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Abstract

An additive code is an IFq-linear subspace of IFn

qm
over IFqm , which is not a linear subspace over

IFqm . Linear complementary pairs(LCP) of codes have important roles in cryptography, such as

increasing the speed and capacity of digital communication and strengthening security by improving

the encryption necessities to resist cryptanalytic attacks. This paper studies an algebraic structure

of additive complementary pairs (ACP) of codes over IFqm . Further, we characterize an ACP

of codes in analogous generator matrices and parity check matrices. Additionally, we identify a

necessary condition for an ACP of codes. Besides, we present some constructions of an ACP of

codes over IFqm from LCP codes over IFqm and also from an LCP of codes over IFq. Finally, we

study the constacyclic ACP of codes over IFqm and the counting of the constacyclic ACP of codes.

As an application of our study, we consider a class of quantum codes called Entanglement Assisted

Quantum Error Correcting Code (EAQEC codes). As a consequence, we derive some EAQEC

codes.

Keywords: Additive codes, Additive complementary pairs of codes, Linear complementary pairs of

codes, Constacyclic IFq-linear codes.

2020 AMS Classification Code: 94B05; 11T71.

1 Introduction

Linear complementary pairs (LCP) of codes, which were introduced by Bhasin et al. in [22], are

extensively explored for wide application in cryptography (see [2, 6]). Further, we refer to some

papers [1, 7, 11] on the LCP of codes over a finite field, and we point out that complementary pairs

of codes without linearity properties have an essential role in constructing quantum code (see [23]).

Thus, it is a useful context for studying non-linear complementary pairs of codes in coding theory.

In particular, we study additive complementary pairs (ACP) of codes that extend the analogous of

additive complementary dual (ACD) codes. With this point of view, lots of research has been done

for additive complementary dual (ACD) codes (see [24, 25, 26]). LCP of codes is a generalization of

linear complementary dual (LCD) codes. The notion of LCD codes was introduced by Massy in [20]

and later studied in [8, 9, 10, 11, 21].
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Besides, the study of additive codes has gathered significant attention due to their theoretical

significance and practical applications. One prominent application of additive codes lies in quantum

error correction, where they are employed to protect quantum information from errors induced by noise

or other environmental factors. Additionally, additive codes find utility in secret-sharing schemes, where

they facilitate the secure distribution of confidential information among multiple parties, ensuring that

only authorized subsets of participants can reconstruct the original secret [18]. Additive codes represent

a crucial class of codes within coding theory, introduced by Delsarte et al. [13]. Generally, additive

codes are subgroups of the underlying abelian group. Further, Huffman [17] provided an algebraic

structure for additive cyclic codes over IF4. Through ongoing research and exploration, the potential of

additive codes continues to expand, offering valuable insights and solutions in the realms of information

theory, quantum computing, and cryptography (see [14]). Recently, Shi et al. [25] developed a theory

of ACD codes over IF4 for trace Euclidean and Hermitian inner products. The authors introduced a

nice construction of ACP codes over IF4 from binary codes in the same paper. They also established

that ACD codes are potentially related to LCD codes. In the same spirit, Choi et al. [12] studied ACP

codes over finite field IFqm with m ≥ 2 in a general setup of trace inner product. They also provided

new construction of ACP codes with respect to trace-Euclidean, Hermitian, and Galois inner products.

This general setup showed that ACD codes are related to LCD codes. In this same paper, they further

computed good numerical examples of ACP codes. Motivated by these papers, we study the theory of

additive complementary pair (ACP) of codes. We further derive some construction of ACP of codes.

This paper establishes a relationship between the LCP of codes and the ACP of codes.

On the other hand, an
IFq[X]

(Xn − λ)
-submodule of

IFqm [X]

(Xn − λ)
is a λ-constacyclic IFq-linear additive

code over IFqm , where λ ∈ IF∗
q and m ≥ 2. In paper [5], the authors studied the algebraic structure

of λ-costacyclic IFq-linear additive code over IFqm . In the same paper, they developed a theory for

self-orthogonal and self-dual negacyclic IFq-linear codes over IFql . The authors in paper [26] deduced a

theory for additive cyclic and cyclic IF2-linear ACD codes over IF4 of odd length for the trace Euclidean

and Hermitian inner product. They also provided a characterization for subfield subcodes. Inspired

by these papers, we will study the constacyclic IFq-linear ACP of codes and counting of constacyclic

IFq-linear ACP of codes.

The paper is organized as follows. In Section 2, firstly, we sketch basic definitions, notations, and

results on IFq-linear additive codes over IFqm , and secondly, we recall some useful results for our context

from constacyclic IFq-linear additive codes over IFqm . Section 3 deals with the characterization of ACP

of codes with respect to the general inner product on IFn
qm . Some constructions of ACP of codes are

presented in Section 4. Further, we count a formula for constacyclic ACP of codes in Section 5. Finally,

we show an application on EAQEC codes in Section 6 and obtain some examples of EAQEC codes.

The paper concludes in Section 7.
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2 Some preliminaries

2.1 IFq-linear additive codes

Let IFq and IFqm be the finite fields with cardinality q and qm, respectively, and characteristic p (see

for more details [12]). A nonempty subset C of IFn
qm (where m > 1) is called an IFq-linear additive

code if C is an IFq-linear subspace of IFn
qm . Note that an IFq-linear additive code of IFn

qm is an IFq-linear

code over IFqm of length n. Now, we define a bilinear mapping

B : IFn
qm × IFn

qm → IFq such that

((a1, a2, . . . , an), (b1, b2, . . . , an)) 7→ B((a1, a2, . . . , an), (b1, b2, . . . , an)) =
n
∑

i=1

Tr(µiaiπ(bσ(i))) (1)

where Tr : IFqm → IFq is the trace mapping defined by x 7→ x + xq + · · · + xq
m−1

, π is a field

automorphism on IFqm and σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation with corresponding

matrix P such that

Pij =

{

1 if i = σ(j);

0 otherwise,

M = diag(µ1, µ2, . . . , µn) is an n×n matrix over IFqm with µi ∈ IF∗
qm , and (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈

IFn
qm . Note that B is not symmetric in general. B satisfies the following property

(a) B is non-degenerate;

(b) RadL(B) = {a ∈ IFn
qm | B(a, x) = 0 for all x ∈ IFn

qm} is an IFq-linear subspace of IFn
qm ;

(c) RadR(B) = {a ∈ IFn
qm | B(y, a) = 0 for all y ∈ IFn

qm} is an IFq-linear subspace of IFn
qm .

