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Abstract

A new measure to assess the centrality of vertices in an undirected and connected graph is

proposed. The proposed measure, L1 centrality, can adequately handle graphs with weights

assigned to vertices and edges. The study provides tools for graphical and multiscale analysis

based on the L1 centrality. Specifically, the suggested analysis tools include the target plot,

L1 centrality-based neighborhood, local L1 centrality, multiscale edge representation, and het-

erogeneity plot and index. Most importantly, our work is closely associated with the concept

of data depth for multivariate data, which allows for a wide range of practical applications of

the proposed measure. Throughout the paper, we demonstrate our tools with two interesting

examples: the Marvel Cinematic Universe movie network and the bill cosponsorship network of

the 21st National Assembly of South Korea.
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1 Introduction

A fundamental and indispensable tool for analyzing graph data is a graph centrality measure, which

evaluates the prominence of vertices in a given graph structure (Sabidussi, 1966; Freeman, 1978).

Several measures have been suggested based on different concepts of what constitutes a ‘central’

vertex (see, e.g., Borgatti and Everett, 2006; Rodrigues, 2019). The concept of centrality has been

developed primarily in social network analysis and, more broadly, in the field of social sciences

(Wasserman and Faust, 1994).

Meanwhile, in statistics, the concept of data depth for multivariate data has been extensively

studied since Tukey (1975). Data depth is a multivariate generalization of a univariate rank, but in a

center-outward manner, starting from the deepest point(s) and extending towards the outer points.

Notable instances of data depth include half-space depth (Tukey, 1975), simplical depth (Liu, 1990),

projection depth (Zuo and Serfling, 2000a), and L1 data depth (Vardi and Zhang, 2000), among

others. See Zuo and Serfling (2000a); Mosler and Mozharovskyi (2022) for an extensive review. The

data depth is a robust and nonparametric analytic tool for multivariate data. It is known for its

powerful usage in robust estimation (Zuo et al., 2004), regression analysis (Rousseeuw and Hubert,

1999), and functional data analysis (López-Pintado and Romo, 2009; Sun and Genton, 2011).

Therefore, both graph centrality and data depth have a surprisingly comparable idea in that

they measure the degree of ‘centralness’ of a point or a vertex w.r.t. a given set of data. Nevertheless,

there are a limited number of studies that establish a connection between these two fields of research.

Aamari et al. (2021) developed a data depth function by generating a neighborhood graph based

on the provided multivariate data and calculating the centrality of that graph. Cerdeira and Silva

(2021) introduced a new centrality measure, termed Tukey centrality, which leverages the popular

concept of half-space depth. However, as indicated in the latter study, the computation of Tukey

centrality is NP-hard, so there is no reason to prefer it over the existing ones. To our knowledge,

these are the only works connecting the two fields.

The aim of this paper is to introduce a new centrality measure, called L1 centrality, for vertices of

an undirected and connected graph, analogous to the L1 data depth of Vardi and Zhang (2000). This
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measure can handle graphs with weights assigned to both vertices and edges in a straightforward

manner. Nevertheless, the computation of this measure is simple and does not entail a higher

computational cost than the existing centrality measures, unlike the approach proposed by Cerdeira

and Silva (2021). Furthermore, due to the connection between our work and the notion of data depth

for multivariate data, there are several practical possibilities for expanding the proposed measure

based on the extensive literature on data depth. For instance, the L1 centrality-based neighborhood

and the local L1 centrality introduced in this study are closely related to the concept of local depth

in Paindaveine and Van Bever (2013). In addition, we provide various graphical and multiscale

analysis tools that rely on the L1 centrality. The tools are based on an insightful interpretation

of the suggested measure (Remark 1), distinguishing our centrality measure from others. Through

these tools, we demonstrate that even the basic concept of centrality has a wide range of practical

uses.

The rest of this paper is organized as follows. The L1 centrality measure is defined in Section

2, and its properties are discussed, along with comparisons to the existing measures. Section 3

presents a visualization tool, the target plot, that utilizes the L1 centrality. Section 4 expands

upon the L1 centrality measure using a multiscale approach. The L1 centrality-based neighborhood

of a vertex is precisely defined and utilized to derive the local L1 centrality. The method for

representing edges at multiple scales is also described. In Section 5, we propose a group heterogeneity

index to analyze graph data effectively at the group level. In Sections 2–5, the Marvel Cinematic

Universe movie network is utilized to aid our explanation. Then, in Section 6, we consider the

bill cosponsorship network of 317 members in the 21st National Assembly of South Korea, which

effectively demonstrates the practicality of the tools developed in the study. Finally, Section 7

provides concluding remarks with further discussion. All technical proofs are in the Appendix.

All methods and data sets used in this paper are provided via the R package L1centrality

(Kang and Oh, 2024), available from the Comprehensive R Archive Network. Also, the codes

for reproducing the figures and analysis in this paper are available from https://github.com/

seungwoo-stat/L1centrality-paper.
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2 L1 Centrality Measure

2.1 Notations and Review of Graph Centrality Measures

Denote a graph by G = (V,E), where V = {v1, . . . , vn} is a set of vertices (nodes, points, or actors),

and E is a set of edges (ties, or lines) connecting pairs of distinct vertices. The number of vertices,

n = |V | (| · | indicates the cardinality of the set), is often referred to as a graph size. When edges

do not have direction, i.e., every connection from vertex i to j has a connection from j to i, we call

the graph undirected. Otherwise, the graph is directed. Hereafter, we assume that the given graph

is undirected.

The adjacency matrix is denoted by A = (Aij)n×n, where Aij = 1 if vi and vj are directly

connected by an edge and 0 otherwise. A sequence of edges connecting a set of vertices is called a

path. A graph is said to be connected when it is possible to reach any vertex from any other vertex,

that is, when a path always exists between any two vertices. Based on the paths, define d(vi, vj),

the geodesic distance between vi and vj , as the shortest path (geodesic path) length between vi and

vj . Here, the path length is the sum of the weights of the edges of that path. When the edges of

a graph all have weight 1, i.e., (edge) unweighted graph, the path length is simply equal to the

number of edges in that path. Of course, this distance function satisfies all the properties of the

usual distance function, such as triangle inequality and symmetry.

As noted, edges can have positive weights, which denote the distance between two nodes through

the edge. Likewise, vertices can also have nonnegative weights, indicating the importance of that

node. This could refer to the contextual information that reflects the significance of the vertices.

For notational simplicity, we call vertex weights multiplicities and edge weights just weights since

a weighted graph usually refers to a graph with edge weights, not vertex multiplicities.

The notion of centrality quantifies the ‘centralness’ of each vertex in a given graph structure.

However, there is no consent to this concept, which has led to several definitions of centrality. We

focus on three intuitive graph centrality measures listed below (Freeman, 1978). In the following

definitions, we only consider connected and unweighted (all edge weights and all vertex multiplicities
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are set to 1) graphs.

1. The degree centrality regards a vertex with many direct connections to other vertices as

central. Specifically, degree centrality at vertex vi is defined as
∑n

j=1Aij .

2. The closeness centrality defines a vertex as central if it is close to all other vertices. In the

formula, it is defined as the reciprocal of the sum of the distances to other nodes. That is,

closeness centrality at vertex vi is 1/
∑

j ̸=i d(vi, vj).

3. The betweenness centrality perceives that the vertex in the ‘middle’ of the geodesic paths

has more influence. For vi, it is quantified as
∑

j<k,j ̸=i ̸=k gjk(vi)/gjk, where gjk denotes the

number of geodesic paths connecting vj and vk, and gjk(vi) indicates the number of geodesic

paths between vj and vk that pass through vi.

Other centrality measures include eigenvector centrality (Bonacich, 1972), hubs and authorities

(Kleinberg, 1999), and much more variants. See e.g., Wasserman and Faust (1994, Chapter 5),

Borgatti and Everett (2006), Rodrigues (2019) and references therein.

Each notion of graph centrality can possibly be generalized for graphs with weights and multi-

plicities. For example, denoting the multiplicity of vertex vj as ηj > 0, the degree centrality of vi

can be generalized as
∑

j ̸=i ηjAij/d(vi, vj). However, this generalization is forced, and there is no

suitable explanation for why this should be the generalized form of the degree centrality, meaning

that any variation similar to the above can be proposed. Likewise, the closeness centrality and

betweenness centrality can be generalized in an arbitrary way. This is because these centrality mea-

sures were originally defined for unweighted graphs without consideration of handling weights. To

our knowledge, there is no consensus on generalizing these centrality measures to (vertex and edge,

but especially vertex) weighted graphs.

2.2 Motivation and Definition

Although there are many definitions of centrality, there is a similarity. It first defines a measure and

then perceives the vertex with the highest measure as the most central node (hereafter, ‘center’).

