting of models to in vivo fluorescence data within TBU to estimate
parameters that are not possible to directly measure at this time [68, 71, 75, 76].
Recently, ordinary differential equation models with no space dependence have been
successfully fit to fluorescence data in small TBU spots and streaks [77]. Those models
have been coupled to a neural-network based data extraction system to greatly expand
the amount of TBU instances that may be studied [78].

Molecular dynamics (MD) simulations of the lipid layer have also given insight
into the structure and function of the lipid layer. Coarse grained models were initially
employed [79, 80] and those models suggest that the LL may not be so as well organized
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as layers of nonpolar lipids atop a polar lipid monolayer. Later, all-atom models have
suggested that the specific polar lipids [81, 82] and wax esters [27] may form ordered
states to slow evaporation of water from the aqueous layer. MD simulations are likely to
continue to give important insights into LL structure and function, but they currently
can only be solved at small space and time scales. Those insights need to be converted
to larger scale models to address other situations such as TBU.

Returning to mechanics- and differential equations-based theories, modeling of
extensional flow was developed over the last century, and relevant studies for our
work were summarized in Taranchuk et al. [83]. Of particular interest was the work
of Cummings et al. [84], who studied extensional flow of thin sheets of nematic liquid
crystals in a weakly elastic limit. They used the Ericksen-Leslie equations and multiple
scale perturbation methods to reduce the equations to a small partial differential
equation (PDE) system. In Taranchuk et al. [83], we extended their model [84] by
rescaling the Ericksen-Leslie equations in a new limit for the case of moderate elastic
effects. The scaling in Taranchuk et al. [83] is based on those developed for nematic
thin films on a substrate [85, 86]. Both the weakly elastic and moderately elastic limits
were studied for several different boundary conditions imposed at the sheet ends, and
the boundary conditions were found to strongly affect the shape of the evolving sheet
under stretching [83].

We aim to combine the aspects of a few previous models in this work. A dynamic
extensional Newtonian lipid layer was combined with a moving end and a shear-
dominated Newtonian aqueous layer previously by Bruna and Breward [61] and
Zubkov et al. [62]. A model for TBU dynamics that used a more sophisticated approach
to evaporation but a fixed LL thickness distribution was studied by Peng et al. [67].
TBU dynamics with two Newtonian layers was studied by Stapf et al. [87]. Here, we
modify that last work [87] by putting a weakly-elastic nematic liquid crystal material
in extension [83, 84] to represent the LL. This new model will incorporate nematic
molecule orientation into the evaporation resistance. We believe that this model is
the first to combine the flow of liquid crystal and Newtonian layers in this way, and
also the first to incorporate not just thickness but structure of the lipid layer into the
evaporation resistance.

The paper is organized as follows. In Section 2 we describe the problem formulation,
and in Sections 2.1 through 2.3, we present the full fluid dynamics model and scale
it into nondimensional form. In Section 2.4, we derive a multiple-scale, or lubrication
theory, approximation to the flow [88, 89] that we will solve computationally for a
sample of conditions. Section 2.5 provides details of the numerical method used to
solve the model. In Section 3 we present our results. These include profiles of the film
thicknesses, velocities and pressures that lead to different outcomes depending on the
internal orientation of the liquid crystal molecules. Finally, in Section 4 we discuss the
results and outline our conclusions.

2 Model Formulation

We model tear film dynamics using two fluid layers. The bottom layer represents the
aqueous layer of the tear film and is modeled as a Newtonian fluid, with thickness
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h1. The top layer represents the lipid layer, and is modeled as nematic liquid crystal
with weak elasticity, with thickness h2. A schematic diagram of the model is shown in
Figure 2. This model accounts for loss of water through evaporation (Je) and influx of
water from the cornea through osmosis (Jo). Osmolarity, c, describes the concentration
of salts and other solutes in the aqueous layer that induce this flow across the corneal
surface. These solutes are transported in the water layer via advection and diffusion.
Surfactant, largely comprising polar lipids, lies on the aqueous-lipid interface and
changes the surface tension. We track the surfactant surface concentration, Γ, which
is transported via advection and diffusion on that surface. Non-polar lipids are found
in the LL and are assumed to be organized as a nematic liquid crystal. The director n
is the preferred angle of liquid crystal molecules through the film, as depicted in the
upper right of Figure 2.

As we are concerned with tear film thinning and breakup, we define the TBU
condition as the point at which the AL reaches a minimum thickness of 0.5µm. This
is roughly the height of the glycocalyx [12, 13]; when the aqueous layer thins to this
point, the LL may rest on the top of the glycocalyx resulting in an area of dewetting
[3].

Fig. 2 Schematic of the two layer tear film model.

2.1 Governing equations

We consider the case of two-dimensional flow in the (x′, y′)-plane. We use sub-
scripts to indicate the fluid layer under consideration; i = 1 corresponds to the
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AL, and i = 2 corresponds to the LL. The fluid velocity is given by u′

i
=

(u′

i(x
′, y′, t′), v′i(x

′, y′, t′)) , i = 1, 2. Primes denote dimensional quantities. The direc-
tor field, which describes the preferred orientation of the molecules relative to the
y-axis, is n = (sin θ(x′, y′, t′), cos θ(x′, y′, t′)). The osmotic flux of water into the
domain is given by J′

0
= (0, J ′

0
).

Let s′j , j = 0, 1, 2 be the position on the boundaries, with corresponding unit

normal vector n̂′

j and unit tangent vector t̂′j . For example at the lipid-air interface,
y′ = h′, we have

s′
2
= (x′, h′), n̂′

2
=

1
√

1 + h
′2

x′

(−h′

x′ , 1), t̂′
2
=

1
√

1 + h
′2

x′

(1, h′

x′).

At the aqueous-lipid interface, h′

1 replaces h′. At the corneal-aqueous interface, y′ = 0,
we assume the cornea is flat.

s′
0
= (x′, 0), n̂′

0
= (0, 1), t̂′

0
= (1, 0).

2.1.1 Aqueous layer

Inside the AL, 0 < y′ < h′

1
, we have conservation of mass and momentum using

the Navier-Stokes equations. The advection-diffusion equation governs osmolarity
transport within the AL. The equations, respectively, are:

∇′ · u′

1 = 0, (1)

ρ1(u
′

1t + u′

1 · ∇
′u′

1) = −∇′p′1 + µ1∆
′u′

1, (2)

c′t′ + u′

1 · ∇
′c′ −D1∆

′c′ = 0, (3)

where the divergence of u′

1
is ∇′ ·u′

1
= u′

1x′ +v′
1y′ , the gradient is ∇′u′

1
=

[

u′

1x′ v′
1x′

u′

1y′ v′
1y′

]

,

and the Laplacian of the first component of u′

1
is ∆′u′

1
= u′

1x′x′ + u′

1y′y′ .