For an IFq-linear additive code C over IFqm , the left-dual of C is denoted as C⊥L, defined by

C⊥L = {a ∈ IFn
qm | B(a, c) = 0 for all c ∈ C}

and the right-dual of C is denoted as C⊥R , defined by

C⊥R = {a ∈ IFn
qm | B(c, a) = 0 for all c ∈ C}.

Note that C⊥L and C⊥R are IFq-linear subspace of IFn
qm . It is not difficult to show that C⊥L and C⊥R

satisfy the conditions

dimIFq (C) + dimIFq (C
⊥L) = nm (2)

dimIFq (C) + dimIFq (C
⊥R) = nm (3)

(C⊥L)⊥R = (C⊥R)⊥L = C. (4)

2.2 Constacyclic IFq-linear additive codes

In this subsection, we assume that gcd(n, p) = 1. Suppose that λ is an element of IF∗
q with multiplicative

order t. Consequently, gcd(nt, p) = 1 as t is divisor of q − 1. Now we spell out some notations for our
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contexts as follows.

• Set N = nt.

• Denote C
(b)
i = {i, ib, ib2, . . .} (mod N) as the b-cyclotomic coset containing i modulo N where

i ∈ {0, 1, . . . , n− 1} and b is either q or qm.

• Denote the cardinality of C(b)
i as |C

(b)
i |.

We need the following lemma for the enrichment of our context. So, we deliver the lemma as follows.

Lemma 2.1. [5, Lemma 2.1]

(a) If gcd(|C
(q)
i |,m) = 1, then C

(q)
i = C

(qm)
i .

(b) If m is a factor of |C
(q)
i |, then |C

(q)
i | = m|C

(qm)
i | and C

(q)
i = C

(qm)
i ∪C

(qm)
iq ∪ . . . ∪C

(qm)
iqm−1 , where

C
(qm)
iqj

, 0 ≤ j ≤ m− 1 are pairwise disjoint with same cardinality.

Let X be an indeterminate over IFqm . Now consider the quotient ring

R
(q)
n,λ =

IFq[X]

(Xn − λ)
=

s
⊕

i=0

IFq[X]

(pi(X))
=

s
⊕

i=0

Ki (5)

where Xn − λ =
s
∏

i=0
pi(X) with each pi(X) is an irreducible polynomial in IFq[X], corresponding

q-cyclotomic coset C
(q)
1+tj and Kj =

IFq[X]

(pj(X))
for 0 ≤ j ≤ s. Further, consider the quotient ring

R
(qm)
n,λ =

IFqm [X]

(Xn − λ)
=

ρ
⊕

i=0

IFqm [X]

(Mi(X))
=

ρ
⊕

i=0

Ii (6)

where Xn − λ =
ρ
∏

i=0
Mi(X) with each Mi(X) is a polynomial in IFqm [X] and Ij =

IFqm [X]

(Mj(X))
for

0 ≤ j ≤ ρ with ρ = r + (s − r)m = ms− (m− 1)r and

Mi(X) =

{

qi(X) if 0 ≤ i ≤ r;

qr+(k−1)m+1(X)qr+(k−1)m+2(X) · · · qr+km(X) if 1 ≤ k ≤ s− r.

Here each qi(X) is an irreducible polynomial in IFqm [X], corresponding qm-cyclotomic coset C
(q)
1+tj for

0 ≤ j ≤ s. Denote Fi = ⊕m
h=1Ir+(i−1)m+h, for 1 ≤ i ≤ s− r. For more details to see [5, Section 2].

We next recall that an IFq-linear additive code of length n over IFqm is defined as an IFq-linear

subspace of IFn
qm . In view of the above discussion, we have the following:

Proposition 2.1. [5, Lemma 3]

(a) Each nonempty λ-constacyclic IFq-linear additive code C in IFn
qm can be uniquely expressed as

C = C1

⊕

C2

⊕

· · ·
⊕

Cs, (7)
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where each Ci is a unique Ki-subspace of Ii, for 0 ≤ i ≤ r and Cr+k is a unique Ki-subspace of

Fr+k for 1 ≤ k ≤ s− r.

(b) Conversely, let Di be an Ki-subspace of Ii, for 0 ≤ i ≤ r and Dr+k be an Ki-subspace of Fr+k

for 1 ≤ k ≤ s− r. Then the direct sum

D = D1

⊕

D2

⊕

· · ·
⊕

Ds (8)

is an λ-constacyclic IFq-linear additive code over IFqm .

3 Characterization of ACP of codes

For two IFq-linear additive codes over IFqm , C and D, the pair (C,D) is called an additive complemen-

tary pair (ACP) of codes if C ⊕IFq D = IFn
qm . Equivalently, a pair (C,D) is an ACP of codes if and

only if C ∩D = {0} and dimIFq (C) + dimIFq (D) = nm. Then we have following results.

Lemma 3.1. Let C and D be two IFq-linear subspaces of IFn
qm . With respect to the inner product B

(see Equation (1)), we have the following:

1) (C +D)⊥L = C⊥L ∩D⊥L;

2) (C +D)⊥R = C⊥R ∩D⊥R;

3) C⊥L +D⊥L = (C ∩D)⊥L ;

4) C⊥R +D⊥R = (C ∩D)⊥R .

Proof. 1) Let x ∈ (C +D)⊥L . Then

B(x, a) = 0 for all a ∈ C +D =⇒ B(x, c+ d) = 0 for all c ∈ C, d ∈ D.

If d = 0 then B(x, c) = 0 for all c ∈ C =⇒ x ∈ C⊥L.

Similarly If c = 0 then B(x, d) = 0 for all d ∈ D, =⇒ x ∈ D⊥L .

Hence, x ∈ C⊥L ∩D⊥L .

For the other direction, let y ∈ C⊥L ∩D⊥L .

Then B(y, c) = 0 for all c ∈ C and B(y, d) = 0 for all d ∈ D. That implies, B(x, c + d) =

B(x, c) + B(x, d) = 0 for all c ∈ C, d ∈ D. Hence, x ∈ (C +D)⊥L .

2) It can be proved as in 1).

3) C⊥L +D⊥L =
(

(C⊥L +D⊥L)⊥R
)⊥L (see Equation (4)).

Hence, C⊥L +D⊥L = (C ∩D)⊥L (follows from 2).

4) It can be proved as in 3).