For example, for the betweenness centrality, one may ask, ‘What is the center vertex based on the
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betweenness centrality?’ One would answer, of course, ‘The vertex with the highest betweenness

centrality.’

Our approach goes in the opposite direction from these traditional approaches. First, we define

the notion of a center vertex. Next, we describe a centrality measure from this notion of center

vertex. Roughly speaking, our approach quantifies how much a given node is related to the center

vertex. This is the essential feature of the proposed measure, which we elaborate on after defining

it.

Now, assume that a given graph has edge weights and vertex multiplicities. However, the graph

is still assumed to be undirected and connected. For disconnected graphs, the proposed centrality

measure can be applied to each connected component (maximal connected subgraph). The treat-

ment of directed graphs will be discussed in Section 7. To this end, the notion of the center vertex,

graph median, is defined below.

Definition 1 (Graph median (Hakimi, 1964)). Given an undirected, connected graph G = (V,E)

with V = {v1, . . . , vn} and multiplicity η1, . . . , ηn ≥ 0 for each vertex, vi is called a graph median

if it minimizes
∑n

j=1 ηjd(vi, vj).

The definition of graph median can be seen as an analogous concept of a multivariate median

or the L1 median (Small, 1990; Vardi and Zhang, 2000). However, it is important to note that the

L1 median is unique unless multivariate points are collinear, i.e., all lie on a line (Small, 1990),

whereas the graph median can have more than one element. For example, all vertices of a complete

graph (without weights or multiplicities) are the graph median. Denote the set of graph medians

of graph G with multiplicities as m(G; η1, . . . , ηn). Based on the notion of graph median, the L1

centrality measure is defined.

Definition 2 (L1 centrality measure). Suppose that G = (V,E) is an undirected, connected

graph with V = {v1, . . . , vn} and multiplicity η1, . . . , ηn ≥ 0 for each vertex. Assuming that η· :=∑n
j=1 ηj > 0, the L1 centrality of vertex vk is defined as

C(vk) := 1− inf

{
w ≥ 0 : vk ∈ m

(
G;

η1
η·
, . . . ,

ηk
η·

+ w, . . . ,
ηn
η·

)}
.
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In other words, the L1 centrality of a node is one minus the minimum amount of multiplicity

that must be incremented for that node to become a graph median. This definition leads to the

following closed-form formula for calculating the L1 centrality measure,

C(vk) = 1− inf

{
w ≥ 0 :

n∑
i=1

ηi
η·
d(vk, vi) = min

j=1,...,n

(
n∑

i=1

ηi
η·
d(vj , vi) + wd(vj , vk)

)}

= 1−max
j ̸=k

{∑n
i=1 ηi{d(vk, vi)− d(vj , vi)}

η·d(vj , vk)

}+

, (2.1)

where {·}+ := max{0, ·}.

We make three notes. Firstly, the graph median always has an L1 centrality of 1. Secondly,

the L1 centrality is always between 0 and 1 due to the triangle inequality applied to equation

(2.1). Hence, a node with an L1 centrality close to one indicates a central vertex. Moreover, since

the measure is independent of the graph size n, i.e., the measure is normalized, it is possible

to compare the L1 centrality values of vertices in different graphs. Notice that the above three

centrality measures depend on the graph size and require suitable normalizations (Freeman, 1978).

Lastly, when ηi = 0, the ith term in the numerator of equation (2.1) is eliminated. In other

words, assigning a multiplicity of zero to a particular vertex means disregarding its influence while

calculating the L1 centrality. Therefore, in most cases, all multiplicities are assigned a positive value

unless one intends to disregard that vertex purposely.

Remark 1. The essence of the proposed approach is that the centrality measure is defined based on

the notion of graph median, which means that the proposed centrality ranks the relative importance

of vertices w.r.t. the center vertex. Specifically, by incrementing the multiplicity of vk by 1−C(vk),

vk becomes the graph median. Hence, 1 − C(vk) is the amount of multiplicity required to replace

the original graph median by vertex vk. In other words, the greater the L1 centrality, the higher

the relevance of the vertex to the graph median. However, this is not the case with the above three

centrality measures. For example, a vertex with a high betweenness centrality does not imply that

the vertex is relevant to the vertex with the highest betweenness centrality. This concept is a useful

and important aspect of the L1 centrality, enabling further analysis tools in Sections 3 and 4.
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L1 centrality

Figure 1: L1 centralities of each vertex (movie) in the MCU movie network.

Example 1 (L1 centrality of the Marvel Cinematic Universe movies). To facilitate the explanation

of the proposed centrality measure, we proceed on a small toy network of Marvel Cinematic Universe

(MCU) movies. This data set was first used by Choi and Oh (2021) to analyze graphs with signals.

The data set consists of 32 movies from the MCU released between 2008 and 2023. Each movie

represents one vertex in the graph. Since these movies share a common universe or plots, they

often share casts. When there is at least one common cast between movies i and j, the edge is

connected, with weight |Ai ∪Aj |/|Ai ∩Aj |. Here Ai is a set of cast from movie i. In other words, if

the proportion of common casts is large, the path length for that edge is small. We also used the

worldwide gross of each movie (in USD, archived from IMDb (https://www.imdb.com) on Nov.

3rd, 2023) as the multiplicity of each vertex. Hence, the network is an undirected and connected

graph with 32 vertices (with positive multiplicities) and 278 edges (with weights).

The L1 centrality of each movie is shown in Figure 1. As expected, four Avengers series

(Avengers: Infinity War (the graph median), Avengers: Endgame, The Avengers, Avengers: Age

of Ultron), in which many heroes overlap with the other series, were the top four movies with the

highest L1 centrality. Furthermore, it is worth mentioning that these movies had high worldwide

gross, highlighting their significant positions within the network. In other words, the context sur-

rounding the box office performance of each movie is taken into account while calculating the L1

centrality. The subsequent section mathematically addresses the influence of the multiplicity of a

particular vertex on its L1 centrality.
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Before closing this section, we connect the proposed L1 centrality to data depth literature. The

definition of the L1 centrality is analogous to the L1 data depth of Vardi and Zhang (2000). However,

the L1 data depth is defined for any point (not necessarily a data point) in the sample space, while

the L1 centrality is only defined for vertices. Nevertheless, the notion of the L1 centrality can be

extended to an arbitrary point on existing edges. To simplify the definition, in Definition 1, we

intentionally restricted the graph median to be found at the vertices. However, Hakimi (1964)

called the graph median an absolute median and proposed a more generalized concept—it can be

any point on the graph, not necessarily a vertex, and can be any point on an existing edge. Based

on this definition, we may define L1 centrality measure for an arbitrary point on the existing edges.

In this paper, however, we only stick to vertex centrality. Graphs that an arbitrary point on the

edge has an interpretable meaning are limited, and we leave this topic for future research.

2.3 Theoretical Properties

Theorem 1 (Properties of L1 centrality). Suppose that G = (V,E) is an undirected, connected

graph with V = {v1, . . . , vn}, multiplicities η1, . . . , ηn ≥ 0 for each vertex, and η· :=
∑n

j=1 ηj > 0.

The L1 centrality measure has the following properties:

(P1) Scale invariance: It is invariant to (positive) multiplicative transformations of vertex multi-

plicities and edge weights.

(P2) Maximality: It is maximized to 1 if and only if the given vertex is the graph median. If

ηi/η· ≥ 1/2, then C(vi) = 1. If ηi/η· > 1/2, vi is the unique vertex with C(vi) = 1.

(P3) Minumum value: C(vi) ≥ min{2ηi/η·, 1}.

(P4) Minimum at infinity: Suppose that the subgraph induced by deleting vertex v1 is connected.

When v1 is moved to infinity, that is, d(v1, w) → ∞ for all w ∈ V \{v1}, and d(v1, w)/d(v1, w
′) →

1 for all w,w′ ∈ V \ {v1}, then C(v1) → min{2η1/η·, 1}.

We assert that properties (P2) and (P3) align with our intuitive understanding of what con-

stitutes a central vertex. The greater the multiplicity, the more likely the vertex is to have a large

L1 centrality. Throughout this paper, Theorem 1 will be used several times as we develop analysis
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tools based on the L1 centrality.

In connecting the notion of graph centrality to the data depth studies, it is worth referring

to the concept of statistical depth. In Zuo and Serfling (2000a), four properties of the data depth

function were proposed, and a data depth function satisfying all these properties is called statistical

depth. They are (i) affine invariance, (ii) maximality at the center, (iii) monotonicity relative to the

deepest point, and (iv) vanishing at infinity. Property (P1) can be viewed as an analog of (i), and

(P2) as (ii), and (P4) as (iv). However, we could not not find a property analogous to (iii).

2.4 Comparison and Computation

We compare the L1 centrality measure to the three centrality measures outlined in Section 2.1.