2.1.2 Lipid layer

Inside the LL, h′

1
< y′ < h′, we have conservation of energy, mass, and momentum

using the Ericksen-Leslie equations for liquid crystals. As liquid crystals are influenced
by electric fields, the complete Ericksen-Leslie equations include this effect [84]. In a
biological setting such as the eye this is not relevant, and so we do not include those
effects in the equations below.

∂

∂x′

i

(

∂W ′

∂θx′

i

)

−
∂W ′

∂θ
+ g̃′i

∂ni

∂θ
= 0, (4)

−
∂π′

∂x′

i

+ g̃′k
∂nk

∂x′

i

+
∂t̃′ik
∂x′

k

= 0, (5)

6



∂u′

i

∂x′

i

= 0. (6)

These equations are defined fully below:

∂

∂x′

(

∂W ′

∂θx′

)

+
∂

∂y′

(

∂W ′

∂θy′

)

−
∂W ′

∂θ
+ g̃′x

∂nx

∂θ
+ g̃′y

∂ny

∂θ
= 0, (7)

−
∂π′

∂x′
+ g̃′x

∂nx

∂x′
+ g̃′y

∂ny

∂x′
+

∂t̃′xy
∂y′

+
∂t̃′xx
∂x′

= 0, (8)

−
∂π′

∂y′
+ g̃′x

∂nx

∂y′
+ g̃′y

∂ny

∂y′
+

∂t̃′yx
∂x′

+
∂t̃′yy
∂y′

= 0, (9)

∂u′

2

∂x′
+

∂v′
2

∂y′
= 0, (10)

where, working in two dimensions,

g̃′i =− γrN
′

i − γte
′

iknk, e′ij =
1

2

(

∂u′

i

∂x′

j

+
∂u′

j

∂x′

i

)

, (11)

N ′

i = ṅ′

i − ω′

iknk, ω′

ij =
1

2

(

∂u′

i

∂x′

j

−
∂u′

j

∂x′

i

)

, π′ = p′
2
+W ′, (12)

W ′ =
1

2

[

K1(∇
′ · n)2 +K3((n · ∇′)n) · ((n · ∇′)n)

]

, (13)

t̃′ij = α′

1nknpe
′

kpninj + α′

2N
′

inj + α′

3N
′

jni + α′

4e
′

ij + α′

5e
′

iknknj + α′

6e
′

jknkni. (14)

Summation over repeated indices is understood, with i, j, k = 1, 2, and ṅi denotes the
convective derivative of the ith component of n. We use summation notation here as it
is standard when working with the Ericksen-Leslie equations. We further assume that
the elastic constants are equal; that is K = K1 = K3. These liquid crystal quantities
are defined further in Table 1.

2.1.3 Boundary conditions

Aqueous-corneal interface

At y′ = 0, we have velocity continuity and a no flux boundary condition for osmolarity
transport. These are, respectively:

u′

1 = J0, (15)

c′ (u′

1 − s′0t′)−D1∇
′c′ = 0. (16)

Note that as we assume the cornea is flat, s′0t′ = 0.
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Table 1 Liquid crystal variables and parameters [90].

Quantity Description

n = (sin θ, cos θ) director field
θ(x′, y′, t′) angle the director angle makes with the y-axis
p′
2

pressure in LL
W ′ bulk energy density
π′ = p′

2
+W ′ modified pressure

g̃′i viscous dissipation
e′ij rate of strain tensor

N ′

i co-rotational time flux of the director n

ω′

ij vorticity tensor

τV
′

2ij viscous stress tensor

τE
′

2ij elastic stress tensor

τ ′
2

stress tensor
α′

i, i = 1, ...,6 Leslie viscosities (Newtonian: µ′ = α′

4
/2, all other αi = 0)

γ′

r = α′

3
− α′

2
rotational/twist viscosity

γ′

t = α′

6
− α′

5
torsion coefficient

K1, K3 elastic constants for splay and bend respectively

Aqueous-lipid interface

At y′ = h′

1, we have velocity continuity, aqueous and lipid mass conservation, and the
stress balance. In addition, we have a no flux boundary condition for osmolarity trans-
port, and the anchoring boundary condition for the LL. The equations, respectively,
are:

(u′

1 − u′

2) · t̂
′

1 = 0, (17)

ρ1(u
′

1 − s′1t′) · n̂
′

1 = J ′

e, (18)

ρ2(s
′

1t′ − u′

2) · n̂
′

1 = 0, (19)

(τ ′1 − τ ′2) · n̂
′

1 = −γ′

s1n̂
′

1∇
′ · n̂′

1 +∇′

s1γ
′

s1, (20)

c′ (u′

1 − s′1t′)−D1∇
′c′ = 0, (21)

θ = θB. (22)

To resolve the stress balance into tangential and normal stress components, we take the
dot product of the stress balance and t̂′1 or n̂′

1 respectively. Here ∇′

s1 = (I− n̂′

1n̂
′

1) ·∇
′

is the surface gradient, where I is the identity matrix [91].

Lipid-air interface

At y′ = h′, we have lipid mass conservation, stress balance, and anchoring respectively:

ρ2(u
′

2 − s′2t′) · n̂
′

2 = 0, (23)

τ ′2 · n̂
′

1 = −γ2n̂
′

2∇
′ · n̂′

2, (24)

θ = θB. (25)

The stress balance can be resolved into components in the same way as above, using
the unit tangent and normal vectors at this interface, t̂′

2
and n̂′

2
.
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2.1.4 Surfactant transport

At the aqueous-lipid interface y′ = h′

1
, we have surfactant transport and the linear

equation of state for the surface tension, respectively:

Γ′

t′ +∇′

s1 · (Γ
′u′

1) = Ds∇
′
2

s1Γ
′, (26)

γ′

s1 = γ1 −RT0Γ
′. (27)

2.1.5 Osmosis

The effect of osmosis is determined by the difference in concentration on either side
of the aqueous-corneal interface y′ = 0,

J′

0 · n̂
′

0 = Pc (c
′ − c0). (28)

2.1.6 Evaporation

To account for the effect of evaporation at the aqueous-lipid interface y′ = h′

1, we
modify a boundary layer model derived thoroughly in Stapf et al. [87]

J ′

e =
E0

1 + km

Dkh
′

2

. (29)

Here, Dk represents resistance to evaporation provided by the LL based on its thick-
ness and permeability. Its value comes from a nonlinear least squares fit to clinical data
[38] performed by Stapf et al. [87], which is very similar to that of Cerretani et al. [92].
We further modify Dk to include a dependence on the director angle of liquid crystals
in the LL. We suggest the orientation of the molecules affects evaporation through

J ′

e =
E0

1 + km

Dk (0.1 + 0.9 sin θB)h′

2

. (30)

The maximum evaporation rate occurs when θB = 0, which is ten times that of the
rate for θB = π/2. The minimum rate matches that used in [87].

