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We have implemented noniterative triples corrections to the energy from coupled-cluster with single and double exci-
tations (CCSD) within the 1-electron exact two-component (1eX2C) relativistic framework. The effectiveness of both
the CCSD(T) and the completely renormalized (CR) CC(2,3) approaches are demonstrated by performing all-electron
computations of the potential energy curves and spectroscopic constants of copper, silver, and gold dimers in their
ground electronic states. Spin-orbit coupling effects captured via the 1eX2C framework are shown to be crucial for
recovering the correct shape of the potential energy curves, and the correlation effects due to triples in these systems
changes the dissociation energies by about 0.1–0.2 eV or about 4–7%. We also demonstrate that relativistic effects and
basis set size and contraction scheme are significantly more important in Au2 than in Ag2 or Cu2.

I. INTRODUCTION

Single-reference coupled-cluster (CC)1–4 theory has estab-
lished itself as one of most successful approaches for high-
accuracy ab initio electronic structure calculations. The ex-
ponential ansatz defining the ground-state CC wave func-
tion, combined with the connected5–8 and linked7,8 clus-
ter theorems for the energy and wave function, respectively,
lead to desirable properties such as size-extensivity and size-
consistency of the ground-state CC energetics. Systematic
truncation of the cluster operator leads to the well-known hi-
erarchy of methodologies starting from the basic CC with sin-
gles and doubles (CCSD),9,10 CC with singles, doubles, and
triples (CCSDT),11,12 CC with singles, doubles, triples, and
quadruples (CCSDTQ),13–16 and so on. It is well known that
the CCSD, CCSDT, CCSDTQ, etc. series provides a rapid
convergence toward full configuration interaction (CI); the ba-
sic CCSD approach usually provides a qualitatively correct
description of the system, and, with the inclusion of triples or
quadruples, one can obtain a converged result relative to full
CI.17

Although conceptually straightforward, the inclusion of
higher-order cluster operators comes with a steep increase in
the computational effort. Indeed, the computational effort of a
CCSD calculation, using properly factorized implementation,
scales as n2

on4
u, where no and nu denote the numbers spin or-

bitals that are occupied and unoccupied in the reference con-
figuration, respectively. This scaling increases to n3

on5
u for

CCSDT and n4
on6

u for CCSDTQ, rendering such high-level
CC calculations impractical for large molecules or basis sets.
Thus, one of the primary goals in the development of new
CC methodologies is the incorporation of correlation effects
due to higher–than–doubly–excited cluster operators without
incurring a significant increase in the computational cost. Ef-
forts in this area have resulted in a variety of approaches, such
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as the inclusion of selected parts of high-order cluster com-
ponents in an iterative manner,18–22 non-iterative corrections
to low-order CC energetics,23–34 and tensor decomposition
techniques,35,36 to name a few examples. Among these op-
tions, non-iterative corrections have been a popular choice due
to the relative simplicity of their implementation, especially if
one is not interested in correcting the CC wave function itself.

Focusing on triples correlation effects, the CCSD(T)23 ap-
proximation to CCSDT has been hailed as the “gold standard”
due to its ability to capture a significant part of the desired
correlations, especially near equilibrium geometries. How-
ever, CCSD(T) was derived using many-body perturbation
theory (MBPT) arguments and, thus, it may give rise to an
unphysical description of the system, such as a bump in the
potential energy curve (PEC) along bond dissociation coor-
dinates, especially when restricted Hartree–Fock (HF) refer-
ences are used. Various non-iterative triples corrections aim
to eliminate this unphysical behavior while faithfully recov-
ering a CCSDT-level description of the systems of interest,
and the completely renormalized (CR) CC(2,3)27–31 method-
ology stands out as one of the most successful options. In-
deed, CR-CC(2,3) is able to correctly describe PECs where
CCSD(T) overcorrelates in the dissociation limit, and it usu-
ally outperforms CCSD(T) in reproducing the full CCSDT de-
scription for many chemically interesting situations, ranging
from the homolytic dissociation of alkaline earth dimers37,38

to the challenging description of singlet–triplet gap in birad-
ical species.30 The CR-CC(2,3) method is part of a more
general non-iterative correction scheme called CC(P;Q) intro-
duced in Refs. 32–34, which accounts for arbitrary truncation
of the cluster operator. While not the focus of the present
work, it is worth noting that these approaches can be extended
to treat electronically excited states28,39–41 via the equation-
of-motion (EOM)42,43 framework.

Aside from high-order correlation effects, accurate de-
scriptions of spin-orbit coupling, core-excited states, and
molecules containing heavy elements require the consid-
eration of relativistic effects. The exact two-component
(X2C)44–64 approach has gained popularity owing to its ability
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to downfold relativistic effects from the full four-component
(4c) Hamiltonian into a more computationally manageable
two-component (2c) framework. Furthermore, while 4c rel-
ativistic calculations require the use of uncontracted basis
sets to avoid variational collapse or prolapse,65–68 X2C ben-
efits from having the ability to use re-contracted basis set
after the 4c→2c transformation, further reducing the com-
putational cost.69 For quantum chemistry applications, it is
commonplace to use the X2C framework at the mean-field
level and then employ the no-virtual-pair approximation70–74

in post-HF calculations such that one only has to account for
electron-electron correlation effects, without noticeable loss
of accuracy. Indeed, the X2C Hamiltonian has been suc-
cessfully applied to heavy elements, core-excited phenom-
ena, and core or valence spectral splitting when combined
with CC approaches or other methods that include electronic
correlations.62–64,75–87 We also note that there are a number of
efforts in incorporating relativity in CC calculations through
approaches other than X2C.88–102

Focusing on X2C-based single-reference CC calculations
beyond the CCSD level, several studies have employed spin-
free and spin-orbit coupling versions of X2C-CCSD(T) (see,
e.g., Refs. 78, 79, 83, and 85), but we are not aware of any that
combined the X2C relativistic treatment with CR-CC(2,3). In
this paper, we present our implementation of CCSD(T) and
CR-CC(2,3) within the mean-field X2C framework, with spin-
orbit coupling effects. The coinage metal dimers Cu2, Ag2,
and Au2 serve as test systems for our CCSD, CCSD(T), and
CR-CC(2,3) calculations. Prior experimental and theoreti-
cal investigations of these systems have yielded reliable ener-
getics and spectroscopic parameters,98,103–133 and it has been
shown, especially for the heavier dimers, that relativistic ef-
fects can significantly change the description of the PECs. To
the best of our knowledge, prior relativistic CCSD, CCSD(T),
and/or CR-CC(2,3) calculations of these systems relied on
the use of effective core potentials (ECPs) and/or correlat-
ing only the valence and semicore electrons. As such, the
present work offers the first all-electron X2C-CC calculations
on these systems. Furthermore, we also study the effects of
basis set truncation level and contraction scheme on the re-
sults of all-electron X2C-CC computations, highlighting the
deficiencies of relativistic basis sets not specifically optimized
for all-electron calculations with spin-orbit coupling, which
has not received much attention in the previous works relying
on frozen-core approximations or using ECPs.

The remaining parts of this paper are organized as follows.
In Section II, we provide a short summary of the X2C for-
malism, CC theory, and the derivation of CR-CC(2,3) and its
relationship with the CCSD(T) approach. We provide the rel-
evant details of our computational protocols for obtaining the
PECs of the coinage metal dimers in Section III. We discuss
our findings in Section IV, focusing on the impact of triples
correlation effects, the contrast between relativistic and non-
relativistic calculations, and the effects of basis set size and
contraction scheme, and we provide a concluding summary in
Section V.

II. THEORY

A. Exact two-component transformation

The details of the X2C transformation employed in this
work have been described elsewhere (see, Ref. 56, for exam-
ple), so we provide here a summary of the relevant elements.
Throughout this work, we are concerned with the electronic
Hamiltonian, which in second quantization can be expressed
as

Ĥ = hq
pâpâq +

1
4 grs

pqâpâqâsâr. (1)

In Eq. (1), hq
p and grs

pq are (antisymmetrized) matrix elements
of the one- and two-electron parts of the Hamiltonian and âp

and âp ≡ â†
p are the fermionic annihilation and creation oper-

ator associated with the spin-orbital label p. In this paper, we
use the Einstein convention where repeated lower and upper
indices imply summation. In the X2C framework, we begin
with the 4c relativistic Dirac Hamiltonian for the electrons in
a restricted-kinetic-balanced condition,134–136

Ĥ4c
=

(︃
V I T I
T I W−T I

)︃
. (2)

In Eq. (2), V is the scalar potential, I is the 2 × 2 identity
matrix, T is the kinetic energy, and

W =
1

4m2c2 (σ ·p)V (σ ·p), (3)

where m is the mass of an electron, c is the speed of light, σ is
the vector of Pauli matrices, and p is the linear momentum op-
erator. The eigenstates of this Hamiltonian can be expressed
as

Ψ
4c =

(︃
ΨL
ΨS

)︃
, (4)

in which ΨL and ΨS are the large and small components, re-
spectively, that can be further broken down into their α and
β spin components. Solving this eigenvalue problem yields
positive- and negative-energy states, the former of which are
of interest in the electronic structure calculations. To isolate
the positive-energy states, one may perform a unitary trans-
formation

U†Ĥ4cU =

(︄
Ĥ+ 0
0 Ĥ−

)︄
, U†

Ψ
4c =

(︃
Ψ2c

0

)︃
, (5)

where Ĥ± describe the positive- and negative-energy states
and Ψ2c are the 2c eigenstates of these Hamiltonians. In this
work, the 4c→2c transformation described in Eq. (5) is ap-
plied to the one-electron part of the Hamiltonian, while the
two-electron part is treated nonrelativistically. In this ap-
proximation, which is usually denoted as 1eX2C, we applied
an empirical screened-nuclei spin-orbit (SNSO)137,138 scaling
factor to the one-body integrals to mimic the spin-orbit cou-
pling effects on the two-body part of the electronic Hamilto-
nian. Additionally, as already mentioned in Section I, the X2C
transformation is done at the mean-field (i.e., HF) level and
we employ the no-virtual-pair approximation in the correlated
calculations.
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B. Coupled-cluster theory

