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D. Radić*,1 L.Y. Gorelik,2 S.I. Kulinich,3 and R.I. Shekhter4

1Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, Zagreb 10000, Croatia
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We suggest a nanoelectromechanical setup that generates properly entangled ancillary (”ancilla”)
qubits for error correction algorithms in quantum computing, demonstrated as an encoder for the
three-qubit bit flip code. The setup is based on mesoscopic terminal utilizing the AC Josephson
effect between voltage biased superconducting electrodes and mechanically vibrating mesoscopic
superconducting grain in the regime of the Cooper pair box, controlled by the gate voltage. Required
functionality is achieved by specifically tailored time-protocol of operating two external parameters:
bias voltage and gate voltage. The superconducting grain is fixed on the free end of a cantilever,
performing controlled in-plane mechanical vibrations, generating the nanomechanical coherent states
organised in a pair of entangled cat-states in two perpendicular spatial directions. Cooper pair box
and nanomechanical coherent states become three entangled qubits in a particular way: quantum
information, initially encoded in superposition of the Cooper pair box states, is transduced into
quantum superposition of two special 3-qubit entangled states, | ↑ ++〉 and | ↓ −−〉. It constitutes
the basic input state for the three-qubit bit flip code, used in quantum computation mainly for error
correction, ”installed” on a single physical object in which the last two ancilla qubits are generated
by the nanoelectromechanical setup.

I. INTRODUCTION

Fault tolerant quantum computing represents one
of the most challenging tasks in the field of modern
quantum information (QI) [1] research and technology.
To achieve this goal, providing quantum processors and
channels to transfer the QI between them is the basic
step. However, due to interaction with environment,
or due to imperfections in the fabrication process, any
QI processing unit, either a processor for quantum
calculations or channel for its transmission, is subjected
to errors appearing in the process, which are finally
reflected in inaccuracy of resulting QI. Unlike in classical
computer, where this problem is solved rather easily,
either by using algorithm such as ”checksum” for error
heralding to trigger repetition of the process, or creating
multiple copies of ”1” or ”0” bit states and then using
the ”majority rule” for error correction, in quantum
processing systems it is way more challenging. The
main obstacle is the ”no-cloning theorem” [2], which
fundamentally prohibits the very possibility of copying
the state of a qubit. Qubit [3] itself is a quantum
system with two states where the QI is stored in their
superposition [1], thus being a basic ”container” of the
QI. Having the ”copy/paste” procedure forbidden for
qubits, the other tools need to be employed. One of the
most powerful among them being at hand is quantum
entanglement [4]. Using the property of entanglement
between parts of a quantum system, different schemes,
protocols or codes have been developed to address
the problem of error heralding and error correction.
In essence, these schemes reduce to constructing and
operating the physical system in a way to entangle the

operating qubit, containing the QI, to different number
of ancillary, so-called ancilla qubits serving to achieve
a desired functionality of error heralding or correction.
Among them, a few well known examples are the 3-qubit
bit flip code [5], for improved fidelity, or the 9-qubit
Shor code [6], for completely random error correction,
etc. Operations upon qubits and QI stored in them
are performed by logic gates, the real physical setups
that correlate parts of the physical quantum system
containing the QI in the specific way resulting in its
desired state. Specifically, the three-qubit bit flip code
is creation of particular entangled state of three qubits,
one operating and two ancillas, and then performing cor-
rection of the erroneous flipped ”bit”, equivalent to using
five basic CNOT logic gates in a particular way. Creating
the specifically entangled 3-qubit state, equivalent to
using two CNOT gates, is performed by the ”encoder for
the bit flip code” - its nanomechanical implementation is
the main topic of this paper. With quantum information
encoded in superposition of states of qubit 1 at input, i.e.
c+ |↑〉1 + c− |↓〉1, the encoder provides as an output the
3-qubit state c+ |↑〉1⊗|+〉2⊗|+〉3+ c− |↓〉1⊗|−〉2⊗|−〉3
in which qubits | 〉1, | 〉2 and | 〉3 are entangled, where
↑↓ and ± present pairs of possible qubits’ states and
c± are complex amplitudes characterising the (unitary)
quantum superposition with |c−|2 + |c+|2 = 1.

