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Abstract. In this paper, we study the nonexistence of nontrivial time-periodic
solutions of the Dirac equation in Kerr-Newman-(A)dS spacetime. In the

non-extreme Kerr-Newman-dS spacetime, we prove that there is no nontrivial
Lp integrable Dirac particle for arbitrary (λ, p) ∈ R × [2,+∞). In the ex-

treme Kerr-Newman-dS and extreme Kerr-Newman-AdS spacetime, we show

the equation relations between the energy eigenvalue ω, the horizon radius,
the angular momentum, the electric charge and the cosmological constant if

there exists nontrivial Lp integrable time-periodic solution of the Dirac equa-

tion, and further give the necessary conditions for the existence of nontrivial
solutions.

1. Introduction

General relativity is a theory of space, time, and gravity proposed by Einstein
in 1915. In general relativity, spacetime is a 4-dimensional manifold M equipped
with a Lorentzian metric g. The metric g is determined by the stress-energy tensor
T by the following Einstein field equation [27, 30]

Gµν + Λgµν =
8πG

c4
Tµν , (1.1)

where the constant Λ is the cosmological constant, Gµν is the Einstein tensor with
respect to the metric g

Gµν = Rµν − 1

2
Rgµν . (1.2)

With the development of the times and the progress of science and technology,
general relativity has passed almost all experimental tests (such as the deflection
angle of light, the precession of Mercury, the gravitational redshift [20], etc.). It
is of great significance for the study of the structure and evolution of celestial
bodies and the universe, and it is also the core theory of modern mathematical
physics and other related fields. It is no exaggeration to say that one of the most
exciting predictions of Einstein’s theory of gravity is the existence of black holes,
whose gravitational fields are so strong that no physical entity or signal can pull
away from them or escape. In 2019, the first photograph of a black hole was
taken, and Einstein’s general relativity was once again confirmed. In addition,
deep connections have been found between black hole theory and seemingly distant
fields, such as thermodynamics, information theory, and quantum theory.

Quantum mechanics and general relativity are the two fundamental pillars of
modern physics. In 1926, the Austrian physicist Schrödinger proposed the following
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famous Schrödinger equation in quantum mechanics [13]

d

dt
ψ = − i

ℏ
H(ψ). (1.3)

However, the Schrödinger equation (1.3) is not relativistically invariant, i.e. it is
incompatible with Einstein’s theory of relativity. In 1928, Dirac, a British theoret-
ical physicist, proposed an equation that satisfies the invariance of relativity, that
is, the Dirac equation [9]. Dirac constructed a first order differential operator D,
which is called the Dirac operator

D := eα∂α, (1.4)

where eα are the following 4× 4 matrices

e0 =

(
0 −σ0

−σ0 0

)
, ei =

(
0 σi

−σi 0

)
, (1.5)

and σα are the following 2× 2 Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
−1 0
0 1

)
,

σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i
−i 0

)
.

(1.6)

It is worth mentioning that the matrices eα, α = 0, 1, 2, 3 satisfiy the following
Clifford relations:

(e0)2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (e1)2 = (e2)2 = (e3)2 = −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

eαeβ = −eβeα (α ̸= β).

(1.7)

By simple calculation, one can know that the square of the Dirac operator D is the
wave operator □, i.e.

D2 = □ := ∂2t −∆. (1.8)

Unlike the Schrödinger equation, the Dirac operator D act not on wave functions
but on 4-dimensional vector-valued functions (spinors) Ψ. For arbitrary λ ∈ R, the
Dirac equation is defined as follows(

D+ iλ
)
Ψ = 0. (1.9)

It is not difficult to verify that the equation (1.9) is Lorentz invariant, i.e. it
is compatible with special relativity. The Dirac equation describes the dynamics
of particles with half-integer spin in curved spacetime, and the development of
quantum field theory began.

In recent years, many scholars have studied the Dirac equation on curved space-
time, especially the separation of variables, which has been an obstacle to progress
in many desired directions. In 1976, Chandrasekhar [7, 8] proved for the first time
that under the Kerr spacetime background metric

ds2 = −∆

U
(dt−a sin2 θdφ)2+ U

∆
dr2+Udθ2+

sin2 θ

U

(
a dt− (r2 + a2)dφ

)2
, (1.10)
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the Dirac equation (1.9) can be separated into radial equations and angular equa-
tions, where

U = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2. (1.11)

Subsequently, Page [23] extends the conclusion of separating variables of the Dirac
equation to charged, rotating black hole spacetime, namely Kerr-Newman space-
time.

Regarding the nonexistence of nontrivial time-periodic solutions of the Dirac
equation (1.9), Finster et al. [10] first considers the problem under the non-extreme
and extreme Reissner-Nordström spacetime with black holes

ds2 = −
(
1− 2ρ

r
+
Q2

r2

)
dt2 +

(
1− 2ρ

r
+
Q2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.12)

For the non-extreme spacetime, they define reasonable conditions to match the
spinors inside and outside the black hole, and prove by reduction to absurdity that
if a nontrivial solution exists, the normalization conditions are not satisfied; For
the extreme spacetime, they obtained the contradiction mainly by analyzing the
asymptotic behavior of the solution of the radial equation near the black hole r = ρ.

After that, when the spherical symmetry of the original Reissner-Nordström
spacetime is altered by changes in the metric and electromagnetic field, Finster el
al. [11] consider the nonexistence of solutions of the Dirac equation (1.9) in the
non-extreme Kerr-Newman spacetime (axisymmetric) with black holes

ds2 = −∆

U

(
dt−a sin2 θdφ

)2
+U

(dr2
∆

+ dθ2
)
+

sin2 θ

U

(
a dt− (r2+a2)dφ

)2
, (1.13)

where

U = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2 +Q2 (1.14)

and the parameters satisfy m2 > a2 + Q2. By choosing the appropriate coordi-
nate transformation, they give reasonable conditions to match the spinors inside
and outside the black hole, and prove that the existence of nontrivial solutions is
contradictory to the normalized conditions. Furthermore, they consider the nonex-
istence problem in the most general stationary axisymmetric metric

ds2 = T−2

[
(Ldu+M dv)2 − (N du+ P dv)2 − dw2

W (w)
− dx2

X(x)

]
(1.15)

in which the Dirac equation can also be separated into radial and angular equations
by Chandrasekhar’s procedure, where the conformal factor T−1 and the coefficients
of the metric L, M , N , P are functions of x and w only. Moreover, the following
constraints are required [17]

∂x

(
L

LP −MN

)
= 0,

∂x

(
M

LP −MN

)
= 0,

∂w

(
N

LP −MN

)
= 0,

∂w

(
P

LP −MN

)
= 0.

(1.16)
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For the non-zero (negative) cosmological constant case, Wang and Zhang [29]
consider the nonexistence of Lp integrable solutions of the Dirac equation (1.9) in
the non-extreme Kerr-Newman-AdS spacetime with black holes

ds2 =− ∆−(r)

U

(
dt− a sin2 θ

E−
dφ
)2

+
U

∆−(r)
dr2 +

U

∆−(θ)
dθ2

+
∆−(θ) sin

2 θ

U

(
a dt− (r2 + a2)

E−
dφ

)2

,

(1.17)

where

U = r2 + a2 cos2 θ, ∆−(θ) = 1− κ2a2 cos2 θ, (1.18)

−3κ2 < 0 is the cosmological constant and the polynomial

∆−(r) = (r2 + a2)(1 + κ2r2)− 2mr +Q2 + P 2 (1.19)

of r has two unequal positive real roots. After separating the variables, they prove
that there is no Lp integrable (on a slice of the spacetime where t is equal to the con-
stant and r is large enough) nontrivial time-periodic solution of the Dirac equation
by analyzing the asymptotic behavior of the coefficients of the radial equation for
sufficiently large r, this method recovers the same result of Belgiorno and Cacciatori
[4] in the case of p = 2 by using the indirect method–spectral method. Moreover,
they also study the nonexistence of Lp integrable nontrivial time-periodic solutions
of Dirac equation in general stationary axisymmetric spacetime with negative cos-
mological constant. Similarly, for the positive cosmological constant case, Belgiorno
and Cacciatori [3] convert the nonexistence problem of nontrivial L2 integrable (on
the slice of spacetime between the event horizon and the cosmological horizon where
t = const) time-periodic solution of the Dirac equation in the Kerr-Newman-dS
spacetime with black holes

ds2 =− ∆+(r)

U

(
dt− a sin2 θ

E+
dφ
)2

+
U

∆+(r)
dr2 +

U

∆+(θ)
dθ2

+
∆+(θ) sin

2 θ

U

(
a dt− (r2 + a2)

E+
dφ

)2 (1.20)

to the nonexistence problem of quantum bound states of Dirac Hamiltonian and
then give the proof by using spectral methods, where

∆+(θ) = 1 + κ2a2 cos2 θ, (1.21)

3κ2 > 0 is the cosmological constant and the polynomial

∆+(r) = (r2 + a2)(1− κ2r2)− 2mr +Q2 + P 2 (1.22)

of r has 4 unequal real roots (3 positive and 1 negative).

For the existence of nontrivial normalizable time-periodic solutions of the Dirac
equation (1.9), Schmid [24] gave the proof under the extreme Kerr spacetime back-
ground metric where the mass of the black hole and angular momentum satisfy
certain values.

Based on this research background, in this paper, we mainly study the nonexis-
tence of nontrivial Lp integrable time-periodic solutions of the Dirac equation in the
non-extreme Kerr-Newman-dS spacetime, and also the necessary conditions for the
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existence of nontrivial Lp integrable time-periodic solutions of the Dirac equation
in the extreme Kerr-Newman-(A)dS spacetime. This means that with further per-
turbation of the spacetime background metric, that is, from the zero cosmological
constant to the nonzero cosmological constant, the conclusion that the nontrivial
time-periodic solution of the Dirac equation does not exist still holds, so that the
Dirac particles satisfying the agreed conditions will either disappear into the black
hole or escape to infinity.

The paper is organized as follows. In Section 2, we give the definition of spin
structures on 4-dimensional orientable spacetime manifold M and define the spinor
bundle ΣM on M by the complex spin representation. Then we show the local
expression of the spinorial connection on the spinor bundle ΣM and give the defi-
nition of Dirac operator. We also introduce the existence and uniqueness theorem
for solutions of ordinary differential equations. In Section 3, we separate the Dirac
equation in Kerr-Newman-dS spacetime into radial equations and angular equations
by the method of Chandrasekhar [7, 8]. After that, by analyzing the asymptotic
behaviour of the solution of the radial equation near the black hole, we show that
there is no nontrivial Lp integrable time-periodic solutions of the Dirac equation in
the non-extreme Kerr-Newman-dS spacetime. In Section 4 and Section 5, by chang-
ing of variables of the radial equations and analyzing the corresponding solutions
near the horizon, we show that if there exist nontrivial Lp integrable time-periodic
solutions of the Dirac equation in the extreme Kerr-Newman-dS spacetime and the
extreme Kerr-Newman-AdS spacetime, then the energy eigenvalue ω must have cer-
tain equation relations with the horizon radius, the angular momentum, the electric
charge and the cosmological constant. By this, we further give the necessary con-
ditions for the existence of nontrivial solutions. In Section 6, we summarize the full
paper and raise some questions to be further studied.

2. Preliminaries

2.1. Spin geometry on Lorentzian manifold. In this subsection, we mainly in-
troduce the spin structure and spinor vector bundle on Lorentzian manifold. More-
over, we calculate the spinorial Levi-Civita connection on spinor bundle and give
the definition of Dirac operator. For basic facts about spin geometry, we refer to
[19], [16]. For basic facts about the Dirac operator on Lorentzian manifold, we refer
to [31], [12].

2.1.1. Spin structure. Let V be a real n-dimensional linear vector space, gV is a
non-degenerate symmetric bilinear form on V , i.e.

gV : V × V −→ R (2.1)

satisfying

(1) for any v1, v2 ∈ V , there holds gV (v1, v2) = gV (v2, v1) (For the sake of notation,

sometimes we denote
〈
v1, v2

〉
≜ gV (v1, v2);

(2) if for all w ∈ V , we have gV (v, w) = 0, then v = 0.
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Since gV (v, v) might be negative, the norm of v, i.e. |v| is defined as

|v| := |gV (v, v)|1/2. (2.2)

A vector v is called a unit vector if |v| = 1, i.e. gV (v, v) = ±1. We call a set of
unit vectors orthogonal to each other orthonormal. It is easy to see that for any
symmetric non-degenerate bilinear form on the nontrivial vector space V , there
exists an orthonormal bases e1, . . . , en satisfying

gV (ei, ej) = δijϵi, (2.3)

where ϵi = ±1, i = 1, . . . , n. Besides, any orthonormal bases in V satisfying (2.3)
have the same sign {ϵi} (by different order), the proof can be found in [22]. We ar-
range the symbol ϵi according to the principle of minus sign before (ϵ1, . . . , ϵn), and
we say that the number of negative indicators in this permutation is the indicator
of the binary (V, gV ).

Definition 2.1. For n ≥ 2, the binary (V, gV ) is called a Lorentzian vector space
if the indicator is 1.

A vector v in the Lorentzian vector space V is spacelike, if gV (v, v) > 0 or v = 0;
a vector v is lightlike if gV (v, v) = 0 and v ̸= 0; a vector v is timelike, if gV (v, v) < 0.

Let g be a smooth tensor field of type (0,2) on a n-dimensional smooth manifold
M such that for every p ∈M , the binary (TpM, gp) is non-degenerate. If each binary
(TpM, gp) is a Lorentzian vector space, then we say that (M, g) is a Lorentzian
manifold. Naturally, the binary (T ∗

pM, gp) is also a Lorentzian vector space for any
p ∈M , where T ∗

pM is the cotangent space at p.

In this paper, we mainly consider 4-dimensional Lorentzian manifold, thus we
make the following definition:

Definition 2.2. A spacetime is a connected and time orientable (i.e. there exists
smooth timelike vector field) 4-dimensional Lorentzian manifold.

Next, we introduce the spin structure on spacetime. For this purpose, we need
the following algebra preparations.

Let (V, gV ) be a 4-dimensional Lorentzian vector space (in order to ensure the
unity of symbols of the spinorial connection and the Dirac operator, we consider
on the cotangent bundle). Let

J (V ) :=

∞∑
i=0

⊗i
V (2.4)

be the tensor algebra of V , Ig(V ) be the ideal in J (V ) generated by
{
v ⊗ v +

gV (v, v)1
∣∣v ∈ V

}
. Then the Clifford algebra with respect to the Lorentzian vector

spac (V, gV ) is defined as

Cℓ(V, gV ) := J (V )/Ig(V ). (2.5)

By definition, it is no hard to see that there is a nature embedding from V to
Cℓ(V, gV ), i.e.

V =
⊗1

V ↪→ J (V )
π−→ Cℓ(V, gV ), (2.6)
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where π is the canonical projection.

Remark 2.1. As vector spaces, the Clifford algebra Cℓ(V, gV ) is isomorphic to the
exterior algebra Λ∗V =

⊕∞
k=0 Λ

kV of V . Hence, Cℓ(V, gV ) is a finite dimensional
vector space [19].