The ground-state CC wave function for an N-electron sys-
tem is given by the exponential ansatz

|Ψ⟩= eT̂ |Φ⟩ , (6)

where T̂ is the cluster operator and |Φ⟩ is a reference Slater
determinant (here, a HF determinant). The cluster operator is
expanded by excitation order as

T̂ =
N

∑
n=1

T̂ n, T̂ n = t i1...in
a1...anEa1...an

i1...in
, (7)

where t i1...in
a1...an is a cluster amplitude and Ea1...an

i1...in
= ∏

n
k âak âik

is the usual n-body particle–hole excitation operator, which
generates the manifold of excited determinants |Φa1...an

i1...in
⟩ =

Ea1...an
i1...in

|Φ⟩. We use the indices i1, i2, . . . (i, j, . . .) and a1,a2, . . .
(a,b, . . .) to designate the spin orbitals that are occupied and
unoccupied, respectively, in the reference determinant. The
cluster amplitudes are obtained by solving a system of non-
linear, energy-independent equations

⟨Φa1...an
i1...in

|H̄|Φ⟩= 0 ∀ |Φa1...an
i1...in

⟩ , n = 1, . . . ,N, (8)

in which H̄ = e−T̂ ĤeT̂ is the similarity-transformed Hamilto-
nian, and the ground-state energy is computed as the expecta-
tion value

E(CC) = ⟨Φ|H̄|Φ⟩ . (9)

Due to the non-hermiticity of H̄, if properties other than
energies are desired, one also needs to solve the left-hand CC
problem. The left-hand CC wave function is parameterized as⟨︁

Ψ̃
⃓⃓
= ⟨Φ|(1+ Λ̂)e−T̂ , (10)

where Λ̂ is the many-body de-excitation operator

Λ̂ =
N

∑
n=1

Λ̂n, Λ̂n = λ
a1...an
i1...in

(Ea1...an
i1...in

)†. (11)

One obtain the λ
a1...an
i1...in

amplitudes by solving a linear system
of equations

⟨Φ|(1+ Λ̂)(H̄ −1E(CC))|Φa1...an
i1...in

⟩= 0

∀ |Φa1...an
i1...in

⟩ , n = 1, . . . ,N, (12)

It is worth mentioning that the single-reference CC formal-
ism as described above is equivalent to the full CI method-
ology. However, in practice, the many-body expansion of T̂
and Λ̂ along with the corresponding projection spaces used in
Eqs. (8) and (12) are truncated at a computationally tractable
level (much lower than N), giving rise to the usual CCSD,
CCSDT, etc. hierarchy. As mentioned in Sec. I, it is well
known that CCSD is often not sufficient to produce quanti-
tatively accurate results and, thus, one of the main objectives
in the field is the incorporation of correlation effects due to
higher–than–doubly excited clusters without incurring signif-
icant computational costs.

C. Non-iterative triples corrections to CCSD energetics

In this work, we focus on the CR-CC(2,3) correction to
CCSD energetics. Let us recall that the CR-CC approaches
arise from the biorthogonal moment expansion derived via the
method-of-moments of CC equations (MMCC)30,32,40,139–145

framework, which avoids using MBPT analysis in incorpo-
rating the higher-order corrections to lower-order CC ener-
gies. The derivation of CR-CC(2,3) working equations from
the asymmetric energy expression has been discussed in great
detail in the literature (see, e.g., Refs. 27–30), and we only
provide a summary in this subsection. In a CR-CC(2,3) cal-
culation, one begins by solving the right- and left-hand CCSD
problems by setting T̂ = T̂ 1+ T̂ 2 and Λ̂= Λ̂1+Λ̂2 and solving
Eqs. (8) and (12) in the space of singly and doubly substituted
determinants. Subsequently, the CCSD energy is corrected
using the CR-CC(2,3) moment expansion

δ (2,3) = 1
36ℓ

abc
i jk (2)M

i jk
abc(2). (13)

The moments Mi jk
abc(2) are defined as the projections of the

Schrödinger equation containing the CCSD wave function
onto triply excited determinants,

Mi jk
abc(2) = ⟨Φabc

i jk |H̄
(CCSD)|Φ⟩ , (14)

where H̄(CCSD)
= e−T̂ 1−T̂ 2ĤeT̂ 1+T̂ 2 . Note that the triples mo-

ments in Eq. (14) are non-zero because these projections are
not part of the CCSD amplitude equations. The ℓabc

i jk (2) am-
plitudes entering Eq. (13) are defined as

ℓabc
i jk (2) = ⟨Φ|(Λ̂1 + Λ̂2)H̄

(CCSD)|Φabc
i jk ⟩/Dabc

i jk , (15)

where we have introduced a quasi-perturbative denominator
Dabc

i jk , which is given by the Epstein–Nesbet-like expression

Dabc
i jk = E(CCSD)− ⟨Φabc

i jk |H̄
(CCSD)|Φabc

i jk ⟩ . (16)

The above set of equations describe the most complete
variant of CR-CC(2,3), usually denoted as CR-CC(2,3)D,
which includes up to the three-body component of H̄(CCSD)

in Eq. (16). One could introduce a simplification by including
only the one-body component or the one- and two-body parts
of H̄(CCSD) in the denominator, resulting in the CR-CC(2,3)B
and CR-CC(2,3)C variants, respectively, or even go further
and replace the Epstein–Nesbet-like expression in Eq. (16)
by its Møller–Plesset variant involving orbital energy differ-
ences, to obtain the simplest CR-CC(2,3)A approach (which
is equivalent to CCSD(2)T of Ref. 26). As has been dis-
cussed and demonstrated extensively,27–31 the most complete
D variant usually outperforms its A–C approximate versions.
However, due to the use of Epstein–Nesbet denominator, CR-
CC(2,3)D is not invariant with respect to rotations of degen-
erate orbitals.30 In fact, only the A and B versions of CR-
CC(2,3) are orbital invariant, because these approaches use
only the (effective) one-body part of the Hamiltonian in the
denominator. One could avoid this issue by using the ℓabc

i jk (2)
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amplitudes involving degenerate orbitals that are obtained
through solving a linear system of equation in the appropri-
ate subspace (see, e.g., Ref. 146 for more details). The ar-
bitrary mixing of the spatial parts of degenerate orbitals can
be cleaned up through the use of point group or double point
group symmetry, but issues may still persist regarding α and
β spin mixing that can occur in relativistic calculations with
spin-orbit coupling effects. Nevertheless, in this work, we
opt to implement all variants of CR-CC(2,3) following the
above description to ensure reproducibility with existing CR-
CC(2,3) implementations, assuming that the exact same set of
molecular orbitals are used.

Before moving on, it is worth mentioning that the CCSD(T)
methodology can be understood from the lens of CR-CC(2,3)
by making several modifications. Specifically, one uses a sim-
pler form of Eq. (13), in which one makes the approximations

Mi jk
abc(2)≈ ⟨Φabc

i jk |(V̂ N T̂ 2)C|Φ⟩ (17)

and

ℓabc
i jk (2)≈ ⟨Φ|(V̂ N T̂ 1)

†
DC +(V̂ N T̂ 2)

†
C|Φ

abc
i jk ⟩/Dabc

i jk . (18)

Here, V̂ N is the normal-ordered two-body part of the Hamil-
tonian, the subscripts C and DC refer to connected and dis-
connected diagrams, respectively, and we employ the Møller–
Plesset form of Dabc

i jk in Eq. (18).

III. COMPUTATIONAL DETAILS

Our objectives in this paper are to demonstrate the improve-
ments that CCSD(T) and CR-CC(2,3) deliver on top of CCSD
energetics in the context of relativistic calculations, as well as
to highlight the sensitivity of all-electron correlated calcula-
tions to the choice of basis set contraction scheme and size.
To that end, we computed the ground-state PECs of Cu2, Ag2,
and Au2 using the CCSD, CCSD(T), and CR-CC(2,3) (vari-
ants A–D) approaches. In particular, we focus on the dissoci-
ation energy (De), equilibrium bond distance (Re), and funda-
mental vibrational frequency (ωe) characterizing the PECs ob-
tained using the ANO-RCC-VDZP basis set.147 In addition to
the different levels of electronic correlation treatment, we also
examine how relativistic effects modify the PECs by com-
paring the results based on generalized HF (GHF), spin-free
1eX2C-HF (SF-1eX2C-HF), and 1eX2C-HF reference func-
tions. In the case of the 1eX2C-HF calculations, we utilized
the row-dependent SNSO scaling factors of Ref. 138 that were
parameterized using the full 4c Dirac–Coulomb–Breit Hamil-
tonian.

Our CC implementations are based on the Kramers-
unrestricted formalism, and, thus, are separable at the dis-
sociation asymptote. Nevertheless, to provide a more com-
plete picture of how the different triples corrections behave,
for each dimer we computed the potentials that follow both
the Kramers-unrestricted/“spin-broken” [i.e., ⟨Ŝ2⟩ = 1 and
E(X2) = 2E(X) at the dissociation limit] as well as Kramers-
restricted/“spin-pure” (i.e., ⟨Ŝ2⟩ = 0 throughout the entire

curve) reference PECs. The potential curves are computed
at the points on the grid defined in Table I. Subsequently, we
fitted each PEC at the lowest-energy point in the grid and the
two points adjacent to it to a 2nd-order polynomial, and use
the resulting information to obtain our De, Re, and ωe esti-
mates.

TABLE I. Grids of internuclear distances (in Å) employed in the
PEC calculations of Cu2, Ag2, and Au2.