Then we have the following Theorem.
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Theorem 3.2. Let C and D be two IFq-linear subspaces of IFn
qm. With respect to inner product B (see

Equation (1)), the followings are equivalent.

1) the pair (C,D) is an ACP of codes;

2) the pair (C⊥L ,D⊥L) is an ACP of codes;

3) the pair (C⊥R ,D⊥R) is an ACP of codes.

Proof. In order to prove that 1), 2) and 3) are equivalent, it is enough to show that 1) and 2) are

equivalent. Let us assume that the pair (C,D) is an ACP of codes. Then C∩D = {0} and dimIFq (C)+

dimIFq (D) = nm. That is, C +IFq D = IFn
qm . Then using result in Lemma 3.1[Item 1], we have

C⊥L ∩D⊥L = {0} and from result in Equation (2), we have dimIFq(C
⊥L)+dimIFq(D

⊥L) = nm. Hence,

(C⊥L ,D⊥L) is an ACP of codes.

Conversely, suppose that the pair (C⊥L ,D⊥L) is an ACP of codes, which gives that C⊥L∩D⊥L = {0}

and C⊥L +IFq D
⊥L = IFn

qm . From Lemma 3.1, it follows that C+IFq D = IFn
qm and C∩D = {0}. Hence,

(C,D) is an ACP of codes.

For a matrix G = (gij) with entries gij ∈ IFqm , we denote the matrix Tr(G) = (Tr(gij)) over IFq.

The following theorem presents an characterizion of an ACP of codes.

Theorem 3.3. If C and D are two IFq-linear additive codes over IFqm of length n with generator matri-

ces G1 and G2, respectively. If the pair (C,D) is an ACP of codes, then rank

(

Tr

(

M

(

π(G1)

π(G2)

)

P

))

=

n, where π is a field automorphism on IFqm and σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation

with corresponding matrix P such that

Pij =

{

1 if i = σ(j);

0 otherwise,

M = diag(µ1, µ2, . . . , µn) is an n× n matrix over IFqm with µi ∈ IF∗
qm .

Proof. Let assume that rank

(

Tr

(

M

(

π(G1)

π(G2)

)

P

))

< n. Then there exists x(6= 0) ∈ IFn
q such

that

(

Tr

(

M

(

π(G1)

π(G2)

)

P

))

x⊤ = 0. This gives that

(

Tr

(

M

(

π(G1)

0

)

P

))

x⊤ = 0 and

(

Tr

(

M

(

0

π(G2)

)

P

))

x⊤ = 0. That implies B(x, c) = 0 for all c ∈ C and B(x, d) = 0 for all

d ∈ D, that is x ∈ C⊥L and x ∈ D⊥L . Hence, x(6= 0) ∈ C⊥L ∩ D⊥L . Then (C⊥L ,D⊥L) is not an

ACP of codes and that implies (C,D) is not an ACP of codes (see Theorem 3.2). This contradicts the

hypothesis that (C,D) is an ACP of codes. Hence rank

(

Tr

(

M

(

π(G1)

π(G2)

)

P

))

= n.

We can have similar result in terms of parity check matrices as in the following Corollary.
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Corollary 3.4. If C and D are two IFq-linear additive codes over IFqmof length n with parity check ma-

trices H1 and H2, respectively. If the pair (C,D) is an ACP of codes then rank

(

Tr

(

M

(

π(H1)

π(H2)

)

P

))

=

n, where π is a field automorphism on IFqm and σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation

with corresponding matrix P such that

Pij =

{

1 if i = σ(j);

0 otherwise,

M = diag(µ1, µ2, . . . , µn) is an n× n matrix over IFqm with µi ∈ IF∗
qm .

In general, the converse of Theorem 3.3 is not correct. The following example illustrates it.

Example 3.5. Take IFq = IF2 and IFqm = IF4 with π is identity automorphism on IFqm . Let C and D

be two IF2-linear additive codes over IF4 of length 3 with generator matrices G1 =







1 1 0

ω ω 0

ω2 0 ω2






and

G1 =







1 1 1

ω ω ω

ω ω 0






, respectively, where ω is a primitive root of IF4. It is easy to see that C∩D 6= {0},

as (ω, ω, 0) ∈ C ∩D. Hence (C,D) is not an ACP of codes. However, rank

(

Tr

(

G1

G2

))

= 3.

Now, we present a necessary and sufficient condition for an ACP of codes.

Theorem 3.6. Let C and D be two IFq-linear additive codes over IFqm of length n with generator matri-

ces G1 and G2 and parity check matrices H1 and H2, respectively. Assume that dimIFq(C)+dimIFq (D) =

mn. Then the pair (C,D) is an ACP of codes if and only if rank
(

Tr
(

H2M (π (G1)P )⊤
))

=

rank(G1) and rank
(

Tr
(

H1M (π (G2)P )⊤
))

= rank(G2) where M and P are defined as in The-

orem 3.3.

Proof. Suppose that rank
(

Tr
(

H2M (π (G1)P )⊤
))

= rank(G1) and rank
(

Tr
(

H1M (π (G2)P )⊤
))

=

rank(G2). To prove (C,D) is an ACP of codes, we need to show that C ∩ D = {0}. Let G1 be an

7



k × n matrix and G2 be an nm− k × n matrix. If x ∈ C ∩D then

x = αG1 and x = βG2 where α ∈ IFn
q , β ∈ IFnm−k

q ,

=⇒ π(α)π(G1) = π(β)π(G2), where π is a field automorphism on IFqm,

=⇒ π(α)π(G1)P = π(β)π(G2)P, where σ : {1, 2, . . . , n} → {1, 2, . . . , n}

is a permutation with corresponding matrix P such thatPij =

{

1 if i = σ(j);

0 otherwise,

=⇒ M (π(G1)P )⊤ π(α)⊤ = M (π(G2)P )⊤ π(β)⊤,

where M = diag(µ1, µ2, . . . , µn) is an n× n matrix over IFqm with µi ∈ IF∗
qm ,

=⇒ H2M (π(G1)P )⊤ π(α)⊤ = H2M (π(G2)P )⊤ π(β)⊤ = 0,

H1M (π(G2)P )⊤ π(β)⊤ = H1M (π(G1)P )⊤ π(α)⊤ = 0,

=⇒ π(α) = 0 as rank
(

Tr
(

H2M (π (G1)P )⊤
))

= rank(G1),

π(β) = 0 as rank
(

Tr
(

H1M (π (G2)P )⊤
))

= rank(G2).