The very implementation of qubit has been a subject
of extensive research, covering number of fields in physics
such as optics, atomic physics or solid-state physics, as
well as their combinations [7–11], in an attempt to find
an optimum between advantages and disadvantages of
each implementation. We are focused to the nanoelec-
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tromechanical (NEM) implementation in which we utilize
coherent interplay of the charge-qubit [12–15] states and
nanomechanical excitations [16–18]. The main purpose of
this interplay is to achieve transduction of the QI between
charge-qubit and nanomechanical subsystems. Choice of
the NEM implementation brings forward a unique level
of compactness, with easily electrically controlled charge-
qubit (although with rather short decoherence time for
the very same reason) and nanomechanics with amaz-
ingly high quality factors achievable nowadays [19–21].
The NEM implementation comes down to a mesoscopic
terminal based on the AC Josephson effect. It comprises
a pair of voltage-biased superconducting (SC) electrodes,
with a superconducting mesoscopic grain, attached to a
nanomechanical oscillator, placed amid. States in the
grain are controlled by the gate voltage in the way to be
in regime of the Cooper pair box (CPB), being a charge-
qubit in the NEM setup. In our previous publications on
this topic [22, 23] we showed that dynamics of Josephson
tunneling between the CPB and the SC leads resulted in
formation of nanomechanical coherent states entangled
with states of a charge-qubit if Josephson and mechani-
cal frequencies are in resonance. Furthermore, applying
the bias voltage manipulation protocol, we demonstrated
an onset of nanomechanical cat-states consisting of coher-
ent states. In the later publication we showed that the
QI, encoded into charge-qubit states, can be transduced
into the pure nanomechanical cat-state and back, provid-
ing the time-protocol of manipulating the bias and gate
voltages for that functionality [24]. Finally, the quantum
network, consisting of terminals with charge-qubits at-
tached to the same nanomechanical vibrating beam, was
suggested, demonstrating the functionality of transmis-
sion of the QI between charge-qubits, utilising entangle-
ment to nanomechanical coherent states driven by spe-
cially tailored operating time-protocols on the SC leads
and gates [25].

In this paper we suggest the NEM implementation of
the 3-qubit bit flip code in the terminal comprising elec-
trically controlled pair of SC electrodes and gate elec-
trodes with nanomechanical oscillator in the form of can-
tilever, with superconducting grain on top of it, perform-
ing in-plane oscillations in two orthogonal directions (see
Fig. 1(a)). We will show that, applying the specific time-
protocol of operating the electrodes, the QI encoded in
the charge-qubit states is transduced into a pair of en-
tangled nanomechanical cat-states, providing exactly the
above-described functionality of an encoder for the 3-
qubit bit flip code. In Section 2, following this intro-
duction, we describe the physical model and present its
Hamiltonian. Section 3 contains derivation of time evolu-
tion operators for specific time-protocol of operating the
external control parameters to achieve desired function-
ality of the system. In Section 4 we discuss some nanome-
chanical properties of the obtained quantum state from
the physical point of view. Final section contains discus-
sion and concluding remarks.