Step size Cu2 Ag2 Au2
0.10 1.70–2.50 2.00–2.90 1.50–2.90
0.50 3.00–5.00 3.00–5.00 3.00–5.00
1.00 6.00–8.00 6.00–8.00 6.00–8.00

In addition to the PEC studies using the ANO-RCC-VDZP
basis set, we investigate the convergence of our CC calcu-
lations with respect to the basis set size by using the ANO-
RCC-VTZP, ANO-RCC-VQZP, and ANO-RCC sets. In the
case of gold dimer, we also performed additional computa-
tions using the full ANO-RCC set with an extra i-type primi-
tive (exponent = 15.1665360) obtained from the “dyall.ae4z”
basis set.148,149 We also compared the convergence of the all-
electron CC calculations using the ANO-RCC series with the
x2c-SVPall-2c, x2c-TZVPall-2c, x2c-TZVPPall-2c, and x2c-
QZVPPall-2c basis sets,150,151 which were optimized in all-
electron 1eX2C-HF calculations including spin-orbit coupling
effects. All of these calculations were performed at the grid
point closest to the equilibrium bond distance found in the
1eX2C-CCSD/ANO-RCC-VDZP calculations for each of the
dimers.

All of the electronic structure calculations reported in this
work were performed using a development branch of the
Chronus Quantum software package.152 All basis sets were
extracted from the Basis Set Exchange.153–155 The CCSD(T)
and CR-CC(2,3) working equations were derived with the
help of the p†q automated code generator156 and implemented
using the TiledArray157 high-performace tensor arithmetic
framework. The resulting code was benchmarked numeri-
cally against the CC routines39,158 in GAMESS version 2022
R2.159,160 In the relativistic calculations, the speed of light
c = 137.035999074 a.u. was used.

IV. RESULTS AND DISCUSSION

A. Cu2

We begin our discussion with the smallest system in our
test set, the copper dimer (in particular, the 63Cu2 isotopolog).
In terms of the electronic structure, we are interested in the
ground 1Σ+

g state that dissociates into two Cu atoms, each in
a 2S ([Ar] 3d104s1) configuration. There have been extensive
experimental and theoretical investigations of the ground elec-
tronic state of this molecule (see Refs. 103–115 for selected
examples). The latest experimental investigation,114 aided
with CCSD(T) and multi-reference CI calculations, yielded
a dissociation energy estimate of De = 16,270 cm−1 (2.02
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FIG. 1. The PECs of Cu2 obtained in this work using the ANO-RCC-VDZP basis set. The U and R labels indicate Kramers-unrestricted and
restricted reference curves, respectively. Each PEC is shifted relative to the energy at Re (cf. Table II).

eV), Cu–Cu equilibrium distance of Re = 2.218 Å, and the
harmonic frequency of ωe = 266.487 cm−1, all of which can
be considered to be converged results. Here, our goal is to
assess different relativistic schemes and electronic correlation
treatments, as compared to these existing results; our data are
summarized in Fig. 1 and Table II.

We begin by considering the PECs shown in Fig. 1 and the
corresponding De values in Table II. From Fig. 1, we can make

a few interesting observations regarding the different relativis-
tic and electron correlation treatments, as well as whether
the PECs follow the Kramers-unrestricted or restricted solu-
tions. First of all, the HF PECs significantly underbind and
overbind the Cu2 dimer in the Kramers-unrestricted and re-
stricted cases, respectively, regardless of the specific relativis-
tic treatment, which is not surprising. In general, neither spin-
free nor spin-orbit coupling relativistic effects have much im-
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TABLE II. Spectroscopic constants for Cu2 obtained using various CC methodologies with the ANO-RCC-VDZP basis set and different levels
of mean-field relativistic treatment.

Method De (eV)a Re (Å) ωe (cm−1)
GHF SF-1eX2C-HF 1eX2C-HF GHF SF-1eX2C-HF 1eX2C-HF GHF SF-1eX2C-HF 1eX2C-HF

CCSD 1.77 (2.25) 1.88 (2.39) 1.89 (2.40) 2.283 2.236 2.236 232.7 282.0 282.0
CCSD(T) 1.89 (1.65) 2.01 (1.75) 2.02 (1.76) 2.265 2.223 2.223 228.7 278.4 278.4

CR-CC(2,3)A 1.90 (2.05) 2.03 (2.19) 2.04 (2.20) 2.264 2.221 2.221 229.7 279.5 279.5
CR-CC(2,3)B 1.89 (2.08) 2.02 (2.22) 2.02 (2.22) 2.266 2.223 2.223 230.0 279.8 279.8
CR-CC(2,3)C 1.88 (2.04) 2.00 (2.18) 2.02 (2.19) 2.260 2.219 2.217 229.3 278.5 284.5
CR-CC(2,3)D 1.88 (2.05) 2.00 (2.19) 2.02 (2.21) 2.260 2.219 2.217 229.4 278.4 284.6
Experimentb 2.02 2.218 266.487

a The numbers outside and inside parentheses refer to Kramers-unrestricted and restricted dissociation energies, respectively. The latter estimates are
computed as De = E(R = 8.00 Å)−E(R = Re).

b Ref. 114.

pact on the Kramers-unrestricted HF potential wells, changing
the dissociation energies by no more than 0.03 eV. These ef-
fects are somewhat more significant in the Kramers-restricted
case, deepening the HF well by about 0.2 eV compared to the
nonrelativistic case.

The differences between PECs calculated using correlated
approaches are more noticeable. Beginning with CCSD, in
the non-relativistic regime [Fig. 1(A) and (B)], we observe a
significant improvement over the underlying HF PECs, with
dissociation asymptotes that are much closer to the experi-
mentally determined values. However, Kramers-unrestricted
GHF-CCSD still underbinds the Cu2 molecule by about 0.3
eV, whereas its restricted counterpart overbinds Cu2 by ∼0.2
eV. The SF-1eX2C and 1eX2C relativistic frameworks offer
a slight improvement in the Kramers-unrestricted case, re-
ducing the CCSD error to about −0.2 eV as seen on panels
(C) and (E) of Fig. 1, but they actually worsen the Kramers-
restricted GHF-CCSD results by ∼0.1 eV. Thus, for Cu2, rel-
ativity changes the PEC by inducing a stronger Cu–Cu bond
as shown by the increase in De, regardless of the reference
behavior.

The triples correction significantly changes the overall pic-
ture. On the Kramers-unrestricted side, we see an interesting
pattern where all of the triples corrections examined in this
work have similar impacts on the ground-state PECs for Cu2;
all triples corrections deepen the respective reference CCSD
potential wells by about 0.1 eV. In contrast, the Kramers-
restricted CCSD(T) and CR-CC(2,3) PECs behave differently.
The CCSD(T) PECs show the well-known unphysical bumps
that accompany the overcorrelation of the dissociation asymp-
tote, regardless of the relativistic treatment used. On the other
hand, all variants of CR-CC(2,3) shown in Fig. 1(B), (D),
and (F) are numerically stable and exhibit no artificial bumps
along the bond dissociation coordinate. The fact that the
Kramers-restricted GHF-CR-CC(2,3) PECs in Fig. 1(B) ac-
curately predicts the experimental De value is a coincidence;
once the missing relativistic effects are added [panels (D)
and (F)], the CR-CC(2,3) curves overestimate the experimen-
tally determined De by about 0.1 eV. This surprising accuracy
of Kramers-restricted GHF-CR-CC(2,3) suggests that errors
from other effects, such as basis set size, may be responsible
for a fortuitous cancellation of error. We will return to this

issue in Subsection IV D below.
At this point, it is worth discussing how the Kramers-

unrestricted and restricted PECs can help us understand the
convergence of truncated CC methods toward the exact full
CI limit. Because full CI is the exact solution within a given
basis set, the Kramers-restricted or unrestricted HF reference
must give rise to the same full CI solution. In Fig. 1, we
see that by increasing the level of electron correlation treat-
ment, the Kramers-unrestricted and restricted potential well
becomes deeper and shallower, respectively. Thus, we can
use the difference between the Kramers-unrestricted and re-
stricted energetics as an uncertainty estimate with respect to
the full CI energetics. For example, in all panels, the Kramers-
unrestricted GHF-, SF-1eX2C-, and 1eX2C-CCSD dissoci-
ation energies differ from their Kramers-restricted counter-
parts by about 0.5 eV, which indicates that CCSD is still far
from converged in terms of electronic correlation effects. In
contrast, the difference between the Kramers-unrestricted and
restricted CR-CC(2,3) dissociation energies are on the order
of 0.1–0.2 eV, which represents a massive 60%–80% reduc-
tion in uncertainty relative to their CCSD counterparts and
thus much better convergence toward the full CI limit. The
CCSD(T) approach is unfortunately not amenable to such an
analysis due to the artificial bump in the 4–5 Å region for the
Kramers-restricted Cu2 PECs.

Let us now take a closer look at the other spectroscopic pa-
rameters of Cu2 reported in Table II. Focusing on the equi-
librium bond distances, we see that CCSD(T) and all CR-
CC(2,3) variants shorten the CCSD Re estimates by about 0.02
Å, regardless of the level of mean-field relativistic treatment.
The inclusion of spin-free and spin-orbital relativistic effects
is more important, shortening the equilibrium bond length
by about 0.4 Å when compared to the non-relativistic data.
This pattern also follows the expected relativistic contraction
when comparing non-relativistic and relativistic calculations.
Note, however, that the SF-1eX2C and 1eX2C calculations
produced practically identical bond lengths, corroborating our
qualitative observation of the PECs reported in Fig. 1, which,
as in the energetics analysis, indicates that spin-orbit cou-
pling effects are minimal for Cu2. We also see a similar pat-
tern in the harmonic frequencies; the spin-free and spin-orbit-
coupled 1eX2C calculations reduces the magnitude of errors
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relative to experiment obtained in the non-relativistic CC data,
from 30–40 cm−1 to about 12–16 cm−1 on average. In anal-
ogy to the equilibrium bond distance, the triples correlation
effects are much less pronounced than the relativistic effects,
changing the harmonic frequency by only ∼4 cm−1. Inter-
estingly, the C and D variants of 1eX2C-CR-CC(2,3) worsen
the ωe estimate compared to 1eX2C-CCSD and the A and B
versions by about 5 cm−1 (∼23 microhartree). This behav-
ior could be related to the orbital invariance issues with CR-
CC(2,3)C and CR-CC(2,3)D.