The L1 centrality is most relevant to the closeness centrality of the three measures. If the closeness

centrality is generalized as (
∑n

i=1 ηid(vi, vk))
−1 for vk, the L1 centrality and the closeness centrality

identify the same set of the center vertex (the graph median). Hence, the proposed measure and

closeness centrality share a consensus on what the most central vertex is. However, they differ in

the way they quantify and rank the centrality of vertices other than the graph median. We assert

that the L1 centrality is a more sophisticated measure than the closeness centrality. Recall equation

(2.1),

C(vk) = 1−max
j ̸=k

{∑n
i=1 ηi{d(vk, vi)− d(vj , vi)}

η·d(vj , vk)

}+

.

In the numerator, we see that the reciprocals of the vk’s closeness centrality appear. The larger the

closeness centrality of vk, the larger C(vk) is likely to be. However, what is also considered in the

above equation is the closeness centrality of nearby vertices. Suppose that we have two vertices with

the same closeness centrality. One is at the terminal, and the other is surrounded by many other

vertices. A neighbor vertex connected by the former terminal vertex has a much higher closeness

centrality because all geodesic paths from the terminal vertex must pass through the neighbor

vertex; thus, the former terminal vertex is likely to have a small L1 centrality.

In addition, as mentioned in Remark 1, the L1 centrality is a natural ordering of vertices w.r.t.
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the graph median. This is what makes our measure different from the other three measures. It

allows us to visualize the network based on the center, define a natural notion of the neighborhood

that takes into account the whole graph structure, and localize the proposed centrality measure,

enabling multiscale analysis.

Example 2 (Centrality measures applied to the MCU movie network). We compare the degree,

betweenness, and closeness centralities to the L1 centrality measure. To this end, we used the

MCU movie network with the same positive multiplicity for all vertices because the three centrality

measures cannot be easily generalized for graphs with multiplicities. However, we kept edge weights

since the closeness and betweenness centralities can incorporate edge weights while the degree

centrality cannot.

The Pearson correlation coefficients (Spearman rank correlation coefficients) of the L1 central-

ity with the degree, betweenness, and closeness centrality measures were 0.6604 (0.7400), 0.8778

(0.6037), and 0.7317 (0.7852), respectively. Thus, the proposed L1 centrality was positively cor-

related with the existing measures but was not equivalent to any of the three measures. That is,

the rankings induced by the centrality measures are different. Another thing to note is that in

the MCU movie network, the betweenness centrality treats half of the vertices as centrality zero,

making comparing these vertices difficult. On the other hand, the L1 centrality never treats any L1

centrality as zero (Theorem 1 (P3)), and there are no ties between the L1 centralities of 32 vertices.

Scatter plots comparing the L1 centrality with the three measures are provided in the Appendix B.

We next explain the practical computation procedure of the L1 centrality. Suppose that the

geodesic distance matrix D = (d(vi, vj))n×n is computed. Then, the computation of the L1 central-

ity, C(vk), for all k = 1, . . . , n can be completed within O(n2) computations (in big-O notation).

Specifically, the vector of L1 centralities, C(V ) := (C(v1), . . . , C(vn))
⊤ can be computed using the

following formula,

C(V ) = 1n − 1

η·

{
rowmax

(
Dη1⊤n − 1nη

⊤D

D

)}+

, (2.2)
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where 1n := (1, . . . , 1)⊤ and η := (η1, . . . , ηn)
⊤. Moreover, division by a matrix is defined element-

wise, and {·}+ is applied to each element of the vector. The rowmax operation indicates the maxi-

mum element in each row, and when taking the rowmax operation, we ignore the diagonal terms or

define 0/0 = 0.

Based on the above argument, the computational cost of the L1 centrality is not greater than

that of the closeness centrality and the betweenness centrality. This is because the bottleneck in

computing the L1 centrality is not in the computation of equation (2.2) but in the computation of

the geodesic distance matrix D. The computation of the geodesic matrix for an (edge) weighted

graph can be achieved using the approach suggested by Dijkstra (1959) or the Floyd–Warshall

algorithm (Floyd, 1962). The time complexity of these algorithms is O(n3). The time complexity

can be reduced for sparse graphs using a special data structure (Fredman and Tarjan, 1984), but

it is not lower than O(n2). Therefore, the computation of any centrality measure that needs to

construct the geodesic distance (e.g., the closeness centrality and betweenness centrality) possesses

a time complexity greater than or equal to the time complexity of the L1 centrality computation.

3 Target Plot

In this section, we propose a novel graph visualization tool that aims to embed a graph onto a two-

dimensional plane in a way that effectively represents the structural information of each vertex,

specifically the L1 centrality. As in the previous section, we examine a graph with n vertices that is

undirected, connected, and has weighted edges. However, we impose a constraint that all vertices

have the same multiplicity, meaning that we exclusively examine vertex unweighted graphs. The

reason for this restriction will be explained shortly.

Various graph drawing approaches are available for representing graphs on a two-dimensional

plane, and each approach has a distinct perspective on what constitutes a visually pleasing repre-

sentation. The algorithms proposed by Kamada and Kawai (1989) and Fruchterman and Reingold

(1991) are often used in this domain. However, to our knowledge, none of the existing algorithms

take graph centrality into account when deciding where to place points in their plot. Typical meth-
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ods do not place the most central vertex in the center of the plot, nor do they put the least central

vertex in the periphery.

In light of Remark 1, it is intuitive to position the graph median at the central point and

the remaining vertices distributed around concentric circles whose radii correspond to their L1

centrality. A graph is visually represented by the plot in a way that effectively conveys the structural

characteristics of each vertex’s centrality. In pursuit of this objective, we present a method of

plotting graphs called target plot.

1. We aim to determine a configuration of n points on a two-dimensional plane, with each vertex

represented as an individual point. Let xi ∈ R2 denote the point corresponding to vertex vi

(i = 1, . . . , n). In circular coordinates, this point is denoted as (ri, θi) ∈ [0,∞)× [0, 2π). The

target plot constraints xi to lie on a concentric circle with radii ri = − logC(vi), so the graph

median is placed at the center of the circles. The log transformation converts L1 centralities

in the interval (0, 1] to a radius in the interval [0,∞). This transformation also reflects the

observation that a vertex distant from all other vertices is likely to have a low L1 centrality,

according to equation (2.1) and Theorem 1 (P4). However, this observation may not be valid

if there are distinct multiplicities on the vertices, i.e., a vertex far from all other vertices may

exhibit high L1 centrality if it has a high degree of multiplicity due to Theorem 1 (P3). For

this reason, in this section, we focus only on unweighted vertex graphs.

2. Next, we use the nonmetric multidimensional scaling method (nonmetric MDS; Kruskal,

1964a,b) with the constraint specified in 1. In essence, the goal is to find a configuration

that retains the geodesic distances on the graph as much as possible while the constraint is

enforced. Specifically, we aim to find a configuration of points that minimizes a metric called

stress, adopted from Kruskal (1964a):

S :=

√
S∗

T ∗ , where S∗ :=
∑
i,j

(dij − d̂ij)
2, T ∗ :=

∑
i,j

d2ij .

Here, dij := ∥xi − xj∥, where ∥ · ∥ denotes the usual Euclidean norm, and d̂ij are chosen to
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minimize the stress metric given dij , subject to the following monotonicity condition:


whenever d(vi, vj) < d(vk, vl), then d̂ij ≤ d̂kl,

whenever d(vi, vj) = d(vk, vl), then d̂ij = d̂kl.

There is a fast and efficient algorithm for fitting d̂ij . See Kruskal (1964b) for details.

A starting configuration is set using the classical MDS (Mardia, 1978). If vi is the graph

median, xi = 0; otherwise, xi is set to ri(yi − y∗)/∥yi − y∗∥, where yi ∈ R2 is the point

representing vi as a result of classical MDS, and v∗ is the graph median with y∗ being the

corresponding point derived from classical MDS. Given the configuration, it can be readily

shown that

∂S

∂θi
=

√
T ∗

S∗
1

T ∗

∑
j ̸=i

rirj sin(θi − θj)

(
1− S∗

T ∗ − d̂ij
dij

)
.

The gradient descent method is employed to iteratively update the value of θi until conver-

gence. Specifically, denoting θ := (θ1, . . . , θn)
⊤ and g := ∂S/∂θ = (∂S/∂θ1, . . . , ∂S/∂θn)

⊤, the

gradient descent method is applied in a similar way to Kruskal (1964b): θnew = θold−α g
mag(g) ,

where mag(g) := ∥g∥/
√∑n

i=1 r
2
i (the relative magnitude of g), and α is the step size with an

initial value of 0.2 and is set to a smaller value by αnew = 0.95 · αold in each iteration. The

above process is repeated until mag(g) is small enough.