2.2 Scalings

We non-dimensionalize the model using the following scalings:

x′ = Lx, h′

1 = ǫLh1, h′

2 = ǫδLh2,

y′ = ǫLy, u′

1 = Uu1, u′

2 = Uu2,

h′ = ǫLh, v′1 = ǫUv1, v′2 = ǫUv2,

t′ =
L

U
t, p′1 =

µ1U

ǫ2L
p1, p′2 =

µ2U

L
p2, (31)

Γ′ = Γ0Γ, c′ = Cc, W ′ =
K

δ2L2
W,
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J ′

o = ǫUJo, γ′

t = µ2γt, α′

i = µ2αi,

J ′

e = ǫρ1UJe, γ′

r = µ2γr.

Here h′ = h′

1 + h′

2 =⇒ h = h1 + δh2. The parameters used in the scalings are
given in Table 2, and the non-dimensional parameters are listed in Table 3.

We have chosen parameter values and initial conditions corresponding to those in
Stapf et al. [87] in order to compare results from their base case scenario. The model
from Stapf et al. [87] represents the lipid layer as a Newtonian fluid with evaporation
given as in Equation (134). We model the lipid layer as liquid crystal, and hypothesize
a way in which the orientation of the liquid crystal molecules may affect evaporation.
However, these liquid crystal parameters have not been measured in the human eye,
and so exactly what values the parameters should take is unknown. In general, there
are only a handful of liquid crystals whose properties have been measured. In the
realm of liquid crystals, we return to a Newtonian fluid by setting the Leslie viscosities
α′

i = 0, i = 1, 2, 3, 5, 6; α′

4 = 2µ2. The dynamic viscosity of the lipid layer, µ2, has
previously been taken to be 0.1 Pa s [61, 87]. Thus, to match this viscosity in the
Newtonian limit, we choose to set our Leslie viscosities to be three times the properties
of 5CB, a relatively well studied liquid crystal [90]; see Table 4 for the specific values
as well as the values of other physical parameters.

Table 2 Parameters used in model scalings

Parameter Value Units Description Reference

L = H1(γ1 + γ2)/(µ1E0)1/4 3.1779 × 10−4 m Length scale [87]
H1 3.5× 10−6 m AL thickness [93]
H2 5× 10−8 m LL thickness [19]
V = E0 5.093× 10−7 m/s Thinning rate [87]
U = V/ǫ 4.624× 10−5 m/s Horizontal velocity [87]
t = L/U 6.8726 s Time scale Calculated
C 300 mOsM Reference osmolarity [67]
Γ0 4× 10−7 mol/m2 Surfactant concentration [57, 61]

2.3 Nondimensional equations

2.3.1 Aqueous layer

Inside the AL, 0 < y < h1, the conservation of mass and momentum equations become

u1x + v1y = 0, (32)

ǫ2(u1t + u1u1x + v1u1y) =
1

Re1
(−p1x + ǫ2u1xx + u1yy), (33)

ǫ4(v1t + u1v1x + v1v1y) =
1

Re1
(−p1y + ǫ4v1xx + ǫ2v1yy), (34)
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Table 3 Nondimensional Parameters

Parameter Formula Value Description

ǫ H1/L 0.0110 Aspect ratio of AL
δ H2/H1 0.0143 Lipid to aqueous thickness ratio
Υ ǫ2µ2/µ1 0.0091 Reduced viscosity ratio
C1 ǫ3(γ1 + γ2)/(µ1U) 1.0001 Reduced aqueous capillary number
C2 ǫγ2/(µ2U) 43.8371 Reduced lipid capillary number
M ǫRT0Γ0/(µ1U) 187.7687 Reduced Marangoni number
E E0/(ǫρ1U) 1.0001 Evaporation parameter
R0 kmH2/(Dk) 17.68 Evaporative resistance of LL
P CPc/(ǫU) 0.1355 Osmosis parameter
Re1 ρ1UL/µ1 0.0113 Reynold’s number for AL
Pe1 UL/D1 9.1842 Péclet number for osmolarity diffusion
Pes UL/Ds 0.4898 Péclet number for surfactant diffusion

Table 4 Physical Parameters

Constant Value Units Description Reference

ρ1 1000 kg/m3 Density of liquid water [94]
ρ2 900 kg/m3 Density of lipid [61]
µ1 1.3× 10−3 Pa s Dynamic viscosity of water [61, 95]
µ2 = α′

4
/2 0.0978 Pa s Dynamic viscosity of lipid [90]

γ1 0.027 N/m Surface tension of water [96]
γ2 0.018 N/m Surface tension of lipid [97]
R 8.3145 J/(K mol) Ideal gas constant [94]
D1 1.6× 10−9 m2/s Osmolarity diffusion constant [98]
Ds 3× 10−8 m2/s Surfactant diffusion constant [61]
km 0.0182 m/s Mass transfer coefficient [87]
Dk 5.136× 10−11 m2/s Lipid permeability [87]
Pc 2.3× 10−10 kg/(mOsM m2 s) Corneal osmosis coefficient [67]
E0 5.0928 × 10−7 m/s Evaporative thinning rate [87]
T0 308.15 K Eye surface temperature [67]
α′

1
−0.0180 Pa s Leslie viscosity [90]

α′

2
−0.2436 Pa s Leslie viscosity [90]

α′

3
−0.0108 Pa s Leslie viscosity [90]

α′

4
0.1956 Pa s Leslie viscosity [90]

α′

5
0.1920 Pa s Leslie viscosity [90]

α′

6
−0.0624 Pa s Leslie viscosity [90]

γ′

r = α′

3
− α′

2
0.2328 Pa s Rotational viscosity [90]

γ′

t = α′

6
− α′

5
0.1296 Pa s Torsion coefficient [90]