II. THE MODEL

Schematic picture and description of the NEM setup
is shown in Fig. 1(a). The superconducting part of
the junction (SC electrodes and superconducting grain
(CPB) oscillating between them) operates in the regime
of the AC Josephson effect, i.e. the superconducting elec-
trodes are biased by a constant symmetrically applied
bias voltage Vb(t), which can be switched on to value Vb

or off to zero, providing a superconducting phase differ-
ence Φ(t) dependent on time t. Here, Φ(t) = sgn(Vb)Ωt
and Ω = 2|e|Vb/~ is the Josephson frequency. Some con-
stant initial phase at t = 0 is for simplicity taken to
be zero. Cooper pairs tunnel between the SC-electrodes
and the CPB, which is attached to a top of a ”vertical”
cantilever performing the 2D nanomechanical vibrations
in (x, y)-plane at frequency ω (assuming to be equal in
both directions), thus making the tunneling essentially
position-dependent. Neglecting a geometric asymmetry
of the junction, we expand the Josephson coupling in
terms of a small parameter ε ≡ a0/xtun ≪ 1, where

a0 =
√

~/mω is the amplitude of zero-mode oscillations
(m is mass of the oscillator) and xtun is the tunneling
length.
Symmetrically placed gate electrodes have the two-fold

function: (1) By the particular choice of constant poten-
tial VG on gate electrodes, the mesoscopic superconduct-
ing grain is set into regime of the Cooper pair box, i.e.
the effective two-level system with degenerate states with
zero and one excess Cooper pair, e∓

y
respectively. Those

we call ”the charge states” or ”the CPB qubit states”.
We assume that VG is always present, preserving the re-
quired degeneracy, and we shall not write it further on as
a part of operating protocols. (2) Applying an additional
voltage V (t), symmetrically over the gate electrodes, we
can create approximately homogeneous electric field E(t)
along the central part of the junction where the CPB
moves, with a zero-value of the corresponding electro-
static potential in the middle (i.e. approximately pre-
serving the degeneracy of the CPB states). While VG is
kept constant, switching the V (t) on and off, as well as
Vb, is an important part of time-protocols for achieving
the desired functionality as will be shown in the follow-
ing section. V (t) can in principle depend on time to
create the time-dependent electric field, yielding differ-
ent types of nanomechanical motion, but in the present
setup to achieve the required functionality we show that
it is enough to apply constant additional gate voltage,
i.e. V (t) = V .
We write the time-dependent Hamiltonian describ-

ing the system, with couplings linear in x- and y-
displacement of the CPB, in the form H(t) = H0(t) +
Hint(t), where

H0(t) = EJσx cosΦ(t) + ~ω(a†a+ b†b),

Hint(t) = ǫx
1√
2
(a+ a†)σy sinΦ(t) + ǫy

1√
2
(b+ b†)σz .(1)

In Eq.(1), H0(t) represents the noninteracting part
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FIG. 1. (a) Schematic illustration of the NEM setup featuring the AC Josephson effect. Two superconducting electrodes (SC)
are voltage-biased by Vb(t), controllable over time t, providing the superconducting phase difference Φ(t). Between them there
is a cantilever with a superconducting mesoscopic grain (CPB) on the top, capable of performing the 2D mechanical vibrations
in the (x, y)-plane. Position-dependent tunneling of Cooper pairs takes place between the CPB and SC electrodes. The role
of gate electrodes (G) is twofold: (1) maintaining the state of the superconducting grain in the regime of the Cooper pair box
(CPB) by constant voltage VG; (2) providing an electric field by V to couple displacement to the states of the CPB in the
desired way and/or to manipulate them. (b) Starting with the CPB states e±

y , two pairs of 2D nanomechanical coherent states,
| ±Zx(x, px; t)〉 and | ±Zy(y, py; t)〉 for motion in x- and y-direction, are generated by coherent dynamics of the NEM setup,
altogether yielding two entangled states | ±Z〉 ≡ e

±
y ⊗ | ±Zx(x, px; t)〉⊗ | ±Zy(y, py; t)〉.