B. Ag2

We proceed to the next dimer in the series, Ag2, focus-
ing on the 107Ag2 isotopolog. As above, we interested in the
ground 1Σ+

g state, which, at the dissociation limit, separates
into two Ag atoms with 2S ([Kr] 4d105s1) electronic config-
urations. The ground state of this dimer, like that of Cu2,
has been the subject of extensive experimental and theoreti-
cal investigations (see, e.g., Refs. 107, 110, 111, 115–123).
Note that the majority of the available experimental investiga-
tion correspond to the mixed 107,109Ag2 dimer, which is about
twice as abundant as the 107Ag2 one. Nevertheless, due to the
very small (i.e., < 1%) difference in the reduced masses of
the two isotopologs, the impact on the numerical data of in-
terest is negligible. The experimentally derived spectroscopic
constants for Ag2 are De of about 1.66 eV (D0 = 1.65 eV
plus a zero-point energy of about 96 cm−1 or 0.01 eV),107,116

Re = 2.5303 Å,119 and ωe = 192.4 cm−1.116 Given that the
nuclear charge and mass of the 107Ag isotope are 62% and
70% higher than those of 63Cu, we can anticipate that rela-
tivistic effects will play a more important role in the overall
energetics of of Ag2. Indeed, our data, which are summarized
in Fig. 2 and Table III, are consistent with this expectation.

Figure 2 depicts ground-state PECs of Ag2 computed us-
ing the ANO-RCC-VDZP basis set with varying levels of rel-
ativistic and electron correlation effects, while following ei-
ther Kramers-unrestricted or restricted reference curves. We
note the following differences between the PECs generated
for Ag2 and those for Cu2 that we discussed above. First, con-
sider the exaggerated attractive interaction in the GHF-based
curves for Ag2 shown in Fig. 2(A) and (B). While this behav-
ior is expected for the Kramers-restricted PEC, it is surprising
to see that remnants of long-range interactions remain in the
Kramers-unrestricted case, even after electronic correlation
effects are included. Despite this peculiar behavior, we note
that each of the Kramers-unrestricted PECs are still properly
separable, i.e., the energy at large Ag–Ag separations (100 Å)
is twice the energy of an Ag atom. The unexpected overbind-
ing of GHF-based CCSD/CCSD(T)/CR-CC(2,3) PECs may
be due to use of the ANO-RCC-VDZP basis set for non-
relativistic all-electron correlated calculations. This basis set
was designed for modeling valence and semicore correlations
with spin-free relativistic treatments. Second, it is noteworthy
that the restricted GHF-CCSD(T) curve [Fig. 2(B)] does not
show the expected unphysical hump, at least up to R = 8.00
Å. The lack of this feature could be attributable to the severe

overbinding observed in the non-relativistic PECs.
The inclusion of relativistic effects leads to a dramatic

improvement in the description of the ground-state PEC of
Ag2. Spin-free relativistic effects [SF-1eX2C, Fig. 2(C)]
eliminate the artificial long-range interaction seen in the
Kramers-unrestricted GHF PECs in Fig. 2(A). The quality
of the Kramers-unrestricted SF-1eX2C-based PECs of Ag2
in Fig. 2(C) is comparable to that of their Cu2 counterparts
shown in Fig. 1(C); the De derived from Kramers-unrestricted
SF-1eX2C-CCSD differs from the experimental value by only
∼0.1 eV, while Kramers-unrestricted SF-1eX2C-CCSD(T)
and CR-CC(2,3) provide consistent results that reduce this er-
ror by an order of magnitude. This situation contrasts with
that for the Kramers-restricted case, the data for which are
reported in Fig. 2(D). Here, we find appreciable differences
between the PECs obtained using the four SF-1eX2C-CR-
CC(2,3) variants, especially in the R = 5.00–8.00 Å region.
The B variant leads to the largest deviation from the exper-
imental De data, followed by variant A, while CR-CC(2,3)C
and D produce slightly better De estimates (cf. the SF-1eX2C-
based dissociation energy values in Table III). These obser-
vations are consistent with the well-known behavior of the
different denominators in the CR-CC framework relying on
restricted and restricted open-shell HF references (see, e.g.,
Ref. 30).

Due to the larger size of Ag2 compared to Cu2, spin-
orbit coupling effects are also more pronounced in this case
[Fig. 2(E) and (F)]. Indeed, the 1eX2C PECs for Ag2 show a
noticeable difference from their SF-1eX2C analogs in panels
(C) and (D), unlike the practically identical SF-1eX2C and
1eX2C PECs obtained for Cu2 (Fig. 1). In particular, for
each of the methods shown in Table III, the 1eX2C-based
De estimates are about 0.07–0.08 eV higher than their SF-
1eX2C counterparts in both the restricted and unrestricted
cases. Even though spin-orbit coupling effects are minimal for
the 1Σ+

g state and the dissociated 2S+ 2S configurations, they
still impact the HF orbital energies and spatial splittings,150,161

as well as the subsequent CC energetics. Despite the overall
change in the PECs upon the inclusion of spin-orbit coupling,
it is encouraging to see that the triples correction afforded by
CCSD(T) and all variants of CR-CC(2,3) behave consistently
as in the SF-1eX2C case; they deepen the underlying CCSD
potential well by about 0.1 eV.

As in the case of Cu2, we can use the difference between
Kramers-unrestricted and restricted dissociation asymptotes
of Ag2 as a proxy for the completeness of the correlation treat-
ment in CCSD and CR-CC(2,3). Here, the CCSD asymptotes
differ by more than 0.7 eV in both SF-1eX2C and 1eX2C
cases, which is almost 50% of the experimentally derived
value of De itself. In contrast, the non-iterative triples cor-
rection significantly reduce this error bar. In the case of
(SF-)1eX2C-CR-CC(2,3) variants A, C, and D, the difference
between Kramers-unrestricted and restricted De estimate is
only 0.15–0.17 eV, or about 9%–10% of the experimentally
derived dissociation energy. This difference is slightly larger
in the case of the CR-CC(2,3)B approach (0.25 eV, see Ta-
ble III), which is still a significant improvement over CCSD.
As in the case of Cu2, we cannot apply a similar analysis for
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FIG. 2. The PECs of Ag2 obtained in this work using the ANO-RCC-VDZP basis set. The U and R labels indicate Kramers-unrestricted and
restricted reference curves, respectively. Each PEC is shifted relative to the energy at Re (cf. Table III).

SF-1eX2C- and 1eX2C-CCSD(T) due to the artificial hump
around 5 Å.

We now consider the remaining spectroscopic properties
tabulated in Table III. For the equilibrium distance, it is note-
worthy that the Re estimate for Ag2 does not show the ex-
pected shortening upon the inclusion of relativistic effects.
GHF-based CC predicts a bond length that is too short com-
pared to experiment by about 0.6–0.7 Å. Spin-free relativistic

effects (SF-1eX2C) increase the bond length, resulting in Re
values that are too large by about 0.1 Å. Spin-orbit coupling
effects (1eX2C) in turn lead to modest reductions in the equi-
librium bond lengths, by roughly 0.002–0.005 Å. In terms of
correlation effects, triples corrections have a smaller impact
on Re for Ag2 than for Cu2. Similar patterns can be identi-
fied for the ωe estimates in Table III. The harmonic frequency
characterizing the GHF-based PECs are only 10 cm−1 lower
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TABLE III. Spectroscopic constants for Ag2 obtained using various CC methodologies with the ANO-RCC-VDZP basis set and different
levels of mean-field relativistic treatment.

Method De (eV)a Re (Å) ωe (cm−1)
GHF SF-1eX2C-HF 1eX2C-HF GHF SF-1eX2C-HF 1eX2C-HF GHF SF-1eX2C-HF 1eX2C-HF

CCSD 2.36 (2.87) 1.55 (2.28) 1.62 (2.36) 2.479 2.548 2.543 182.5 212.8 212.5
CCSD(T) 2.48 (2.27) 1.67 (1.38) 1.75 (1.46) 2.467 2.542 2.538 181.0 210.7 210.4

CR-CC(2,3)A 2.46 (2.58) 1.66 (1.85) 1.73 (1.93) 2.469 2.542 2.538 181.4 211.2 210.9
CR-CC(2,3)B 2.46 (2.61) 1.65 (1.90) 1.73 (1.98) 2.470 2.543 2.539 181.4 211.3 212.0
CR-CC(2,3)C 2.46 (2.54) 1.65 (1.80) 1.73 (1.88) 2.467 2.540 2.538 181.8 211.5 210.9
CR-CC(2,3)D 2.46 (2.55) 1.65 (1.82) 1.73 (1.90) 2.467 2.540 2.538 181.8 211.5 210.9
Experimentb 1.66 2.5303 192.4

a The numbers outside and inside parentheses refer to Kramers-unrestricted and restricted dissociation energies, respectively. The latter estimates are
computed as De = E(R = 8.00 Å)−E(R = Re).

b De computed using the D0 value compiled in Ref. 107 and ωe of Ref. 116. Re from Ref. 119.

than the experimentally obtained value, indicating that the
PECs are slightly too flat near the equilibrium region, whereas
the SF-1eX2C and 1eX2C PECs overshoot the harmonic fre-
quency by about 20 cm−1. In these cases, the triples correction
changes the ωe value by only 1–2 cm−1. The fact that non-
relativistic calculations yield superior estimates of the spectro-
scopic constants, Re and ωe, than can be obtained from calcu-
lations that include more complete description of the physics
suggests a cancellation of errors that is likely due to basis set
size effects. This effect is not negligible for Ag2, where the
ANO-RCC-VDZP basis set has fewer unoccupied (78) than
occupied (94) spin orbitals, indicating the need of larger ba-
sis sets for post-HF calculations, especially when all electrons
are correlated.