θB 0 - π/2 radians Director angle [90]

and the osmolarity transport equation becomes

ǫ2
(

ct + cxu1 + cyv1 −
1

Pe1
cxx

)

−
1

Pe1
cyy = 0. (35)
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2.3.2 Lipid layer

In the LL, h1 < y < h, the Ericksen-Leslie equations become

ǫ2N̂
∂

∂x

(

∂W

∂θx

)

+ N̂
∂

∂y

(

∂W

∂θy

)

+ g̃x
∂nx

∂θ
+ g̃y

∂ny

∂θ
= 0, (36)

−ǫ2
∂p2
∂x

− ǫN̂
∂W

∂x
+ ǫg̃x

∂nx

∂x
+ ǫg̃y

∂ny

∂x
+ ǫ

∂τxx
∂x

+
∂τxy
∂y

= 0, (37)

−ǫ
∂p2
∂y

− N̂
∂W

∂y
+ g̃x

∂nx

∂y
+ g̃y

∂ny

∂y
+ ǫ

∂τyx
∂x

+
∂τyy
∂y

= 0, (38)

∂u2

∂x
+

∂v2
∂y

= 0. (39)

2.3.3 Boundary conditions

Aqueous-corneal interface

At y = 0, velocity continuity and the normal component of the no flux boundary
condition become, respectively:

u1 = 0, (40)

v1 = Jo, (41)

ǫ2cv1 −
1

Pe1
cy = 0. (42)

Aqueous-lipid interface

At y = h1, velocity continuity gives

(

1 + ǫ2h2

1x

)

−1/2 (
u1 − u2 + ǫ2[v1 − v2]h1x

)

= 0, (43)

aqueous and lipid mass conservation respectively give

(

1 + ǫ2h2

1x

)−1/2
(h1t + u1h1x − v1) + Je = 0, (44)

(

1 + ǫ2h2

1x

)−1/2
(h1t + u2h1x − v2) = 0. (45)

The stress balance becomes

(

1 + ǫ2h2

1x

)−1/2
[

(ǫτ1 −Υτ2) (−ǫh1x, 1)

]

=

(

1 + ǫ2h2

1x

)

−2

(C1 − ǫ2MΓ)h1xx

(

−ǫ2h1x, ǫ
)

− ǫ2M∇s1Γ, (46)

where we have used the nondimensional version of Equation (27), and

∇s1 = (1 + ǫ2h2

1x)
−1

[

∂x + h1x∂y
ǫh1x∂x + ǫh2

1x∂y

]

. (47)
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Finally, the normal component of the no flux boundary condition for osmolarity
transport and the anchoring boundary condition respectively become

(

1 + ǫ2h2

1x

)−1/2
[

−ǫ2cu1h1x + ǫ2c(v1 − h1t)−
1

Pe1

(

cy − ǫ2cxh1x

)

]

= 0, (48)

θ = θB. (49)

Lipid-air interface

At the lipid-air interface y = h, we have lipid mass conservation, stress balance, and
anchoring

(

1 + ǫ2h2

1x

)

−1/2
(ht + u2hx − v2) = 0, (50)

(

1 + ǫ2h2

1x

)

−1/2
[

τ2(−ǫhx, 1)

]

=
(

1 + ǫ2h2

x

)

−2 (

−ǫ2C2hxhxx, ǫC2hxx

)

, (51)

θ = θB. (52)

Surfactant transport

Surfactant transport at the aqueous-lipid interface y = h1 becomes

Γt +∇s1 · (Γu1) =
1

Pes
∇2

s1Γ. (53)

Osmosis

The equation for osmosis at y = 0 becomes

Jo = P
(

c−
c0
C

)

. (54)

Evaporation

The equation for the evaporation at y = h1 becomes

Je =
E

1 +R(θB)h2

, (55)

where

R(θB) = R0(0.1 + 0.9 sin θB). (56)

Then, θB = π/2, describing a vertical orientation of the molecules, gives the default
evaporative resistance of R = R0 = 17.68, while an angle of θB < π/2 reduces
the evaporative resistance, with θB = 0, describing a horizontal orientation of the
molecules, reducing resistance by a factor of 10.
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2.4 Model derivation

Now we asymptotically expand all the dependent variables in powers of the small
parameter ǫ ≪ 1. For example,

Γ(x, t) ∼ Γ0(x, t) + ǫΓ1(x, t) + ǫ2Γ2(x, t) + · · ·

Note that h1, h2, h, and Γ are functions of x and t only. Initially, all other variable
expansions are functions of x, y, and t unless they are determined to be independent
of one or more variables. We substitute these expansions into the nondimensionalized
equations and collect like powers of ǫ.

2.4.1 Leading order

At leading order, the equations are greatly simplified. Working outward from the
cornea toward the air, the equations are as follows.
At the corneal-aqueous interface y = 0,

u10 = 0, (57)

v10 = Jo, (58)

1

Pe1
c0y = 0, (59)

with osmosis given by

Jo = P (c0 − 1). (60)

Inside the aqueous layer, 0 < y < h1,

u10x + v10y = 0, (61)

1

Re1
(p10x − u10yy) = 0, (62)

1

Re1
p10y = 0, (63)

1

Pe1
c0yy = 0. (64)

At the aqueous-lipid interface y = h1,

u10 − u20 = 0, (65)

h10t + u10h10x − v10 = −Je, (66)

h10t + u20h10x − v20 = 0, (67)

Υ

4

[

− 4 + α2 − α3 − α5 − α6 + (α2 + α3 − α5 + α6) cos(2θ0)
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+
α1

2
(cos(4θ0)− 1)

]

u20y = 0, (68)

−
Υ

4

[

α1 + α2 + α3 + α5 + α6 + α1 cos(2θ0)

]

sin(2θ0)u20y + N̂Υθ2
0y = 0, (69)

1

Pe1
c0y = 0, (70)

θ0 − θB = 0, (71)

with surfactant transport given by

Γ0t + (Γ0u10)x =
1

Pes
Γ0xx. (72)

Inside the lipid layer, h1 < y < h,

1

2
[−α2 + α3 + (α5 − α6) cos(2θ0)]u20y + N̂θ0yy = 0, (73)

1

2
[α2 + α3 − α5 + α6 + 2α1 cos(2θ0)] sin(2θ0)u20yθ0y

−
1

4

[

−4 + 2(α2 − α5) cos(θ0)
2 − 2(α3 + α6) sin(θ0)