The Clifford algebra Cℓ(V, gV ) can be generated by the vector space V and the
unit 1, and the elements satisfy the following Clifford multiplication rule, i.e.

v · w + w · v = −2gV (v, w) (2.7)

for arbitrary v, w ∈ V . Therefore, if {e0, e1, e2, e3} is an orthonormal bases of
(V, gV ) satisfying〈

e0, e0
〉
= −1,

〈
e1, e1

〉
= 1,

〈
e2, e2

〉
= 1,

〈
e3, e3

〉
= 1, (2.8)

then the correspondinng Clifford multiplication is

e0 · e0 = 1, e1 · e1 = −1, e2 · e2 = −1, e3 · e3 = −1, eα · eβ = −eβ · eα (α ̸= β). (2.9)

The following example shows a matrix representation of Cℓ(V, gV ).

Example 1.

e0 7−→


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , e1 7−→


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

e2 7−→


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , e3 7−→


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 .

(2.10)

It is easy to verify that the above matrix multiplications satisfy the Clifford multi-
plication rule (2.9).

Next we consider the complex Clifford algebra and the corresponding represen-
tation.

Definition 2.3.

Cℓ(V, gV ) := Cℓ(V, gV )⊗R C. (2.11)

By the universal property of Clifford algebra (c.f. Proposition 1.1 in [19]), the
following isomorphism holds

Cℓ(V, gV ) = Cℓ(V, gV )⊗R C ∼= Cℓ(C4, gV ⊗ C) ≜ Cℓ4. (2.12)

Definition 2.4. Let the C-algebra homomorphism

ρ : Cℓ4 −→ HomC(W,W ) (2.13)

be a complex representation of Cℓ4, where W is a finite dimensional complex vector
space. We say that such a representation is reducible if and only if the vector space
W can be decomposed into the following nontrivial direct sum (over C)

W =W1 ⊕W2 (2.14)
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such that for any u ∈ Cℓ4, there holds

ρ(u)(Wi) ⊆Wi, i = 1, 2. (2.15)

We say that such a complex representation is irreducible if it is not reducible.

According to Theorem 5.7 of Chapter 1 in [19], since n is even, the complex
Clifford algebra Cℓn has a unique (up to equivalence) irreduciable complex repre-
sentation. Hence, we know that the irreduciable complex representation (2.80) is
unique. The following proposition gives a concrete characterization of the unique
irreducible complex representation of Cℓ(V, gV ).

Proposition 2.1. The complex representation

ρ : Span
{
e0, e1, e2, e3

}
⊗R C −→ End(C4) (2.16)

is irreduciable, where eα (α = 0, 1, 2, 3) are the matrices in (2.10), and for any
complex 4-dimensional vector ψ, there holds

ρ(eα)ψ := eαψ. (2.17)

Proof. In order to show that ρ is irreduciable, we only need to prove that ρ is
surjective [14]. Since

Span
{
e0, e1, e2, e3

}
⊗R C ∼= Cℓ(V, gV ) ∼= Λ∗V, (2.18)

Therefore

dim
(
Span

{
e0, e1, e2, e3

}
⊗R C

)
= dim

(
Λ∗V

)
= 24

= dim
(
End(C4)

)
.

(2.19)

Hence, in order to prove that ρ is surjective, it is only necessary to show that
ρ is injective, i.e. ρ(v) = 0 implies that v = 0. In fact, choose a base of
Span

{
e0, e1, e2, e3

}
⊗R C {

1, eα1eα2 . . . eαk
}
, (2.20)

where {α1, . . . , αk} ⊂ {1, . . . , 4} and α1 < α2 < · · · < αk, then we have

a0 + aα1,...,αk
eα1eα2 . . . eαk = 0. (2.21)

Substituting (2.10) into the above formula (2.21), by simple calculations, we haveit
follows that

a0 = aα1,...,αk
= 0. (2.22)

This completes the proof of the proposition.

Q.E.D.

Definition 2.5. The Clifford multipulation is defined as the following map

mV : Cℓ(V, gV )× C4 −→ C4

(e, ψ) 7−→ ρ(e)ψ.
(2.23)
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Let M4(R) be the space consisting of 4× 4 real matrices. The Lorentzian group
O(1, 3) is defined as

O(1, 3) :=

A ∈ M4(R)

∣∣∣∣∣AT


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (2.24)

So the Lorentzian group O(1, 3) is a matrix Lie group consisting of all norm pre-

serving linear transformation in Minkowski spacetime R4
. In particular, we denote

SO(1, 3) :=
{
A ∈ O(1, 3)

∣∣∣detA = 1
}
. (2.25)

Since SO(1, 3) has two connected components [15], let SO0(1, 3) be the component
containing the identity and so(1, 3) be the corresponding Lie algebra. According to
the closed subgroup Theorem [15], we can deduce that

so(1, 3) = {X ∈ M4(R) : exp tX ∈ SO0(1, 3), ∀t ∈ R} . (2.26)

Therefore, for any X ∈ so(1, 3), we have

(
exp tXT

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

( exp tX) =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.27)

Taking the derivative of t on both sides of (2.27) and considering the value at t = 0,
it follows that 

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

X +XT


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 0. (2.28)

By simple calculations, X has the following form
0 x12 x13 x14
x12 0 x23 x24
x13 −x23 0 x34
x14 −x24 −x34 0

 . (2.29)

Thus, the Lie algebra so(1, 3) has the following 6 basis matrices:
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 .

Next, we define the group Pin(1, 3) and Spin(1, 3) by the Clifford algebra
Cℓ(V, gV ) in order to construct the 2-fold covering space of SO0(1, 3). Let the
multiplicative unit group of the Clifford algebra Cℓ(V, gV ) be

Cℓ×(V, gV ) :=
{
v ∈ Cℓ(V, gV ) : ∃ v−1 satisfying v−1 · v = v · v−1 = 1

}
. (2.30)
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Since for all vectors v in V satisfying gV (v, v) ̸= 0, there holds

v · v

−gV (v, v)
= 1, (2.31)

such vectors are contained in Cℓ×(V, gV ) and we let P (V, gV ) be the subgroup
generated by these vectors. Moreover, Cℓ×(V, gV ) is a 24-dimensional Lie group
inheriting the topology of Cℓ(V, gV ) (as vector space), and the corresponding Lie
algebra cl×(V, gV ) is isomorphic to Cℓ(V, gV ).

Definition 2.6. The group Pin(1, 3) is generated by the elements in P (V, gV )
satisfying gV (v, v) = ±1 (v ∈ V ). The group Spin(1, 3) is defined as

Spin(1, 3) := Pin(1, 3) ∩ Cℓ0(V, gV ), (2.32)

where Cℓ0(V, gV ) := {v ∈ Cℓ(V, gV ) : φ(v) = v} and φ is the following endomor-
phism

φ : Cℓ(V, gV ) −→ Cℓ(V, gV )

v 7−→ −v (v ∈ V ).
(2.33)

Remark 2.2. According to Definition 2.6, we can see that

Spin(1, 3) = {v1 · · · vk ∈ Pin(1, 3) : k ≡ 0(mod 2)} . (2.34)

Moreover, Spin(1, 3) is a simple connected Lie group and the following isomorphism
holds

Spin(1, 3) ∼= SL(2,C) :=
{
A ∈ HomC

(
C2,C2

) ∣∣∣ detA = 1
}
. (2.35)

Definition 2.7. The complex irreduciable representation ρ in Proposition 2.1 re-
stricting on Spin(1, 3), i.e.

ρ : Spin(1, 3) −→ End(C4) (2.36)

is called the complex spinor representation. In this case, we call C4 the spinor
space.

The following theorem gives the 2-fold covering space of SO0(1, 3), for the proof,
we refer to Theorem 2.10 of Chapter 1 in [19].

Theorem 2.1. The following short exact sequence holds

0 → Z2 → Spin(1, 3)
Ãd−−→ SO0(1, 3) → 1, (2.37)

where Ãdv is defined as

Ãdv(w) := w − 2
gV (v, w)

gV (v, v)
v (2.38)

for all v, w ∈ V satisfying gV (v, v) ̸= 0.

For the purpose of giving the local formula of the spinorial Levi-Civita connection
on the spinor bundle, we calculate the concrete expression of the tangent map

Ãd∗ : spin(1, 3)
∼=−→ so(1, 3). The proposition is as follows:
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Proposition 2.2.

Ãd∗(e
0 · e1) = −2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , Ãd∗(e
0 · e2) = −2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , (2.39)

Ãd∗(e
0 · e3) = −2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , Ãd∗(e
1 · e3) = 2


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 ,

(2.40)

Ãd∗(e
1 · e2) = 2


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , Ãd∗(e
2 · e3) = 2


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 . (2.41)

Proof. Due to the particularity of the vector e0 in the Lorentzian vector space, we

only need to calculate Ãd∗(e
0 · e1) and Ãd∗(e

1 · e3), and the remaining terms can
be obtained by completely similar discussions.

(i) Ãd∗(e
0 · e1):

For x ∈ (−∞,+∞), the hyperbolic sine functions and the hyperbolic cosine
functions are defined as follows

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
. (2.42)

Notice that

gV

(
(coshx)e0 + (sinhx)e1, (coshx)e0 + (sinhx)e1

)
= − coshx2 + sinhx2

= −1,

(2.43)

hence

γ1 : (−∞,+∞) −→ Spin(1, 3)

x 7−→ e0 ·
(
(coshx)e0 + (sinhx)e1

) (2.44)

is an one parameter subgroup of the group Spin(1, 3), and its tangent vector at the
identity, i.e. at x = 0 is

d

dx

∣∣∣
x=0

(
coshx+ sinhxe0 · e1

)
=
(
sinhx+ coshxe0 · e1

) ∣∣∣
x=0

= e0 · e1.

(2.45)
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Now for any w ∈ V , w = wαe
α, by equation (2.38) we have

Ãdcosh xe0+sinh xe1w = w + 2 (−w0 coshx+ w1 sinhx)


coshx
sinhx

0
0



=


w0 + (−2w0 coshx+ 2w1 sinhx) coshx
w1 + (−2w0 coshx+ 2w1 sinhx) sinhx

w2

w3

 .

(2.46)

Therefore,

Ãdγ1(x)w = Ãde0·(cosh xe0+sinh xe1)w

= Ãde0


w0 + (−2w0 coshx+ 2w1 sinhx) coshx
w1 + (−2w0 coshx+ 2w1 sinhx) sinhx

w2

w3



=


w0 + (−2w0 coshx+ 2w1 sinhx) coshx
w1 + (−2w0 coshx+ 2w1 sinhx) sinhx

w2

w3



− 2 (w0 + (−2w0 coshx+ 2w1 sinhx) coshx))


1
0
0
0



=


−w0 + (2w0 coshx− 2w1 sinhx) coshx
w1 + (−2w0 coshx+ 2w1 sinhx) sinhx

w2

w3

 ,

(2.47)

i.e.

Ãdγ1(x)w =


−1 + 2 (coshx)

2 −2 sinhx coshx 0 0

−2 sinhx coshx 1 + 2 (sinhx)
2

0 0
0 0 1 0
0 0 0 1



w0

w1

w2

w3

 . (2.48)

Thus,

Ãd∗(e
0 · e1) = d

dx

∣∣∣
x=0


−1 + 2 (coshx)

2 −2 sinhx coshx 0 0

−2 sinhx coshx 1 + 2 (sinhx)
2

0 0
0 0 1 0
0 0 0 1



= −2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

(2.49)

(ii) Ãd∗(e
1 · e3):
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For θ ∈ R, notice that

gV
(
− cos(θ)e1 + sin(θ)e3,− cos(θ)e1 + sin(θ)e3

)
= cos2 θ + sin2 θ = 1,

(2.50)

thus

γ2 : (−∞,+∞) −→ Spin(1, 3)

θ 7−→ e1 ·
(
− cos(θ)e1 + sin(θ)e3

) (2.51)

is an one parameter subgroup of the group Spin(1, 3), and its tangent vector at the
identity 1, i.e. at θ = 0 is

d

dθ

∣∣∣
θ=0

(
cos θ + sin(θ)e1 · e3

)
= e1 · e3. (2.52)

For any w ∈ V , w = wαe
α, by equation (2.38) we can deduce that the following

holds

Ãd− cos(θ)e1+sin(θ)e3w = w − 2(− cos(θ)w1 + sin(θ)w3)


0

− cos θ
0

sin θ



=


w0

w1 + 2 cos θ (− cos(θ)w1 + sin(θ)w3)
w2

w3 − 2 sin θ (− cos(θ)w1 + sin(θ)w3)

 .

(2.53)

Therefore,

Ãdγ2(θ)w = Ãd
e1·
(
−cos(θ)e1+sin(θ)e3

)w
= Ãde1


w0

w1 + 2 cos θ (− cos(θ)w1 + sin(θ)w3)
w2

w3 − 2 sin θ (− cos(θ)w1 + sin(θ)w3)



=


w0

w1 + 2 cos θ (− cos(θ)w1 + sin(θ)w3)
w2

w3 − 2 sin θ (− cos(θ)w1 + sin(θ)w3)



− 2
(
w1 − 2 cos2(θ)w1 + 2w3 sin θ cos θ

)
0
1
0
0



=


1 0 0 0
0 −1 + 2 cos2 θ 0 − sin 2θ
0 0 1 0
0 sin 2θ 0 1− 2 sin2 θ



w0

w1

w2

w3

 .

(2.54)
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Hence we have

Ãd∗(e
1 · e3) = d

dθ

∣∣∣
θ=0


1 0 0 0
0 −1 + 2 cos2 θ 0 − sin(2θ)
0 0 1 0
0 2 sin θ cos θ 0 1− 2 sin2 θ



= 2


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 ,

(2.55)

which completes the proof of the proposition.

Q.E.D.

Next, before defining the spin structure, we briefly introduce some basic facts of
principal fibre bundle. We refer the reader to the references [18, 26].

Let E, F and M be smooth manifolds, given a smooth projection

π : E −→M (2.56)

and an open covering {Uα} of M , a local trivializationl means that for any open
set Uα, there exists diffeomorphism ϕUα

such that the following diagram commutes

π−1(Uα)
ϕUα //

π

��

Uα × F

η
yysss

sss
sss

ss

Uα

(2.57)

where η is the projection to the first component. If the above conditions hold, we
say that (2.56) is a fibre bundle with fibre F , E is the total space, M is the base
space, and π−1(x) is the fibre at x.

Let G be a Lie group with identity e, G acts smoothly right on M if there exists
a smooth map

R :M ×G −→M (2.58)

satisfying

(1) R(x, e) = x;

(2) R (R(x, h1), h2) = R(x, h1h2).

For any x ∈M , the stabilizer is defined as

Stab(x) := {h ∈ G|R(x, h) = x}. (2.59)

The right action R is called free, if the stabilizer is trivial for any point.

A fibre bundle π : P −→ M with fibre G (a Lie group) is called a principal
G-fibre bundle, if G acts smoothly right on P and for any α, the local trivialization
ϕUα is G-invariant. That is, for any (p, h) ∈ π−1(U)×G, the following holds

ϕUα

(
R(p, h)

)
=
(
ϕUα

(p)
)
h, (2.60)
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where (
ϕUα

(p)
)
h =

(
π(p), hp

)
h :=

(
π(p), hph

)
. (2.61)

Let {Uα, ϕα} be a local trivialization of the principal G-fibre bundle π : P →M .

If Uαβ ≜ Uα ∩ Uβ ̸= ∅, then there are two different local trivialization on Uαβ , i.e.

Uαβ ×G

π−1(Uαβ)
ϕβ //

ϕβ

OO

Uαβ ×G.