3. From 1 and 2, we obtain a configuration (ri, θi) representing the vertex vi. After plotting

each point on a two-dimensional plane, contours of concentric circles are drawn to assist in

recognizing and understanding the graph structure. For example, in Figure 2 (b), the radii of

the four concentric circles correspond to the first (25%) to fourth (maximum) quartiles of the

L1 centralities. Hence, a quarter of the points lie within the smallest circle, and these points

correspond to the vertices with the highest 25% L1 centrality. From its appearance, it is clear

why we call the resulting figure a target plot. This plot can be enhanced by including the

color or shape of the points to facilitate more appropriate interpretation. For instance, there
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Figure 2: (a) Fruchterman and Reingold (1991) plot of the MCU movie network. (b) Target plot of
the MCU movie network. The four concentric circles represent the quartiles of L1 centrality, with
the values indicated in red. In both figures, the graph median (Avengers: Infinity War) is denoted
by a black circle, while gray circles represent the remaining vertices.

might be identifiable patterns in which the least central vertices share, indicating that it is

desirable to remove vertices that exhibit those patterns before further analysis. This analysis

will be demonstrated in Section 6.

Example 3 (Target plot of the MCUmovie network). Figure 2 shows two distinct methods of graph

representation on a two-dimensional plane. Panel (a) displays the plot proposed by Fruchterman

and Reingold (1991), and panel (b) shows the proposed target plot. Note that we used the same

multiplicity for all vertices in this example. The target plot represents the structural information

of L1 centrality, showing the most central vertex (black point) and the least central vertex. In

contrast, panel (a) does not convey this information.

In the target plot, three points are far away from the rest: The Incredible Hulk, Shang-Chi

and the Legend of the Ten Rings, and Eternals. These three movies are (the only) outliers in this
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distribution when computing the average geodesic distance of each movie to the others. In other

words, the average distances of these three movies exceed the sum of 1.5 times the interquartile

range and the third quartile of average distances. As a result, the target plot accurately represents

the inherent structure of the network.

Before closing this section, we make three remarks. First, the concept of the target plot is not

applicable to other graph centrality measures. A small problem is that the radii of each point

cannot be determined using a straightforward log transformation. A crucial aspect is connected

to Remark 1. For example, plotting vertices with high-degree centralities near the center of the

concentric circles is utterly inadequate since it conveys the misleading impression that vertices

with high-degree centralities are related. Second, the gradient descent method can converge to a

local minimum of the stress measure, not an overall minimum. However, as Kruskal (1964b) pointed

out, this is not a significant problem. The local minimum configuration is not the final result of the

analysis, and it should be of interest if it is meaningful. Refer to the discussion in Kruskal (1964b,

Section 5). Finally, the target plot resembles the depth contour, a visualization tool commonly used

in data depth literature (e.g., Zuo and Serfling, 2000b). Depth contours, similar to our concentric

circles, aid in identifying points with high and low data depths.

4 Local L1 Centrality Measure

The degree centrality is a local measure considering only the vertices directly connected to a par-

ticular vertex. On the other hand, the closeness and betweenness centralities are global measures of

centrality because they consider all vertices in the graph while calculating these measures. The L1

centrality, in the same sense, is a global centrality measure. However, the structural properties of

vertices can vary at both local and global scales, and all graph centrality measures, including the

L1 centrality, can only capture one of the two.

This section introduces a local extension of L1 centrality based on the local depth proposed

by Paindaveine and Van Bever (2013), where the degree of locality can be selected to a range of

levels. This extension provides a multiscale view of a single graph with the centrality values at
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Figure 3: A given graph (left) and symmetrization of the given graph w.r.t. vertex C (right).

various locality levels. As described below, the local measure is derived by conditioning the graph

to suitable L1 centrality-based neighborhoods.

4.1 L1 Centrality-Based Neighborhood

Referring back to Remark 1, vertices with high L1 centrality can be considered neighborhoods of

the graph median. This approach inherently considers the multiplicities of vertices and the geodesic

distances when determining neighborhoods w.r.t. the graph median.

However, this approach is not applicable to vertices other than the graph median. To this

end, we perform a symmetrization procedure analogous to Paindaveine and Van Bever (2013) that

symmetrized a multivariate distribution for a specific point to derive depth-based neighborhoods of

that point. Similarly, we symmetrize the graph w.r.t. a particular vertex, say vi, and set position vi

to the graph median. The process is depicted in Figure 3, which shows a graph with seven vertices

in the left panel. To create a symmetric graph for vertex C, we duplicate the entire graph, including

the vertex multiplicities and edge weights, and overlap the original vertex C with the duplicated

vertex C. Therefore, the multiplicity of vertex C is doubled, and the other copied vertices have the

same multiplicity as the original, e.g., ηA = ηA’, where ηA stands for the multiplicity of vertex A.

This symmetrization procedure makes vertex C a graph median based on the following proposition.

Proposition 1. Suppose that G = (V,E) is an undirected, connected graph with V = {v1, . . . , vn},

a nonnegative multiplicity ηj for vertex vj, j = 1, . . . , n, and
∑n

j=1 ηj > 0. If G is symmetrized

w.r.t. vertex vi ∈ V , then vi is a graph median. If ηi > 0, vi is the unique graph median in the

symmetrized graph w.r.t. vi.
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Therefore, the L1 centralities of vertices in the symmetrized graph w.r.t. vertex vi will serve

as a natural ordering of vertices in relation to vi. This results in the establishment of the L1

centrality-based neighborhood.

Definition 3 (L1 centrality-based neighborhood). The order α ∈ [0, 1] L1 centrality-based neigh-

borhood of vertex vi is the set of vertices in the original graph, with L1 centrality in the symmetrized

graph w.r.t. vi larger than or equal to the 100(1− α)% quantile of these centralities.

Of the 2n− 1 vertices in the symmetrized graph, each copied vertex has the same L1 centrality

as the original vertex. Therefore, of the n vertices in the original graph, about nα vertices are in

the L1 centrality-based neighborhood of each vertex. The parameter α acts as a locality parameter,

with smaller values corresponding to smaller neighborhoods. However, it would be demanding to

construct a new geodesic matrix of size (2n− 1)× (2n− 1) for the L1 centrality computation each

time a graph is symmetrized w.r.t. a specific vertex. Fortunately, it is unnecessary to compute a new

distance matrix; this can be done by modifying only the multiplicities within the original graph.

Proposition 2. Suppose that G = (V,E) is an undirected, connected graph with V = {v1, . . . , vn}

and a nonnegative multiplicity ηj for vertex vj, j = 1, . . . , n. If G is symmetrized w.r.t. vertex vi,

the L1 centrality of vertex vk in the resulting graph is equal to the L1 centrality of vertex vk in the

original graph, but with the multiplicity of vertex vi substituted by η· + ηi, where η· =
∑n

j=1 ηj > 0.

For example, to calculate the L1 centrality of vertex A in the right panel of Figure 3, it is

enough to calculate the L1 centrality of vertex A in the left panel, where the multiplicity of vertex

C is substituted with η· + ηC (here, η· = ηA + · · ·+ ηG). The geodesic distance matrix is calculated

only once for the original graph and is subsequently utilized for computing L1 centrality in the

symmetrized graph.

Another significant implication of Proposition 2 is that the L1 centrality-based neighborhood

strikes a balance between vertices with high L1 centrality (in the original graph) and vertices near

the vertex of interest. Since the symmetrization w.r.t. vertex vi makes the graph median vi, vertices

near vi are likely to have high L1 centrality in the symmetrized graph. From another perspective,
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Figure 4: L1 centralities of each vertex (movie) in the MCU movie network symmetrized w.r.t.
Spider-Man: No Way Home.

the L1 centrality of the symmetrized graph is the same as the L1 centrality of the original graph

with multiplicities modified. Therefore, vertices with high L1 centrality in the original graph are

likely to have high L1 centrality in the symmetrized graph.

Example 4 (L1 centrality-based neighborhood of Spider-Man: No Way Home). By utilizing the

MCU movie network and assigning vertex multiplicities based on the worldwide gross, we calcu-

late the L1 centrality of the graph symmetrized w.r.t. the vertex Spider-Man: No Way Home.

The corresponding values are shown in Figure 4. The L1 centrality-based neighborhood of the ver-

tex Spider-Man: No Way Home is obtained using this ranking. For example, the order 5/32 L1

centrality-based neighborhood refers to the five movies with the highest L1 centralities in Figure

4. These vertices have large L1 centralities in the original graph (Avengers series; see Figure 1) or

are strongly linked to the vertex of interest (Spider-Man: Homecoming and Spider-Man: Far From

Home are the two nearest (in geodesic distance) neighbors of Spider-Man: No Way Home in the

MCU movie network).