2 − α1 sin(2θ0)
2
]

u20yy = 0, (74)

1

2
[−α2 + α3 + (α1 + α2 + α3 + 2α5) cos(2θ0) + α1 cos(4θ0)]u20yθ0y

+
1

4
[α1 + α2 + α3 + α5 + α6 + α1 cos(2θ0)] sin(2θ0)u20yy − 3N̂θ0yθ0yy = 0, (75)

u20x + v20y = 0. (76)

At the lipid-air interface y = h,

h0t + u20h0x − v20 = 0, (77)

−
1

4

[

− 4 + α2 − α3 − α5 − α6 + (α2 + α3 − α5 + α6) cos(2θ0)

+
α1

2
(cos(4θ0)− 1)

]

u20y = 0, (78)

1

4

[

α1 + α2 + α3 + α5 + α6 + α1 cos(2θ0)

]

sin(2θ0)u20y − N̂θ2
0y = 0, (79)

θ0 − θB = 0, (80)

with evaporation given by

Je =
E

1 +R(θB)h20

. (81)
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2.4.2 Solving the leading order equations

Subtracting the product of θ0y and Equation (73) from Equation (75) and simplifying
results in the following derivative of products

(

1

4
[α1 + α2 + α3 + α5 + α6 + α1 cos(2θ0)] sin(2θ0)u20y − 2N̂θ20y

)

y

= 0. (82)

Thus, the inner functions must be independent of y. Evaluating Equation (82) at y =
h1 and applying Equation (68), yields θ0y = D0(x, t). Thus, θ0yy = 0, and substituting
this into Equation (73), yields u20y = 0. Applying the boundary conditions from
Equations (69) and (71), gives

u20 = u20(x, t) and θ0 = θB. (83)

That is, we have extensional flow in the lipid layer that is independent of y at leading
order, as in Stapf et al. [87], and the angle of the molecules is constant throughout
the depth and in time at leading order, as in Cummings et al. [84].

Integrating Equation (61) with respect to y, and applying the boundary conditions
from Equations (58) and (66) conserves mass of water for the AL:

h10t + (ū10h10)x = Jo − Je. (84)

We now turn to the transverse velocity in the lipid layer. Integrating Equation (76)
with respect to y and applying the boundary condition at y = h1 from Equation (67)
yields

v20 = −u20xy + h10t + u20h10x + u20xh10. (85)

Evaluating this equation y = h, using the boundary condition in Equation (77) we
have

h20t + (u20h20)x = 0. (86)

This is conservation of mass for the lipid layer.

2.4.3 O(ǫ) equations

We proceed to the next order to solve for u21. We take the x-momentum equation in
the lipid layer at O(ǫ), and simplify using Equation (76). This gives

u21yy = 0. (87)
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Integrating twice with respect to y and applying the O(ǫ) tangential stress boundary
condition at y = h and continuity of velocity at y = h1 yields

u21 =−
[α5 − α6 − α1 cos(2θB)] sin(2θB)

2 + (α5 − α2) cos2(θB) + [α1 + α3 + α6 + α1 cos(2θB)] sin
2(θB)

u20x(y − h10)

+ u11(x, h10, t). (88)

We now seek to determine u10. The O(ǫ) normal stress condition at y = h1 is

[

−4α1 cos(θB)
3 sin(θB)− (α2 + α3 + α5 + α6) sin(2θB)

]

Υu21y

+
[

−8− 4(α5 + α6) cos(θB)
2 − 4α1 cos(θB)

4
]

Υv20y

−α1Υsin(2θB)
2u20x − 4p10 + 4Υp20 − 4C1h10xx = 0. (89)

Solving Equation (89) for p10, at y = h1,

p10 =Υ

[

1

8
A1 −

A2

A3

u20x + p20

]

y=h1

− C1h10xx. (90)

where

A1 =16 + 3α1 + 4(α5 + α5) + 4(α1 + α5 + α6) cos(2θB)

+ α1 cos(4θB)− 2α1 sin
2(2θB), (91)

A2 =2(α6 − α5 + α1 cos(2θB))(α1 + α2 + α3 + α5 + α6

+ α1 cos(2θB)) sin
2(2θB), (92)

A3 =2 + (α5 − α2) cos
2(θB) + (α1 + α3 + α6 + α1 cos(2θB)) sin

2(θB). (93)

2.4.4 O(ǫ2) equations

We also need the shear stress equation at the aqueous-lipid interface at O(ǫ2). Both
Equation (90) and the shear stress condition involve functions that need to be
evaluated at y = h1 and functions that are independent of y. We write them as:

p10 = ΥF (x, t)− C1h10xx, (94)

u10y = ΥG(x, t) −MΓ0x, (95)

where

F (x, t) =

[

1

8
A1 −

A2

A3

u20x + p20

]

y=h1

, (96)

G(x, t) =
1

8

[

2

(

B1u20x + 2 [α1 cos(2θB) + α2 + α3] sin(2θB)u21y +B2v20y

)

h10x
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− 2[α1 cos(2θB)− α1 − 2α5] sin(2θB)u21x −B3u22y −B4v20x

+ 2[α1 cos(2θB) + α1 + 2α6] sin(2θB)v21y

]

y=h1

. (97)

where

B1 =2(α1 + α5 + α6) cos(2θB)− α1 cos(4θB)− α1 − 2α5 − 2α6 − 8, (98)

B2 =2(α1 + α5 + α6) cos(2θB) + α1 cos(4θB) + α1 + 2α5 + 2α6 + 8, (99)

B3 =α1 cos(4θB)− α1 + 2(α2 + α3 − α5 + α6) cos(2θB) + 2α2

− 2α3 − 2α5 − 2α6 − 8, (100)

B4 =α1 cos(4θB)− α1 − 2(α2 + α3 + α5 − α6) cos(2θB)− 2α2

+ 2α3 − 2α5 − 2α6 − 8. (101)

Then at y = h1,

p10x = ΥF ′(x, t) − C1h10xxx. (102)

Integrating Equation (62) with respect to y twice and applying Equations (102), (95),
and (57) gives

u10 = p10x

(

y2

2
− h10y

)

+

(

ΥG(x, t)−MΓ0x

)

y. (103)

Now, the depth averaged axial velocity at leading order is

ū10 =
1

h1

∫ h10

0

u10 dy (104)

= −p10x
h2
10

3
+

(

ΥG(x, t)−MΓ0x

)

h10

2
. (105)

In order to solve for p20, we use the O(ǫ) equation for y-momentum in the lipid layer,