(2.62)

Hence

ϕα ◦ ϕ−1
β : Uαβ ×G −→ Uαβ ×G (2.63)

is a smooth, fibre preserving, G-invariant right action, i.e. there exists a map

gαβ : Uαβ −→ G (2.64)

satisfying

ϕα ◦ ϕ−1
β (x, g) =

(
x, gαβ(x)g

)
. (2.65)

We call the functions gαβ in (2.64) the transition functions. Obviously, for open
sets Uα ∩ Uβ ∩ Uγ ̸= ∅, the transition functions satisfy the following

gαβ ◦ gβγ = gαγ . (2.66)

Example 2. Let M be an oriented spacetime manifold. The frame bundle of the
cotangent bundle T ∗M of M is defined as

SO∗
M (1, 3) :=

⊔
x∈M

Fr(T ∗
xM), (2.67)

where Fr(T ∗
xM) consists of all orthonormal bases in the cotangent space T ∗

xM at
x that are compatible with the given orientation and the given time orientation.
Define

π : SO∗
M (1, 3) −→M

Fr(T ∗
xM) 7−→ x.

(2.68)

It is no hard to see that the frame bundle π : SO∗
M (1, 3) −→M is a smooth principal

SO0(1, 3)-fibre bundle.

Given principal G1-fibre bundle π1 : P1 → M1 and principal G2-fibre bundle
π2 : P2 → M2, a map f : P1 → P2 is called a bundle map if and only if there exist
group homomorphism fG : G1 → G2 and a map fB :M1 →M2 such that

f(pg) = f(p)fG(g) (2.69)

and the following diagram commutes

P1
f //

π1

��

P2

π2

��
M1

fB

// M2.

(2.70)
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With the above preparations, we can now give the definition of spin structure
on spacetime manifold.

Definition 2.8. Let M be a orientable spacetime manifold. A spin structure on
M is a binary (SpinM,η) satisfying

(1) SpinM is a principal Spin(1, 3)-fibre bundle;

(2) η : SpinM → SO∗
M (1, 3) is a 2-fold covering map and the following diagram

commutes

SpinM

η

��

π // M

SO∗
M (1, 3)

π

::uuuuuuuuuu

(2.71)

(3) For arbitrary (p, g) ∈ SpinM , there holds

η(pg) = η(p)Ãd(g). (2.72)

There exists a spin structure on an orientable spacetime manifold M if and only
if the transition functions on the frame bundle SO∗

M (1, 3) can be lifted to Spin(1, 3),
i.e. there exists a map g̃αβ such that the following diagram commutes

Spin(1, 3)

Ãd
��

Uαβ gαβ

//

g̃αβ

::ttttttttt
SO0(1, 3)

(2.73)

and g̃αβ satisfies (2.66). This condition is equivalent to that the second Stiefel-
Whitney class w2(M) ∈ H2(M ;Z2) vanishes. Moreover, if w2(M) = 0, then there
is a one-to-one correspondence between the number of spin structures onM and the
elements in H1(M ;Z2) [5, 19]. For more facts about spin structures on manifolds,
we refer the reader to [19]. In particular, we recall the following facts:

Lemma 2.1. (1) Any orientable manifold with dimension less than or equal to 3
is spin;

(2) The Cartesian product of two spin manifolds is also a spin manifold.

2.1.2. Dirac operator. First of all, we introduce the connection on principal fibre
bundle and the induced covariant derivatives on the associated vector bundle, we
refer the reader to [16] for details. Let π : P → M be a principal G-fibre bundle,
g is the Lie algebra of G. For any u ∈ P , let Gu be the subspace of TuP which
consisting of the tangent vectors that are tangent to the fibre at u. We say that Γ
is a connection on P , if for every u ∈ P , there is a subspace Qu (depends smoothly
on u) of TuP satisfying

(1) TuP = Gu ⊕Qu;

(2) Qug = (Rg)∗Qu for every g ∈ G.
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Qu is called the horizontal distribution and Gu is the vertical distribution. A
tangent vectorX ∈ TuP is said to be horizontal or vertical if and only if it belongs to
the subspace Qu or Gu. In particular, the corresponding components of the vector
X with respect to the direct sum Gu ⊕ Qu are called the vertical and horizontal
components of X, respectively.

For any vector A ∈ g, A induces a vector field on P , i.e. for any u ∈ P ,

A∗
u :=

d

dt

∣∣∣
t=0

(u · exp tA). (2.74)

We say that A∗ is the fundamental vector field generated by A. According to the
definition, it is easy to see that the map

g −→ Gu

A 7−→ A∗
u

(2.75)

is a linear isomorphism. Given a connection Γ on P , we define the g-valued 1-form
ω on P as follows: for any X ∈ TuP , ω(X) is defined as the unique A ∈ g such that
A∗

u is equal to the vertical component of X. We call

ω : TP −→ g (2.76)

the connection 1-form on the principal fibre bundle corresponding to Γ. Thus, X
is horizontal if and only if ω(X) = 0. By definition, it is no hard to see that

ω(A∗
u) = A. (2.77)

Moreover, for any g ∈ G, the following holds [26]

(Rg)
∗ω = ad(g−1)ω, (2.78)

where ad is the adjoint representation of G. On the contrary, for any C∞ g-valued
1-form ω on P satisfying (2.77) and (2.78), there always exists a unique connection
Γ on P such that the connection 1-form corresponding to Γ is exactly ω. In fact,
the corresponding horizontal distribution can be defined as follows

Qu :=
{
X ∈ TuP

∣∣∣ω(X) = 0
}
. (2.79)

After we define the connection on the principal fibre bundle, we then discuss how
the connection 1-form on the principal fibre bundle induces a covariant derivative
on the associated vector bundle. We first consider the following representation on
the group G

ρ : G −→ End(Σn), (2.80)

where Σn is a n-dimensional vecotr space. And for any vector v in Σn, we denote
by gv ≜ ρ(g)v. The group G naturally induces the following action on the space
P × Σ

(p, v) 7−→ (pg, g−1v). (2.81)

The associated vector bundle E := P ×ρΣn of the principal G-fibre bundle π : P →
M under the representation (2.80) is defined as the following quotient space

E := P ×ρ Σn =
(
P × Σn

)/
∼, (2.82)

where the equivalence relation is

(p, v) ∼ (pg, g−1v). (2.83)
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It is no hard to see that

E := P ×ρ Σn

π′

��
M

(2.84)

is a vector bundle, where π′([p, v]) := π(p). Each fibre of E is isomorphic to the
vector space Σn, and the transition functions are

Uαβ −→ GL(Σn)

x 7−→ ρ ◦ φαβ(x),
(2.85)

where φαβ is the transition function of the principal G-fibre bundle π : P →M .

Example 3. For the cotangent bundle T ∗M of orientable spacetime M , the fol-
lowing isomorphism between vector bundles holds

T ∗M ≃ SO∗
M (1, 3)×ρ0

R4
, (2.86)

where ρ0 : SO0(1, 3) → End(R4
) is the usual matrix representation.

If there exists a spin struction on a spacetime manifold, the spinor vector bundle
is defined as the associated vector bundle of the principal fibre bundle SpinM with
respect to the complex spin representation (2.36), i.e.

ΣM := SpinM ×ρ C4. (2.87)

A section Ψ ∈ Γ(ΣM) is called the spinor. Moreover, according to the definition of
the associated vector bundle, Ψ can be expressed as

Ψ
∣∣
U
= [s̃, ψ] (2.88)

on any open set U of M , where s̃ ∈ ΓU (SpinM) and ψ : U → C4 is a smooth
vector-valued function.

On the spinor vector bundle, the Clifford multiplication can be defined as follows:

Definition 2.9.

m : T ∗M ⊗ ΣM −→ ΣM

X∗ ⊗Ψ = [s, e]⊗ [s̃, ψ] 7−→ [s̃, e · ψ] ≜ X∗ ·Ψ,
(2.89)

where e · ψ is exactly the Clifford multiplication defined in (2.23).

Remark 2.3. It is not difficult to verify that the (2.89) does not depend on the
choice of the equivalence classes.

Next we consider the covariant derivative on vector bundle. Let Γ(E) be a section
of E. The covariant derivative of the vector bundle E is defined as the following
map

∇ : Γ(E) −→ Γ(E)⊗ Γ(T ∗M) (2.90)

which satisfies:

(1) For any ψ ∈ Γ(E), X,Y ∈ TpM

∇X+Y ψ = ∇Xψ +∇Y ψ. (2.91)
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For any smooth vector field Z and smooth function f on M

∇fZψ = f∇Zψ,

∇X(fψ) = X(f)ψ + f∇Xψ.
(2.92)

(2) For ψ1, ψ2 ∈ Γ(E)

∇X(ψ1 + ψ2) = ∇Xψ1 +∇Xψ2. (2.93)

According to property (1), ∇ is also a map from Γ(TM)⊗ Γ(E) to Γ(E), let

∇Xψ := ∇ψ(X). (2.94)

Let ω be a connection 1-form on the principal G-fibre bundle π : P → M , and
E := P ×ρ Σn is the associated vector bundle. For a local section Ψ = [s, σ] on E
and a smooth vector fieldX, the covariant derivative is defined as

∇XΨ :=
[
s,X(σ) + ρ∗

(
ω ◦ s∗)(X)σ

)]
. (2.95)

It is no hard to see that ∇XΨ is well-defined (i.e. does not depend on the choice of
equivalence classes) and satisfies the property (2.91), (2.92) and (2.93). Conversely,
taking the cotangent bundle T ∗M of the spacetime manifold M as an example,
there exists a Levi-Civita connection ∇ under the Lorentz metric g. For any open
set U ⊂M , let {eα}3α=0 be an orthonormal basis on T ∗U which is compatible with
the orientation and the time orientation, for any smooth vector field X, we have

∇Xe
α = ω∗α

β(X)eβ , (2.96)

then the connection 1-form ω on the frame bundle SO∗
M (1, 3) satisfies

ω(s∗X) =


0 ω∗1

0(X) ω∗2
0(X) ω∗3

0(X)

ω∗0
1(X) 0 ω∗2

1(X) ω∗3
1(X)

ω∗0
2(X) ω∗1

2(X) 0 ω∗3
2(X)

ω∗0
3(X) ω∗1

3(X) ω∗2
3(X) 0



=


0

〈
∇Xe

0, e1
〉 〈

∇Xe
0, e2

〉 〈
∇Xe

0, e3
〉〈

∇Xe
0, e1

〉
0

〈
∇Xe

2, e1
〉 〈

∇Xe
3, e1

〉〈
∇Xe

0, e2
〉 〈

∇Xe
1, e2

〉
0

〈
∇Xe

3, e2
〉〈

∇Xe
0, e3

〉 〈
∇Xe

1, e3
〉 〈

∇Xe
2, e3

〉
0

 ∈ so(1, 3),

(2.97)

where

s : U −→ SO∗
M (1, 3)

x 7−→ (e0, e1, e2, e3)
∣∣
x

(2.98)

is a section of the frame bundle. In order to calculate the spinorial Levi-Civita
connection on the spinor bundle, we rewrite the above formula (2.97) as a linear
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combination of the 6 basis matrices of the Lie algebra so(1, 3), i.e.

ω(s∗X) =
〈
∇Xe

0, e1
〉

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

+
〈
∇Xe

0, e2
〉

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0



+
〈
∇Xe

0, e3
〉

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

+
〈
∇Xe

2, e1
〉

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



+
〈
∇Xe

3, e1
〉

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

+
〈
∇Xe

3, e2
〉

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 .

(2.99)

With the above preparations, we now define the connection on the spinor vector
bundle. Let U ⊂ M be a simple connected open set, then any local section s of
the frame bundle SO∗

M (1, 3) can be lifted to a local section s̃ of the principal fibre
bundle SpinM , i.e. the following diagram commutes

SpinM

η

��
U

s
//

s̃

::uuuuuuuuuu
SO∗

M (1, 3)

(2.100)

In order to define the connection on ΣM , we only need to define a connection 1-
form ω̃ on the principal fibre bundle SpinM . To do this, we define ω̃ to be the only
1-form such the diagram

T (SpinM)

η∗

��

ω̃ // spin(1, 3)

Ãd∗
��

TU ⊂ TM

s̃∗

77nnnnnnnnnnnn s∗ // T (SO∗
M (1, 3))

ω // so(1, 3)

(2.101)

commutes, where ω ◦ s∗ is exactly (2.99). Therefore, for any X ∈ TU , let Ψα =
[s̃, σα] ∈ ΓU (ΣM) be a local section ({σα}3α=0 is an orthonormal basis of C4), by
the definition of the covariant derivative on the associated vector bundle (2.95) and
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Proposition 2.2, we can deduce that

∇XΨα =
[
s̃, ρ∗(ω̃ ◦ s̃∗(X))σα

]
=
[
s̃, ρ∗

(
Ãd

−1

∗ (ω ◦ s∗(X))
)
σα
]

= −1

2

〈
∇Xe

0, e1
〉
e0 · e1 ·Ψα − 1

2

〈
∇Xe

0, e2
〉
e0 · e2 ·Ψα

− 1

2

〈
∇Xe

0, e3
〉
e0 · e3 ·Ψα +

1

2

〈
∇Xe

1, e2
〉
e1 · e2 ·Ψα

+
1

2

〈
∇Xe

1, e3
〉
e1 · e3 ·Ψα +

1

2

〈
∇Xe

2, e3
〉
e2 · e3 ·Ψα

= −1

2

[
ω01(X)e0 · e1 + ω02(X)e0 · e2 + ω03(X)e0 · e3

+ ω12(X)e1 · e2 + ω13(X)e1 · e3 + ω23(X)e2 · e3
]
·Ψα.

(2.102)

Now we give the definition of the Dirac operator on the spinor vector bundle
ΣM :

Definition 2.10. Let ∇ be the connection on ΣM given by (2.102), the Dirac
operator D is defined as

D := m ◦ ∇ : Γ(ΣM) −→ Γ(ΣM)

Ψ 7−→ eα · ∇αΨ.
(2.103)

Remark 2.4. Since the signature of the metric in Lorentzian manifold is different
from the Riemannian case, the Dirac operator D is not elliptic.

In the 4-dimensional Minkowski spacetime, the Dirac operator is

D = e0 · ∂t +
3∑

i=1

ei · ∂xi . (2.104)

Its square is as follows

D2 =
(
e0 · ∂t +

3∑
i=1

ei · ∂xi

)2
= e0 · e0 · ∂2t + e0 · ∂t

( 3∑
i=1

ei · ∂xi

)
+
( 3∑

i=1

ei · ∂xi

)
(e0 · ∂t) +

( 3∑
i=1

ei · ∂xi

)2
= ∂2t +

3∑
i=1

(e0 · ei + ei · e0)∂xi
∂t +

( 3∑
i=1

ei · ∂xi

)2
= ∂2t +

( 3∑
i=1

ei · ∂xi

)2
= ∂2t −

3∑
i=1

∂2xi

= □.
(2.105)

Thus, the Dirac operator D is now the square root of the wave operator □.
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2.2. Existence and uniqueness. In this paper, the separation method proposed
by Chandrasekhar [7, 8] is used to prove the nonexistence of the nontrivial time-
periodic solution of the Dirac equation, that is, the original Dirac equation is sep-
arated into two first order ordinary differential equations. In this subsection, we
introduce the existence and uniqueness theorem of the solution of a system of
first-order ordinary differential equations, the proof of which can be found in, for
example, [25], [28].

Let D be an open domain in the Euclidean space Rn+1
, the points on it are

denoted as (t,y), where y ∈ Rn
.