C. Au2

The last system in our investigation is the Au2 dimer,
for which we computed the ground 1Σ+

g state dissociating
into two 197Au atoms with 2S ([Xe] 5d104 f 145s1) configu-
rations. Gold dimer has attracted a great deal of attention
from the quantum chemistry community because the rela-
tivistic effects are much more pronounced in Au2 than in
the lighter dimers discussed above. For example, the exper-
imentally determined bond length for Au2, 2.4719 Å,107,124

is slightly shorter than the corresponding value for Ag2 de-
spite the increased size of Au atom compared to Ag atom.
Au2 has long served as a benchmark system for relativis-
tic quantum chemistry calculations, and its ground-state PEC
has been the subject of thorough experimental and theo-
retical examinations,98,107,110,111,115,124–133 with the experi-
ments providing consistent and reliable estimates of De (2.30
eV) and ωe (190.9 cm−1),107,124,125,131 along with the afore-
mentioned Re value. However, to the best of our knowl-
edge, prior correlated calculations of the gold dimer have
all relied on the frozen-core approximation or effective core
potentials.98,132,133 As such, our calculations, the results of
which are provided in Fig. 3 and Table IV, represent the first
all-electron correlated relativistic treatment of this system.

The data in Fig. 3 make it quite clear that the non-relativistic
results shown in panels (A) and (B) are wrong even at the qual-

itative level, overestimating the experimentally determined
dissociation energy by a factor of about 16 (cf. Table IV), even
with the inclusion of triples effects from CCSD(T). This ob-
servation is notable, given that correlated, non-relativistic esti-
mates of De from the literature132,133 are in much better agree-
ment with experiment. There are several possible sources
of the enormous error we observe, relative to experimental
and theoretical estimates for De found in the literature. First,
Refs. 132 and 133 do not correlate all electrons, whereas we
do. Thus, we expect an explicit treatment of at least spin-
free relativistic effects to be important here; we cover this
case in the next paragraph. Second, we correlate all electrons,
but the basis set employed (ANO-RCC-VDZP) was not opti-
mized for all-electron calculations;147 a brief basis set study
in Sec. IV D confirms that the basis set choice is indeed prob-
lematic. Before moving on to discuss relativistic treatments
of this system, we note that we did not perform GHF-based
CR-CC(2,3) calculations because, based on the relative be-
havior of CCSD(T) and CR-CC(2,3) for Cu2 and Ag2, we do
not expect CR-CC(2,3) to offer much of an improvement over
CCSD(T) for this case.

As was observed for Ag2, spin-free relativistic effects (SF-
1eX2C) lead to a dramatic improvement in both the Kramers-
unrestricted and restricted PECs as shown in Fig. 3(C) and
(D). Indeed, at least using the ANO-RCC-VDZP basis set,
the Kramers-unrestricted SF-1eX2C-CCSD PEC dissociation
energy is quite close to the experimentally determined value,
with the CCSD(T) and CR-CC(2,3) triples correction deepen-
ing the potential well by 0.15–0.17 eV or 6%–7% compared
to the CCSD result. As shown on panel (D), the Kramers-
restricted SF-1eX2C-based PECs are too deep compared to
the experimental dissociation energy, producing errors in the
order of more than 1 eV, in the case of CCSD, or about 0.4
eV, in the case of the CR-CC(2,3) variants. It is also notewor-
thy that in the case of Au2, the spread between the lowest and
highest CR-CC(2,3) dissociation energy estimates, provided
by variants C and B, respectively, is 0.13 eV, which is about
30% and 300% higher than the analogous values reported for
Ag2 and Cu2, respectively.

Based on the results obtained for the copper and silver
dimer, and relying again on the fact that spin-orbit coupling
effects should be minimal for the 1Σ+

g state of the gold dimer,
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FIG. 3. The PECs of Au2 obtained in this work using the ANO-RCC-VDZP basis set. The U and R labels indicate Kramers-unrestricted and
restricted reference curves, respectively. Each PEC is shifted relative to the energy at Re (cf. Table IV).

one may have anticipated that the 1eX2C-based results would
not differ significantly from the SF-1eX2C-based ones. How-
ever, this is clearly not the case for Au2, within the ANO-
RCC-VDZP basis. Indeed, Fig. 3(E) and (F) show that each
of the 1eX2C-based PECs are deeper by about 0.8 eV as com-
pared to their SF-1eX2C counterparts shown in panels (C) and
(D), regardless of the unrestricted or restricted nature of the
reference curve. This substantial change in the PEC suggests

that a more complete treatment of relativity is more impor-
tant than high-order electron correlation effects for this sys-
tem, since the changes in the 1eX2C PECs due to triples cor-
rections on top of CCSD are practically identical to the ones
observed in the SF-1eX2C case. More importantly, this large
change again points to a potential deficiency in the basis set
we have used.

We now analyze the convergence of the different CC meth-
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TABLE IV. Spectroscopic constants for Au2 obtained using various CC methodologies with the ANO-RCC-VDZP basis set and different
levels of mean-field relativistic treatment.

Method De (eV)a Re (Å) ωe (cm−1)
GHF SF-1eX2C-HF 1eX2C-HF GHF SF-1eX2C-HF 1eX2C-HF GHF SF-1eX2C-HF 1eX2C-HF

CCSD 33.25 (34.52) 2.30 (3.39) 3.10 (4.18) 1.894 2.486 2.454 923.6 188.1 185.4
CCSD(T) 33.62 (34.34) 2.47 (2.14) 3.28 (2.95) 1.894 2.482 2.450 915.0 186.3 233.0

CR-CC(2,3)A —b 2.46 (2.75) 3.27 (3.56) —b 2.481 2.448 —b 186.5 233.1
CR-CC(2,3)B —b 2.45 (2.85) 3.26 (3.66) —b 2.481 2.448 —b 186.6 233.1
CR-CC(2,3)C —b 2.45 (2.69) 3.27 (3.50) —b 2.481 2.448 —b 185.2 234.0
CR-CC(2,3)D —b 2.45 (2.73) 3.27 (3.53) —b 2.481 2.448 —b 185.2 234.0
Experimentc 2.30 2.4719 190.9

a The numbers outside and inside parentheses refer to Kramers-unrestricted and restricted dissociation energies, respectively. The latter estimates are
computed as De = E(R = 8.00 Å)−E(R = Re).

b Calculations not performed because the reference curve has a significantly wrong shape compared to the expected result.
c Refs. 107, 124, 125, and 131.

ods, using the difference between Kramers-unrestricted and
restricted estimates of De as a proxy for convergence toward
the exact limit. Regardless of the relativistic treatment used,
CCSD produces an error window of about 1.1 eV, which,
similar to the Ag2 case, is almost half of the experimentally
derived value of De itself. The CR-CC(2,3) triples correc-
tions vastly reduce this uncertainty to only 0.24–0.40 eV. It
is encouraging to see that, while the 1eX2C PECs show ob-
vious problems when compared to their SF-1eX2C counter-
parts, the convergence behavior of CCSD, CCSD(T), and es-
pecially CR-CC(2,3) remains similar to that observed for the
copper and silver dimers. Given that the correlated 1eX2C-
based estimates for De lie above 3 eV, this convergence anal-
ysis suggests that remaining higher-order correlation effects
(from quadruple excitaitons, for example), will not signifi-
cantly improve the situation, and, thus, the issue is likely a
basis set effect.

Before moving on to discuss the role of the basis set in this
system, we analyze the remaining spectroscopic parameters
for Au2/ANO-RCC-VDZP that are reported in Table IV. In
terms of the equilibrium bond distance, the SF-1eX2C-based
CCSD, CCSD(T), and CR-CC(2,3) Re estimates are all only
about 0.01 Å longer than the experimentally derived value
of Refs. 107 and 124, whereas their 1eX2C-based counter-
parts are consistently about 0.02 Å too short. The differences
among methods are more apparent in the harmonic frequency
estimates, which is an indicator of the quality of the curva-
ture of PEC near the equilibrium geometry. The SF-1eX2C-
CCSD, CCSD(T), and CR-CC(2,3) PECs are characterized by
ωe values that are about 2–5 cm−1 lower than the experimen-
tally derived 190.9 cm−1 estimate. In contrast, triples correc-
tions within the 1eX2C framework worsen the estimates of
ωe, giving values that are more than 40 cm−1 too high.

D. Basis set effects

The results of our CC calculations for Cu2, Ag2, and Au2
carried out within the ANO-RCC-VDZP basis give rise to an
interesting observation. As noted in Ref. 147, the ANO-RCC
basis set was not designed for core-electron correlations. Nev-

ertheless, ANO-RCC-VDZP-based results for Cu2 and Ag2
are in good agreement with the available experimental data
for these systems, even with all electrons correlated and spin-
orbit coupling taken into account. The drastic reduction in
the quality of the 1eX2C-based Au2/ANO-RCC-VDZP PECs
compared to their SF-1eX2C counterparts, though, certainly
reveals issues with core correlations, particularly in the pres-
ence of spin-orbit coupling, when using this basis set. In this
section, we investigate the effects of basis set size and contrac-
tion schemes on the convergence of 1eX2C-based HF, CCSD,
and CCSD(T) energetics.