of total Hamiltonian H(t), comprising the position-
independent part of Josephson tunneling term, charac-
terised by the Josephson energy EJ , and 2D harmonic
oscillator characterised by frequency ω. Operators σx,y,z

are the Pauli matrices operating in the 2 × 2 Hilbert
subspace of the CPB, while a† and b† are phonon cre-
ation operators for x- and y-direction of oscillator mo-
tion respectively. Hint(t) is the interacting part of to-
tal Hamiltonian, describing position-dependent coupling
term of Josephson coupling and coupling of the CPB to
gate electrodes, both linear in displacements described by
operators x̂ = a0X̂ and ŷ = a0Ŷ , X̂ = (a† + a)/

√
2 and

Ŷ = (b†+b)/
√
2, with corresponding conjugate momenta

p̂x = (~/a0)P̂x and p̂y = (~/a0)P̂y , P̂x = i(a† − a)/
√
2

and P̂y = i(b† − b)/
√
2, respectively. Josephson coupling

is characterised by ǫx ≡ εEJ . Coupling to the gate is
ǫy ≡ 2|e|Ea0, where e is an electron charge and E is elec-
tric field created by voltage V on gate electrodes. In our
approach we assume that both couplings are weak, i.e.
ǫx ≪ ~ω and ǫy ≪ ~ω.

III. THE TIME-EVOLUTION PROTOCOL:

IMPLEMENTATION OF THE 3-QUBIT ENCODER

The desired functionality of an encoder for the 3-qubit
bit flip code is achieved by operating the external control
parameters: bias voltage Vb(t) and gate voltage δV (t).
Each interval corresponds to the time-protocol described
by specific quantum time-evolution operator of the sys-
tem, governed by the Hamiltonian, which will transfer

the system into specific quantum state described by the
wave function Ψ(t), starting with the given initial state
of the system Ψ(t = 0). We assume that, initially, state
of the system is prepared as

Ψ(0) = ein ⊗ |0〉x ⊗ |0〉y, (2)

where |0〉x ⊗ |0〉y is a zero-phonon ground state of me-
chanical subsystem (the 2D oscillator), while ein is the
initial charge-qubit state into which the QI is encoded.
It is the ”QI input” into the system which can be encoded
in an arbitrary way, but to deal with it analytically, we
choose to work with projections to e

±
y vectors charac-

terised by coefficients c± = e
±
y ein which will be ”bear-

ers” of encoded QI further on. Vectors e
±
i , i ∈ {x, y, z}

are the eignevectors of σi Pauli matrices corresponding
to eigenvalues ±1.
The time-evolution operator Û(t, t0) of the wave

function from time moment t0 to t is generally solution
of the equation i~ ∂

∂t
Û(t, t0) = H(t)Û(t, t0), with initial

condition Û(t0, t0) = 1. It can be found by number of
standard methods of quantum mechanics, depending on
the properties of H(t), the most popular among them
being using the interaction picture representation.

Our intention is building the nanomechanical coher-
ent states entangled to charge-qubit state to serve as the
ancilla qubits. At t = 0 we switch on the bias voltage
from zero to constant value Vb, i.e. Vb(t) = VbΘ(t), to
provide finite phase difference Φ(t) in the SC electrodes.
As shown in Refs. [22, 23], coupling of charge-qubit to
mechanical subsystem under certain conditions leads to
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developing of mechanical coherent states. In that respect,
in what follows, we restrict our consideration to the reso-
nant case between Josephson and mechanical frequency,
i.e. Ω = ω. The other condition we find to achieve the
desired functionality is setting the constant signal V at
t = 0, i.e. V (t) = VΘ(t), on the gate electrode to provide
coupling ǫy. Under these conditions, the Hamiltonian
H(t), defined by Eq.(1), is periodic in time with period
T = 2π/ω.

We calculate the evolution operator Û(t, t′) in the in-
teraction picture, i.e.