Definition 2.11. A vector-valued function f = f(t,y) satisfies the local Lipschitz
condition on D with respect to the variable y, if for any (t0,y0) ∈ D, there exists
an open neighborhood U of (t0,y0) such that for any (t,y1), (t,y2) ∈ U ∩D, there
exists a positive constant LU such that the following inequality holds

|f(t,y1)− f(t,y2)| ≤ LU |y1 − y2|. (2-104)

Remark 2.5. In general, the Lipschitz constant LU in (2-104) can vary depending
on the choice of U .

The existence and uniqueness theorem of the solution is as follows:

Theorem 2.2. Let f(t,y) be a continuous function on the domain D which satisfies
the local Lipschitz condition with respect to the variable y. Then for any fixed
(t0,y0) ∈ D, the following initial value problem of first order ordinary differential
equation has a unique solution

dy

dt
= f(t,y), y(t0) = y0. (2.106)

Moreover, the solution can be extended to the left and right up to the boundary of
the domain D.

Remark 2.6. If the vecter-valued function f(t,y) has continuous partial derivative
with respect to the variable y in domain D, i.e.

∂f

∂y
∈ C(D), (2.107)

then f satisfies the local Lipschitz condition in Definition 2.11.

3. Non-extreme Kerr-Newman-dS spacetime

In this section, we manily consider the nonexistence of time-periodic solutions
of the following Dirac equation(

D+ ieαA(eα) + iλ
)
Ψ = 0 (3.1)

in the non-extreme Kerr-Newman-dS spacetime, where λ ∈ R, A is the electromag-
netic vector potential.

The Kerr-Newman-dS spacetime is an exact solution of the Einstein-Maxwell
equation, which describes a charged rotating black hole with positive cosmological
constant. Kerr-Newman-dS spacetime is the following manifold

MKNdS = Rt ×R+
r × S2, (3.2)
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equipped with a Lorentzian metric (in the Boyer-Lindquist coordinate)

gKNdS =−
(
1− 2mr −Q2 − P 2

U
− κ2(r2 + a2 sin2 θ)

)
dt2

+
V+

UE+
2 sin2 θdφ2 +

U

∆+(r)
dr2 +

U

∆+(θ)
dθ2

− a sin2 θ

E+

(2mr −Q2 − P 2

U
+ κ2(r2 + a2)

)(
dt dφ+ dφ dt

)
,

(3.3)

where the constants κ > 0, m > 0, and

U = r2 + a2 cos2 θ,

E+ = 1 + κ2a2,

∆+(r) = (r2 + a2)(1− κ2r2)− 2mr +Q2 + P 2,

∆+(θ) = 1 + κ2a2 cos2 θ,

V+ = (2mr −Q2 − P 2)a2 sin2 θ + U(r2 + a2)(1 + κ2a2).

(3.4)

Moreover, the electromagnetic field is F = dA, and A is the following electromag-
netic 1-form

A = −Qr
U

(
dt− a sin2 θ

E+
dφ
)
− P cos θ

U

(
a dt− r2 + a2

E+
dφ
)
. (3.5)

Let

m± ≜
1√
54

(
(1− κ2a2)±

√(
1− κ2a2

)2 − 12κ2(a2 +Q2 + P 2)

) 1
2

×

(
2(1− κ2a2)2 ∓

√(
1− κ2a2

)2 − 12κ2(a2 +Q2 + P 2)

)
.

(3.6)

According to the discussions in [3], if the parameters κ, a, and m satisfy the fol-
lowing constraints, i.e.

κ2a2 ≤ 7− 4
√
3, m− < m < m+, (3.7)

then the polynomial ∆+(r) of order 4 with respect to r has exactly 4 different real
roots, 3 positive 0 < rc < r− < r+ and 1 negative rn = −(rc + r− + r+). At
this time, we call

(
MKNdS , gKNdS

)
the non-extreme Kerr-Newman-dS spacetime.

The hypersurfaces corresponding to the 3 roots {r = rc}, {r = r−} and {r = r+}
are called the Cauchy horizon, the event horizon and the cosmological horizon,
respectively. In particular, if m = m− then rc = r−, i.e. the Cauchy horizon
coincides with the event horizon, at this point we call

(
MKNdS , gKNdS

)
the extreme

Kerr-Newman-dS spacetime. In this section, we only consider the non-extreme case.

Remark 3.1. r = rc and r = r± are just the coordinate singularities of the metric
gKNdS, and the corresponding hypersurfaces are regular lightlike hypersurfaces [1].
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For convenience, we rerepresent the Kerr-Newman-dS metric in the following
form

gKNdS =− ∆+(r)

U

(
dt− a sin2 θ

E+
dφ
)2

+
U

∆+(r)
dr2 +

U

∆+(θ)
dθ2

+
∆+(θ) sin

2 θ

U

(
a dt− r2 + a2

E+
dφ
)2
.

(3.8)

We require that the solution Ψ of the Dirac equation (3.1) is of the form

Ψ = S+
−1Φ, (3.9)

where

Φ = e−i(ωt+(k+ 1
2 )φ)


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)

 , (3.10)

k ∈ Z and S+ is the following diagonal matrix

S+ = |∆+(r)|
1
4


(r + ia cos θ)

1
2 0 0 0

0 (r + ia cos θ)
1
2 0 0

0 0 (r − ia cos θ)
1
2 0

0 0 0 (r − ia cos θ)
1
2

 .

(3.11)
We can see that S+ vanishes on the event horizon {r = r−}. By the definition in
[10, 11], a wave function Ψ is called time-periodic with period T , if there exists a
real number Ω such that

Ψ(t+ T, r, θ, φ) = e−iΩTΨ(t, r, θ, φ). (3.12)

Hence the Ψ in (3.9) satisfies the above definition.

3.1. Spinorial联联联络络络. In this subsection, we calculate the spinorial connection on
the spinor bundle ΣM in Kerr-Newman-dS spacetime when ∆+(r) > 0.

Denote the frame of the Kerr-Newman-dS metric

e0 =
r2 + a2√
U∆+(r)

(
∂t +

aE+

r2 + a2
∂φ

)
,

e1 =

√
∆+(r)

U
∂r,

e2 =

√
∆+(θ)

U
∂θ,

e3 =
−1√
U∆+(θ)

(
a sin θ∂t +

E+

sin θ
∂φ

)
,

(3.13)
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and the corresponding 1-form

e0 =

√
∆+(r)

U

(
dt− a sin2 θ

E+
dφ

)
,

e1 =

√
U

∆+(r)
dr,

e2 =

√
U

∆+(θ)
dθ,

e3 =

√
∆+(θ)

U
sin θ

(
a dt− r2 + a2

E+
dφ

)
(3.14)

which satisfy

eα (eβ) = δαβ . (3.15)

Therefore, the metric gKNdS can be expressed as

gKNdS = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3. (3.16)

By Cartan’s structure equations [21]

de0 = −ω0
1 ∧ e1 − ω0

2 ∧ e2 − ω0
3 ∧ e3,

de1 = −ω1
0 ∧ e0 − ω1

2 ∧ e2 − ω1
3 ∧ e3,

de2 = −ω2
0 ∧ e0 − ω2

1 ∧ e1 − ω2
3 ∧ e3,

de3 = −ω3
0 ∧ e0 − ω3

1 ∧ e1 − ω3
2 ∧ e2,

(3.17)

the connection 1-forms are as follows:

ω0
1 = C0

10e
0 − 1

2
C3

10e
3, ω0

2 = C0
20e

0 +
1

2
C0

23e
3,

ω0
3 = −1

2
C3

10e
1 − 1

2
C0

23e
2, ω1

2 = −C1
12e

1 − C2
12e

2,

ω1
3 = −1

2
C3

10e
0 − C3

13e
3, ω2

3 =
1

2
C0

23e
0 − C3

23e
3,

(3.18)

and

ω0
1 = −ω01, ω0

2 = −ω02,

ω0
3 = −ω03, ω1

2 = ω12,

ω1
3 = ω13, ω2

3 = ω23,

(3.19)

where

C0
10 = ∂r

√
∆+(r)

U
, C0

20 = −
√
∆+(θ)∂θ

1√
U
,

C1
12 = −

√
∆+(θ)

U
∂θ
√
U, C2

12 =

√
∆+(r)

U
∂r
√
U,

C3
10 = −2ar

√
∆+(θ)U

− 3
2 sin θ, C0

23 = 2a
√

∆+(r)U
− 3

2 cos θ,

C3
13 = −

√
∆+(r)∂r

1√
U
, C3

23 =
1

sin θ
∂θ

(√
∆+(θ)

U
sin θ

)
.

(3.20)
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According to (2.102), when ∆+(r) > 0, the spinorial connections take the following
form:

∇e0Ψ = e0 (Ψ)− 1

2
ω01(e0)e

0 · e1 ·Ψ− 1

2
ω02(e0)e

0 · e2 ·Ψ

− 1

2
ω13(e0)e

1 · e3 ·Ψ− 1

2
ω23(e0)e

2 · e3 ·Ψ,

∇e1Ψ = e1 (Ψ)− 1

2
ω03(e1)e

0 · e3 ·Ψ− 1

2
ω12(e1)e

1 · e2 ·Ψ,

∇e2Ψ = e2 (Ψ)− 1

2
ω03(e2)e

0 · e3 ·Ψ− 1

2
ω12(e2)e

1 · e2 ·Ψ,

∇e3Ψ = e3 (Ψ)− 1

2
ω01(e3)e

0 · e1 ·Ψ− 1

2
ω02(e3)e

0 · e2 ·Ψ

− 1

2
ω13(e3)e

1 · e3 ·Ψ− 1

2
ω23(e3)e

2 · e3 ·Ψ.

(3.21)

We fix the following Clifford representation:

e0 7−→


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , e1 7−→


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

e2 7−→


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , e3 7−→


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 .

(3.22)

then for α = 0, 1, 2, 3, we have

∇eαΨ = eα (Ψ) + Eα ·Ψ, (3.23)

where

E0 = −1

2


C0

10 +
i
2C

0
23 −C0

20 − i
2C

3
10 0 0

−C0
20 − i

2C
3
10 −C0

10 − i
2C

0
23 0 0

0 0 −C0
10 +

i
2C

0
23 C0

20 − i
2C

3
10

0 0 C0
20 − i

2C
3
10 C0

10 − i
2C

0
23

 , (3.24)

E1 = −1

2


0 −C1

12 +
i
2C

3
10 0 0

C1
12 − i

2C
3
10 0 0 0

0 0 0 −C1
12 − i

2C
3
10

0 0 C1
12 +

i
2C

3
10 0

 , (3.25)

E2 = −1

2


0 −C2

12 +
i
2C

0
23 0 0

C2
12 − i

2C
0
23 0 0 0

0 0 0 −C2
12 − i

2C
0
23

0 0 C2
12 +

i
2C

0
23 0

 , (3.26)

E3 = −1

2


− 1

2C
3
10 − iC3

23 − 1
2C

0
23 − iC3

13 0 0
− 1

2C
0
23 − iC3

13
1
2C

3
10 + iC3

23 0 0
0 0 1

2C
3
10 − iC3

23
1
2C

0
23 − iC3

13

0 0 1
2C

0
23 − iC3

13 − 1
2C

3
10 + iC3

23

 .

(3.27)
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3.2. Nonexistence. With the above preparations, we now separate the variables
for the Dirac equation (3.1) when ∆+(r) > 0. Let

S0 ≜


(r + ia cos θ)−

1
2 0 0 0

0 (r + ia cos θ)−
1
2 0 0

0 0 (r − ia cos θ)−
1
2 0

0 0 0 (r − ia cos θ)−
1
2

 ,

(3.28)

ϕ ≜


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)

 , (3.29)

Ẽ0 ≜ −1

2


0 0 −C0

10 +
i
2C

0
23 C0

20 − i
2C

3
10

0 0 C20 − i
2C

3
10 C0

10 − i
2C

0
23

C0
10 +

i
2C

0
23 −C0

20 − i
2C

3
10 0 0

−C0
20 − i

2C
3
10 −C0

10 − i
2C

0
23 0 0

 , (3.30)

Ẽ1 ≜ −1

2


0 0 0 C1

12 +
i
2C

3
10

0 0 C1
12 +

i
2C

3
10 0

0 −C1
12 +

i
2C

3
10 0 0

−C1
12 +

i
2C

3
10 0 0 0

 , (3.31)

Ẽ2 ≜ −1

2


0 0 C2

12 +
i
2C

0
23 0

0 0 0 −C2
12 − i

2C
0
23

−C2
12 +

i
2C

0
23 0 0 0

0 C2
12 − i

2C
0
23 0 0

 , (3.32)

Ẽ3 ≜ −1

2


0 0 i

2C
0
23 + C3

13 − i
2C

3
10 − C3

23

0 0 − i
2C

3
10 − C3

23 − i
2C

0
23 − C3

13
i
2C

0
23 − C3

13 − i
2C

3
10 + C3

23 0 0
− i

2C
3
10 + C3

23 − i
2C

0
23 + C3

13 0 0

 .

(3.33)
Then the Dirac equation (3.1) is equivalent to the following equation

Lϕ = −iλS0ϕ, (3.34)

where the operator L is defined as

L := −e0 · r2 + a2√
u∆+(r)

(
iω +

aE+

r2 + a2
(k +

1

2
)i

)
S0

+ e1 ·
√

∆+(r)

U

(
−1

4
∆+(r)

−1∂r
(
∆+(r)

)
S0 + S0∂r + ∂rS0

)
+ e2 ·

√
∆+(θ)

U
(∂θS0 + S0∂θ)

+ e3 · 1√
U∆+(θ)

(
iaω sin θS0 +

E+

sin θ
(k +

1

2
)iS0

)

+

−Ẽ0 +

3∑
j=1

Ẽj

S0 − e0 · Qri√
U∆+(r)

S0 − e3 · i√
U∆+(θ)

P cot θS0.

(3.35)
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Substituting (3.22) and Ẽα into (3.34), we can deduce that ϕ satisfies the following
equation
iλ(r + ia cos θ)−

1
2 0 D13 L14

0 iλ(r + ia cos θ)−
1
2 L23 D24

D31 L32 iλ(r − ia cos θ)−
1
2 0

L41 D42 0 iλ(r − ia cos θ)−
1
2

ϕ

= 0,

(3.36)

where

D13 =

√
∆+(r)

U
(r − ia cos θ)−

1
2

[
−∂r +

i

∆+(r)

(
ω(r2 + a2) + (k +

1

2
)E+a+Qr

)]
,

D24 =

√
∆+(r)

U
(r − ia cos θ)−

1
2

[
∂r +

i

∆+(r)

(
ω(r2 + a2) + (k +

1

2
)E+a+Qr

)]
,

D31 =

√
∆+(r)

U
(r + ia cos θ)−

1
2

[
∂r +

i

∆+(r)

(
ω(r2 + a2) + (k +

1

2
)E+a+Qr

)]
,

D42 =

√
∆+(r)

U
(r + ia cos θ)−

1
2

[
−∂r +

i

∆+(r)

(
ω(r2 + a2) + (k +

1

2
)E+a+Qr

)]
,

L14 =

√
∆+(θ)

U
(r − ia cos θ)−

1
2

[
∂θ −

1

∆+(θ)

(
aω sin θ +

E+

sin θ
(k +

1

2
)− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)]
,

L23 =

√
∆+(θ)

U
(r − ia cos θ)−

1
2

[
∂θ +

1

∆+(θ)

(
aω sin θ +

E+

sin θ
(k +

1

2
)− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)]
,

L32 =

√
∆+(θ)

U
(r + ia cos θ)−

1
2

[
− ∂θ +

1

∆+(θ)

(
aω sin θ +

E+

sin θ
(k +

1

2
)− P cot θ

)

− 1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)]
,

L41 =

√
∆+(θ)

U
(r + ia cos θ)−

1
2

[
− ∂θ −

1

∆+(θ)

(
aω sin θ +

E+

sin θ
(k +

1

2
)− P cot θ

)

− 1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)]
.