Hence, x = 0 i.e., C ∩D = {0}. As by hypothesis dimIFq(C) + dimIFq(D) = mn, the pair (C,D) is an

ACP of codes.

Conversely, let us suppose that the pair (C,D) is an ACP of codes. Let rank
(

Tr
(

H2M (π (G1)P )⊤
))

<

rank(G1). Then there exists x(6= 0) ∈ IFn
q such that

(

Tr
(

H2M (π (G1)P )⊤
))

x⊤ = 0. That implies,
(

Tr
(

H2M (π (xG1)P )⊤
))

= 0. That is, xG1 ∈ D. As already, xG1 ∈ C, xG1(6= 0) ∈ C ∩D, which

contradicts the fact that the (C,D) is an ACP of codes. Therefore, rank
(

Tr (H2Dπ (G1)P )⊤
)

=

rank(G1). Similarly, we can prove that rank
(

Tr
(

H1M (π (G2)P )⊤
))

= rank(G2).

Example 3.7. Take IFq = IF2 and IFqm = IF4. Let C and D be two IF2-linear additive codes over

IF4 of length 3 with generator matrices G1 =







1 1 0

ω 0 ω

0 ω ω






and G2 =







1 0 1

1 1 1

ω ω ω






, respectively,

where ω is a primitive root of IF4. Here, we take M , π and σ are all identity. Consider a parity

check matrices H1 =







1 1 1

ω ω ω

ω2 ω2 0






and H2 =







1 0 1

1 1 0

ω 0 ω






of C and D, respectively. Then

H2G
⊤
1 =







1 0 ω

1 ω ω

ω 0 ω2






and H1G

⊤
2 =







0 1 ω

0 ω ω2

ω2 0 0






. Here, Tr(H1G

⊤
2 ) =







0 0 1

0 1 1

1 0 0






and

Tr(H2G
⊤
1 ) =







0 0 1

0 1 1

1 0 1






which are having rank 3. Hence, (C,D) is ACP over IF4 (see Theorem 3.6).
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4 Building-up construction for ACP of codes

We first present some constructions of IFq-linear additive code over IFqm by using a linear code over

IFqm . Recall that a linear code over IFqm of length n is a subspace of IFn
qm . Let G̃ be a (k×n) generator

matrix of a linear code C̃ over IFqm . As IFqm forms a vector space over IFq, consider {1, α, α2, . . . , αm−1},

a basis of IFqm over IFq. Denote

G =













G̃

αG̃
...

αm−1G̃













. (9)

It can be shown that G is a generator matrix of an IFq-linear additive code, say C, corresponding to

the linear code C̃ over IFqm . Next, we will present a construction of ACP of codes from LCP of codes

over IFqm . Towards the LCP of codes, we define a general inner product on IFqm , which is the analog

of the inner product B (see Equation (1)), using the bilinear mapping

B̃ : IFn
qm × IFn

qm → IFqm such that

((a1, a2, . . . , an), (b1, b2, . . . , an)) 7→ B̃((a1, a2, . . . , an), (b1, b2, . . . , an)) =

n
∑

i=1

µiaiπ(bσ(i)) (10)

where µi, σ, and π are as defined in Equation (1). Notice that, in general, B̃ is not symmetric. A pair

of codes (C̃, D̃) of length n over IFqm is called an LCP of codes if C̃ ⊕IFqm
D̃ = IFn

qm . That is, a pair of

codes (C̃, D̃) of length n over IFqm is LCP if and only if C̃∩D̃ = {0} and dimIFqm
(C̃)+dimIFqm

(D̃) = n.

The following proposition presents a characterization of LCP of codes over IFqm with respect to the

inner product B̃ (see Equation (10)).

Proposition 4.1. Let C̃ and D̃ be two linear codes of length n over IFqm with generator matrices G̃1,

G̃2 and parity check matrices H̃1, H̃2, respectively. Then the followings are equivalent.

1. The pair (C̃, D̃) is LCP.

2. The rank

(

M

(

π(G̃1)

π(G̃2)

)

P

)

= n.

3. The rank

(

(

H̃2Dπ
(

G̃1

)

P
)⊤
)

= rank(G̃1) and rank

(

Tr
(

G̃1Dπ
(

G̃2

)

P
)⊤
)

= rank(G̃2).

Additionally, dimIFqm
(C̃) + dimIFqm

(D̃) = n.

Here, π is a field automorphism on IFqm, σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation with

corresponding matrix P such that

Pij =

{

1 if i = σ(j);

0 otherwise,

and M = diag(µ1, µ2, . . . , µn) is an n× n matrix over IFqm with µi ∈ IF∗
qm as defined in Equation (1).

The proof of this Proposition is similar to the proof of the Theorem 3.6. Now we will present an

9



ACP of codes from a given pair of LCP of codes.

Proposition 4.2. Let C̃, D̃ be two linear codes of length n over IFqm . Let C, D be the codes constructed

from C̃, D̃, respectively, as presented in Equation (9). If the pair (C̃, D̃) is an LCP of codes over IFqm

then (C,D) is an ACP of codes over IFqm .

Proof. Let G̃1, G̃2 be generator matrices of the linear codes C̃, D̃, respectively. Using Equation 9,

construct G1 and G2 which are generator matrices of C, D, respectively. Since (C̃, D̃) is an LCP of

codes, dimIFqm
(C̃)+dimIFqm

(D̃) = n and that implies dimIFq (C)+dimIFq(D) = mn. We need to prove

that C ∩ D = {0}. In contrary, assume that there exists a non-zero x ∈ IFn
q such that x ∈ C ∩ D.

Then x = γG1 = δG2 for some γ ∈ IFk
q , δ ∈ IFmn−k

q where k = rank(G1) and mn − k = rank(G2).

Then from Equation (9), we have that x ∈ C̃ ∩ D̃. Since x is nonzero vector in IFn
q , it contradicts that

(C̃, D̃) is an LCP. Hence, (C,D) is an ACP of codes.

Converse of Proposition 4.2 is not correct in general. For this, we demonstrate an example as

follows.

Example 4.1. Take IFq = IF2 and IFqm = IF4. Let C and D be two IF2-linear additive codes over IF4

of length 3 with generator matrices G1 =







1 1 0

ω 0 ω

0 ω ω






and G2 =







1 0 1

1 1 1

ω ω ω






, respectively, where

ω is a primitive root of IF4. Here, (C,D) is ACP over IF4. It is easy to see that C̃ ∩ D̃ 6= {0}, as

(ω 0 ω) ∈ C̃ ∩ D̃. Therefore, (C̃, D̃) is not an LCP of codes over IF4.