Although the L1 centrality-based neighborhood is developed to define the local L1 centrality

in the next section, it can also serve as a valuable tool on its own. For example, it can be used

to recommend pertinent films to users who are interested in Spider-Man: No Way Home while

simultaneously considering the significance (high L1 centrality) in the entire network and relevance

(small geodesic distance) to the target movie.
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4.2 Local L1 Centrality

Defining local L1 centrality based on the above L1 centrality-based neighborhood is straightforward:

for each vertex, the graph is conditioned on the L1 centrality-based neighborhood, and the local L1

centrality is then computed from that graph. More precisely, we condition the graph in the sense

defined below.

Definition 4 (Local L1 centrality). The order α local L1 centrality of vertex vk, denoted as Cα(vk),

is the L1 centrality of vk in the original graph, but only considering the L1 centrality-based neigh-

borhood of vk up to order α during the computation. Specifically, denoting the set of order α L1

centrality-based neighborhood of vk as Nα(vk),

Cα(vk) = 1− max
j:vj∈Nα(vk)\{vk}

{∑
i:vi∈Nα(vk)

ηi{d(vk, vi)− d(vj , vi)}
d(vj , vk)

∑
i:vi∈Nα(vk)

ηi

}+

. (4.1)

In contrast to equation (2.1), the range of summation and maximum operations are confined

to the L1 centrality-based neighborhood. Therefore, calculating the local L1 centrality Cα(vk) by

equation (4.1) is equivalent to computing the L1 centrality of vk using equation (2.2), where the

distance matrix and the multiplicity vector are replaced by a submatrix and a subvector of the

original. The submatrix is formed by choosing the rows and columns corresponding to the indices

of the order α L1 centrality-based neighborhood, and the subvector is a subset of the multiplicity

vector corresponding to the order α L1 centrality-based neighborhood. Hence, the properties of the

L1 centrality, including Theorem 1, also apply to the local L1 centrality. Clearly, the order 1 local

L1 centrality is identical to the L1 centrality defined in Section 2. This measure will be referred to

as global L1 centrality.

Alternative to Definition 4, one might use the subgraph of the original graph, which is created by

only considering the order α L1 centrality-based neighborhood of vi and edges that connect these

vertices. However, we prefer Definition 4 for two reasons. First, when utilizing the subgraph, it is

necessary to recalculate the distance matrix, which requires more computational effort, in contrast

to the definition above, which only uses the submatrix of the original distance matrix. Second,
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especially for small values of α, it cannot be ensured that the resulting subgraph is connected.

The definition of the local L1 centrality is not to be confused with the L1 centrality in the

symmetrized graph defined in Section 4.1. The symmetrization procedure is used to identify the

L1 centrality-based neighborhood. Once the neighborhood is identified, the L1 centrality values in

the symmetrized graph are not used. The local L1 centrality is computed in the original graph

conditioned on these neighboring vertices.

Concerning Theorem 1 (P3), the local L1 centrality is generally higher than the global L1

centrality as the lower bound (2ηi/η·) increases. Therefore, rather than focusing on the absolute

value of the local L1 centrality, we propose to look at its relative value, i.e., its rank, compared to

the local L1 centrality of other vertices of the same order. Given these points, the local L1 centrality

provides a direct method to investigate the structure of a graph at different levels, depending on

the value of α. In Section 6, we show how to leverage the local L1 centrality to perform a multiscale

analysis of a graph.

4.3 Multiscale Edge Representation

The local L1 centrality defined in the previous section does not rank vertices based on the graph

median. Instead, it quantifies the relevance of each vertex in relation to its local median, which is

the graph median of the conditioned graph. Naturally, adopting the target plot in Section 3 for

the local L1 centralities with α < 1 is not suitable since the concept of ranking w.r.t. the graph

median no longer applies to local L1 centralities. However, in this section, we present a multiscale

visualization tool that uses the local L1 centrality. The objective of this visualization method is to

represent a given graph with approximately n = |V | directed edges at different locality levels. The

fundamental idea is similar to that of the target plot.

At a global level, the graph median can be regarded as the central point of the graph, as in the

target plot. A given graph can be represented as a directed graph, where each vertex has an edge

pointing to the graph median. At a locality level α, we can construct a directed graph where each

vertex is connected to its local median vertex determined at locality level α. Edges are connected to
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Figure 5: Edge representation of the MCU movie network at different levels of α. Larger vertices
represent the local medians.

each local median if more than one local median exists. Therefore, for every value of α, the graph is

represented as a directed graph containing about n edges. The visualization of the directed graph

also makes it easy to identify the local medians, facilitating further examination of that vertex.

Example 5 (Multiscale edge representation of the MCU movie network). Figure 5 shows the di-

rected graphs of the MCU movie network with multiplicities set to the worldwide gross. We selected

three locality levels: α = 8/32, 16/32, 32/32, which means that we consider approximately 8, 16, and

32 vertices for each vertex when conditioning the graph and determining the L1 centrality-based

neighborhood and local median. In panel (a), it is evident that each vertex has either Avengers:

Infinity War or Avengers: Endgame as a local median. The same applies to panel (b), where only

two vertices from the Ant-Man and the Wasp series connect to Avengers: Endgame as a local

median. Most vertices designate Avengers: Infinity War as the local median, which also serves as

the graph median. Panel (c) provides a graph representation at the global level, where all vertices

have edges directed toward the graph median. When comparing Figure 2 (a) to this multiscale edge

representation, it is clear that the latter is significantly more comprehensible. The multiscale edge

representation allows for a more precise visualization of the graph’s global and local structures,

providing a multiscale perspective of a given graph.
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5 Group Heterogeneity Index

This section provides a visualization tool and an index representing heterogeneity in the proposed

centrality measures for groups of vertices or the entire graph. The proposed visualization tool and

index are important for many types of analysis. For example, it can be used to evaluate if a group or

graph exhibits any peculiar structural characteristics, detect trends across several groups or graphs

(e.g., graphs that change over time), or explore the relationship of the heterogeneity of the group’s

vertices to other attributes of the group. Furthermore, it can be employed to compare various

groups and graphs and categorize them into similar types (Badham, 2013).

Several indices have been developed to quantify the heterogeneity of centrality measures. Some

of the prominent measures in this field are the concept of centralization by Freeman (1978), the

variance index of Snijders (1981), and the notion of hierarchization by Coleman (1964, Chapter

14). Recently, Badham (2013) discussed using the Gini coefficient to measure heterogeneity; the

author argued that it has favorable theoretical characteristics compared to the previously discussed

indices.

However, the Gini coefficient has yet to be well studied as a descriptive measure of centrality

heterogeneity in network science. Interestingly, the Lorenz curve and Gini coefficient have been

studied in data depth. Liu et al. (1999) used the Lorenz curve and Gini coefficient to establish a

metric for quantifying kurtosis in multivariate data. Given that the notion of graph centrality in

this study is based on a specific data depth, the purpose of this section is to revisit the Lorenz

curve and Gini coefficient as a tool for analyzing the heterogeneity of the proposed global and local

L1 centrality measures. Here is a detailed description of the benefits of using these tools for global

and local L1 centralities.

The Lorenz curve is defined as follows. Given a univariate cumulative distribution function (cdf)

F with a nonnegative support, it is a plot of (p, L(p)), with

L(p) :=

∫ p
0 F−1(t) dt∫∞
−∞ sdF (s)

= p× E(X | X ≤ F−1(p))

E(X)
, 0 ≤ p ≤ 1, (5.1)
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where F−1(t) := inf{v ∈ R : F (v) ≥ t} and X ∼ F (Gastwirth, 1971). By definition, L(p) is

nondecreasing in p and L(p) ≤ p. Furthermore, L(1) = 1 and L(0) = 0. Given m centrality

measurements, Cα(v1), . . . , Cα(vm) ≥ 0, F of (5.1) is substituted by the empirical cdf Fm(v) =

1
m

∑m
i=1 I(Cα(vi) ≤ v), where I denotes the indicator function. The Lorenz curve of the centrality

measurements serves as an intuitive visual indicator of heterogeneity. The greater the deviation

of the curve from the diagonal L(p) = p, the more it indicates that the group of m vertices has

a diverse structural attribute in a particular graph, i.e., their L1 centralities show a high level of

heterogeneity.

The Gini coefficient, defined as twice the area between the Lorenz curve and the diagonal

L(p) = p, is a simple and widely used metric for quantifying the level of diversity in income and

wealth, making it valuable for comparing multiple distributions. When F is replaced with Fm using

the measurements Cα(v1), . . . , Cα(vm), it can be readily verified that the Gini coefficient G can be

represented as

G =

∑m
i=1

∑m
j=1 |Cα(vi)− Cα(vj)|

2m2C̄α
,

where C̄α := (1/m)
∑m

i=1Cα(vi). It is the expected difference of the centrality measurements with

a suitable normalization. This also shows that the Gini coefficient is an appropriate index for

quantifying heterogeneity among centrality values. Consistent with the results of the Lorenz curve,

the larger the heterogeneity index, the less similar the nodes are in terms of centrality.