1

8

[

16 + 3α1 + 4α5 + 4α6 + 4(α1 + α5 + α6) cos(2θB) + α1 cos(4θB)

]

v20yy

+
1

4

[

α1 + α2 + α3 + α5 + α6 + α1 cos(2θB)

]

sin(2θB)u21yy − p20y = 0. (106)

We will also need the normal stress equation at the lipid-air interface y = h at O(ǫ),

−p20 +
1

4
α1 sin(2θB)

2u20x − C2h0xx

+

[

α1 cos(θB)
3 sin(θB) +

1

4
(α2 + α3 + α5 + α6) sin(2θB)

]

u21y
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+

[

2 + (α5 + α6) cos(θB)
2 + α1 cos(θB)

4

]

v20y = 0. (107)

Integrating Equation (106) with respect to y and applying Equation (107) gives

p20 =
1

4

[

α1 + α2 + α3 + α5 + α6 + α1 cos(2θB)

]

sin(2θB)u21y

+
1

8
H1v20y + α1 cos(θB)

2 sin(θB)
2u20x − C2h0xx, (108)

where

H1 = 16 + 3α1 + 4α5 + 4α6 + 4(α1 + α5 + α6) cos(2θB) + α1 cos(4θB). (109)

Substituting the solution for p20 simplifies the complicated expression for F (x, t) to

F (x, t) = −C2h0xx. (110)

Substituting F (x, t) into the equation for p10 shows us that the pressure in the aqueous
layer is independent of y.

The next step is to find an expression for u20. This involves working with equations
from O(ǫ2) which are too lengthy to write down in their entirety here. Integrating the
x-momentum equation in the lipid layer at O(ǫ2) with respect to y, and solving for
u22y yields

u22y = M(θB, x, t)y +K(x, t), (111)

where M is lengthy, and K(x, t) is the constant of integration [83]. Applying the
O(ǫ) shear stress condition at the lipid-air interface determines K(x, t). We substitute
Equation (111) into Equation (103) for u10. We evaluate this equation at the aqueous-
lipid interface, and apply continuity of velocity at O(1), which gives an equation in
terms of u20. We find

−
A(θB)

B(θB)
δΥ(u20xh20)x −

u20

h10

=
h10

2

(

− C1h10xxx − C2Υh0xxx

)

− C2δΥh20h0xxx +MΓ0x, (112)

where

A(θB) = 2 cos(2θB)(α1 + α5 + α6 + 4)(α2 + α3 − α5 + α6)

+ cos(4θB)(α1[α2 − α3] + [α2 + α3][α5 − α6]) + α1α2 − α1α3 − 2α1α5

− 2α1α6 − 8α1 + α2α5 + 3α2α6 + 8α2 − 3α3α5 − α3α6 − 8α3 − 2α2

5

− 4α5α6 − 16α5 − 2α2

6 − 16α6 − 32, (113)

B(θB) =− α1 cos(4θB) + α1 − 2 cos(2θB)(α2 + α3 − α5 + α6)
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− 2α2 + 2α3 + 2α5 + 2α6 + 8. (114)

Note that if αi = 0, i 6= 4, we recover the Newtonian case [61, 87],

4δΥ(h20u20x)x −
u20

h10

=
h10

2

(

− C1h10xxx − C2Υh0xxx

)

− C2δΥh20h0xxx +MΓ0x. (115)

At this point, we can simplify G(x, t). After substitution,

G(x, t) = C2δh20h0xxx −
A(θB)

B(θB)
δ(h20u20x)x. (116)

2.4.5 Finding the equations for surfactant and osmolarity transport

The final steps are to solve the equations for surfactant surface concentration and
osmolarity. To find the leading order equation for the surfactant concentration, we
apply continuity of velocity, Equation (65), and rearrange to obtain

Γ0t + (Γ0u20)x =
1

Pes
Γ0xx. (117)

The leading order equations for osmolarity, Equations (59), (64), and (70) reveal that
c0 = c0(x, t). To find an explicit equation for c0(x, t) requires the O(ǫ) and O(ǫ2)
equations. At O(ǫ),

c1y = 0, at y = 0, (118)

c1yy = 0 for 0 < y < h1, (119)

c1y = 0, at y = h1. (120)

At O(ǫ2),

c0Jo −
1

Pe1
c2y = 0 at y = 0, (121)

c0t −
1

Pe1
c2yy + u10c0x −

1

Pe1
c0xx = 0 for 0 < y < h1, (122)

c0xh10x + Pe1c0Je − c2y = 0 at y = h1. (123)

Here we have used Equations (58) and (66) from leading order to substitute for v10
at the boundaries, as well as the tangential component of Equation (21). Solving
Equation (122) for c0yy and integrating with respect to y gives

c2y =

[

(Pe1c0t − c0xx) y

]h1

0

+ Pe1c0x

∫ h1

0

u10 dy. (124)
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We now evaluate this expression at both boundaries, applying Equations (121) and
(123) and using Equation (84). We find

(c0h10)t =
1

Pe1
(c0xh10)x − (c0ū10h10)x . (125)

This completes the derivation of the PDEs governing AL thickness, LL velocity and
thickness, surfactant concentration, and osmolarity.

2.4.6 The model system

After simplification, the closed system of equations that we wish to solve is

h10t + (ū10h10)x = Jo − Je, (126)

h20t + (u20h20)x = 0, (127)

p10 = −ΥC2h0xx − C1h10xx, (128)

−
A(θB)

B(θB)
δΥ(u20xh20)x −

u20

h10

=
h10

2
p10x − C2δΥh20h0xxx +MΓ0x, (129)

Γ0t + (Γ0u20)x =
1

Pes
Γ0xx, (130)

m0t =
1

Pe1

(

m0x −
m0h10x

h10

)

x

− (m0ū10)x , (131)

where

h0 = h10 + δh20, (132)

J0 = P

(

m0

h10

− 1

)

, (133)

Je =
E

1 +R(θB)h20

, (134)

ū10 = −p10x
h2

10

12
+

u20

2
. (135)

We have reduced the order of the system by adding p1 as a dependent variable. We
also use the substitution m0 = h10c0, where m0 is the mass.