(3.37)

Let

Dr± = ∂r ∓
i

∆+(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E+a

)
, (3.38)
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Lθ± = ∂θ ∓
1

∆+(θ)

(
ωa sin θ +

(k + 1
2 )E+

sin θ
− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)
.

(3.39)

Then by equation (3.36) we know that ϕ satisfies
iλ(r − ia cos θ) 0 −

√
∆+(r)Dr+

√
∆+(θ)Lθ+

0 iλ(r − ia cos θ)
√

∆+(θ)Lθ−
√
∆+(r)Dr−√

∆+(r)Dr− −
√

∆+(θ)Lθ+ iλ(r + ia cos θ) 0

−
√

∆+(θ)Lθ− −
√

∆+(r)Dr+ 0 iλ(r + ia cos θ)

ϕ = 0.

(3.40)
By moving the angular term θ from the above equation to the right hand side, we
can separate the Dirac equation (3.1) for ∆+(r) > 0 into the following equation:

Dϕ = Lϕ, (3.41)

where the matrix operators D and L are

D =


−iλr 0

√
∆+(r)Dr+ 0

0 iλr 0
√

∆+(r)Dr−√
∆+(r)Dr− 0 iλr 0

0
√
∆+(r)Dr+ 0 −iλr

 , (3.42)

and

L =


aλ cos θ 0 0

√
∆+(θ)Lθ+

0 −aλ cos θ −
√

∆+(θ)Lθ− 0

0
√
∆+(θ)Lθ+ aλ cos θ 0

−
√

∆+(θ)Lθ− 0 0 −aλ cos θ

 , (3.43)

respectively.

Next, we discuss how to obtain the radial equations from (3.41).

Since we are considering the nontrivial solution, there exists θ0 ∈ (0, π), such
that Y+(θ0) or Y−(θ0) is non-zero. Without loss of generality, we assume that
Y−(θ0) ̸= 0. According to (3.41), we have

−iλrX− +
√
∆+(r)Dr+X+ =

(
aλ cos θ0Y−(θ0) +

√
∆+(θ0)

(
Lθ+Y+

)∣∣∣
θ0

)
Y−(θ0)

X−,

√
∆+(r)Dr−X− + iλrX+ =

(
aλ cos θ0Y−(θ0) +

√
∆+(θ0)

(
Lθ+Y+

)∣∣∣
θ0

)
Y−(θ0)

X+.

(3.44)

Let

ϵ+ ≜

(
aλ cos θ0Y−(θ0) +

√
∆+(θ0)

(
Lθ+Y+

)∣∣∣
θ0

)
Y−(θ0)

∈ C. (3.45)

Hence, substituting (3.44) into (3.41), it follows that

Dϕ = Lϕ = ϵ+ϕ. (3.46)
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The following lemma states that the constant ϵ+ in (3.45) is actually a real number.

Lemma 3.1. ϵ+ ∈ R.

Proof. Since we are considering the nontrivial solution, then there exists r0 > 0
such that X−(r0) or X+(r0) is non-zero. Without loss of generality, we assume
that X−(r0) ̸= 0.

Since Lϕ = ϵ+ϕ, then

aλ cos θX−(r)Y−(θ) +
√

∆+(θ)Lθ+Y+(θ)X−(r) = ϵ+X−(r)Y−(θ),

−
√
∆+(θ)Lθ−Y−(θ)X−(r)− aλ cos θX−(r)Y+ = ϵ+X−(r)Y+(θ).

(3.47)

By taking r = r0 on both sides of the above equation, it follows that(
aλ cos θ

√
∆+(θ)Lθ+

−
√
∆+(θ)Lθ− −aλ cos θ

)(
Y−
Y+

)
= ϵ+

(
Y−
Y+

)
. (3.48)

Let

L :=

(
aλ cos θ

√
∆+(θ)Lθ+

−
√
∆+(θ)Lθ− −aλ cos θ

)
, Y =

(
Y−
Y+

)
, (3.49)

then the equation (3.48) becomes

LY = ϵ+Y. (3.50)

Since Ψ = S−1
+ Φ, i.e. in the Boyer-Lindquist coordinate we have

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 = e−i(ωt+(k+ 1
2 )φ)S−1

+


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)



= e−i(ωt+(k+ 1
2 )φ)∆+(r)

− 1
4


(r + ia cos θ)−

1
2X−(r)Y−(θ)

(r + ia cos θ)−
1
2X+(r)Y+(θ)

(r − ia cos θ)−
1
2X+(r)Y−(θ)

(r − ia cos θ)−
1
2X−(r)Y+(θ)

 .

(3.51)

Fixing t0 ∈ R, since X−(r0) ̸= 0, then it follows that

Y−(θ) =
eiωt0

X−(r0)
∆+(r0)

1
4 (r + ia cos θ)

1
2Ψ1(t0, r0, θ, φ),

Y+(θ) =
eiωt0

X−(r0)
∆+(r0)

1
4 (r − ia cos θ)

1
2Ψ4(t0, r0, θ, φ),

(3.52)

i.e. Y+, Y−, ∂θY+ and ∂θY− are uniformly continuous on the closed interval [0, π].

For the n-dimensional complex vector space Cn, let ⟨·, ·⟩ denotes the Hermitian
inner product on Cn, i.e. for any x, y ∈ Cn we have

⟨x, y⟩ :=
n∑

i=1

xiȳi. (3.53)
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Hence it follows that

∫
S2

⟨LY, Y ⟩ − ⟨Y,LY ⟩ dS2

=

∫
S2

Y−

[
aλ cos θY− +

√
∆+(θ)

(
∂θ −

1

∆+(θ)

(
ωa sin θ +

(k + 1
2 )E+

sin θ
− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

))
Y+

]
dS2

−
∫
S2

Y+

[
aλ cos θY+ +

√
∆+(θ)

(
∂θ +

1

∆+(θ)

(
ωa sin θ +

(k + 1
2 )E+

sin θ
− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

))
Y−

]
dS2

−
∫
S2

Y−

[
aλ cos θY− +

√
∆+(θ)

(
∂θ −

1

∆+(θ)

(
ωa sin θ +

(k + 1
2 )E+

sin θ
− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

))
Y+

]
dS2

+

∫
S2

Y+

[
aλ cos θY+ +

√
∆+(θ)

(
∂θ +

1

∆+(θ)

(
ωa sin θ +

(k + 1
2 )E+

sin θ
− P cot θ

)

+
1

2

(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

))
Y−

]
dS2,

(3.54)

i.e.

∫
S2

⟨LY, Y ⟩ − ⟨Y,LY ⟩ dS2

=

∫
S2

√
∆+(θ)

(
∂θ
(
Y+Y−

)
+
(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)
Y+Y−

)
dS2

−
∫
S2

√
∆+(θ)

(
∂θ
(
Y−Y+

)
+
(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)
Y−Y+

)
dS2.

(3.55)

Next we show that the first integral after the equal sign of (3.55) is zero, and the
second integral is also equal to zero by a quite similar discussion. In fact, let f be
the function and V be the vector field defined as follows

f ≜
√

∆+(θ), V ≜ Y+Y−∂θ, (3.56)
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then we have

div (fV ) = ∇f · V + fdivV

= (∂θf)Y+Y− + f

(
1

sin θ
∂θ(Y+Y− sin θ)

)
=

(
∂θf +

cos θ

sin θ
f

)
Y+Y− + f∂θ

(
Y+Y−

)
=

(
−κ

2a2 sin θ cos θ√
∆+(θ)

+ cot θ
√

∆+(θ)

)
Y+Y− +

√
∆+(θ)∂θ

(
Y+Y−

)
,

(3.57)

i.e.

div (fV ) =
√
∆+(θ)

(
∂θ
(
Y+Y−

)
+
(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)
Y+Y−

)
. (3.58)

Therefore, by the divergence Theorem, it follows that∫
S2

√
∆+(θ)

(
∂θ
(
Y+Y−

)
+
(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)
Y+Y−

)
dS2

=

∫
S2

div (fV ) dS2

= 0.

(3.59)

Similarly,∫
S2

√
∆+(θ)

(
∂θ
(
Y−Y+

)
+
(
cot θ − κ2a2 sin θ cos θ

∆+(θ)

)
Y−Y+

)
dS2

=

∫
S2

div
(
fY−Y+∂θ

)
dS2

= 0.

(3.60)

Thus, according to (3.55) we have∫
S2

⟨LY, Y ⟩ dS2 =

∫
S2

⟨Y,LY ⟩ dS2, (3.61)

i.e.

ϵ+

∫
S2

|Y |2 dS2 = ϵ+

∫
S2

|Y |2 dS2. (3.62)

Since the solution is nontrivial, we have

ϵ+ = ϵ+, (3.63)

i.e. ϵ+ ∈ R.

Q.E.D.

By (3.46), it follows immediately that the radial equations when ∆+(r) > 0 are

dX+

dr
− i

∆+(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E+a

)
X+ − iλr + ϵ+√

∆+(r)
X− = 0,

dX−

dr
+

i

∆+(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E+a

)
X− +

iλr − ϵ+√
∆+(r)

X+ = 0.

(3.64)
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According to the radial equation (3.64), we have the following Lemma:

Lemma 3.2. If ∆+(r) > 0, then

d

dr

(
|X+|2 − |X−|2

)
= 0. (3.65)

Proof. For a complex number z, let R(z) be the real part of z. If ∆+(r) > 0, then

1

2

d

dr

(
|X+|2 − |X−|2

)
= R

(
dX+

dr
X+ − dX−

dr
X−

)
= R

(( i

∆+(r)

(
ω(r2 + a2) +Qr + (k +

1

2
)E+a

)
X+ +

iλr + ϵ+√
∆+(r)

X−

)
X+

)

− R

(( −i
∆+(r)

(
ω(r2 + a2) +Qr + (k +

1

2
)E+a

)
X− +

−iλr + ϵ+√
∆+(r)

X+

)
X−

)

= R

(
i

∆+(r)

(
ω(r2 + a2) +Qr + (k +

1

2
)E+a

)(
X+X+ +X−X−

))
+ R

(
iλr√
∆+(r)

(
X−X+ +X+X−

))

+ R

(
ϵ+√
∆+(r)

(
X−X+ −X+X−

))
= 0.

(3.66)

Therefore,
d

dr

(
|X+|2 − |X−|2

)
= 0. (3.67)

Q.E.D.

Let r1 ∈ (r−, r+) be some fixed positive constant and M(r1,r+) be the time slice
of non-extreme Kerr-Newman-dS spacetime satisfying {t = constant} and r1 < r <
r+. Moreover, by the similar assumptions as in [11] and [29], we assume that
X+ = 0 or X− = 0 on the horizons can match the solution inside and outside the
horizons.

The following nonexistence theorem is the main result of this section:

Theorem 3.1. Let Ψ be the solution of the Dirac equation(
D+ ieαA(eα) + iλ

)
Ψ = 0 (3.68)

in the exterior region r− < r < r+ of the non-extreme Kerr-Newman-dS spacetime,
and it is of the form

Ψ = S+
−1Φ, (3.69)

where

Φ = e−i(ωt+(k+ 1
2 )φ)


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)

 , (3.70)
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k ∈ Z, and S+ is the following diagonal matrix

S+ = ∆+(r)
1
4


(r + ia cos θ)

1
2 0 0 0

0 (r + ia cos θ)
1
2 0 0

0 0 (r − ia cos θ)
1
2 0

0 0 0 (r − ia cos θ)
1
2

 .

(3.71)
Then for arbitrary (λ, p) ∈ R×

[
2,+∞

)
, if

Ψ ∈ Lp
(
M(r1,r+)

)
, (3.72)

then Ψ ≡ 0.

Proof. Since ∆+(r) > 0 on r− < r < r+, by the radial equation (3.64) we have

∂rΦ = E · Φ, (3.73)

where

E =


−iα1 0 −iβ1 + γ1 0
0 iα1 0 iβ1 + γ1

iβ1 + γ1 0 iα1 0
0 −iβ1 + γ1 0 −iα1

 (3.74)

and

α1 =
1

∆+(r)

(
ω(r2 + a2) +Qr + (k +

1

2
)E+a

)
,

β1 =
λr√
∆+(r)

,

γ1 =
ϵ+√
∆+(r)

.

(3.75)

Thus, we have

∂r
(
|Φ|2

)
= ∂r

(
ΦT · Φ

)
= 2ΦT


0 0 iβ1 + γ1 0
0 0 0 −iβ1 + γ1

−iβ1 + γ1 0 0 0
0 iβ1 + γ1 0 0

Φ ≜ 2ΦTAΦ.

(3.76)

Notice that

A
T
A =


β2
1 + γ21 0 0 0
0 β2

1 + γ21 0 0
0 0 β2

1 + γ21 0
0 0 0 β2

1 + γ21

 , (3.77)

Hence, according to the Cauchy-Schwarz inequality and the compatibility of the
matrix norm, the following estimates can be obtained∣∣∂r (|Φ|2)∣∣ = 2

∣∣〈Φ, AΦ〉∣∣ ≤ 2|Φ| · |AΦ| ≤ 2||A||2 · |Φ|2 ≤ 2
√
β2
1 + γ21 |Φ|2. (3.78)

Next, we claim that there exists a constant C > 0 and r1 ∈ (r−, r+) such that for
any r ∈ (r−, r1], the following inequality holds√

β2
1 + γ21 ≤ C(r − r−)

− 1
2 . (3.79)
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In fact, taking r1 = r−+r+
2 , it follows that

(r − r−)
1
2

√
β2
1 + γ21 = (r − r−)

1
2

√
λ2r2 + ϵ2+
∆+(r)

=

√
λ2r2 + ϵ2+

κ2(r+ − r)(r − rc)(r + r+ + r− + rc)

≤

√
λ2r2+ + ϵ2+

κ2( r+−r−
2 )(r− − rc)r+

≜ C.