For a = (a1, a2, . . . , an) ∈
(

IFn
qm

)

and a code C, define

aC := {(a1c1, a2c2, . . . , ancn) | (c1, c2, . . . , cn ∈ C)}.

Note that, for a ∈
(

IF∗
qm

)n
, aC is an IFq-linear additive code if C is an IFq-linear additive code. Recall

that a linear code C̃ := [n, k, d] over IFqm is MDS if d = n− k + 1.

Theorem 4.2. Let C̃, D̃ be two linear codes of length n over IFqm. Let C, D be the codes constructed

from C̃, D̃, respectively, as presented in Equation (9). Assume that at least one of codes C̃, D̃ is MDS

and dimIFqm
(C̃) + dimIFqm

(D̃) = n. Then there exists a ∈
(

IF∗
qm

)n
such that a pair (aC,D) is an ACP

of codes.

Proof. Since qm ≥ 4, by [1, Theorm 5.4], there exists a ∈
(

IF∗
qm

)n
such that (aC̃, D̃) is an LCP of

codes over IFqm . By Proposition 4.2, we obtain that (aC,D) is an ACP of codes.

Let IFq be a finite field with q ≥ 3, x be transcendental over IFq and Pk = {f ∈ IFq[x] :

deg(f) ≤ k − 1}. For b = (α1, α2, . . . , αn) ∈ IFn
q , where αis are distinct elements in IFq, let

RSk(b) = {(f(α1), f(α2), . . . , f(αn)) | f ∈ Pk} be a k-dimensional Reed-Solomon code which is MDS.

Then RSk(b) is [n, k, n− k + 1] code and RSk(b)
⊥ is a [n, n− k, k + 1] code.

Denote R̂Sk(b) be the IFq-linear additive code corresponding linear code RSk(b) over IFqm and
̂RSk(b)⊥ be the IFq-linear additive code corresponding linear code RSk(b)

⊥over IFqm .

10



Example 4.3. From above discussion, RSk(b) = {(f(α1), f(α2), . . . , f(αn)) | f ∈ Pk} be a k-

dimensional Reed-Solomon code. Then by Theorem 4.2, there exists a ∈
(

IF∗
qm

)n
such that a pair

(aR̂Sk(b), ̂RSk(b)⊥) is an ACP of codes over IFqm .

Let C̃ be a linear code over IFqm of length n with generator matrix G̃. We define two different

expansions of C̃ as C̃ex1
and C̃ex2

generated by the generator matrices

G̃ex1
=

(

λ P

0 G̃

)

and G̃ex2
=
(

P ′ G̃
)

,

respectively, where λ ∈ IFqm , P ∈ IFn
qm and P ′⊤ ∈ IFk

qm . We now construct an ACP of codes from the

expansions of an ACP of codes.

Theorem 4.4. Let C̃ and D̃ be two linear codes over IFqm such that a pair (C̃, D̃) is an ACP of codes

(using identity π, σ and M in Proposition 4.1). Then there exist λ ∈ IF∗
qm and P ∈

(

IFn
qm

)∗
such that

the pair (C̃ex1
, D̃ex2

) is an LCP of codes over IFqm .

Proof. Let C̃ and D̃ be two linear codes over IFqm with generator matrices G̃1 and G̃2, respectively. Con-

sider the codes C̃ex1
and D̃ex2

with generator matrices G̃ex1
=

(

λ P

0 G̃1

)

and G̃ex2
=
(

P ′⊤ G̃2

)

,

respectively, where λ ∈ IFqm , non-zero P is an (1×n) matrix over IFqm and P ′ is an 1×(n−k) sub-matrix

of P . Since, a pair (C̃, D̃) is an LCP of codes over IFqm , then by Proposition 4.1, rank

(

G̃1

G̃2

)

= n.

Hence,

rank

(

0 G̃1

P ′⊤ G̃2

)

= n. (11)

Let C̃1 be a linear code over IFqm generated by
(

0 G̃1

)

. It is easy to see that C̃1 ∩ D̃ex2
= {0} by

Equation (11). Since, C̃1 + D̃ex2
⊆ C̃ex1

+ D̃ex2
, dimIFqm

(C̃1 + D̃ex2
) ≤ dimIFqm

(C̃ex1
+ D̃ex2

)

=⇒ dimIFqm
(C̃1)+dimIFqm

(D̃ex2
)−dimIFqm

(C̃1∩D̃ex2
) ≤ dimIFqm

(C̃ex1
)+dimIFqm

(D̃ex2
)−dimIFqm

(C̃ex1
∩

D̃ex2
) =⇒ dimIFqm

(C̃ex1
∩ D̃ex2

) ≤ 1.

Further, we choose λ ∈ IFqm such that det

(

G̃ex1

G̃ex2

)

= det







λ P

0 G̃1

P ′⊤ G̃2






6= 0. Note that there

exist such λ satisfying the condition. Then from Proposition 4.1, we have that
(

C̃ex1
, D̃ex2

)

is an LCP

of codes over IFqm .

We denote Cex1
be an IFq-linear additive code over IFqm corresponding to a linear code C̃ex1

over

IFqm (see Equation (9)).

Corollary 4.5. Let C̃ and D̃ be two linear codes over IFqm such that a pair
(

C̃, D̃
)

is an LCP of

codes (using identity π, σ and M in Proposition 4.1). Then the pair (Cex1
,Dex2

) is an ACP of codes

over IFqm .
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Proof. By Theorem 4.4 with combine Proposition 4.2, we have our results.

Example 4.6. Let C̃ and D̃ be two linear codes over IF8 with generator matrices

G1 =

















1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6

1 ω6 ω5 ω4 ω3 ω2 ω

1 ω2 ω4 ω6 ω ω3 ω5

1 ω5 ω3 ω ω6 ω4 ω2

















and G2 =

(

1 0 1 ω6 ω4 ω4 ω6

0 1 ω6 ω4 ω4 ω6 1

)

, respectively,

where ω is a primitive root of IF8. It can be shown that
(

C̃, D̃
)

is an LCP of codes over IF8. By Corol-

lary 4.5, (Cex1
,Dex2

) is an ACP of codes over IF8. However, a generator matrices of C̃ and D̃ of the

form Gex1
=























ω5 ω6 ω3 ω4 ω ω2 1 0

0 1 1 1 1 1 1 1

0 1 ω ω2 ω3 ω4 ω5 ω6

0 1 ω6 ω5 ω4 ω3 ω2 ω

0 1 ω2 ω4 ω6 ω ω3 ω5

0 1 ω5 ω3 ω ω6 ω4 ω2























and Gex2
=

(

ω6 1 0 1 ω6 ω4 ω4 ω6

ω3 0 1 ω6 ω4 ω4 ω6 1

)

.