There are several advantages to using the Lorenz curve and Gini coefficient to quantify the

heterogeneity of the proposed L1 centrality. First, the Lorenz curve provides a visual diagnostic

tool for comparing several groups or graphs rather than directly summarizing centrality values as a

single number. Second, these tools are scale-invariant. As mentioned, local L1 centralities generally

exhibit higher values than global L1 centralities. Consequently, the proposed method can be applied

to compare heterogeneity across multiple locality levels, even if the scales of L1 centralities across

several locality levels differ. Third, the Gini coefficient is inherently standardized to 0 and 1. Some

indices, such as centralization and variance, require a normalization procedure that normalizes the

24



index w.r.t. the highest feasible value for a graph with the same number of vertices (Freeman,

1978; Snijders, 1981; Coleman, 1964). Moreover, these procedures only apply to graphs without

weights, and it remains uncertain how similar normalization procedures may be implemented for

the edge-weighted graphs considered in this study. Thus, the normalization procedure limits the

applicability of given indices to the entire graph. In contrast, the Lorenz curve and Gini coefficient

can be utilized for a set of vertices, not necessarily the entire graph, with the index inherently

standardized.

Example 6 (Heterogeneity index of the MCU movie network). We generate the Lorenz curve for

the global L1 centrality distribution of the MCU movie network using several multiplicities: (i)

the same value, (ii) the worldwide gross, and (iii) the reciprocal of the worldwide gross. Figure

6 shows that the multiplicity of worldwide gross places the Lorenz curve below the curve with

equivalent multiplicities (G = 0.3339). This indicates that the L1 centrality exhibits a higher level

of heterogeneity, i.e., a larger Gini coefficient (G = 0.4085), when measured with the worldwide

gross as a multiplicity. That is, the centrality of the central nodes increases while the centrality of the

outliers decreases. A simple regression analysis using worldwide gross as the independent variable

and the L1 centrality (with equal multiplicity) as the dependent variable confirms this view. The

regression coefficient for the worldwide gross is statistically significant (p-value ≤ 5× 10−6).

Alternatively, by defining the multiplicity as the inverse of the worldwide gross, we observe an

upward shift of the Lorenz curve, indicating a decrease in the heterogeneity index (G = 0.2943).

This example shows that using the Lorenz curve and Gini coefficient as an index of heterogeneity

is consistent with our understanding that assigning greater importance (multiplicity) to the central

nodes amplifies the heterogeneity of the resulting centrality.
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Figure 6: Lorenz curve of the MCU movie network with multiplicities set to various values.

6 Application: South Korea’s National Assembly Bill Cosponsor-

ship Network

In this section, we focus on the network of legislators in the 21st National Assembly of South Korea

(May 30th, 2020–May 29th, 2024). Our main emphasis is on analyzing the network at multiple

scales, demonstrating the utility of the tools presented so far. At the time of this writing, the

21st National Assembly is still in session, so our focus will be limited to the first 40 months of

the assembly, from Jun. 2020 to Sep. 2023. In South Korea, a bill (legislative proposal) must be

supported by at least 10 assembly members. We call them cosponsors of the bill. In this study, we

do not distinguish between a member who presents the bill (as a representative) and those who

cosponsor the bill. For simplicity, the term cosponsor is generically used in this section to refer

to all members involved in the proposal. Therefore, the number of cosponsored bills by a member

denotes the number of bills to which the person has agreed. Similarly, the number of cosponsored

bills between two members indicates the number of bills the two members jointly supported.
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A commonly used approach in the social sciences to identify assembly members’ social rela-

tionships is to build a network of them using bill cosponsorship information (Fowler, 2006)In this

study, we constructed a graph of 317 assembly members, each representing a single vertex. An edge

is established between two members if they have cosponsored at least one bill together. The weight

of this edge is defined as the reciprocal of the number of cosponsored bills between two members,

so the higher the number of cosponsored bills between two members, the shorter the path length

between the corresponding vertices representing these members. A graph is formed by utilizing

all 25164 bills proposed over 40 months, provided by the Bill Information System of the National

Assembly of South Korea (https://likms.assembly.go.kr/bill/main.do). The resulting graph

is undirected and connected, with 317 vertices and 47657 edges, each edge having a weight. The

multiplicities of all vertices are set to 1. We refer to this network as the assembly network for the

remainder of this paper.

As of Sep. 30th, 2023, the party composition of the 317 members is as follows (for simplicity,

independent members are categorized by their former political party): There are two major parties,

the Democratic Party with 184 members and the People Power Party with 123 members. Addi-

tionally, one minor party, the Justice Party, has six members. There are also four small parties with

only one member each: the Basic Income Party, Hope of Korea, Progressive Party, and Transition

Korea. Moreover, the 317 vertices comprise two groups: those who served as 21st National Assembly

members for 40 months (281) and those who did not (36). The latter group includes members who

started their term through a by-election, resigned, or lost their seat for any reason during the 40

months.

Figure 7 (a) is the target plot of the assembly network, which shows that the assembly network

is organized into communities by the two major political parties. Furthermore, individuals absent

from the office for 40 months exhibit lower global L1 centrality, likely because their time in the

assembly is shorter than that of the others, resulting in fewer opportunities to cosponsor bills and

build relationships with other members. Therefore, we eliminate these vertices for further analysis,

which can be seen as analogous to trimming in traditional statistical analysis. Furthermore, we have
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Figure 7: (a) Target plot of the assembly network with 317 vertices (members). Members who were
in the office for the entire 40-month period are denoted by ◦, and those who were not are denoted
by ×. (b) Global versus local L1 centrality with α = 15/279. Vertices with an absolute difference
of global and local L1 centralities greater than 0.5 in the uniform margin (vertices outside the two
diagonals) are indicated with their pseudonyms.

removed two chairpersons of the 21st National Assembly with inactive involvement in cosponsoring

legislation. As a result, the assembly network is reduced to a subgraph of n = 279 vertices and

38222 edges. This reduced network will be utilized for the remaining study.

Next, we performed a multiscale analysis of the reduced assembly network. We calculated the

global and local L1 centrality for each member by setting the locality parameter to α = 15/279.

Figure 7 (b) shows a graph comparing the global and local L1 centrality values transformed to have

a uniform margin. To facilitate explanation, we assign a random pseudonym to each member with a

prefix indicating its political party. A notable observation is that vertices with high L1 centralities

also tend to have high local L1 centralities. Similarly, vertices with low L1 centralities also exhibit

this phenomenon. Nevertheless, a small number of vertices do not follow this pattern. The six points

in the top-left of the plot (J1–J6) and the two vertices in the bottom-right of the plot (P90 and

P57) exhibit contrary behavior at the global and local levels. The paradoxical behavior of these

eight vertices, which can be compared to the famous Simpson’s paradox, is worth examining.
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• All six members of the Justice Party (J1–J6) have low global L1 centrality while demonstrating

high local L1 centrality at α = 15/279. This can be attributed to the fact that Justice

Party members form a tight community with each other: the edges connecting Justice Party

members are significantly stronger (i.e., lower edge weights) than those connecting a Justice

Party member and a member from another party.

While examining the edges connected to one end of a particular Justice Party member, we

consistently observed that the top five edges with the lowest weight were always connected

to the other five Justice Party members. Table 1 also lists the number of cosponsored bills

between the Justice Party members (i.e., the reciprocal of the edge weight connecting two

Justice Party members). The magnitude of these values is relatively high for the entire pop-

ulation. The minimum number of cosponsored bills among the members of the Justice Party

is 416 bills between J3 and J4, which falls in the 99.64% quantile in the distribution of the

number of cosponsored bills among each member in the reduced assembly network. Hence, it

is evident that the edge among the members of the Justice Party is solid.

Even so, the Justice Party members do not maintain a strong link with other party members.

The highest number of cosponsored bills by each Justice Party member with a member of

another party ranges between 221 and 317, much lower than the values in Table 1. This

implies that the Justice Party is a cohesive community in which bill cosponsorship occurs

primarily within the party. Therefore, inside the 15/279 L1 centrality-based neighborhood

of each Justice Party member, it is observed that there are four to six other Justice Party

members included. As a result, each member of the Justice Party has a high level of centrality

within the conditioned graph due to its cohesiveness.

However, the total number of bills cosponsored by each member of the Justice Party is too

small (last row of Table 1). The median number of cosponsored bills for all network members

is 929, and the first quartile is 612. So, while these members are central within the party

and their neighbors, the overall strength of those edges is not impressive. As a result, the

global L1 centrality is relatively low. This may be the behavior and strategy of a ‘niche’ party
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Table 1: Number of cosponsored bills between each member of the Justice Party, and the total
number of cosponsored bills by each member.