Û(t, t′) = û0(t)û(t, t
′)û†

0(t
′), (3)

with boundary condition û(t, t) = 1, where

û0(t) = exp
[

−iωt(a†a+ b†b)− iασx sinΦ(t)
]

, (4)

and α ≡ EJ/~ω is the scale defined by ratio of Joseph-
son and mechanical energy. Then, the equation for the
evolution operator û(t, t′) attains the form

i~
∂û(t, t′)

∂t
= Heff(t)û(t, t

′), (5)

where Heff(t) = H
(x)
eff (t) +H

(y)
eff (t) is defined by

H
(x)
eff (t) =

ǫx sinΦ(t)

2

(

X̂ cosωt+ P̂x sinωt
)

×
[

(σy + iσz) e
2iα sinΦ(t) + h.c.

]

,

H
(y)
eff (t) =

ǫy
2

(

Ŷ cosωt+ P̂y sinωt
)

×
[

(σz + iσy) e
2iα sinΦ(t) + h.c.

]

. (6)

Under the resonance condition, Heff(t) is a periodic func-
tion with the same period T as the original Hamiltonian
H(t). As a consequence, the evolution operator û(t, t′)
has a property

û(t− T, t′ − T ) = û(t, t′), (7)

leading to

û(NT, 0) = û(NT,NT − T )û(NT − T,NT − 2T )...

...û(T, 0) = ûN (T, 0), (8)

where N is a positive integer number.
Using the equation of motion (5), we obtain the oper-

ator û(T, 0) in the form

û(T, 0) = 1− iσy

(

ηxP̂x + ηyP̂y

)

+O(ǫ2x,y), (9)

where

ηx = π
ǫx
~ω

[J0(2α)− J2(2α)] ,

ηy = 2π
ǫy
~ω

J1(2α), (10)

and Jn(2α) is the Bessel function of the first kind. Ne-
glecting the corrections O(ǫ2x,y) higher than linear in ǫx
and/or ǫy, using Eqs.(3,8,9), we obtain the evolution op-
erator of the system for t = NT , i.e. for integer number
of periods, in the form

Û(NT, 0) = e−2iπN(a†a+b†b)

×
[

1− iσy

(

ηxP̂x + ηyP̂y

)]N

≃ e−iNσy(ηxP̂x+ηyP̂y)e−2iπN(a†a+b†b).(11)

The expression Eq.(11) is valid under conditions Nǫi ∼ 1
and Nǫ2i ≪ 1, i ∈ {x, y}.
Accordingly to Eq.(11), the wave function Ψ(NT ) =

Û(NT, 0)Ψ(0) in the time moment t = NT is obtained
in the form

Ψ(NT ) = c+e
+
y ⊗ |Zx〉⊗ |Zy〉+ c−e

−
y ⊗ |−Zx〉⊗ |−Zy〉,

(12)
where | ± Zx〉 and | ± Zy〉 are nanomechanical coherent
states for x- and y-direction of oscillator motion, charac-
terised by eigenvalues Zx = Nηx and Zy = Nηy, being
proportional to amplitudes, i.e. displacements from the
origin of motion.
By virtue of result Eq.(12), dividing the arbitrary

time interval as t = NT + τ , τ < T , one can find
the wave function at the arbitrary moment of time as
Ψ(t) = Û(NT + τ,NT )Ψ(NT ) ≃ û0(τ)Ψ(NT ), yielding
the general result

Ψ(t) ≃ e−iασx sinΦ(τ)
[

c+e
+
y ⊗ |Zx(τ)〉 ⊗ |Zy(τ)〉

+ c−e
−
y ⊗ | − Zx(τ)〉 ⊗ | − Zy(τ)〉

]

, (13)

where Zx,y(τ) = Zx,y exp(−iωτ) and τ = t − NT ,
N = floor(t/T ) (an integer part). Note that pair of
coherent states ±Zx, and pair of coherent states ±Zy

represent 2 states of a qubit each. Therefore, the wave
function Eq.(13) represents the entangled state of three
qubits, ey, |Zx〉 and |Zy〉, i.e. of charge-qubit and
two nanomechanical ones, with the QI encoded inside.
Schematically, it is shown in Fig. 1(b). This particular
form of the wave function represents the input for the
3-qubit bit flip code, schematically written in the form
c+ |↑〉1 ⊗ |+〉2 ⊗ |+〉3 + c− |↓〉1 ⊗ |−〉2 ⊗ |−〉3.