(3.80)

Combining with (3.78), for any r− < r ≤ r1, we have∣∣∂r (|Φ|2)∣∣ ≤ C(r − r−)
− 1

2 |Φ|2. (3.81)

Therefore, by the Gronwall Lemma [2], for any r− < s < r ≤ r1, we can deduce
that

|Φ(r)| ≤ |Φ(s)| exp
(
C

∫ r

s

(r − r−)
− 1

2 dr

)
. (3.82)

If |Φ|2 has a zero on r ∈ (r−, r+), then by the existence and uniqueness theorem
for solutions of ordinary differential equations, i.e. Theorem 2.2, we have Φ ≡ 0.
Hence we can assume that |Φ|2 > 0 for r ∈ (r−, r+). Therefore, deviding by |Φ|2
on both sides of (3.81) and integrate, it follows that

−
∫ r

s

(r − r−)
− 1

2 dr ≤ log(|Φ|2)
∣∣∣r
s
≤
∫ r

s

(r − r−)
− 1

2 dr (3.83)

for any r− < s < r ≤ r1. Therefore, there exists a constant C1 > 0 such that for
arbitrary r− < s < r ≤ r1,∣∣log(|Φ(r)|2)− log(|Φ(s)|2)

∣∣ ≤ C1|r − s|, (3.84)

i.e. log(|Φ(r)|) is uniformly continuous on (r−, r1), which implies that |Φ(r)| is
uniformly continuous on (r−, r1). Hence we have |Φ| < ∞ at r = r−. Moreover,
according to (3.82), if |Φ| = 0 at r = r−, then |Φ| is identically equal to zero on
the interval (r−, r1]. On the other hand, by Lemma 3.2, there exists a constant C0

such that

|X+|2 = |X−|2 + C0 (3.85)

on r− < r < r+. Substituting the expression (3.9) of Ψ1, now we have

|Ψ1|2 = Ψ1 ·Ψ1 =
1√
U
∆+(r)

− 1
2

(
|Y−|2 + |Y+|2

)(
C0 + 2|X−|2

)
. (3.86)

If C0 ̸= 0, without loss of generality, we can assume that C0 > 0. Hnece we have

1√
U
∆+(r)

− 1
2

(
|Y+|2 + |Y−|2

)
∈ L

p
2

(
M(r1,r+)

)
, (3.87)

i.e. ∫
M(r1,r+)

(
1√
U
∆+(r)

− 1
2

) p
2

|Y |p
√

UV+ sin2 θ

E2
+∆+(r)∆+(θ)

dr dθ dφ <∞, (3.88)

where

V+ = (2mr −Q2 − P 2)a2 sin2 θ + U(r2 + a2)(1 + κ2a2). (3.89)
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By the following relationships between roots and coefficients

m =
1

2
κ2(r+ + r−)(r+ + rc)(rc + r−),

a2 =
1

κ2
− (r2c + r2− + r2+ + rcr− + rcr+ + r−r+),

Q2 + P 2 = κ2rcr+r−(rc + r+ + r−)− a2,

(3.90)

it follows that

2mr − (Q2 + P 2) = κ2r(r+ + r−)(r+ + rc)(rc + r−)

− κ2rcr+r−(rc + r+ + r−) + a2

= κ2 (r(r+ + r−)(r+ + rc)(rc + r−)− rcr+r−(rc + r+ + r−)) + a2

> κ2
(
rr2+rc + rr2−r+ + rr2cr+ − r−r

2
cr+ − r−r

2
+rc − rcr

2
−r+

)
= κ2

(
(r − r−)r

2
+rc + (r − rc)r

2
−r+ + (r − r−)r

2
cr+

)
> 0

(3.91)

on r− < r1 < r < r+. Thus, for r ∈ (r1, r+), we have√
V+ ≥

√
U(r2 + a2)(1 + κ2a2)

=
√
(r2 + a2 cos2 θ)(r2 + a2)(1 + κ2a2)

≥
√
r4 = r2.

(3.92)

Since there exists a constant C2 > 0 such that |Y |2 = |Y+|2 + |Y−|2 > C2 on
[
π
4 ,

π
2

]
(otherwise Ψ ≡ 0), by (3.88), it follows that∫ r+

r1

∫ π
2

π
4

∫ 2π

0

(
1√
U
∆+(r)

− 1
2

) p
2

r3

√
sin2 θ

∆+(r)∆+(θ)
dr dθ dφ <∞, (3.93)

i.e. ∫ r+

r1

∫ π
2

π
4

∫ 2π

0

r3U− p
4

(
∆+(r)

)− 1
2−

p
4

√
sin2 θ

∆+(θ)
dr dθ dφ <∞. (3.94)

Notice that

r3U− p
4 =

r3

(r2 + a2 cos2 θ)
p
4

≥
r3−

(r2+ + a2)
p
4

> 0 (3.95)

on r ∈ (r1, r+). Therefore, combining with (3.94) we have∫ r+

r1

1

(r+ − r)
p
4+

1
2

dr <∞. (3.96)

However, since p ≥ 2, i.e. p
4 +

1
2 ≥ 1, it is a contraction! Therefore, we have C0 = 0.

Hence

|X+| = |X−| (3.97)

on r ∈ (r−, r+). Since the limit of |Φ| exists at r = r− and

|Φ|2 = 2
(
|Y+|2 + |Y−|2

)
· |X+|2, (3.98)
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we can deduce that the limits of |X+| and |X−| also exist at r = r−. Therefore,
according to the matching conditions at r = r−, it follows that

|X+| = |X−| =
∣∣∣∣ lim
r−<r→r−

X−

∣∣∣∣ = 0. (3.99)

Hence, |Φ| vanishes at r = r−. Then by (3.82), we have Φ ≡ 0 on r ∈ [r−, r+)
which implies that

Ψ ≡ 0. (3.100)

Q.E.D.

4. Extreme Kerr-Newman-dS spacetime

In this section, we consider the necessary conditions for the existence of nontrivial
Lp integrable time-periodic solutions of the Dirac equation(

D+ ieαA(eα) + iλ
)
Ψ = 0 (4.1)

in the extreme Kerr-Newman-dS spacetime. More specifically, we give the equation
relationship between ω, the radius of the event horizon, the angular momentum,
the charge, and the cosmological constant, which generalize the conclusion obtained
by [24] in the extreme Kerr-Newman spacetime (zero cosmological constant).

Definition 4.1. The Kerr-Newman-dS spacetime is called extreme, if the polyno-
mial of order 4 in r

∆+(r) = (r2 + a2)(1− κ2r2)− 2mr +Q2 + P 2 (4.2)

has exactly 4 real roots, i.e. a double positive root r = r−, a simple positive root
r = r+ > r− and a negative root rn = −(2r− + r+). Moreover, m satisfies the
following equality

m =
1√
54

(
(1− κ2a2)−

√(
1− κ2a2

)2 − 12κ2(a2 +Q2 + P 2)

) 1
2

×

(
2(1− κ2a2)2 +

√(
1− κ2a2

)2 − 12κ2(a2 +Q2 + P 2)

)
.

(4.3)

In the extreme circumstances, since r = r− is a double root of ∆+(r), ∆+(r)
− 1

2

is not integrable near r = r−. Thus, the method in Chapter 3 when dealing with
the non-extreme case is not applicable at this time. In this section, we mainly refer
to the method of [24] when dealing with the extreme Kerr-Newman spacetime (zero
cosmological constant) and the necessary conditions for the existence of nontrivial
Lp integrable time-periodic solutions of the Dirac equation (4.1) in the extreme
Kerr-Newman-dS spacetime are given (considered in the exterior region r− < r <
r+ of the spacetime).
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When ∆+(r) > 0, the radial equations are as follows

dX+

dr
− i

∆+(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E+a

)
X+ − iλr + ϵ+√

∆+(r)
X− = 0,

dX−

dr
+

i

∆+(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E+a

)
X− +

iλr − ϵ+√
∆+(r)

X+ = 0,

(4.4)

where ϵ+ ∈ R. Let

X(r) =

(
X+(r)
X−(r)

)
, (4.5)

then the equations (4.4) are

d

dr
X =

(
iα1 iβ1 + γ1

−iβ1 + γ1 −iα1

)
X, (4.6)

where

α1 =
ω(r2 + a2) +Qr +

(
k + 1

2

)
E+a

∆+(r)
,

β1 =
λr√
∆+(r)

,

γ1 =
ϵ+√
∆+(r)

.

(4.7)

Next, we derive the necessary condition for ω in (4.7) if the nontrivial time-
periodic solution

Ψ ∈ Lp
(
M(r−,r+)

)
(4.8)

exists.

Since r− is a double root of ∆+(r), we have

∆+(r) = (r − r−)
2κ2(r+ − r)(r + r+ + 2r−). (4.9)

Let

B(r) ≜ κ2(r+ − r)(r + r+ + 2r−),

τ ≜ ω(r2− + a2) +

(
k +

1

2

)
E+a+ reQ,

µ ≜ 2r−ω +Q.

(4.10)

Therefore,

ω
(
(x+ r−)

2 + a2
)
+Q(x+ r−) +

(
k +

1

2

)
E+a = ωx2 + τ + 2ωr−x+Qx

= τ + µx+ ωx2.
(4.11)

We consider in the exterior region, i.e. r ∈ (r−, r+). For convenience, we define
a new variable x := r − r− and the function

F (x) := X(x+ r−), x ∈ (0, r+ − r−) . (4.12)
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According to (4.6) and (4.11), we have

∂xF1(x) = ∂rX1

∣∣∣
x+r−

= iα1(x+ r−)X1(x+ r−) + (iβ1(x+ r−) + γ1(x+ r−))X2(x+ r−)

= i
(τ + µx+ ωx2)

x2B(x+ r−)
F1(x) +

(
iλ(x+ r−)√
x2B(x+ r−)

+
ϵ+√

x2B(x+ r−)

)
F2(x),

(4.13)

i.e.

∂xF1(x) =

(
iτ

x2B(x+ r−)
+

iµ

xB(x+ r−)
+

iω

B(x+ r−)

)
F1(x)

+

(
ϵ+ + iλr−

x
√
B(x+ r−)

+
iλ√

B(x+ r−)

)
F2(x).

(4.14)

Similarly,

∂xF2(x) = ∂rX2

∣∣∣
x+r−

= (−iβ1(x+ r−) + γ1(x+ r−))X1(x+ r−)− iα1(x+ r−)X2(x+ r−)

=

(
−iλ(x+ r−)√
x2B(x+ r−)

+
ϵ+√

x2B(x+ r−)

)
F1(x)− i

(τ + µx+ ωx2)

x2B(x+ r−)
F2(x)

=

(
ϵ+ − iλr−

x
√
B(x+ r−)

− iλ√
B(x+ r−)

)
F1(x)

+

(
−iτ

x2B(x+ r−)
+

−iµ
xB(x+ r−)

+
−iω

B(x+ r−)

)
F2(x).

(4.15)

In the matrix form, we have that F (x), x ∈ (0, r+ − r−) satisfying the following
equation

∂xF =

 iτ
x2B(x+r−) +

iµ
xB(x+r−) +

iω
B(x+r−)

ϵ++iλr−

x
√

B(x+r−)
+ iλ√

B(x+r−)
ϵ+−iλr−

x
√

B(x+r−)
− iλ√

B(x+r−)

−iτ
x2B(x+r−) +

−iµ
xB(x+r−) +

−iω
B(x+r−)

F.

(4.16)

Now we define the function

W (x) := T · F (x), x ∈ (0, r+ − r−) , (4.17)

where T is the unitary matrix

T =

(
−1√
2

−1√
2

−i√
2

i√
2

)
. (4.18)

According to the properties of the unitary matrix, for any x ∈ (0, r+ − r−), we have

|W (x)| = |F (x)| . (4.19)
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Moreover, by (4.16), we can deduce that

∂xW1(x) = − 1√
2
(∂xF1(x) + ∂xF2(x))

= − 1√
2

[(
iτ

x2B
+

iµ

xB
+
iω

B

)
F1(x) +

(
ϵ+ + iλr−

x
√
B

+
iλ√
B

)
F2(x)

+

(
ϵ+ − iλr−

x
√
B

− iλ√
B

)
F1(x)−

(
iτ

x2B
+

iµ

xB
+
iω

B

)
F2(x)

]
.

(4.20)

Hence, by the definition of W (x) we have

∂xW1(x) =
ϵ+

x
√
B

· −1√
2
(F1(x) + F2(x))−

i√
2

( τ

x2B
+

µ

xB
+
ω

B

)
(F1(x)− F2(x))

− i√
2

(
λr−

x
√
B

+
λ√
B

)
(F2(x)− F1(x))

=
ϵ+

x
√
B
W1(x) +

(
τ

x2B
+

µ

xB
+
ω

B
− λr−

x
√
B

− λ√
B

)
W2(x).

(4.21)

Similarly,

∂xW2(x) =
−i√
2
(∂xF1(x)− ∂xF2(x))

=
−i√
2

[(
iτ

x2B
+

iµ

xB
+
iω

B

)
F1(x) +

(
ϵ+ + iλr−

x
√
B

+
iλ√
B

)
F2(x)

−
(
ϵ+ − iλr−

x
√
B

− iλ√
B

)
F1(x) +

(
iτ

x2B
+

iµ

xB
+
iω

B

)
F2(x)

]

=
−i√
2
· −ϵ+
x
√
B

(F1(x)− F2(x)) +
1√
2

( τ

x2B
+

µ

xB
+
ω

B

)
(F1(x) + F2(x))

+
1√
2

(
λr−

x
√
B

+
λ√
B

)
(F1(x) + F2(x))

=

(
−τ
x2B

+
−µ
xB

+
−ω
B

− λr−

x
√
B

− λ√
B

)
W1(x) +

−ϵ+
x
√
B
W2(x).

(4.22)

Therefore, the following equation

∂xW (x) =

(
ϵ+

x
√
B

τ
x2B + µ

xB + ω
B − λr−

x
√
B
− λ√

B

− τ
x2B − µ

xB − ω
B − λr−

x
√
B
− λ√

B

−ϵ+
x
√
B

)
W (x)

(4.23)

holds for x ∈ (0, r+ − r−), where B ≜ B(x+ r−).

For x ∈
(
0, r+−r−

2

]
, we define a new variable z := 1

x , z ∈
[

2
r+−r−

,+∞
)
. Define

the function

V (z) :=W

(
1

z

)
, z ∈

[ 2

r+ − r−
,+∞

)
. (4.24)
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Thus,

∂zV (z) = − 1

z2
W ′
∣∣∣
1
z

. (4.25)

Substituting (4.23), we have

∂zV (z) = − 1

z2

(
Ẽ11(z) Ẽ12(z)

Ẽ21(z) Ẽ22(z)

)
W

(
1

z

)
, (4.26)

where

Ẽ11(z) =
ϵ+z√

B
(
1
z + r−

) ,
Ẽ12(z) =

τz2

B
(
1
z + r−

) + µz

B
(
1
z + r−

) + ω

B
(
1
z + r−

) − λr−z√
B
(
1
z + r−

)
− λ√

B
(
1
z + r−

) ,
Ẽ21(z) = − τz2

B
(
1
z + r−

) − µz

B
(
1
z + r−

) − ω

B
(
1
z + r−

) − λr−z√
B
(
1
z + r−

)
− λ√

B
(
1
z + r−

) ,
Ẽ22(z) = − ϵ+z√

B
(
1
z + r−

) .

(4.27)

Sorting (4.26) , V (z) should satisfy the following equation

∂zV (z) =

(
E11(z) E12(z)
E21(z) E22(z)

)
V (z), z ∈

[ 2

r+ − r−
,+∞

)
, (4.28)

where

E11(z) =
−ϵ+

z
√
B
(
1
z + r−

) ,
E12(z) = − τ

B
(
1
z + r−

) − µ

zB
(
1
z + r−

) − ω

z2B
(
1
z + r−

) + λr−

z
√
B
(
1
z + r−

)
+

λ

z2
√
B
(
1
z + r−

) ,
E21(z) =

τ

B
(
1
z + r−

) + µ

zB
(
1
z + r−

) + ω

z2B
(
1
z + r−

) + λr−

z
√
B
(
1
z + r−

)
+

λ

z2
√
B
(
1
z + r−

) ,
E22(z) =

ϵ+

z
√
B
(
1
z + r−

) .