We further derive a construction of ACP of codes over IFqm from given m numbers of LCP of codes

over IFq as follows.

Theorem 4.7. Let Ci : [n, ki] and Di : [n, n − ki] be two linear code over IFq, for 1 ≤ i ≤ m − 1. If

αi’s are distinct elements of IF∗
qm such that {α0, α1, . . . , αm−1} are linearly independent over IFq and

(Ci,Di) is an LCP for 0 ≤ i ≤ m − 1, then the pair

(

m−1
∑

i=0
αiCi,

m−1
∑

i=0
αiDi

)

is an ACP of codes over

IFqm .

Proof. Let C =
m−1
∑

i=0
αiCi and D =

m−1
∑

i=0
αiDi. Now we need to show that dimIFq (C)+dimIFq (D) = mn

and C∩D = {0}. From the hypothesis, we have dimIFq(Ci)+dimIFq(Di) = n for 0 ≤ i ≤ m−1. Hence

dimIFq (C) + dimIFq (D) = mn. To prove the second condition, take x ∈ C ∩D. Then x =
m−1
∑

i=0
αici and

x =
m−1
∑

i=0
αidi for some ci ∈ Ci and di ∈ Di, where 0 ≤ i ≤ m− 1. Therefore,

m−1
∑

i=0

αici =

m−1
∑

i=0

αidi =⇒

m−1
∑

i=0

αi (ci − di) = 0. (12)

Since {α0, α1, . . . , αm−1} are linearly independent over IFq, ci = di, for all i : 1 ≤ i ≤ m− 1. Further

as (Ci,Di) is an LCP for all i : 1 ≤ i ≤ m− 1, ci = di = 0. Hence, C ∩D = {0}.

We next observe the following.

Proposition 4.3. Let C̃ := [n, k], D̃ := [n.n − k] be two linear codes over IFqm with a generator

matrix G̃ of C̃ and a parity check matrix H̃ of D̃. Suppose that C̃ex1
, D̃ex2

are two linear codes with

a generator matrix G̃ex1
=

(

1 d

0 G̃

)

of C̃ex1
and a parity check matrix H̃ex2

=

(

1 c

0 H̃

)

of D̃ex2
,

12



where c ∈ C̃ex1
, d ∈ C̃⊤

ex1
. Let C, D be IFq-linear additive codes over IFqm corresponding to the linear

codes C̃ex1
and D̃ex2

, respectively over IFqm (as in Equation (9)) If the pair (C̃, D̃) is an LCP of codes

(using identity π, σ and M in Proposition 4.1), then (C,D) is an ACP of codes.

Proof. From Proposition 4.2, it is enough to show that (C̃ex1
, D̃ex2

) is an LCP of codes. By the

construction of C̃ex1
and D̃ex2

, we obtain that C̃ex1
is a linear code of length n + 1 over IFqm with

dimension k + 1 and D̃ex2
is a linear code of length n+ 1 over IFqm with dimension n − k. It implies

that dim
(

C̃ex1

)

+ dim
(

D̃ex2

)

= n+ 1. Now we have to show that C̃ex1
∩ D̃ex2

= {0}.

Let x ∈ C̃ex1
∩ D̃ex2

. This implies x = αG̃ex1
= βG2, where α ∈ IFk+1

qm , β ∈ IFn−k
qm and G2 is a

generator matrix of D̃ex2
. This gives that αG̃ex1

H̃⊤
ex2

= 0 as G2H̃
⊤
ex2

= 0. Then

αG̃ex1
H̃⊤

ex2
= 0 =⇒ α

(

1 d

0 G̃

)(

1 0

d⊤ H̃⊤

)

= 0 =⇒ α

(

1 + dc⊤ 0

0 G̃H̃⊤

)

= 0.

Since (C̃, D̃) is an LCP of codes (using identity π, σ and M in Proposition 4.1), from Proposition 4.1,

we get that rank
(

G̃H̃⊤
)

= k. Hence as rank
(

G̃H̃⊤
)

= k and dc⊤ = 0, we have α = 0 i.e., x = 0.

5 Constacyclic IFq-linear ACP of codes over IFqm

This section focuses on counting formulas for constacyclic IFq-linear ACP of codes over IFqm . Recall

that two constacyclic IFq-linear codes C and D over IFqm form an ACP of codes if C
⊕

IFq
D = IFn

qm .

Let denote qi = qdi . In the following theorem, we derive necessary and sufficient conditions under

which a pair of constacyclic IFq-linear codes over IFqm form an ACP of codes (using identity π, σ and

M in Proposition 4.1).

Theorem 5.1. Let C and D be two λ-constacyclic IFq-linear additive codes over IFqm , whose Canonical

decompositions are given by (7) and (8), respectively. Then the pair (C,D) forms an ACP of codes

(using identity π, σ and M in Proposition 4.1) if and only if Ci

⊕

Ki
Di = Ii, for 0 ≤ i ≤ r and

Cr+k

⊕

Kr+k
Dr+k = Fr+k, for 1 ≤ k ≤ s− r.

Proof. The proof can be easily derived using Proposition 2.1.

In order to study constacyclic IFq-linear ACP of codes over IFqm , we first recall that, |Ki| = qdi ,

where |Cq
1+ti| = di for all 0 ≤ i ≤ s. Further |Ii| = (qm)di = |Ki|

m, for all 0 ≤ i ≤ r. Also,

|Fr+k| = (qm)dr+k = |Kr+k|
m, where |Cq

1+t(r+k)| = dr+k for all 1 ≤ r + k ≤ s − r. This implies

that Ii is an Ki-linear space of Km
i for 0 ≤ i ≤ r and Fk+r is an Kk+r-linear space of Km

r+k for

1 ≤ k ≤ s − r. It is well known that the number of IFqdi -subspace of IFm
qdi

is equal to
m
∑

v=0

[

m

v

]

qi

=

(qmi − 1)(qmi − qi) · · · (q
m
i − qk−1

i )

(qvi − 1)(qvi − qi) · · · (q
v
i − qv−1

i )
. From the above discussion, we have the following theorem.
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Theorem 5.2. The number of λ-constacyclic ACP of codes over IFqm is equal to

s
∏

i=1





m
∑

v=0

[

m

v

]

qi

q
v(m−v)
i



 .