Let us begin by considering the basis set contraction
(and truncation) scheme used in the calculations discussed
in the preceding subsections. The ANO-RCC-VDZP basis
set is a subset of the full ANO-RCC basis set, which was
optimized using the Douglas–Kroll–Hess Hamiltonian and
complete-active-space second-order perturbation theory ac-
counting for valence and semicore electron correlations. The
ANO-RCC-VDZP, VTZP, and VQZP basis sets are obtained
by simple truncation of the full ANO-RCC basis set to ob-
tain correlation-consistent-style contracted shells without re-
optimizing the contraction coefficients. We compare this fam-
ily of basis sets to the segmented contracted error-consistent
basis sets of Refs. 150 and 151, which were optimized using
1eX2C-HF with spin-orbit coupling effects. The x2c-SVPall-
2c, x2c-TZVPall-2c, x2c-TZVPPall-2c, and x2c-QZVPPall-
2c bases have additional inner p- and d-type function, com-
pared to their non-2c counterparts, to account for the proper p-
and d-shell splittings.150,151 A comparison of the contracted
atomic functions for the ANO-RCC and segmented contracted
error-consistent basis sets is reported in Table V.

Figure 4 depicts 1eX2C-based PECs for Au2 computed us-
ing the ANO-RCC-VDZP and x2c-SVPall-2c basis sets, the
latter of which is the smallest of that family of basis sets. As
shown in Fig. 4(A), the SF-1eX2C-HF PECs are insensitive
to the choice of basis set. CCSD and CCSD(T) display only
slightly larger sensitivity, with the dissociation limits com-
puted using these two basis sets differing by roughly 0.15
eV. However, as the results in panel (B) indicate, 1eX2C-HF,
CCSD, and CCSD(T) energies computed in different basis
sets differ dramatically once we include spin-orbit coupling
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TABLE V. The list of atomic basis function shells for Cu, Ag, and
Au employed in this work.

Basis set Cu (no = 29) Ag (no = 47) Au (no = 79)
ANO-RCC-VDZP 5s4p2d1 f 6s5p3d1 f 7s6p4d2 f
ANO-RCC-VTZP 6s5p3d2 f 1g 7s6p4d2 f 1g 8s7p5d3 f 1g
ANO-RCC-VQZP 7s6p4d3 f 2g1h 8s7p5d3 f 2g1h 9s8p6d4 f 2g1h
ANO-RCCa 10s9p8d6 f 4g2h
x2c-SVPall-2c 5s5p3d1 f 6s8p6d1 f 7s9p9d2 f
x2c-TZVPall-2c 6s7p4d1 f 8s9p7d1 f 11s11p10d2 f
x2c-TZVPPall-2c 6s7p4d2 f 1g 8s9p7d2 f 1g 11s11p10d3 f 1g
x2c-QZVPPall-2c 11s9p6d4 f 2g 13s12p9d4 f 2g 16s16p12d7 f 2g

a The ANO-RCC basis sets for Cu, Ag, and Au have the same number of
shells.

effects. For the correlated calculations, we see substantial im-
provements in the description of the Au2 PEC with the x2c-
SVPall-2c basis. The 1eX2C-CCSD and CCSD(T) De and ωe
estimates are now much closer to their experimentally derived
values (see Table VI). Interestingly, we do not see similar im-
provements in equilibrium bond lengths estimated from x2c-
SVPall-2c calculations; in both SF-1eX2C- and 1eX2C-based
calculations, the Re values obtained using the x2c-SVPall-2c
basis set are all about 0.07 Å longer than the experimental es-
timate, whereas ANO-RCC-VDZP produces values that are
within 0.01–0.02 Å relative to experimental data. Neverthe-
less, the improvements in De and ωe estimates indicate that
the x2c-SVPall-2c basis set is a promising alternative to ANO-
RCC-VDZP.

TABLE VI. Comparison between the spectroscopic parameters of
Au2 obtained using the ANO-RCC-VDZP (ANO) and x2c-SVPall-
2c (SVP) basis sets.

Method De (eV) Re (Å) ωe (cm−1)
ANOa SVP ANOa SVP ANOa SVP

SF-1eX2C-CCSD 2.30 2.16 2.486 2.548 188.1 195.6
SF-1eX2C-CCSD(T) 2.47 2.31 2.482 2.546 186.3 194.4

1eX2C-CCSD 3.10 2.29 2.454 2.543 185.4 188.3
1eX2C-CCSD(T) 3.28 2.44 2.450 2.542 233.0 187.1

Experimentb 2.30 2.4719 190.9

a Taken from Table IV.
b Refs. 107, 124, 125, and 131

Table VII summarizes the results of more comprehensive
calculations that considered De values for Cu2, Ag2, and Au2
determined using 1eX2C-HF, CCSD, and CCSD(T), within
the ANO-RCC-VDZP, VTZP, VQZP, and full ANO-RCC ba-
sis sets, as well as the x2c-SVPall-2c, x2c-TZPall-2c, x2c-
TZPPall-2c, and x2c-QZPPall-2c bases. In the case of Au2,
we also provide additional data for the ANO-RCC basis, aug-
mented by an additional i-type function on each Au atom,
which is prompted by a statement in Ref. 98 claiming that
the interaction in Au2 can only be described properly by in-
cluding at the very least h-type functions. For the purposes
of this analysis, the De estimates are computed as the energy
difference between two atoms and the lowest-energy point for
each dimer, at the CCSD/ANO-RCC-VDZP level of theory,

on the grid defined in Table I, which are R = 2.20 Å for Cu2
and R = 2.50 Å for the Ag and Au dimers.

As shown in Table VII, the 1eX2C-HF/ANO-RCC-VDZP
dissociation energies are practically converged for Cu2 and
Ag2, increasing by at most 0.06 and 0.04 eV, respectively,
as the basis set quality is increased from the quadruple-ζ -
quality truncation to the full set. Interestingly, in both of
these dimers, the 1eX2C-HF dissociation energy increases
from double- to quadruplpe-ζ but then decreases once the full
ANO-RCC basis set is reached, becoming more similar to the
ANO-RCC-VDZP or VTZP estimates. The behavior is more
unpredictable for Au2, where the 1eX2C-HF dissociation en-
ergy estimate shows no clear convergence pattern. With the
full ANO-RCC basis set, the De estimate is 0.85 eV, which
is slightly more than half of the value obtained using ANO-
RCC-VDZP. The addition of an i-type primitive to each of the
Au atom does not significantly change the HF energy, indicat-
ing that the full ANO-RCC basis set can be considered con-
verged in terms of 1eX2C-HF energetics for the gold dimer
(as well as the lighter analogs).

The De estimates from correlated approaches show much
worse convergence properties. Going from triple- to
quadruple-ζ -quality basis, the De is clearly not converged,
and massive reductions are observed once the full set is used,
again, bringing the estimates more in line with those from
double- or triple-ζ -level calculations. For Cu2, De obtained
using CCSD increase monotonically from 1.89 eV (ANO-
RCC-VDZP) to 2.20 eV (ANO-RCC-VQZP) case, but a much
lower value (1.77 eV) is obtained with the full ANO-RCC set.
The CCSD(T) energetics behave similarly, but the correlation
effects due to connected triple excitations, quantified her as
the difference between CCSD(T) and CCSD energetics, more
than double when going from ANO-RCC-VDZP (0.12 eV) to
the full ANO-RCC (0.28 eV). It is also worth mentioning that
1e-X2C-CCSD(T)/ANO-RCC predicts a De value in excel-
lent agreement with experiment. The CCSD(T)/ANO-RCC-
VDZP estimate is also quite good but results from a fortuitous
cancellation of error, given that the basis is far from com-
plete. The situation is similar for the silver dimer, in which
the CCSD and CCSD(T) De estimates increase as the basis
set size also increases from ANO-RCC-VDZP to VQZP, and
finally dropping at the use of the full ANO-RCC basis. The ef-
fects of triples correlations on the dissociation energy of Ag2
are also of the similar order of magnitude to those observed in
Cu2, ranging from 0.13 eV in the ANO-RCC-VDZP case to
0.21 eV in the full ANO-RCC set. Unlike in the case of Cu2,
unconverged 1eX2C-CCSD and CCSD(T) estimates obtained
using the ANO-RCC-VDZP basis are not in good agreement
with the experimentally derived value.

The basis set convergence issues for correlated approaches
persist in the gold dimer, where increasing the basis from
ANO-RCC-VDZP to ANO-RCC-VTZP makes the De value
worse, as compared to experiment, by 0.64 eV, and the ANO-
RCC-VQZP basis set produces a result that is intermediate
in quality between the ANO-RCC-VDZP and VTZP values.
Only the full ANO-RCC set results in a reasonable dissoci-
ation energy value from CCSD (2.16 eV), which is an 0.93
eV or 30% decrease from the estimate obtained using ANO-
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FIG. 4. The Kramers-unrestricted HF, CCSD, and CCSD(T) PECs of Au2 obtained in this work using the ANO-RCC-VDZP and x2c-SVPall-
2c basis sets.

RCC-VDZP. The addition of i-type functions does not sig-
nificantly affect the correlated estimates of De, changing the
CCSD value by merely 0.01 eV. The convergence of De with
respect to the addition of an i-type primitive is consistent with
the claim in Ref. 98 that one should to include at least h-
type functions in the calculation; apparently higher angular
momentum functions are not required, at least for obtaining
good estimates of De. This consistency comes with the caveat
that the present calculations correlate all electrons, whereas
those in Ref. 98 correlated only valence and semicore cor-
relation, in combination with with effective core potentials.
Although we did not complete the CCSD(T)/ANO-RCC and
CCSD(T)/ANO-RCC+i calculations for Au2, as indicated by
the missing numbers in Table VII, the triples energy correc-
tions for the ANO-RCC-VDZP–ANO-RCC-VQZP cases, of
0.17–0.25 eV, are still similar in magnitude to their copper
and silver dimer counterpart. Thus, we can anticipate these
CCSD(T) De estimates to be at most 0.2 eV higher than the
experimental result.