2.4.7 Initial and boundary conditions

The boundary conditions are homogeneous Neumann conditions on h1, h2, p1, Γ, and
c to enforce no flux of these variables. We specific u2 = 0 for the lipid layer velocity.
We choose initial conditions in such away that a local defect in the lipid layer, a thin
spot, drives all the dynamics of the tear film toward TBU. We choose a Gaussian
perturbation of the lipid layer

h2(x, 0) = 1− 0.9e−
x
2

2σ2 , (136)
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where 2σ2 = 1/9. We take h1 = Γ = c = 1 initially. We compute p1(x, 0) from
Equation (128), and solve the discrete version of the axial force balance Equation (129)
using the other initial values to obtain u2(x, y, 0).

2.5 Numerical solution method

We solve the system of equations in Section 2.4.6, subject to the initial and boundary
conditions of Section 2.4.7, numerically using the method of lines. Spatial derivatives
are approximated with second-order finite differences on a uniform grid of 512 points.
The result is a system of differential algebraic equations that we solve forward in time
in Matlab (MathWorks, Natick, MA, USA) using ode15s. We use event detection
to stop the simulation if the AL thickness reaches a minimum value of 0.5µm, which
we consider to represent TBU. We found that the solutions were converged using this
number of grid points, and that the mass of water and osmolarity were conserved to
the tolerances of the computation.

We integrate the system until either: (i) the time at which TBU occurs (TBU
time, or TBUT) and that becomes the final time; or (ii) a final time of 60 s is
reached. Whether TBU is reached or not depends on the parameters of the particular
computation.

3 Results

3.1 Base case

For the base case, we use the θ-dependent evaporation model given in Equation (56)
and parameter values given in Table 4. Note that by using the default value of θB =
π/2, we have full LL evaporation resistance; that is R = R0. This scenario reproduces
the base case of Stapf et al. [87] (their Figure 3).

Representative solutions are shown in Figure 3. They are typical of the underlying
dynamics for tear film thinning due to a localized thin spot in the initial LL profile.
The LL changes very little over time from its initial shape. We see the effect of elevated
local evaporation from the AL, which thins the AL at the same location. The thinning
rate slows as time increases because the local drop in pressure in the center of the
domain draws flow of the AL inward due to capillarity (“healing flow” in [67]). The
inward flow counteracts the thinning effect of evaporation to some degree but does
not stop thinning [67, 68, 87].

The surfactant surface concentration Γ, shown relative to its initial value, builds up
slightly in the middle. Increased Γ decreases the surface tension, which induces a shear
stress pulling fluid out of the middle of the domain. This latter (Marangoni) effect
opposes the capillarity-driven flow from the pressure difference [67, 71, 76]; however,
in all the simulations for this paper, the pressure-driven flow is the larger contribution
to the AL flow.

The osmolarity increases with increasing time, primarily centrally. The increase
results from evaporation of water, leaving the osmolarity behind. The increase is exac-
erbated by the inward capillary flow that advects osmolarity to the center, but is
mitigated by diffusion of osmolarity outward from the locally high concentration.
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Fig. 3 Solutions for spatially-uniform initial conditions except for a Gaussian disturbance in the
lipid layer thickness. The director angle of θB = π/2. This figure illustrates typical dynamics of the
dependent variables in space and time. The increased evaporation from the thin lipid disturbance
drives all the dynamics.
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3.2 Effect of liquid crystal orientation

While the overall TF dynamics are similar for our computations, some significant
differences arise from varying the director angle (orientation) of the liquid crystal
molecules. We summarize the differences by plotting parametric changes to the mini-
mum values of the AL and LL thicknesses, and the maximum value of osmolarity as
θB varies from 0 to π/2. The values are shown at the final time of the simulation: at
the TBUT if this occurs before 60 s, or at 60 s if TBU doesn’t occur by that time.
Figure 4 shows TBUT results. For values of θB < π/17, approximately, TBUT occurs
before 60 s. In these cases, the minimum AL thickness reaches the threshold value
of 0.5µm. As θB increases to π/17, the minimum LL thickness increases and the LL
thickens at its minimum; this represents a healing flow due to capillarity in the LL for
this range of θB. Peak osmolarity decreases, as the time to TBU lengthens, and the
osmolarity has time to diffuse outward within the AL.

For θB > π/17, TBU occurs after the final simulation time of 60 s. As the director
angle increases, thinning in the AL slows, and the minimum AL thickness increases;
by θB = π/2, the minimum value at 60 s is 2.04µm. From 0 < θB < π/6, there is sub-
stantial movement in the LL. When θB is close to π/17, minimum thickness increases
to over 17 nm. However, as θB increases from approximately π/6, the minimum LL
thickness remains close to the initial minimum value of 5 nm, increasing up to just 2
nm over the initial value. Peak osmolarity values continue to decrease as θB increases
to π/2, as there is both more time for diffusion, and an increased aqueous volume
which accompanies a lower peak osmolarity.

In summary, Figure 4 illustrates how orientation-dependence in the evaporation
is coupled with flow. The lipid layer becomes much more mobile around θB = π/17,
indicating a mechanical response to the orientation of the liquid crystal molecules.
The solutions at the final time for several values of θB, shown in Figure 5, help to
explain this effect in what follows.

3.3 Solutions at the final time

When θB = 0, the liquid crystal molecules are lying flat (parallel to a flat AL/LL inter-
face). This orientation results in TBU at before 60 s. As in the base case (θB = π/2,
see Figure 3), the aqueous layer develops a local minimum in the center of the domain,
co-located with the LL minimum thickness. However, this valley is now more pro-
nounced, and the entire layer thins relatively quickly. The center reaches the threshold
thickness of 0.5µm by 15.9 s. The most pronounced AL local minimum occurs when
θB = π/12, although even by 60 s the TF has not approached TBU, with the mini-
mum value just under 0.8 µm. For all the variables, the majority of variation occurs
for small values of θB; in particular, there is little difference in measurements between
θB = π/4 and θB = π/2. The final thicknesses of the AL are summarized in Table 5.

For many values of the director angle, except for those near θB = π/17, the LL
remains virtually tangentially immobile. Thus, the solution at the final time very
closely resembles the initial condition. In contrast, for θB = π/12, where the LL is the
most mobile, the LL minimum increases as capillary-driven healing flow tries to fill it.
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Fig. 4 Extreme values of AL thickness, osmolarity, and LL thickness at the end of each simulation
as θB is varied from 0 to π/2. To the left of the vertical dashed line at θB ≈ π/17, TBUT occurs
before 60 s; to the right of this line, the simulations end at 60 s.