Proof. By Theorem 5.1, the pair (C,D) is an ACP if and only if Ci

⊕

Ki
Di = Ii, for 0 ≤ i ≤ r and

Cr+k

⊕

Kr+k
Dr+k = Fr+k for 1 ≤ k ≤ s − r. Equivalently, (C,D) is an ACP if and only if (Ci,Di) is

an LCP for all 0 ≤ i ≤ s. If (Ci,Di) form an LCP for 0 ≤ i ≤ s, then the number of choices of Ci is

equal to
m
∑

v=0

[

m

v

]

qi

and the number of choices of Di is equal to

(qmi − qvi )(q
m
i − qv+1

i ) · · · (qmi − qm−1
i )

(qm−v
i − 1)(qm−v

i − qi) · · · (q
m−v
i − qm−v−1

i )
= qm−v

i .

Therefore, the number of ACP of codes (C,D) is

#(C,D) =

s
∏

i=1





m
∑

v=0

[

m

v

]

qi

q
v(m−v)
i



 .

This completes the proof.

We present a numerical example as follows.

Example 5.3. Take, q = 32 and consider cyclic IF3-linear additive code over IF32 of length 10. In this

special case, we have p = 3,m = 2, λ = 1 and n = 10. Next, X10 − 1 =
∏3

i=0 pi(X), where

p0(X) = X − 1 = 2 +X

p1(X) = 1 +X

p2(X) = 1 +X +X2 +X3 +X4

p3(X) = 1 + 2X +X2 + 2X3 +X4

are irreducible polynomials in IF3[X]. By Theorem 5.2, we deduce that the number of cyclic IF3-linear

ACP of codes over IF32 of length 30 equals

#(C,D) =

3
∏

i=0





2
∑

v=0

[

2

v

]

3di

q
v(2−v)
i



 =

3
∏

i=0

(2 + 2qi) = 4, 40, 896.
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6 An application on EAQEC codes

In this section, we construct entanglement assisted quantum error correcting (EAQEC) codes from

IFq-linear ACP of codes. At first we present some basic concepts and notations on quantum codes.

Let Cq denote the q-dimensional Hilbert space over the complex field C and K be a finite field with

characteristic p. Any n-qubit state is denoted by |v〉 =
∑

a∈Kn va|a〉 where va ∈ C with
∑

a∈Kn |va|
2 =

1 and the set {|a〉 = |a1〉 ⊗ · · · ⊗ |an〉 : (a1, . . . , an) ∈ Kn}. For any two vectors a = (a1, . . . , an)

and b = (b1, . . . , bn) of Kn, the corresponding tensor products of n error operators are given by

T (a) = T (a1)⊗· · ·⊗T (an) and R(b) = R(b1)⊗· · ·⊗R(bn). We define the error set En := {γiT (a)R(b) :

0 ≤ i ≤ p− 1;a,b ∈ Kn} where γ is a complex primitive p-th root of unity. En forms an error group.

Now, T (a)|v〉 = |v + a〉 and R(b)|v〉 = γtrFq/Fp 〈b,v〉|v〉. For any error e = γiT (a)R(b), we define

the quantum weight of e as

wQ(e) = {i : (ai, bi) 6= (0, 0)}.

A positive integer d is called the minimum distance of q-ary quantum code Q, if the following are

satisfied

• for any |u〉, |v〉 with 〈u,v〉 = 0 such that 〈u|e|v〉 = 0;

• e ∈ En(d− 1), where En(i) = {e ∈ En : wQ(e) ≤ i}.

A q-ary quantum code with parameters length n, dimension k and minimum distance d is denoted

by [[n, k, d]]q . An EAQEC code represented as [[n, k, d; c]]q , encodes k logical qubits into n physical

qubits with c copies of maximally entangled states. The performance of an EAQEC code is evaluated

through its rate k
n

and net rate k−c
n

, which can be positive, negative or zero. If the net rate of an

EAQEC code is zero then it does not mean that no qubits are transmitted by this code. It actually

means that a number of bits of entanglement is needed that is equal to the number of bits transmitted.

The EAQEC codes with positive net rate are used in Quantum communication where as EAQECCs

with negative net rate are used as Catalytic codes in Quantum computing (See [3, 4, 16] for more

details). When c = 0, the EAQEC code reduced to a standard stabilizer code. EAQEC codes can be

regarded as generalized quantum codes.

A construction of EAQEC codes from the classical linear codes is provided by Wilde and Burne

in [27].

Proposition 6.1. [27, Corollary 1] Let C1 : [n, k1, d1] and C2 : [n, k2, d2] be two linear codes with

parity check matrices H1 and H2, respectively. Then there exists an EAQEC code [[n, k1 + k2 − n +

c,min{d1, d2}; c]]q , where c = rank(H1H
⊤
2 ) is the required number of maximally entangled states.

Now, we will present a theorem which will be useful for designing EQECC codes later in this section.

Towards this, for an IFq-linear additive code C over IFqm of length n, we define

Tr(C) := {Tr(c) : c ∈ C}.

Note that Tr(C) is a linear code over IFq of length n. We call Tr(C) is a Trace code of C. Further, if

G is a generator matrix of C, then Tr(G) (defined in Section 3)is a generator matrix of Tr(C).
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Theorem 6.1. Let C and D be two IFq-linear additive codes over IFqm of length n. If the pair (C,D)

is an ACP of codes over IFqm (using identity π, σ and M in Proposition 4.1), then (Tr(C), T r(D))

is an LCP of codes over IFq. In particular, if C is an additive complementary dual (ACD) codes over

IFqm (using identity π, σ and M in Proposition 4.1), then Tr(C) is an LCD codes over IFq.

Proof. Let G1 and G2 be two generator matrices of C and D, respectively. Since, the pair (C,D) is an

ACP of codes over IFqm (using identity π, σ and M in Proposition 4.1), then by Theorem 3.3, we obtain

that rank

(

Tr

(

G1

G2

))

= n. This gives that rank

(

Tr(G1)

Tr(G2)

)

= n. Since Tr(G1) and Tr(G2) are

generator matrices of Tr(C) and Tr(D), respectively, from Proposition 4.1, we get (Tr(C), T r(D)) is

an LCP of codes over IFq.

We have the following theorem deducted from Proposition 6.1.