IV. PHYSICAL PROPERTIES OF NANOMECHANICAL

STATES

In order to grasp nanomechanical aspects of motion
described by the wave function Ψ(t), Eq.(13), i.e. the
time-evolution of the mechanical subsystem, it is con-
venient to calculate the corresponding Wigner function.
For that, we need to obtain the reduced mechanical den-
sity matrix, ρ̂m(t) = Trq ρ̂(t), where ρ̂ = |Ψ(t)〉〈Ψ(t)|
is complete density matrix of the system defined by the
wave function Ψ(t), while by the Trq operation we trace
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out the charge-qubit degrees of freedom. This operation
yields the result

ρ̂m(t) = |c+|2|Zx(t)〉〈Zx(t)| ⊗ |Zy(t)〉〈Zy(t)|
+ |c−|2| − Zx(t)〉〈−Zx(t)| ⊗ | − Zy(t)〉〈−Zy(t)|.

(14)

The density matrix (14) in Wigner’s representation (the
”Wigner function”) is defined as

W (x, px; y, py|t) =
1

(2π~)2

∫

dξxdξye
− i

~
(pxξx+ıpyξy)

× 〈x+ ξx
2 | ⊗ 〈y + ξy

2 | ρ̂m(t) |x− ξx
2 〉 ⊗ |y − ξy

2 〉. (15)
The straightforward calculations (for simplicity we set
~ = 1) yield the result

W (x, px; y, py|t) =
|c+|2
π2

exp
[

− (x−Rx(τ))
2 − (px − Px(τ))

2

− (y −Ry(τ))
2 − (py − Py(τ))

2
]

+
|c−|2
π2

exp
[

− (x+Rx(τ))
2 − (px + Px(τ))

2

− (y +Ry(τ))
2 − (py + Py(τ))

2
]

,(16)

where

Rx(τ) = ηxN cosωτ,

Px(τ) = −ηxN sinωτ,

Ry(τ) = −ηyN cosωτ,

Py(τ) = −ηyN sinωτ (17)

describe the time-dependent shifts from the origin in real
(R) and momentum (P) space. Integrating the expres-
sion (16) over momenta px and py, i.e. W (x, y|t) =
∫

dpxdpyW (x, px; y, py|t), one obtains the distribution
function that describes evolution of mechanical subsys-
tem in configuration space (x, y), i.e.

W (x, y|t) =
|c+|2
π

exp
[

− (x−Rx(τ))
2 − (y −Ry(τ))

2
]

+
|c−|2
π

exp
[

− (x+Rx(τ))
2 − (y +Ry(τ))

2
]

.

(18)

Analysing the time-dependent shifts Eq.(17), it is evident
that pair of states | ± Z〉 represent linear oscillatory mo-
tion in the (x, y)-plane who’s amplitude grows in time, by
ηx in x- and by ηy in y-direction, after each period T (see
schematic presentation in Fig. 1(b) and plots in Fig. 2).
The inclination of the line of motion in the (x, y)-plane is
determined by ratio ǫy/ǫx. We just mention that by ap-
plying the different, time-dependent operating protocols
on the gate electrodes, leads to possibility of achieving
different types of nanomechanical motion, e.g. circular
or Lissajous curves, which is to be discussed elsewhere
since it is not crucial for the functionality required here.

FIG. 2. The distribution function Eq.(18) of the mechanical
subsystem in the (x, y)-plane of a real space. The scales in
pictures are between −10 and 10 in both x- and y-direction
in units ηx and ηy respectively. Panels 1-9 present the dis-
tribution density plot for the time interval t between 5T
and 6T for time moments τ = t − NT , in particular for
ωτ ∈ {0, 0.75, 1, π/2, 2, π, 3π/2, 4, 2π}, N = 5, respectively,
for |c+|

2 = 1/3, |c−|2 = 2/3 and ǫy/ǫx = 1.