For all values of θB studied here, thinning in the aqueous layer results in increased
osmolarity, with peak osmolarities corresponding to the thinnest point in the aqueous
layer. Initially, osmolarity is uniform in the aqueous layer at 300 mOsM. When θB = 0,
TBU occurs at 15.9 s, the peak osmolarity is over five times the initial value at 1651.5
mOsM, and over two and a half times the initial value near the ends at 788.6 mOsM.
For the other values of θB, the peak in osmolarity is much smaller; see Table 5 for
exact values.

In all cases, surfactant forms a small pile in the center of the domain; the effect of
the director angle is small, but the greatest variation occurs when θB = π/12.

3.4 Extrema through time

Having looked at the solutions at the final time, we now plot the time dependence of
the extrema for the dependent variables; results appear in Figure 6. When θB = 0,
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the change in extrema is monotonic all variables except for Γ, which peaks around 10
s and then decreases until TBUT is reached. When θB = π/4 and π/2, the change
in extrema is gradual. However, when θB = π/12 and π/18, the dynamics during the
first half of the simulation is generally different from the dynamics in the last half.
On one hand, when θB = π/12 the minimum AL thickness rapidly decreases from the
initial value of 3.5µm to 1.1µm in the first 30 s but then slows, reaching a minimum
of 0.79µm at 60s. On the other hand, the minimum in the LL scarcely moves in the
first 30 s, increasing by only 1.8 nm, but then quickly increases reaching a minimum
value of 13.1 nm at the final time. Peak osmolarity increases until about 35 s and then
gradually decreases until the final time. The decrease in peak osmolarity indicates that
osmolarity is diffusing away from its maximum [67, 68]. Table 5 shows peak osmolarity
values at 15, 30, and 60 s (except for θB = 0, π/18 which reach TBU before 60 s).

Table 5 Comparison of peak osmolarity levels and minimum AL
thickness

Max osmolarity (mOsM) Min AL thickness Final time
θB value 15 s 30 s 60 s (µm) (s)

0 1585.6 - - 0.5 15.9
π/18 739.6 1092.7 - 0.5 55.5
π/12 626.4 908.4 891 0.79 60
π/4 441.7 543.1 612.1 1.70 60
π/2 404.3 472.5 531 2.04 60

4 Discussion and conclusion

We expand upon previous two layer models of TBU in the tear film by representing
the LL as a nematic liquid crystal, rather than as a fixed layer [67] or a Newtonian
fluid [87]. We modify an existing evaporation model to account for the orientation
of molecules in the LL as well as the dynamic thickness of the LL itself [87]. This
enables us to explore the role of a hypothesized LL structure in preventing or slowing
evaporation of the AL of the tear film.

For some time, it is thought that the LL provided a physical barrier for evap-
oration [18], and thus a thicker LL corresponded to higher evaporative resistance.
However, we now know that the thickness alone does not explain its effect; rather, it
has been suggested that the evaporative resistance of the lipid layer also comes from
its composition or structure [38–40].

Experiments have shown that long, saturated hydrocarbon chains provide a good
resistance to evaporation, and the longer the chain, the better the resistance [99].
Examination of the components in human meibum shows two types of molecules which
fit this specification; namely the fatty acids of cholesterol esters, and the fatty alcohols
of wax esters [26, 27]. These molecules may organize to form lamellae in the LL with
the hydrocarbon chains aligned with each other, though other interpretations are
possible [23, 26, 81, 82]. Novel mixtures can now produce evaporation barriers in vitro
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[100, 101]. Much work remains to be done on the link between structure and function
in the LL.

By modeling the LL as a nematic liquid crystal in which the molecules have orienta-
tional but not positional order, we are able to incorporate some structure of the layer,
which we believe may be key to understanding its function. Our hypothesized model
shows that the orientation of the molecules in the lipid layer may have a noticeable
effect on both the evaporation of the aqueous layer and the flow in the lipid layer.

Nematic liquid crystals tend to align along the director angle θB which is constant
in the limits used here. In our model, orientation has the largest effect when θB is
small. When θB < π/17, TBU occurs before the final simulation time of 60 s; for
example, TBU occurs at 15.9 s for θB = 0, and 55.5 s when θB = π/18. In these cases
of TBU, maximum osmolarity at the time of breakup is over 1000 mOsM, which is
well above the level associated with pain [102].

As θB is increased, the molecules in the lipid layer become more upright in ori-
entation. This slows evaporation in the aqueous layer, by design, but also reduces
movement in the lipid layer; the lipid layer remains tangentially immobile through
the simulation time, changing very little from the initial condition. In this parameter
regime, our model becomes similar to that hypothesized by Peng et al. [67] because
of the LL immobility. The director angle is also reminiscent of structures seen in vitro
with analog molecules used to model the LL [27, 103].

The surfactant is also most mobile for small values of θB. A small pile of surfactant
builds up in the center of the domain, relaxing slightly before TBU. For larger values
of θB, TBU is not reached within the simulation time, and so the surfactant pile
continues to build slowly until the end time. Higher concentrations of surfactant act
to pull fluid away, although we do not see this action because the healing flow from
capillarity is larger for the parameters studied here. However, thinning can also be
driven by surfactant; for example, a blob of surfactant in an otherwise initially-uniform
LL could also cause TBU [87].

TBU and its relationship to DED have been analyzed in different approaches,
namely by relying on neural networks [104]. Some efforts aimed at quantifying TBUT
measurement and related quantities [105–107], while others aimed to use TBUT to
diagnose DED [108, 109]. These approaches may well end up being useful in the clinic
by automating current clinical practice but they do not aim to identify mechanisms
underlying the TBU dynamics. The approaches need not be separate and may yet
combine to yield even more understanding of the relationship between TBU and DED;
one such attempt found data automatically via neural network detection but then
explored mechanisms driving TBU for a large number of instances in healthy subjects
[78]. Such a combined method remains to be applied to DED subjects.

The goal of this paper was to derive a two layer model of the tear film which incor-
porates the LL as liquid crystal and includes molecular orientation in the evaporation
function. By doing this we are able to explore possible ways in which the structure and
composition of the lipid layer can affect tear film thinning and breakup. We have cho-
sen to have the evaporation resistance depend on the orientation (director field), but
we find that not only does this affect thinning in the aqueous layer which we expected,
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it also affects flow in the lipid layer, with a small angle of orientation causing the lipid
layer to become more mobile.

There are many parameters in this model. Future work will include a thorough
parameter study. A two-layer model with the floating nematic LL approximated in the
moderate elasticity limit would be a good future direction [83]. Including a moving
end to approximate blinking in the eye would also be worthwhile.
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