Theorem 6.2. Let C and D be two IFq-linear additive codes over IFqm of length n such that Tr(C) :=

[n, k1, d1] and Tr(D) := [n, k2, d2]. Let parity check matrices of C and D be H1 and H2, respectively .

Then there exists an EAQEC code [[n, k1+k2−n+c,min{d1, d2}; c]]q where c = rank(Tr(H1)Tr(H2)
⊤)

is the required number of maximally entangled states.

Corollary 6.3. Let (C,D) be an ACP of codes of IFn
qm such that Tr(C) := [n, k1, d1] and Tr(D) :=

[n, k2, d2]. Let parity check matrices of C and D be H1 and H2, respectively. Then there exists an

EAQEC code [[n, c,min{d1, d2}; c]]q where c = rank(Tr(H1)Tr(H2)
⊤) is the required number of maxi-

mally entangled states. Moreover, if D = C⊥ with parity check matrix H, then there exists an EAQEC

code [[n, k1, d1;n− k1]]q.

It is well known that rank(Tr(H)Tr(H)⊤) = dim(Tr(C⊥))−dim(hull(Tr(C))) where H is a parity

check matrix of C.

Corollary 6.4. Let C be a IFq-linear additive codes over IFqm of length n such that Tr(C) := [n, k, d].

Let H be a parity check matrix of C. Then there exists an EAQEC code [[n, k−dim(hull(Tr(C))), dH ; c]]q

where c = rank(Tr(H)Tr(H)⊤) is the required number of maximally entangled states.

In Table 1, we present some examples of LCD codes corresponding additive code from Theorem 6.1.

In Table 1, we we present some examples of EAQEC codes from Trace code of additive code from

Corollary 6.4.
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No. Generator of additive codes Trace Codes Remark
C := [n, k, dH ]2

1

(

ω ω2 0 ω 0
0 ω ω2 0 ω

)

[5, 2, 3] not LCD code but optimal

2

(

ω ω2 0 ω ω 0
0 ω ω2 0 ω ω

)

[6, 2, 4] not LCD code but optimal

3





ω 0 ω2 0 ω ω 0 0
0 ω 0 ω2 0 ω ω 0
0 0 ω 0 ω2 0 ω ω



 [8, 3, 4] not LCD code but optimal

4





ω 0 ω2 0 ω ω 0 0
0 ω 0 ω2 0 ω ω 0
0 0 ω 0 0 0 ω ω



 [8, 3, 3] an LCD code but not optimal

5

(

ω ω 0 ω ω 0 ω ω 0
0 ω ω 0 ω ω 0 ω ω

)

[9, 2, 6] an LCD code and optimal

6





ω ω2 0 ω 0 ω ω 0 0
0 ω ω2 0 ω 0 ω ω 0
0 0 ω ω 0 ω2 0 ω2 ω



 [9, 3, 3] an LCD code and optimal

7





ω 1 0 ω 0 ω ω 0 0
0 ω 1 0 ω 0 ω ω 0
0 0 ω ω 0 ω2 0 ω2 ω



 [9, 3, 4] an LCD code and optimal

8

(

ω ω 0 ω ω 0 ω ω2 ω 0
0 ω ω 0 ω ω 0 ω ω2 ω

)

[10, 2, 6] an LCD code and optimal

9





ω ω 0 0 ω 0 ω ω 0 0
0 ω ω 0 0 ω2 0 ω ω 0
0 0 ω ω 0 0 ω 0 ω2 ω



 [10, 3, 5] not LCD code and optimal

10









ω ω 0 0 ω 0 ω 0 0 0
0 ω ω 0 0 ω 0 ω 0 0
0 0 ω ω 0 0 ω2 0 ω 0
0 0 0 ω ω 0 0 ω 0 ω









[10, 4, 4] an LCD code and optimal

11

(

ω ω 0 ω ω 0 ω ω 0 ω 0
0 ω ω 0 ω ω 0 ω ω 0 ω

)

[11, 2, 7] not LCD code and optimal

12





ω ω 0 0 ω ω 0 0 ω 0 0
0 ω ω 0 0 ω ω 0 0 ω 0
0 0 ω ω 0 0 ω ω2 0 0 ω



 [11, 3, 5] an LCD code and optimal

Table 1: Some LCD codes
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No. Generator of additive codes Trace Codes EAQEC codes from Existing
Corollary 6.4

[[n, k − dim(hull(C)), dH ; EAQEC codes
n− k − dim(hull(C))]]2

1

(

ω ω2 0
0 ω ω2

)

[3, 2, 2] [[3, 2, 2; 1]]2 [[3, 2, 2; 1]]2[15]

2









ω 1 0 1 ω ω2

0 ω 0 1 1 ω

1 1 ω2 1 ω 1
0 1 0 ω2 ω ω2









[6, 4, 2] [[6, 2, 2; 0]]2 [[6, 2, 2; 0]]2[15]

3













ω2 1 0 1 1 ω2

0 ω 0 1 1 ω

1 1 ω2 1 1 ω2

0 1 0 ω2 0 ω

0 0 0 0 ω ω2













[6, 5, 2] [[6, 4, 2; 0]]2 [[6, 2, 2; 0]]2[15]

4









ω 1 0 1 1 ω2 ω

0 ω 0 0 ω 1 ω

1 1 ω2 1 ω2 ω 1
0 1 0 ω2 ω ω ω2









[7, 4, 3] [[7, 1, 3; 0]]2 [[7, 1, 3; 0]]2[15]

6

(

ω ω 0 ω ω 0 ω ω 0
0 ω ω 0 ω ω 0 ω ω

)

[9, 2, 6] [[9, 2, 6; 7]]2 [[9, 2, 6; 7]]2[19]

7

(

ω ω2 0 ω ω2 0 ω ω2 0 ω ω2 0 ω ω2 0
0 ω ω2 0 ω ω2 0 ω ω2 0 ω ω2 0 ω ω2

)

[15, 2, 10] [[15, 2, 10; 13]]2 [[15, 2, 10; 13]]2[19]

Table 2: Some EAQEC codes
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7 Conclusion

In this work, we study the characterization and construction of an ACP of codes of length n over IFqm .

Moreover, we obtain a condition for an additive pairs of codes to be an ACP of codes. Furthermore,

we provide a necessary and sufficient condition for an ACP of codes. Finally, we obtain an ACP of

codes from given linear complementary pairs of codes. In addition, as an immediate consequence, we

exhibited some optimal binary LCD codes and corresponding EAQCC codes.
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