V. CONCLUSIONS

In this paper we propose a concept of functional 2-
ancilla qubit generator that, provided the input qubit,
builds the 3-qubit input for the bit flip code used in
quantum error correction algorithms. In particular, this
functionality is implemented in the single physical ob-
ject, a NEM terminal with an in-plane vibrating super-
conducting charge-qubit, which is an input qubit, while
the two ancilla qubits are nanomechanical coherent states
actively created and properly entangled by the very NEM
setup. Function of the proposed NEM setup may be pre-
sented in terms of mapping c+ |↑〉1 + c− |↓〉1 −→ c+ |↑
〉1|+〉2|+〉3 + c− |↓〉1|−〉2|−〉3, where indices represent
qubits, 1 - input and 2, 3 - ancillas, while c± are com-
plex coefficients containing the encoded quantum infor-
mation in qubits’ states. Schematically, one may present
the function of this setup as an encoding circuit for the
bit flip code, operating as two internal CNOT gates, i.e.

|↑〉 |+〉|+〉−−−−→ | ↑ ++〉 and |↓〉 |−〉|−〉−−−−→ | ↓ −−〉 (see Fig. 3).
Being easy to manipulate and operate electrically from

one end, the negative side of charge qubits, due to the
very same Coulomb interactions with environment, are
rather short decoherence times (10−7 - 10−6 s). Among
the decoherence processes, the ”bit flip”, i.e. the charge
state fluctuation, appears to be the most frequent and
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FIG. 3. Schematic presentation of the 2-ancilla qubit genera-

tor, i.e. the encoding circuit for the bit flip code: |↑〉
|+〉|+〉
−−−−→

| ↑ ++〉 and |↓〉
|−〉|−〉
−−−−→ | ↓ −−〉. The one-qubit-state, with

encoded QI in the superposition c+ |↑〉+ c− |↓〉, gets encoded
to c+| ↑ ++〉+ c−| ↓ −−〉 by action analogous to two (inter-
nal) CNOT gates.

most harmful for the charge-qubit containing the QI.
In that respect, ”equipping” it with means of increased
fidelity or ability of error correction is by all means a
useful task.

Nanomechanical implementation of the described
process, especially on the same physical object, is unique
due to its compactness. The NEM setup comprises
a cantilever with a mesoscopic superconducting grain
on top of it (the charge-qubit), controlled by pair of
gate electrodes and pair of biased superconducting
electrodes to provide the AC Josephson effect. The
coherent states of nanomechanical motion in x- and
y-direction, generated by coupling to electrodes, serve as
the ”on-board” ancillas for charge-qubit.

The physical feasibility of the proposed setup was

mainly discussed in our previous paper on this topic [22]
performing number of numerical calculations simulating
different decoherence and dephasing processes, mismatch
from the resonance condition, control of the applied
external voltages etc. Fabrication process of creating
the nanopillars (vibrating cantilever - see for example
Ref. [26]) are heading towards 1GHz operating nanome-
chanical frequencies with huge quality factors Q ≥ 105.
The zero-point amplitude of motion is then of the order
of 1-10 pm, tunneling length of the order of 1 - 10 Å,
while the size of the tunneling contacts on terminals is
of the order of 10 - 100 nm, within the reach of modern
e-beam lithographic techniques. Bias voltages of the
order of 10 µV is controllable down to 0.1% (e.g. by
Keysight B2961A) which should satisfy the requirements.

Investigation of various time-dependent operating pro-
tocols on gate electrodes, to induce different types of cou-
pling and corresponding types of controlled nanomechan-
ical motion between contacts in the (x, y)-plane, to pro-
cess quantum information encoded inside, is a subject of
our future research.
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