J1 J2 J3 J4 J5 J6
J1 — 439 438 425 438 452
J2 439 — 421 418 416 417
J3 438 421 — 416 436 430
J4 425 418 416 — 431 427
J5 438 416 436 431 — 431
J6 452 417 430 427 431 —

Total cosponsored bills 818 566 619 638 660 683

that is distinct from the legislative activity patterns of the major parties. They work together

effectively, but their small party size limits their ability to engage actively in legislative action.

• P57 and P90 exhibit contrasting behaviors to the members of the Justice Party. Their local

L1 centrality is low, but their global L1 centrality is high, falling in the 91.40% (P57) and

97.85% (P90) quantiles of the global L1 centrality distribution. This is because these two

vertices essentially play an important role between the two major parties. As shown from the

target plot in Figure 7 (a), each of the two major parties establishes a distinct community

within the network. A few members, including P57 and P90, serve as a ‘bridge’ vertex between

these two communities.

We started by counting cosponsored bills between and within both major political parties. The

distribution is shown in Figure 8. There is a significant scarcity of bills cosponsored amongst

members between the two parties compared to the bills cosponsored by the members of each

party. That is, cosponsors of a bill typically consist of only Democratic Party members or

only People Power Party members.

It is important to note that one network member has switched its affiliation from the Demo-

cratic Party to the People Power Party, hence being classified as a member of the People

Power Party. This individual has cosponsored more bills with members of the Democratic

Party than members of the People Power Party. So, except for this member, the top five

highest number of cosponsored bills that occurred between the two major parties are as fol-
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Figure 8: Distribution of the number of cosponsored bills within the Democratic Party (DP–DP),
within the People Power Party (PPP–PPP), and between the two parties (DP–PPP).

lows: P90–D139 (118 bills), P90–D63 (87 bills), P90–D128 (81 bills), P57–D140 (64 bills), and

P8–D140 (60 bills). It is evident that P90 and P57 act as a ‘bridge’ between the two parties.

Therefore, P90 and P57, along with vertices D139, D63, D128, D140, and P8, exhibit high

global L1 centrality. D128 is in the 72.40% quantile of the global L1 centrality distribution,

and the others are all above the 90% quantile.

However, among all the vertices with global L1 centrality over the 90% quantile, P57 has

the fewest cosponsored bills (467), and P90 has the second-fewest cosponsored bills (905).

Furthermore, among the vertices with global centrality exceeding the 95% quantile, P90 has

the fewest cosponsored bills, which means that the connection between each of the two vertices

to its nearby vertices is weak (high edge weight). Therefore, rather than their closest neighbors,

vertices with high global L1 centrality are incorporated into the set of L1 centrality-based

neighbors for these vertices. This is a phenomenon contrary to that of the Justice Party

members. Hence, a small L1 centrality is obtained in the conditioned graph. In summary,
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Figure 9: Functional data extracted from the reduced assembly network. Each line represents a
member of the reduced assembly network, and it is standardized to have a zero mean.

the two exceptional vertices, P90 and P57, attain their high global centrality by serving as

a ‘bridge’ between the two large communities in the network but have a weak connection to

either of the communities.

The analysis presented demonstrates the utility of examining a single graph at multiple locality

levels. Indeed, vertices with similar global L1 centrality may exhibit contrasting behavior at a local

level and vice versa. The proposed global and local L1 centrality captures this specific aspect that

cannot be accounted for by other centrality measures.

In this analysis, we used two values of α = 15/279 and 1. However, a more refined multiscale

analysis can be performed with densely chosen values of α. By adjusting the locality level, we

may create a functional data set in which each function corresponds to a member of the reduced

assembly network. Figure 9 shows the variation in the local L1 centrality of each vertex over α =

5/279, 10/279, . . . , 275/279. The local L1 centrality values are transformed to a uniform margin for
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Figure 10: Multiscale edge representation of the reduced assembly network with two locality levels:
α = 15/279 and α = 1. Larger vertices with pseudonyms labeled represent the local medians.

each locality level. For easier comprehension, each curve is then standardized to have a mean of zero,

meaning that the average of the functional values is zero for each curve. The curves representing

the Justice Party members deviate from the other curves. Collecting structural information of each

vertex as a function can be more informative than other single-valued centrality measures. This

functional data can be utilized for various analyses. For example, one can classify or cluster vertices

or understand the relationship between the structural attribute of each vertex and other relevant

characteristics. Extensive research on functional data analysis can be utilized with this data set

(see, e.g., Ramsay and Silverman, 2005).

Finally, we present a multiscale edge representation of the reduced assembly network with two

locality levels, α = 15/279 and 1. In Figure 10, the local medians are represented by larger vertices,

each labeled with the pseudonym of its member. Panel (a) reveals the presence of 15 local medians,

with D16 being identified as the local median originating from nearly half of the vertices. As

shown in panel (b), D16 serves as the graph median of the reduced assembly network. It would be
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worthwhile to investigate some local medians, such as D139, which serves as the local median for

a number of People Power Party members, and D140, which is designated as the local median for

all six Justice Party members. Altering the value of α to different values makes a comprehensive

multiscale representation of the assembly network possible. Conversely, a plot with all 38222 edges

would be incomprehensible.

7 Discussion

In this paper, we have introduced the L1 centrality for evaluating vertex centrality in graphs

and related tools for multiscale and graphical analysis. The proposed method borrows ideas from

existing literature on the data depth for multivariate data and particular instruments and methods

used in the field. The tools provided in this paper are only a first step. There are many potential

applications beyond the current discussion. The literature on data depth suggests various areas

where the L1 centrality can be used successfully. A few examples from the data depth literature

include classification and clustering (Jörnsten, 2004; Li et al., 2012; Paindaveine and Van Bever,

2013), missing value imputation (Mozharovskyi et al., 2020), and nonparametric test (Liu and

Singh, 1993).

This study only considered undirected graphs to define measures and tools. We briefly ex-

plore the potential extension of the concepts to directed graphs. In the literature, the concept of

‘centralness’ in directed graphs is divided into two distinct notions: prestige and centrality (Wasser-

man and Faust, 1994, Chapter 5.3). The prestige measure estimates the level of importance of a

vertex in terms of receiving a choice. Conversely, the centrality measure in directed graphs assesses

the level of importance in terms of giving a choice. It is feasible to extend the L1 centrality to

encompass directed graphs. Define the L1 prestige for directed graphs in the following way. The

graph median for prestige measure is redefined as the vertex vi that minimizes
∑n

j=1 ηjd(vj , vi),

where d(vj , vi) denotes the geodesic distance from vj to vi. Here, d(vi, vj) is not necessarily equal to

d(vj , vi), which means it is not a distance function. Assuming that every vertex can be reached from

another, the L1 prestige can be defined according to equation (2.1) with the indices in the function
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d swapped. Nevertheless, since the triangle inequality, such as d(vi, vk)− d(vi, vj) ≤ d(vk, vj), does

not necessarily hold—since d is not a distance function—the resulting prestige measure cannot be

ensured to fall within the range of [0, 1]. Together with the analogous theorem and propositions

in this paper that apply to directed graphs, we plan to carry out a separate study on this topic

elsewhere.

Next, recall that the concept of L1 centrality is derived from the L1 data depth. It is of interest

to explore the theoretical connection between these two notions. A possible link can be made in

the latent space model for graph data (Smith et al., 2019). In this model, edges are assumed to be

generated depending on the positions of points in the underlying geometric space that represent

the two vertices. With this model, we may ask if the L1 centrality is a ‘good’ estimate of the

L1 depth w.r.t. the underlying probability distribution in the latent space. Then, we can consider

the L1 centrality as a desirable statistic rather than an ad-hoc measure. This can also construct a

comprehensive distribution theory for a centrality statistic. For example, the large sample (n → ∞)

behaviors of the centralities. We have established a proposition that may be useful for further study.

Proposition 3. Let M ⊂ Rd be a convex d-dimensional space. Given X1 = x1 ∈ M , suppose

that X2, . . . , Xn are i.i.d. samples from some probability distribution P supported on M , which we

assume to have a density p, bounded away from zero: p(z) ≥ cp > 0 for all z ∈ M . Multiplicities

of x1, X2, . . . , Xn are η1, η2, . . . , ηn respectively, and η· =
∑n

i=1 ηi. Then, the following strong con-

sistency to the L1 depth of x1 w.r.t. P , denoted as D(x1), holds. That is, with the usual Euclidean

norm ∥ · ∥,

1− max
j=2,...,n

{∑n
i=1 ηi(∥x1 −Xi∥ − ∥Xj −Xi∥)

η·∥Xj − x1∥

}+
n→∞−−−→ D(x1) a.s.