We now turn our attention to the convergence of the De
estimates computed within the segmented contracted error-
consistent basis sets of Refs. 150 and 151 (see Table VII).
First, the De values from 1eX2C-HF carried out within these
basis sets converge rapidly for Cu2 and Ag2. For Au2, we
observe slightly larger variations in De as we increase the ζ -
level (up to 0.06 eV), but these fluctuations are minuscule
compared to those observed for Au2 with truncated ANO-
RCC basis sets. Moreover, the quality of the 1eX2C-HF De
from the smallest segmented contracted error-consistent ba-
sis set (x2c-SVPall-2c ) is comparable to that of the De from
1eX2C-HF in the full ANO-RCC set. Second, the situation
is similar for correlated calculations. The De values converge
reasonably well; for each dimer, De estimates do not change
by more than about 0.2 eV when we go from the smallest
to largest ζ levels. Third, aside from the difference in con-
vergence properties, we do find some consistent behavior be-
tween basis set families. For example, the triples contributions

to De computed using CCSD(T) are comparable regardless of
the basis (on the order of 0.15–0.25 eV). Lastly, the 1eX2C-
CCSD(T)/x2c-QZVPPall-2c results for the Cu2 and Ag2 are
are in excellent agreement with experiment. For Au2, given
that (i) the CCSD(T) triples correction in the x2C-TZPPall-
2C basis set is ∼0.2 eV and (ii) the De value computed using
CCSD appears to be converged using the quadruple-ζ basis,
we can expect that 1eX2C-CCSD(T)/x2c-QZVPPall-2c result
should be within 0.1 eV from the experimental estimate of
2.30 eV.

V. CONCLUSIONS

We have implemented all-electron relativistic (1eX2C)
non-iterative triples corrections to CCSD, namely, CCSD(T)
and CR-CC(2,3), in the Chronus Quantum software package.
These codes have been applied to evaluate estimates of spec-
troscopic constants in the coinage metal dimers, Cu2, Ag2,
and Au2. Using suitable basis sets, De estimates are in ex-
cellent agreement with experiment, with triples correlation
effects contributing 0.1–0.2 eV. While ANO-RCC sets were
not optimized for all-electron calculations, our calculations
on Cu2 and Ag2 dimers nonetheless give reasonable results
as compared to experiment. On the other hand, calculations
on Au2 reveal that truncated ANO-RCC basis sets do not pro-
vide a reliable description of spin-orbit coupling effects in this
system. Other basis set families optimized for all-electron cal-
culations with spin orbit coupling (i.e., the segmented con-
tracted error-consistent basis sets of Refs. 150 and 151), ap-
pear to give more consistent and reasonable results at varying
ζ -levels, at least for the systems studied in this work.
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TABLE VII. The effect of basis set size and contraction scheme on the Kramers-unrestricted 1eX2C-HF-based De estimate of Cu2, Ag2, and
Au2, computed as the difference between the energy of two atoms (i.e., the asymptote) and the lowest energy on the grid described in Table I.

Basis set Cu2, R = 2.20 Å Ag2, R = 2.50 Å Au2, R = 2.50 Å
HF CCSD CCSD(T) HF CCSD CCSD(T) HF CCSD CCSD(T)

ANO-RCC-VDZP 0.42 1.89 2.01 0.42 1.61 1.74 1.51 3.09 3.26
ANO-RCC-VTZP 0.45 2.10 2.33 0.43 1.87 2.05 1.73 3.73 3.96
ANO-RCC-VQZP 0.48 2.20 2.45 0.46 2.17 2.37 1.18 3.49 3.74

ANO-RCC 0.44 1.77 2.05 0.38 1.85 2.06 0.85 2.16 —a

ANO-RCC+i —a —a —a —a —a —a 0.85 2.17 —a

x2c-SVPall-2c 0.45 1.97 2.15 0.36 1.65 1.81 0.81 2.28 2.42
x2c-TZVPall-2c 0.42 1.71 1.92 0.33 1.43 1.60 0.76 1.97 2.17

x2c-TZVPPall-2c 0.43 1.70 1.93 0.35 1.42 1.61 0.82 2.04 2.27
x2c-QZVPPall-2c 0.43 1.81 2.06 0.34 1.44 1.65 0.81 2.07 —a

Experimentb 2.02 1.66 2.30

a Calculations not performed.
b See footnote b in Tables II–IV.
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4J. Čížek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).
5K. A. Brueckner, Phys. Rev. 100, 36 (1955).
6J. Goldstone, Proc. R. Soc. Lond. A 239, 267 (1957).
7J. Hubbard, Proc. R. Soc. Lond. A 240, 539 (1957).
8N. M. Hugenholtz, Physica 23, 481 (1957).
9G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

10J. M. Cullen and M. C. Zerner, J. Chem. Phys. 77, 4088 (1982).
11J. Noga and R. J. Bartlett, J. Chem. Phys. 86, 7041 (1987), 89, 3401 (1988)

[Erratum].
12G. E. Scuseria and H. F. Schaefer, Chem. Phys. Lett. 152, 382 (1988).
13N. Oliphant and L. Adamowicz, J. Chem. Phys. 95, 6645 (1991).
14S. A. Kucharski and R. J. Bartlett, Theor. Chem. Acc. 80, 387 (1991).
15S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 97, 4282 (1992).
16P. Piecuch and L. Adamowicz, J. Chem. Phys. 100, 5792 (1994).
17R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
18J. Noga, R. J. Bartlett, and M. Urban, Chemical Physics Letters 134, 126

(1987).
19O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 103, 7429

(1995).
20H. Koch, O. Christiansen, P. Jørgensen, A. M. Sanchez de Merás, and

T. Helgaker, J. Chem. Phys. 106, 1808 (1997).
21P. Piecuch, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 110, 6103

(1999).
22P. Piecuch, Mol. Phys. 108, 2987 (2010).

23K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem.
Phys. Lett. 157, 479 (1989).

24A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 044110 (2008).
25A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 044111 (2008).
26S. Hirata, P.-D. Fan, A. A. Auer, M. Nooijen, and P. Piecuch, J. Chem.

Phys. 121, 12197 (2004).
27P. Piecuch and M. Włoch, J. Chem. Phys. 123, 224105 (2005).
28M. Włoch, M. D. Lodriguito, P. Piecuch, and J. R. Gour, Mol. Phys. 104,

2149 (2006).
29P. Piecuch, M. Włoch, J. R. Gour, and A. Kinal, Chem. Phys. Lett. 418,

467 (2006).
30M. Włoch, J. R. Gour, and P. Piecuch, J. Phys. Chem. A 111, 11359 (2007).
31P. Piecuch, J. R. Gour, and M. Włoch, Int. J. Quantum Chem. 108, 2128

(2008).
32J. Shen and P. Piecuch, Chem. Phys. 401, 180 (2012).
33J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012).
34J. Shen and P. Piecuch, J. Chem. Theory Comput. 8, 4968 (2012).
35M. Lesiuk, J. Chem. Theory Comput. 16, 453 (2020).
36M. Lesiuk, J. Chem. Theory Comput. 17, 7632 (2021).
37I. Magoulas, N. P. Bauman, J. Shen, and P. Piecuch, J. Phys. Chem. A 122,

1350 (2018).
38S. H. Yuwono, I. Magoulas, J. Shen, and P. Piecuch, Mol. Phys. 117, 1486

(2019).
39M. Włoch, J. R. Gour, K. Kowalski, and P. Piecuch, J. Chem. Phys. 122,

214107 (2005).
40P. Piecuch, J. R. Gour, and M. Włoch, Int. J. Quantum Chem. 109, 3268

(2009).
41G. Fradelos, J. J. Lutz, T. A. Wesołowski, P. Piecuch, and M. Włoch, J.

Chem. Theory Comput. 7, 1647 (2011).
42K. Emrich, Nucl. Phys. A 351, 379 (1981).
43J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
44K. G. Dyall, J. Chem. Phys. 106, 9618 (1997).
45K. G. Dyall, J. Chem. Phys. 109, 4201 (1998).
46K. G. Dyall and T. Enevoldsen, J. Chem. Phys. 111, 10000 (1999).
47K. G. Dyall, J. Chem. Phys. 115, 9136 (2001).
48M. Filatov and D. Cremer, Chem. Phys. Lett. 351, 259 (2002).
49W. Kutzelnigg and W. Liu, J. Chem. Phys. 123, 241102 (2005).
50W. Liu and D. Peng, J. Chem. Phys. 125, 044102 (2006).
51D. Peng, W. Liu, Y. Xiao, and L. Cheng, J. Chem. Phys. 127, 104106

(2007).
52M. Iliaš and T. Saue, J. Chem. Phys. 126, 064102 (2007).
53W. Liu and D. Peng, J. Chem. Phys. 131, 031104 (2009).
54W. Liu, Mol. Phys. 108, 1679 (2010).
55Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012).
56D. Peng, N. Middendorf, F. Weigend, and M. Reiher, J. Chem. Phys. 138,

184105 (2013).
57F. Egidi, J. J. Goings, M. J. Frisch, and X. Li, J. Chem. Theory Comput.