(4.29)
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Before proving the main theorem in this section, we need the following lemma
in [24]:

Lemma 4.1. Let a > 0 be a fixed constant. Let Y (z) be the nontrivial solution of
the following ordinary differential equation

d

dz
Y (z) =

(
C +R(z)

)
Y (z), z ∈ [a,+∞), (4.30)

where C and R(z) are 2× 2 matrices satisfying

(i) detC > 0;

(ii) tr
(
C +R(z)

)
≡ 0;

(iii) R(z) → 0 when z → +∞ and R′(z) is integrable on [a,+∞).

Then there exists constant δ > 0, such that

|Y (z)| ≥ δ (4.31)

on [a,+∞).

Let M(r−,r+) be the time slice in the extreme Kerr-Newman-dS spacetime satis-
fying {t = constant} and r− < r < r+. With the above preparations, we can prove
the following theorem:

Theorem 4.1. Let Ψ be a nontrivial solution on the exterior region r− < r < r+
in the extreme Kerr-Newman-dS spacetime of the Dirac equation(

D+ ieαA(eα) + iλ
)
Ψ = 0 (4.32)

which is of the form

Ψ = S+
−1Φ, (4.33)

where

Φ = e−i(ωt+(k+ 1
2 )φ)


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)

 , (4.34)

k ∈ Z and S+ is the following diagonal matrix

S+ = ∆+(r)
1
4


(r + ia cos θ)

1
2 0 0 0

0 (r + ia cos θ)
1
2 0 0

0 0 (r − ia cos θ)
1
2 0

0 0 0 (r − ia cos θ)
1
2

 .

(4.35)
If there exists some p ∈ [1,+∞) such that

Ψ ∈ Lp
(
M(r−,r+)

)
, (4.36)

then ω satisfies the following equality

ω
(
r2− + a2

)
+

(
k +

1

2

)
E+a+ r−Q = 0. (4.37)
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Proof. We adopt the method of proof by contradiction. Assume that

τ = ω
(
r2− + a2

)
+

(
k +

1

2

)
E+a+ r−Q ̸= 0. (4.38)

We rewrite the equation (4.28) as follows

∂zV (z) =
(
C +R(z)

)
V (z), z ∈

[ 2

r+ − r−
,+∞

)
, (4.39)

where

C =

(
0 − τ

B(r−)
τ

B(r−) 0

)
(4.40)

is a constant matrix and the 4 componets of the 2× 2 square matrix R(z) are

R11(z) =
−ϵ+

z
√
B
(
1
z + r−

) ,
R12(z) =

(
τ

B(r−)
− τ

B
(
1
z + r−

))− µ

zB
(
1
z + r−

) − ω

z2B
(
1
z + r−

)
+

λr−

z
√
B
(
1
z + r−

) + λ

z2
√
B
(
1
z + r−

) ,
R21(z) =

(
τ

B
(
1
z + r−

) − τ

B(r−)

)
+

µ

zB
(
1
z + r−

) + ω

z2B
(
1
z + r−

)
+

λr−

z
√
B
(
1
z + r−

) + λ

z2
√
B
(
1
z + r−

) ,
R22(z) =

ϵ+

z
√
B
(
1
z + r−

) .

(4.41)

Since τ ̸= 0, thus

detC = 0− −τ2

B(r−)2
> 0. (4.42)

By the formula (4.41) of Rij(z), it is no hard to see that the following holds

(i) R′
ij(z) is integrable on

[
2

r+−r−
,+∞

)
;

(ii)
Rij(z) −→ 0, 1 ≤ i, j ≤ 2 (4.43)

as z → +∞;

(iii) tr (C +R) = 0.

Since Ψ is nontrivial, hence V ̸= 0 (otherwise we can derive X = 0 and thus Ψ = 0).
Therefore, by Lemma 4.1 (or c.f. Lemma 3.1 in [24]) we know that there exists a
constant δ > 0 such that for all z ∈

[
2

r+−r−
,+∞

)
, we have

|V (z)| ≥ δ > 0, (4.44)

i.e. for all x ∈
(
0, r+−r−

2

]
,

|W (x)| ≥ δ > 0. (4.45)
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Since

|W (x)| = |F (x)|, (4.46)

which means that for any r ∈
(
r−, r− + r+−r−

2

]
, we have

|X(r)| ≥ δ > 0. (4.47)

The integrability condition

Ψ ∈ Lp
(
M(r−,r+)

)
(4.48)

means that∫
M(r−,r+)

(
1√
U
∆+(r)

− 1
2

) p
2

|Y |p|X|p
√

UV+ sin2 θ

E2
+∆+(r)∆+(θ)

dr dθ dφ <∞. (4.49)

Combining (5.50) with the fact that there exists constant C1 > 0 such that |Y |2 =
|Y+|2 + |Y−|2 > C1 on

[
π
4 ,

π
2

]
(otherwise Ψ ≡ 0), we can deduce that there exists

constant C2 > 0 such that∫
M(r−,r+)

|Ψ|pdV > C2

∫ r−+
r+−r−

2

r−

1

(r − r−)
p
2

· 1

r − r−
dr = +∞, (4.50)

which is a contraction! Therefore,

τ = ω
(
r2− + a2

)
+

(
k +

1

2

)
E+a+ r−Q = 0. (4.51)

Q.E.D.

Remark 4.1. ω is called the energy eigenvalue of the Dirac equation (4.1).

Next, we use the equality (4.37) derived above to further study the necessary
conditions for the existence of nontrivial Lp integrable time-periodic solutions of
the Dirac equation (4.1) in the extreme Kerr-Newman-dS spacetime. To do this,
we quote the following lemma in [10]:

Lemma 4.2. For x > 0, let Y (x) be a nontrivial solution of the following equation

d

dx
Y (x) =

[
a(x)

(
0 −1
1 0

)
+ b(x)

(
1 0
0 −1

)
+ c(x)

(
0 1
1 0

)]
Y (x) (4.52)

where a(x), b(x) and c(x) are smooth real functions and a ̸= 0. If near the origin,

b(x)2 + c(x)2 < a(x)2 (4.53)

and the functions b(x)
a(x) and c(x)

a(x) are monotone, then there exists constant δ > 0 such

that

|Y (x)| ≥ δ (4.54)

near the origin.
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Let σ1, σ2, σ3 be the following constants

σ1 := B(r−) > 0,

σ2 := B′(r−),

σ3 :=
ωa2 +

(
k + 1

2

)
E+a

−r−
+ ωr−,

(4.55)

where
B(r) = κ2(r+ − r)(r + r+ + 2r−). (4.56)

Corollary 4.1. Let Ψ be a nontrivial time-periodic solution of the Dirac equation
(4.1) in the extreme Kerr-Newman-dS spacetime which is of the form (4.33). If
there exists p ∈ [1,+∞) such that

Ψ ∈ Lp
(
M(r−,r+)

)
, (4.57)

then at least one of the following three conditions holds:

(i)
(
ϵ2+ + λ2r2−

)
σ1 − σ2

3 ≥ 0;

(ii) σ2σ3 − 2ωσ1 = 0;

(iii) r−σ2σ3 + 2σ1σ3 = 0.

Moreover, if ϵ+ = 0, then at least one of the conditions (i) and (iii) holds; if λ = 0,
then at least one of the conditions (i) and (ii) holds. In particular, if λ = ϵ+ = 0,
then Q = −2ωr−.

Proof. For r ∈ (r−, r+), the radial function X(r) satisfies the following equation

d

dr
X =

(
iα1 iβ1 + γ1

−iβ1 + γ1 −iα1

)
X, (4.58)

where

α1 =

(
ω(r2 + a2) +Qr +

(
k + 1

2

)
E+a

)
∆+(r)

,

β1 =
λr√
∆+(r)

,

γ1 =
ϵ+√
∆+(r)

.

(4.59)

Define the function

H(r) :=

√
2

2

(
−1 −1
−i i

)
X(r), (4.60)

then for any r ∈ (r−, r+), we have

|H(r)| = |X(r)| (4.61)

and

∂rH1(r) = −
√
2

2
(∂rX1(r) + ∂rX2(r))

= −
√
2

2
(iα1X1 + (iβ1 + γ1)X2 + (−iβ1 + γ1)X1 − iα1X2)

= γ1H1(r) + (α1 − β1)H2(r),

(4.62)
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∂rH2(r) =

√
2

2
(−i∂rX1(r) + i∂rX2(r))

=

√
2

2
(α1X1 + β1X2 − iγ1X2 + β1X1 + iγ1X1 + α1X2)

= −γ1H2(r) + (−α1 − β1)H1(r),

(4.63)

i.e.

∂rH(r) =

[
− α1

(
0 −1
1 0

)
+ γ1

(
1 0
0 −1

)
− β1

(
0 1
1 0

)]
H(r). (4.64)

Next, we adopt the method of proof by contradiction. Suppose the conclusion is
not true when λϵ+ ̸= 0, that is, the conditions (i), (ii) and (iii) are not valid. First,
by (4.37) we know that (

ϵ2+ + λ2r2−
)
σ1 − σ2

3 < 0 (4.65)

i.e.,

ϵ2+ + λ2r2− <

(
ωr− +

ωa2+(k+ 1
2 )E+a

−r−

)2

B(r−)
, (4.66)

which means that there exists ϵ > 0 (small enough) such that for r ∈ (r−, r− + ϵ)

ϵ2+ + λ2r2 <

(
ωr +

ωa2+(k+ 1
2 )E+a

−r−

)2

B(r)
=

(r − r−)
2

(
ωr +

ωa2+(k+ 1
2 )E+a

−r−

)2

(r − r−)2B(r)

=

(
ω(r2 + a2) +Qr +

(
k + 1

2

)
E+a

)2
∆+(r)

.

(4.67)

Thus we have

(γ1)
2 + (β1)

2 < (α1)
2 (4.68)

for r ∈ (r−, r− + ϵ).

When condition (ii) is not satisfied, we have(
ωr− +

ωa2 +
(
k + 1

2

)
E+a

−r−

)
· σ2
2
√
σ1

−
√
σ1ω ̸= 0, (4.69)

i.e., (
ωr− +

ωa2 +
(
k + 1

2

)
E+a

−r−

)
·
(√

B(r)
)′ ∣∣∣

r=r−
−
√
B(r−)ω ̸= 0. (4.70)

Therefore, by continuity we can deduce that√
B(r)

ωr +
ωa2+(k+ 1

2 )E+a

−r−

=
(r − r−)

√
B(r)

(r − r−)

(
ωr +

ωa2+(k+ 1
2 )E+a

−r−

)
=

√
∆+(r)

ω(r2 + a2) +Qr +
(
k + 1

2

)
E+a

(4.71)
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is monotone for r ∈ (r−, r−+ϵ), i.e. γ1

−α1
is monotone for r ∈ (r−, r−+ϵ). Similarly,

we have −β1

−α1
is also monotone for r ∈ (r−, r− + ϵ). Therefore, by Lemma 4.2 (or

c.f. Lemma 5.1 in [10]), there exists constant δ > 0, such that for r ∈ (r−, r− + ϵ),

|X(r)| = |H(r)| ≥ δ > 0. (4.72)

Hence, the integrability condition

Ψ ∈ Lp
(
M(r−,r+)

)
(4.73)

implies that there exists constant C > 0 such that

∫
M(r−,r+)

|Ψ|pdV > C

∫ r−+ϵ

r−

1

(r − r−)
p
2

· 1

r − r−
dr = +∞, (4.74)

which is a contraction!

If λϵ+ = 0, by repeating the above discussions we can still deduce that such
contradiction exists, hence completing the proof of the corollary.

Q.E.D.

5. Extreme Kerr-Newman-AdS spacetime

In this section, we consider the necessary conditions for the existence of nontrivial
Lp integrable time-periodic solutions of the Dirac equation(

D+ ieαA(eα) + iλ
)
Ψ = 0 (5.1)

in the extreme Kerr-Newman-AdS spacetime. More specifically, we give the equality
between ω, the radius of the event horizon, the angular momentum, the charge, and
the cosmological constant, which generalize the conclusion obtained by [24] in the
extreme Kerr-Newman spacetime, i.e. from zero cosmological constant to negative
cosmological constant.

The Kerr-Newman-AdS spacetime is an exact solution of the Einstein-Maxwell
equation, which describes a charged rotating black hole with a negative cosmological
constant. Although it contradicts the recent cosmological observations that our real
universe should have a positive cosmological constant, the negative cosmological
constant case and the results in this section may have some physical implications for
the strongly coupled superconductor theory based on the AdS-CFT correspondence,
see [6]. The Kerr-Newman-AdS spacetime is the following manifold

MKNdS = Rt ×R+
r × S2, (5.2)
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equipped with the Lorentzian metric (in Boyer-Lindquist coordinate)

gKNAdS =−
(
1− 2mr −Q2 − P 2

U
+ κ2(r2 + a2 sin2 θ)

)
dt2

+
V−

UE−
2 sin2 θdφ2 +

U

∆−(r)
dr2 +

U

∆−(θ)
dθ2

− a sin2 θ

E−

(2mr −Q2 − P 2

U
− κ2(r2 + a2)

)(
dt dφ+ dφ dt

)
=− ∆−(r)

U

(
dt− a sin2 θ

E−
dφ
)2

+
U

∆−(r)
dr2 +

U

∆−(θ)
dθ2

+
∆−(θ) sin

2 θ

U

(
a dt− r2 + a2

E−
dφ
)2
,

(5.3)

where the constants κ > 0, m > 0, and

U = r2 + a2 cos2 θ,

E− = 1− κ2a2 > 0,

∆−(r) = (r2 + a2)(1 + κ2r2)− 2mr +Q2 + P 2,

∆−(θ) = 1− κ2a2 cos2 θ,

V− = (2mr −Q2 − P 2)a2 sin2 θ + U(r2 + a2)(1− κ2a2).

(5.4)

Moreover, the electromagnetic field is F = dA, where A is the following 1-form

A = −Qr
U

(
dt− a sin2 θ

E−
dφ
)
− P cos θ

U

(
a dt− r2 + a2

E−
dφ
)
. (5.5)

Definition 5.1. The Kerr-Newman-AdS spacetime is called extreme, if the poly-
nomial of order 4 with respect to r

∆−(r) = (r2 + a2)(1 + κ2r2)− 2mr +Q2 + P 2 (5.6)

has a double real root r = re > 0 and 2 imaginary roots. Moreover, m satisfies the
following

m =
1√
54

(√(
1 + a2κ2

)2
+ 12κ2(a2 +Q2 + P 2) + 2a2κ2 + 2

)
×
(√(

1 + a2κ2
)2

+ 12κ2(a2 +Q2 + P 2)− a2κ2 − 1

) 1
2

.