The LHS is similar to equation (2.1), except that instead of using geodesic distance in the

graph, it uses the Euclidean norm. Thus, if the geodesic distance in the graph approaches the

Euclidean distance in the underlying geometric space at a suitable speed, it is possible to establish

the convergence of the L1 centrality to the L1 depth in the latent space. Much literature proves
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that the geodesic distance in the graph converges to the geodesic distance in various latent space

models (Alamgir and von Luxburg, 2012; Hwang et al., 2016). Nevertheless, there is uncertainty

about which latent space models may effectively achieve the desired convergence speed and the

conditions necessary to establish a concrete connection between the two concepts. This topic can

be explored in future research, perhaps with a graph centrality based on the notion of another data

depth function.
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Appendix

A Proofs

A.1 Proof of Theorem 1

Proof. (P1) This is immediate from equation (2.1).

(P2) It suffices to show that vi is the graph median if ηi/η· ≥ 1/2 and the unique graph median

if ηi/η· > 1/2. Observe that for i′ ̸= i,
∑n

j=1 ηj{d(vi, vj) − d(vi′ , vj)} ≤
∑

j ̸=i,i′ ηjd(vi, vi′) +

ηi′d(vi, vi′)−ηid(vi′ , vi) = (η·−2ηi)d(vi′ , vi) by the triangle inequality. This yields that C(vi) ≥

1 − {(η· − 2ηi)/η·}+ = 1 if ηi/η· ≥ 1/2. In addition, C(vi′) ≤ 1 − {(2ηi − η·)/η·}+ < 1 if

ηi/η· > 1/2.

(P3) Suppose that vi is not a graph median. Due to (P2), vi becomes the graph median when

multiplicity is incremented by 1 − 2ηi/η·. This is because the multiplicity of vi is 1 − ηi/η·

after incrementing, and the sum of all vertices’ multiplicities is 2−2ηi/η·. Hence, 1−C(vi) ≤

1− 2ηi/η·. If vi is the graph median, C(vi) = 1. Thus, C(vi) ≥ min{2ηi/η·, 1}.

(P4) Since the subgraph induced by deleting vertex v1 is connected, it means that
∑

i ̸=1 ηid(vi, vj)

converges to a finite value for any j ̸= 1, as v1 is moved to infinity. Observe that

max
j ̸=1

∑n
i=1 ηi(d(vi, v1)− d(vi, vj))

η·d(v1, vj)
= max

j ̸=1

∑
i ̸=1 ηid(vi, v1)−

∑
i ̸=1 ηid(vi, vj)− η1d(v1, vj)

η·d(v1, vj)

→ (η· − η1) + 0− η1
η·

.

Hence, C(v1) → 1− {(η· − 2η1)/η·}+ = min{2η1/η·, 1}.

A.2 Proof of Proposition 1

Proof. Since L1 centrality of vi in the symmetrized graph w.r.t. vi is equivalent to the L1 centrality

of vi in the original graph with multiplicity ηi replaced to η· + ηi (Proposition 2), Theorem 1 (P2)
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implies that vi is the graph median of the symmetrized graph since (η· + ηi)/(2η·) ≥ 1/2. If ηi > 0,

(η· + ηi)/(2η·) > 1/2, which yields that vi is the unique graph median.

A.3 Proof of Proposition 2

Proof. Without loss of generality, suppose that G is symmetrized w.r.t. vertex v1. Denote the copied

vertices with ‘prime’ on their index, e.g., vk′ is the copy of vk. In the symmetrized graph, the L1

centrality of vertex vk is

1−max
j ̸=k

{
num

2η·d(vj , vk)

}+

.

Here, the numerator is given as

num =

n∑
i=1

ηid(vi, vk) +

n∑
i=1

ηi(d(vi, v1) + d(v1, vk))−
n∑

i=1

ηid(vi, vj)−
n∑

i=1

ηi(d(vi, v1) + d(v1, vj))

=

n∑
i=1

ηi{d(vi, vk)− d(vi, vj)}+ η·(d(v1, vk)− d(v1, vj))

=

n∑
i=1

η′i(d(vi, vk)− d(vi, vj)),

where

η′i =


ηi, (i ̸= 1)

η· + η1, (i = 1)

.

Hence, the L1 centrality of vertex vk in the symmetrized graph is equivalent to the L1 centrality

of vk in the original graph with multiplicities η = (η· + η1, η2, . . . , ηn)
⊤.

A.4 Proof of Proposition 3

Proof. Let ē(x1) :=
∫
M\{x1}

y−x1

∥y−x1∥ dP (y) and ēn(x1) :=
∑n

i=2
ηi
η·

xi−x1
∥xi−x1∥ . According to Vardi and

Zhang (2000) and Tian et al. (2002), ∥ē(x1)∥ = 1−D(x1), and ēn(x1) → ē(x1) a.s. as n → ∞ by

the strong law of large numbers (SLLN).
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If ∥ē(x1)∥ = 0, Vardi and Zhang (2000) proved that x1 is the L1 median w.r.t. P . Hence, by the

SLLN, the numerator of the LHS in the proposition converges to a nonpositive number a.s., which

means that the LHS converges to D(x1) = 1 a.s. In the rest of the proof, we assume ∥ē(x1)∥ > 0.

Set X∗ = x1 + hnē(x1) and let X† be the closest random point to X∗ among X2, . . . , Xn. Here,

hn ↓ 0 and nhdn − log n → ∞, as n → ∞ (e.g., take hn = (log n)−1/d). Then, for a sufficiently large

n,

Pr(∥X† −X∗∥ ≥ hnϵ) ≤ (1− cd(hnϵ)
d)n−1 ≤ exp{−(n− 1)cd(hnϵ)

d},

for some constant cd > 0 that depends on d. Elaborating, due to the convexity of M , a ball with

center X∗ and radius hnϵ will be inside M , for a sufficiently large n. The first inequality is derived

from the probability that all X2, . . . , Xn to be located outside this ball, and the second inequality

is immediate from 1− x ≤ e−x, which holds for all x ∈ R.

Since nhdn − log n → ∞ as n → ∞, Borel–Cantelli lemma can be applied to say that ∥X† −

X∗∥/hn → 0 a.s. as n → ∞. This further implies that

1

hn
sup

i=1,...,n

∣∣∣∥X† −Xi∥ − ∥X∗ −Xi∥
∣∣∣ ≤ 1

hn
∥X† −X∗∥ → 0 a.s.

and thus, with probability one,

∥X† − x1∥ = ∥X∗ − x1∥+ o(hn) = ∥X∗ − x1∥
(
1 +

o(hn)

hn∥ē(x1)∥

)
= ∥X∗ − x1∥[1 + o(1)],

where o(an)/an → 0 as n → ∞.

Using these facts, we get that, with probability one,

max
j=2,...,n

{∑n
i=1 ηi(∥x1 −Xi∥ − ∥Xj −Xi∥)

η·∥Xj − x1∥

}+

≥
{∑n

i=1 ηi(∥x1 −Xi∥ − ∥X† −Xi∥)
η·∥X† − x1∥

}+

=

{∑n
i=1 ηi(∥x1 −Xi∥ − ∥X∗ −Xi∥)

η·∥X∗ − x1∥

}+

+ o(1).

(A.1)
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By the dominated convergence theorem, the RHS of equation (A.1) converges to the following

value a.s.

{∫
M\{x1}

lim
n→∞

∥x1 − y∥ − ∥x1 + hnē(x1)− y∥
∥hnē(x1)∥

dP (y)

}+

= ∥ē(x1)∥ = 1−D(x1),

where the first equality is derived by differentiation.

However, observe that

max
j=2,...,n

{∑n
i=1 ηi(∥x1 −Xi∥ − ∥Xj −Xi∥)

η·∥Xj − x1∥

}+

≤ sup
y∈M\{x1}

{∑n
i=1 ηi(∥x1 −Xi∥ − ∥y −Xi∥)

η·∥y − x1∥

}+

.

(A.2)

The RHS of equation (A.2) is equivalent to (∥ēn(x1)∥ − η1/η·)
+ by Vardi and Zhang (2000), and

hence, also converges to 1−D(x1) a.s., and the proof is complete.

B Comparing L1 Centrality Measure to Other Measures

The first column of Figure 11 shows the L1 centrality versus the three centralities. The second

column transforms computed centralities to a uniform margin for easy comparison, i.e., the lowest

centrality is converted to 1/n, the second lowest to 2/n, and so on. Thus, if the rankings from the

centrality measures are the same, every point would fall on the 45◦ diagonal line, which is not valid

for all plots in the second column.
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Figure 11: Degree centrality, betweenness centrality, and closeness centrality applied to the MCU
movie network. (Left) Original centrality values. (Right) Centralities transformed to a uniform
margin.
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