12, 3711 (2016).

https://doi.org/https://doi.org/10.1016/0029-5582(58)90280-3
https://doi.org/10.1063/1.1727484
https://doi.org/https://doi.org/10.1002/9780470143599.ch2
https://doi.org/10.1002/qua.560050402
https://doi.org/10.1103/PhysRev.100.36
https://doi.org/10.1098/rspa.1957.0037
https://doi.org/10.1098/rspa.1957.0106
https://doi.org/10.1016/S0031-8914(57)92950-6
https://doi.org/10.1063/1.443164
https://doi.org/10.1063/1.444319
https://doi.org/10.1063/1.452353
https://doi.org/https://doi.org/10.1016/0009-2614(88)80110-6
https://doi.org/10.1063/1.461534
https://doi.org/10.1007/BF01117419
https://doi.org/10.1063/1.463930
https://doi.org/10.1063/1.467143
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1016/0009-2614(87)87107-5
https://doi.org/10.1016/0009-2614(87)87107-5
https://doi.org/10.1063/1.470315
https://doi.org/10.1063/1.470315
https://doi.org/10.1063/1.473322
https://doi.org/10.1063/1.478517
https://doi.org/10.1063/1.478517
https://doi.org/10.1080/00268976.2010.522608
https://doi.org/https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1063/1.2830236
https://doi.org/10.1063/1.2830237
https://doi.org/10.1063/1.1814932
https://doi.org/10.1063/1.1814932
https://doi.org/10.1063/1.2137318
https://doi.org/10.1080/00268970600659586
https://doi.org/10.1080/00268970600659586
https://doi.org/10.1016/j.cplett.2005.10.116
https://doi.org/10.1016/j.cplett.2005.10.116
https://doi.org/10.1021/jp072535l
https://doi.org/10.1002/qua.21745
https://doi.org/10.1002/qua.21745
https://doi.org/10.1016/j.chemphys.2011.11.033
https://doi.org/10.1063/1.3700802
https://doi.org/10.1021/ct300762m
https://doi.org/10.1021/acs.jctc.9b00985
https://doi.org/10.1021/acs.jctc.1c00933
https://doi.org/10.1021/acs.jpca.7b10892
https://doi.org/10.1021/acs.jpca.7b10892
https://doi.org/10.1080/00268976.2018.1564847
https://doi.org/10.1080/00268976.2018.1564847
https://doi.org/10.1063/1.1924596
https://doi.org/10.1063/1.1924596
https://doi.org/10.1002/qua.22367
https://doi.org/10.1002/qua.22367
https://doi.org/10.1021/ct200101x
https://doi.org/10.1021/ct200101x
https://doi.org/10.1016/0375-9474(81)90179-2
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.473860
https://doi.org/https://doi.org/10.1063/1.477026
https://doi.org/https://doi.org/10.1063/1.480353
https://doi.org/https://doi.org/10.1063/1.1413512
https://doi.org/https://doi.org/10.1016/S0009-2614(01)01357-4
https://doi.org/10.1063/1.2137315
https://doi.org/https://doi.org/10.1063/1.2222365
https://doi.org/https://doi.org/10.1063/1.2772856
https://doi.org/https://doi.org/10.1063/1.2772856
https://doi.org/https://doi.org/10.1063/1.2436882
https://doi.org/https://doi.org/10.1063/1.3159445
https://doi.org/https://doi.org/10.1080/00268971003781571
https://doi.org/https://doi.org/10.1063/1.4758987
https://doi.org/https://doi.org/10.1063/1.4803693
https://doi.org/https://doi.org/10.1063/1.4803693
https://doi.org/10.1021/acs.jctc.6b00474
https://doi.org/10.1021/acs.jctc.6b00474


15

58J. J. Goings, J. M. Kasper, F. Egidi, S. Sun, and X. Li, J. Chem. Phys. 145,
104107 (2016).

59L. Konecny, M. Kadek, S. Komorovsky, O. L. Malkina, K. Ruud, and
M. Repisky, J. Chem. Theory Comput. 12, 5823 (2016).

60F. Egidi, S. Sun, J. J. Goings, G. Scalmani, M. J. Frisch, and X. Li, J.
Chem. Theory Comput. 13, 2591 (2017).

61J. Liu and L. Cheng, WIREs Comput. Mol. Sci. 11, e1536 (2021).
62P. Sharma, A. J. Jenkins, G. Scalmani, M. J. Frisch, D. G. Truhlar,

L. Gagliardi, and X. Li, J. Chem. Theory Comput. 18, 2947 (2022).
63L. Lu, H. Hu, A. J. Jenkins, and X. Li, J. Chem. Theory Comput. 18, 2983

(2022).
64C. E. Hoyer, H. Hu, L. Lu, S. Knecht, and X. Li, J. Phys. Chem. A 126,

5011 (2022).
65K. Faegri Jr, Theor. Chem. Acc. 105, 252 (2001).
66H. Tatewaki, T. Koga, and Y. Mochizuki, Chem. Phys. Lett. 375, 399

(2003).
67H. Tatewaki and Y. Mochizuki, Theor. Chem. Acc. 109, 40 (2003).
68E. F. Gusmão and R. L. A. Haiduke, J. Comput. Chem. 43, 1901 (2022).
69T. Zhang, S. Banerjee, L. N. Koulias, E. F. Valeev, A. E. DePrince III, and

X. Li, J. Phys. Chem. A (2024).
70G. E. Brown, D. G. Ravenhall, and R. E. Peierls, Proc. R. Soc. Lond. A

208, 552 (1997).
71M. H. Mittleman, Phys. Rev. A 4, 893 (1971).
72J. Sucher, Phys. Rev. A 22, 348 (1980).
73G. Hardekopf and J. Sucher, Phys. Rev. A 30, 703 (1984).
74B. A. Hess, Phys. Rev. A 33, 3742 (1986).
75J. Sikkema, L. Visscher, T. Saue, and M. Iliaš, J. Chem. Phys. 131, 124116

(2009).
76P. Tecmer, A. S. P. Gomes, S. Knecht, and L. Visscher, J. Chem. Phys. 141,

041107 (2014).
77A. Shee, T. Saue, L. Visscher, and A. Severo Pereira Gomes, J. Chem.

Phys. 149, 174113 (2018), https://doi.org/10.1063/1.5053846.
78J. Liu, Y. Shen, A. Asthana, and L. Cheng, J. Chem. Phys. 148, 034106

(2018).
79J. Liu and L. Cheng, J. Chem. Phys. 148, 144108 (2018).
80A. Asthana, J. Liu, and L. Cheng, J. Chem. Phys. 150, 074102 (2019).
81L. N. Koulias, D. B. Williams-Young, D. R. Nascimento, A. E. DePrince,

and X. Li, J. Chem. Theory Comput. 15, 6617 (2019).
82J. V. Pototschnig, A. Papadopoulos, D. I. Lyakh, M. Repisky, L. Halbert,

A. Severo Pereira Gomes, H. J. A. Jensen, and L. Visscher, J. Chem. The-
ory Comput. 17, 5509 (2021).

83J. Schnabel, L. Cheng, and A. Köhn, J. Chem. Phys. 155, 124101 (2021).
84S. Knecht, M. Repisky, H. J. A. Jensen, and T. Saue, J. Chem. Phys. 157,

114106 (2022).
85X. Zheng, C. Zhang, J. Liu, and L. Cheng, J. Chem. Phys. 156, 151101

(2022).
86J. M. Kasper, X. Li, S. A. Kozimor, E. R. Batista, and P. Yang, J. Chem.

Theory Comput. 18, 2171 (2022).
87M. Spiegel, E. Semidalas, J. M. L. Martin, M. R. Bentley, and J. F. Stanton,

Mol. Phys. 0, e2252114 (2023).
88H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. 38, 241 (1990).
89E. Ilyabaev and U. Kaldor, J. Chem. Phys. 97, 8455 (1992).
90E. Ilyabaev and U. Kaldor, Phys. Rev. A 47, 137 (1993).
91E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994).
92L. Visscher, T. J. Lee, and K. G. Dyall, J. Chem. Phys. 105, 8769 (1996).
93E. Eliav and U. Kaldor, Chem. Phys. Lett. 248, 405 (1996).
94E. Eliav, U. Kaldor, and B. A. Hess, J. Chem. Phys. 108, 3409 (1998).
95L. Visscher, E. Eliav, and U. Kaldor, J. Chem. Phys. 115, 9720 (2001).
96T. Fleig, L. K. Sørensen, and J. Olsen, Theor. Chem. Acc. 118, 347–356

(2007).
97U. Kaldor and B. A. Hess, Chem. Phys. Lett. 230, 1 (1994).
98B. A. Hess and U. Kaldor, J. Chem. Phys. 112, 1809 (2000).
99S. Hirata, T. Yanai, R. J. Harrison, M. Kamiya, and P.-D. Fan, J. Chem.

Phys. 126, 024104 (2007).
100H. S. Nataraj, M. Kállay, and L. Visscher, J. Chem. Phys. 133, 234109

(2010).
101B. A. Heß, C. M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett.

251, 365 (1996).
102M. Iliaš, V. Kellö, L. Visscher, and B. Schimmelpfennig, J. Chem. Phys.

115, 9667 (2001).

103N. Aslund, R. F. Barrow, W. G. Richard, and D. N. Travis, Ark. Fys. 30,
171 (1965).

104M. Pelissier, J. Chem. Phys. 75, 775 (1981).
105M. Witko and H.-O. Beckmann, Mol. Phys. , 945 (1982).
106E. A. Rohlfing and J. J. Valentini, J. Chem. Phys. 84, 6560 (1986).
107M. D. Morse, Chem. Rev. 86, 1049 (1986).
108R. H. Page and C. S. Gudeman, J. Chem. Phys. 94, 39 (1991).
109R. Ram, C. Jarman, and P. Bernath, J. Mol. Spectrosc. 156, 468 (1992).
110F. Wang and W. Liu, Chem. Phys. 311, 63 (2005).
111Z. Tu, A. Chen, C. Xia, Z. Li, M. Yang, C. Wang, and W. Wang, Comput.

Theor. Chem. 1112, 88 (2017).
112B. Visser, M. Beck, P. Bornhauser, G. Knopp, J. A. Van Bokhoven, R. Mar-

quardt, C. Gourlaouen, and P. P. Radi, J. Chem. Phys. 147, 214308 (2017).
113M. Beck, P. Bornhauser, B. Visser, G. Knopp, J. A. V. Bokhoven, and P. P.

Radi, Nat. Commun. 10, 3270 (2019).
114P. Bornhauser, M. Beck, Q. Zhang, G. Knopp, R. Marquardt,

C. Gourlaouen, and P. P. Radi, J. Chem. Phys. 153, 244305 (2020).
115V. G. De Pina, B. G. A. Brito, G.-Q. Hai, and L. Cândido, Phys. Chem.

Chem. Phys. 23, 9832 (2021).
116B. Kleman and S. Lindkvist, Ark. Fys. 9, 385 (1955).
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