(5.7)

If the solution Ψ of the Dirac equation (5.1) is of the form

Ψ = S−
−1Φ, (5.8)

where

Φ = e−i(ωt+(k+ 1
2 )φ)


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)

 , (5.9)
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k ∈ Z, and S− is the following diagonal matrix

S− = ∆−(r)
1
4


(r + ia cos θ)

1
2 0 0 0

0 (r + ia cos θ)
1
2 0 0

0 0 (r − ia cos θ)
1
2 0

0 0 0 (r − ia cos θ)
1
2

 ,

(5.10)
then by the method of separating variables, the radial equations in the extreme
Kerr-Newman-AdS spacetime when ∆−(r) > 0 are as follows (c.f. [29]):

dX+

dr
− i

∆−(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E−a

)
X+ − iλr + η+√

∆−(r)
X− = 0,

dX−

dr
+

i

∆−(r)

(
ω(r2 + a2) +Qr +

(
k +

1

2

)
E−a

)
X− +

iλr − η+√
∆−(r)

X+ = 0,

(5.11)

where η+ ∈ R. Moreover,

d

dr

(
|X+|2 − |X−|2

)
= 0. (5.12)

Since ∆−(r) has a positive double root r = re, there exists a quadratic irreducible
polynomial B−(r) > 0, satisfying

∆−(r) = (r − re)
2B−(r). (5.13)

Let

τ− ≜ ω(r2e + a2) +

(
k +

1

2

)
E−a+ reQ,

µ− ≜ 2reω +Q,

(5.14)

then we have

ω
(
(x+ re)

2 + a2
)
+Q(x+ re) +

(
k +

1

2

)
E−a = ωx2 + τ− + 2ωrex+Qx

= τ− + µ−x+ ωx2.
(5.15)

We consider the exterior region outside the event horizon, i.e. r ∈ (re,+∞). For
convenience, we define the variable x := r − re and the function

F−(x) := X(x+ re), x ∈ (0,+∞). (5.16)

Let

α2 =

(
ω(r2 + a2) +Qr +

(
k + 1

2

)
E−a

)
∆−(r)

,

β2 =
λr√
∆−(r)

,

γ2 =
η+√
∆−(r)

,

(5.17)
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then according to (5.11) and (5.15), it follows that

∂xF−1(x) = ∂rX1

∣∣∣
x+re

= iα2(x+ re)X1(x+ re) + (iβ2(x+ re) + γ2(x+ re))X2(x+ re)

= i
(τ− + µ−x+ ωx2)

x2B−(x+ re)
F1(x) +

(
iλ(x+ re)√
x2B−(x+ re)

+
η+√

x2B−(x+ re)

)
F2(x),

(5.18)

i.e.

∂xF−1(x) =

(
iτ−

x2B−(x+ re)
+

iµ−

xB−(x+ re)
+

iω

B−(x+ re)

)
F−1(x)

+

(
η+ + iλre

x
√
B−(x+ re)

+
iλ√

B−(x+ re)

)
F−2(x).

(5.19)

In a similar way,

∂xF−2(x) = ∂rX2

∣∣∣
x+re

= (−iβ2(x+ re) + γ2(x+ re))X1(x+ re)− iα2(x+ re)X2(x+ re)

=

(
−iλ(x+ re)√
x2B−(x+ re)

+
η+√

x2B−(x+ re)

)
F−1(x)− i

(τ− + µ−x+ ωx2)

x2B−(x+ re)
F−2(x)

=

(
η+ − iλre

x
√
B−(x+ re)

− iλ√
B−(x+ re)

)
F−1(x)

+

(
−iτ−

x2B−(x+ re)
+

−iµ−

xB−(x+ re)
+

−iω
B−(x+ re)

)
F−2(x).

(5.20)

After rewriting it in the matrix form, for x ∈ (0,+∞), F−(x) satisfies the following
equation

∂xF− =

 iτ−
x2B−(x+re)

+ iµ−
xB−(x+re)

+ iω
B−(x+re)

η++iλre

x
√

B−(x+re)
+ iλ√

B−(x+re)
η+−iλre

x
√

B−(x+re)
− iλ√

B−(x+re)

−iτ−
x2B−(x+re)

+ −iµ−
xB−(x+re)

+ −iω
B−(x+re)

F−.

(5.21)

Now we define the function W−(x) as

W−(x) := T · F−(x), x ∈ (0,+∞), (5.22)

where T is the unitary matrix

T =

(
−1√
2

−1√
2

−i√
2

i√
2

)
, (5.23)

then for any x ∈ (0,+∞) we have

|W−(x)| = |F−(x)| . (5.24)
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Since F− satisfies the equation (5.21), it follows that

∂xW−1(x) = − 1√
2
(∂xF−1 + ∂xF−2)

= − 1√
2

[(
iτ−
x2B−

+
iµ−

xB−
+

iω

B−

)
F−1 +

(
η+ + iλre

x
√
B−

+
iλ√
B−

)
F−2

+

(
η+ − iλre

x
√
B−

− iλ√
B−

)
F−1 −

(
iτ−
x2B−

+
iµ−

xB−
+

iω

B−

)
F−2

]
.

(5.25)

Therefore, substituting (5.22), we obtain that

∂xW−1(x) =
η+

x
√
B−

· −1√
2
(F−1 + F−2)−

i√
2

(
τ−

x2B−
+

µ−

xB−
+

ω

B−

)
(F−1 − F−2)

− i√
2

(
λre

x
√
B−

+
λ√
B−

)
(F−2 − F−1)

=
η+

x
√
B−

W−1(x) +

(
τ−

x2B−
+

µ−

xB−
+

ω

B−
− λre

x
√
B−

− λ√
B−

)
W−2(x).

(5.26)

Similarly,

∂xW−2(x) =
−i√
2
(∂xF−1 − ∂xF−2)

=
−i√
2

[(
iτ−
x2B−

+
iµ−

xB−
+

iω

B−

)
F−1 +

(
η+ + iλre

x
√
B−

+
iλ√
B−

)
F−2

−

(
η+ − iλre

x
√
B−

− iλ√
B−

)
F−1 +

(
iτ−
x2B−

+
iµ−

xB−
+

iω

B−

)
F−2

]

=
−i√
2
· −η+
x
√
B−

(F−1 − F−2) +
1√
2

(
τ−

x2B−
+

µ−

xB−
+

ω

B−

)
(F−1 + F−2)

+
1√
2

(
λre

x
√
B−

+
λ√
B−

)
(F−1 + F−2)

=

(
−τ−
x2B−

+
−µ−

xB−
+

−ω
B−

− λre

x
√
B−

− λ√
B−

)
W−1(x) +

−η+
x
√
B−

W−2(x).

(5.27)

Thus, W−(x) satisfies the following equation

∂xW−(x) =

 η+

x
√

B−

τ−
x2B−

+ µ−
xB−

+ ω
B−

− λre+λx

x
√

B−

− τ−
x2B−

− µ−
xB−

− ω
B−

− λre+λx

x
√

B−

−η+

x
√

B−

W−(x),

(5.28)

where B− ≜ B−(x+ re).
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For x ∈ (0, 1], we take a new variable substitution z := 1
x , z ∈ [1,+∞). Define

the function

V−(z) :=W−

(
1

z

)
, z ∈ [1,+∞). (5.29)

Thus,

∂zV−(z) = − 1

z2
W ′

−

∣∣∣
1
z

. (5.30)

Substituting (5.28), we have

∂zV−(z) = − 1

z2

(
Ẽ−11(z) Ẽ−12(z)

Ẽ−21(z) Ẽ−22(z)

)
W−

(
1

z

)
, (5.31)

where

Ẽ−11(z) =
η+z√

B−
(
1
z + re

) ,
Ẽ−12(z) =

τ−z
2

B−
(
1
z + re

) + µ−z

B−
(
1
z + re

) + ω

B−
(
1
z + re

) − λrez√
B−

(
1
z + re

)
− λ√

B−
(
1
z + re

) ,
Ẽ−21(z) = − τ−z

2

B−
(
1
z + re

) − µ−z

B−
(
1
z + re

) − ω

B−
(
1
z + re

) − λrez√
B−

(
1
z + re

)
− λ√

B−
(
1
z + re

) ,
Ẽ−22(z) = − η+z√

B−
(
1
z + re

) .

(5.32)

By sorting (5.31), the function V−(z) shall satisfy the following equation

∂zV−(z) =

(
E−11(z) E−12(z)
E−21(z) E−22(z)

)
V−(z), z ∈ [1,+∞), (5.33)
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where

E−11(z) =
−η+

z
√
B−

(
1
z + re

) ,
E−12(z) = − τ−

B−
(
1
z + re

) − µ−

zB−
(
1
z + re

) − ω

z2B−
(
1
z + re

) + λre

z
√
B−

(
1
z + re

)
+

λ

z2
√
B−

(
1
z + re

) ,
E−21(z) =

τ−

B−
(
1
z + re

) + µ−

zB−
(
1
z + re

) + ω

z2B−
(
1
z + re

) + λre

z
√
B−

(
1
z + re

)
+

λ

z2
√
B−

(
1
z + re

) ,
E−22(z) =

η+

z
√
B−

(
1
z + re

) .
(5.34)

Let M(re,+∞) be the time slice in the extreme Kerr-Newman-AdS spacetime
satisfying {t = constant} and r > re. With the above preparations, we can now
prove the following necessary condition for ω:

Theorem 5.1. Let Ψ be the nontrivial solution of the Dirac equation(
D+ ieαA(eα) + iλ

)
Ψ = 0 (5.35)

on the exterior region r > re in the extreme Kerr-Newman-AdS spacetime and it is
of the form

Ψ = S−
−1Φ, (5.36)

where

Φ = e−i(ωt+(k+ 1
2 )φ)


X−(r)Y−(θ)
X+(r)Y+(θ)
X+(r)Y−(θ)
X−(r)Y+(θ)

 , (5.37)

k ∈ Z and S− is the following diagonal matrix

S− = ∆−(r)
1
4


(r + ia cos θ)

1
2 0 0 0

0 (r + ia cos θ)
1
2 0 0

0 0 (r − ia cos θ)
1
2 0

0 0 0 (r − ia cos θ)
1
2

 .

(5.38)
If there exists p ∈ [1,+∞) such that

Ψ ∈ Lp
(
M(re,+∞)

)
, (5.39)

then ω satisfies the following equality

ω
(
r2e + a2

)
+

(
k +

1

2

)
E−a+ reQ = 0. (5.40)
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Proof. Assume that

τ− = ω
(
r2e + a2

)
+

(
k +

1

2

)
E−a+ reQ ̸= 0. (5.41)

We rewrite the equation (5.33) as follows

∂zV−(z) =
(
C− +R−(z)

)
V−(z), z ∈ [1,+∞), (5.42)

where

C− =

(
0 − τ

B−(re)
τ

B−(re)
0

)
(5.43)

is a constant matrix and the 4 components of the 2× 2 matrix R−(z) are

R−11(z) =
−η+

z
√
B−

(
1
z + re

) ,
R−12(z) =

(
τ−

B−(re)
− τ−

B−
(
1
z + re

))− µ−

zB−
(
1
z + re

) − ω

z2B−
(
1
z + re

)
+

λre

z
√
B−

(
1
z + re

) + λ

z2
√
B−

(
1
z + re

) ,
R−21(z) =

(
τ−

B−
(
1
z + re

) − τ−
B−(re)

)
+

µ−

zB−
(
1
z + re

) + ω

z2B−
(
1
z + re

)
+

λre

z
√
B−

(
1
z + re

) + λ

z2
√
B−

(
1
z + re

) ,
R−22(z) =

η+

z
√
B−

(
1
z + re

) .

(5.44)

Since τ− ̸= 0, we have

detC− = 0−
−τ2−

B−(re)2
> 0. (5.45)

Moreover, according to the expressions (5.44) of R−ij(z), it is no hard to see that:

(i) R′
−ij

(z) is integrable on [1,+∞)上是可积的;

(ii)

R−ij(z) −→ 0, 1 ≤ i, j ≤ 2 (5.46)

as z → +∞.

(iii) tr (C− +R−) = 0.

Since Ψ is nontrivial, we have V− ̸= 0 (otherwise X = 0 and Ψ = 0). Therefore, by
Lemma 4.1 (or c.f. Lemma 3.1 in [24]), there exists a constant δ− > 0 such that
for all z ∈ [1,+∞),

|V−(z)| ≥ δ− > 0, (5.47)

i.e. for any x ∈ (0, 1] we have

|W−(x)| ≥ δ− > 0. (5.48)
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Since
|W−(x)| = |F−(x)|, (5.49)

we have
|X(r)| ≥ δ− > 0 (5.50)

for r ∈ (re, re + 1].

On the other hand, the integrability condition

Ψ ∈ Lp
(
M(re,+∞)

)
(5.51)

implies that∫
M(re,+∞)

(
1√
U
∆−(r)

− 1
2

) p
2

|Y |p|X|p
√

UV− sin2 θ

E2
−∆−(r)∆−(θ)

dr dθ dφ <∞. (5.52)

Moreover, since there exists a constant C > 0 such that |Y |2 = |Y+|2 + |Y−|2 > C
on [π4 ,

π
2 ] (otherwise Ψ ≡ 0), we have∫ +∞

re

∫ π
2

π
4

∫ 2π

0

(
1√
U
∆−(r)

− 1
2

) p
2

|X|p
√

UV− sin2 θ

E2
−∆−(r)∆−(θ)

dr dθ dφ <∞. (5.53)

Combining with (5.50), we can infer that there exists a constant C1 > 0 such that∫
M(re,+∞)

|Ψ|pdV > C1

∫ re+1

re

1

(r − re)
p
2

· 1

r − re
dr = +∞, (5.54)

which is a contraction! Hence we have

τ− = ω
(
r2e + a2

)
+

(
k +

1

2

)
E−a+ reQ = 0. (5.55)

Q.E.D.

By the similar proceduce as in the proof of Corollary 4.1 in Section 4, combining
with the equality (5.40) obtained in Theorem 5.1, we can further obtain the neces-
sary conditions for the existence of nontrivial Lp integrable time-periodic solutions
of the Dirac equation (5.1) in the extreme Kerr-Newman-AdS spacetime.

Let ζ1, ζ2 and ζ3 be the following constants

ζ1 := B−(re) > 0,

ζ2 := B′
−(re),

ζ3 :=
ωa2 +

(
k + 1

2

)
E−a

−re
+ ωre,

(5.56)

where
(r − re)

2B−(r) = ∆−(r). (5.57)

Corollary 5.1. Let Ψ be a nontrivial time-periodic solution of the Dirac equation
(5.1) taking (5.36). If there exists p ∈ [1,+∞) such that

Ψ ∈ Lp
(
M(re,+∞)

)
, (5.58)

then at least one of the following three conditions holds:

(i)
(
η2+ + λ2r2e

)
ζ1 − ζ23 ≥ 0;
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(ii) ζ2ζ3 − 2ωζ1 = 0;

(iii) reζ2ζ3 + 2ζ1ζ3 = 0.

Moreover, if η+ = 0, then at least one of the conditions (i) and (iii) holds; if λ = 0,
then at least one of the conditions (i) and (ii) holds. In particular, if λ = η+ = 0,
then Q = −2ωre.

6. Conclusion and future work

In this paper, we study the nonexistence of nontrivial time-periodic solutions
of the Dirac equation in Kerr-Newman-(A)dS spacetime. For non-extreme Kerr-
Newman-dS spacetime, we prove that there is no Lp integrable Dirac particle for
arbitrary (λ, p) ∈ R×[2,+∞). For the extreme Kerr-Newman-dS and extreme Kerr-
Newman-AdS spacetime, we prove that if the Dirac equation has a nontrivial Lp

integrable time-periodic solution, then the energy eigenvalue ω and the parameters
of the spacetime should satisfy the following equations

ω(r2− + a2) +

(
k +

1

2

)
E+a+Qr− = 0,

ω(r2e + a2) +

(
k +

1

2

)
E−a+Qre = 0,

(6.1)

respectively. Furthermore, by (6.1), we further show the necessary conditions for the
existence of nontrivial Lp integrable time-periodic solutions of the Dirac equation.
Combining with the existing works, we list the following problems to be further
studied:

(1): If there exists nontrivial Lp integrable time-periodic solution of the Dirac
equation in the exterior region of the non-extreme Kerr-Newman-dS spacetime for
1 < p < 2 ?

(2): If there exists nontrivial normalizable time-periodic Dirac particle with mass
less than or equal to κ

2 ?
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