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On the local solvability and stability of the partial inverse problems
for the non-self-adjoint Sturm-Liouville operators with a discontinu-
ity

Xiao-Chuan Xu1 , Chuan-Fu Yang2 and Natalia Pavlovna Bondarenko3

Abstract. In this work, we study the inverse spectral problems for the Sturm-Liouville oper-
ators on [0, 1] with complex coefficients and a discontinuity at x = a ∈ (0, 1) . Assume that
the potential on (a, 1) and some parameters in the discontinuity and boundary conditions are
given. We recover the potential on (0, a) and the other parameters from the eigenvalues. This
is the so-called partial inverse problem. The local solvability and stability of the partial inverse
problems are obtained for a ∈ (0, 1) , in which the error caused by the given partial potential
is considered. As a by-product, we also obtain two new uniqueness theorems for the partial
inverse problem.

Keywords: Non-self-adjoint Sturm-Liouville operator, inverse spectral problem, discontinuity,
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1. introduction

Consider the following Sturm-Liouville problem

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, a) ∪ (a, 1), (1.1)

with the boundary conditions

y′(0)− hy(0) = 0, y′(1) +Hy(1) = 0, (1.2)

and the jump conditions

y(a+ 0) = a1y(a− 0), y′(a+ 0) = a−1
1 y′(a− 0) + a2y(a− 0), (1.3)

where λ is spectral parameter, the complex-valued potential q belongs to L2(0, 1) , h,H, a2 ∈
C , a1 > 0 and a ∈ (0, 1) .

Inverse spectral problems for the Sturm-Liouville operators consist in recovering the coeffi-
cients of the operators from their spectral characteristics. The basic results of inverse Sturm-
Liouville problems can be found in, e.g., the monographs [13, 24–26]. The Sturm-Liouville
problems with discontinuities inside the interval arise in mathematics, mechanics, radio elec-
tronics, geophysics, and other fields of science and technology. Such problems are usually
connected with discontinuous material properties, for example, the transmission eigenvalue
problem with a discontinuous index of refraction [15], the geophysical models for oscillations of
the Earth [2, 17] and the electromagnetic and elastic inverse problems for media with discon-
tinuous material properties [23].
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The Sturm-Liouville problem (1.1)–(1.3) has attracted much attention of scholars (see, e.g.,
[1, 11, 17, 29–33, 36, 37, 40, 41] and the references therein). In order to uniquely recover the
potential on [0, 1] and all the coefficients, one needs to know two spectra [29, 40, 41]. However,
when partial information on the potential and a part of coefficients are known a priori, then
only a part of two spectra are needed (see, e.g., [17, 30, 32, 33, 36]). In particular, roughly
speaking, if q(x) is known a priori on a half interval, then only one spectrum is sufficient; if
q(x) is given on a subinterval more than one half, then only a part of one spectrum is enough.
An overview of classical and modern results on partial inverse Sturm-Liouville problems is
presented in [6]. Without the jump conditions, the uniqueness for solutions of partial inverse
problems was considered in [10, 14, 18–20] and other works.

In this paper, we consider the local solvability and stability the partial inverse problems
for the problem (1.1)–(1.3) with complex coefficients, in which, generally speaking, a part of
coefficients and q(x) on (a, 1) are known a priori. It is known [37] that the problem (1.1)–(1.3)
is equivalent to the following problem B1 = B(d1, d2, q1, q2, h,H, a1, a2) :

−y′′j (x) + qj(x)yj(x) = λyj(x), 0 < x < dj, j = 1, 2, (1.4)

y′1(0)− hy1(0) = 0, y′2(0)−Hy2(0) = 0, (1.5)

y1(d1)− a−1
1 y2(d2) = 0, y′1(d1) + [a1y

′
2(d2) + a2y2(d2)] = 0, (1.6)

where d1 = a , d2 = 1− a , q1(x) = q(x) for x ∈ (0, d1) and q2(x) = q(1− x) for x ∈ (0, d2) .
Since the coefficients are complex, the problem (1.1)–(1.3) is non-self-adjoint. Thus, there

may exist multiple and non-real eigenvalues. The asymptotic behavior of the eigenvalues is the
same as that in the self-adjoint case. So, the appearance of non-real eigenvalues cause almost no
difficulty in studying the inverse problems. However, the appearance of multiple eigenvalues will
cause the main difficulties in the non-self-adjoint cases when we study the inverse problems,
especially, for the local solvability and stability (see, e.g., [3–5, 7, 8, 22, 27]). In order to
overcome the difficulties caused by multiple eigenvalues, we shall develop the methods and
techniques of [3–5, 7, 22, 27]. Let {λ1,n}n≥0 (counted with multiplicities) be the eigenvalues of
the problem B1 .

Inverse Problem 1. Assume that a ∈ (0, 1/2] , and let I be the subset of N0 := N ∪ {0} .
Given {λ1,n}n∈I , a1 , a2 , H , ω1 := h + 1

2

∫ a

0
q1(x)dx and q2 , find q1 and h .

In the self-adjoint case, the local solvability and stability of Inverse Problem 1 are proved
in [37], where, in particular, if a = 1/2 then I = N0 and the coefficients a2, ω1 can be
recovered from the spectrum. In this paper, we consider the local solvability and stability for
the non-self-adjoint case. Moreover, we shall also study the case a ∈ (1/2, 1) . It is known that
if a ∈ (1/2, 1) and q(x) on (a, 1) is given, then one spectrum is not sufficient to uniquely
determine the potential on the whole interval. One should add some other eigenvalues. Consider
the problem B0 = B(d1, d2, q1, q2, h,∞, a1, a2) which means that y′(1)+Hy(1) = 0 is replaced
by y(1) = 0 . Let {λ0,n}n≥0 (counted with multiplicities) be the eigenvalues of the problem
B0 . Let us consider the following Inverse Problem 2.

Inverse Problem 2. Let Ii ( i = 0, 1 ) the subsets of N0 . Given {λi,n}n∈Ii (i = 0, 1) , a1,
a2 , H , ω1 := h + 1

2

∫ a

0
q1(x)dx and q2 , find q1 and h .

Note that, since a ∈ (0, 1) in Inverse Problem 2, it includes Inverse Problem 1 as a special
case. For example, if a ∈ (0, 1/2] , then we can put I1 = I and I0 = ∅ . The local solvability
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of Inverse Problems 2 depends on the index sets Ii ( i = 0, 1 ). We will give the descriptions
of these index sets in the corresponding main theorems. For convenience of formulation, we
shall renumber the sequences {λi,n}n∈Ii by letting {µi,k}k≥0 = {λi,n}n∈Ii with |µi,k+1| ≥ |µi,k| ,
i = 0, 1 . Our results can also be generalized into the partial inverse problems from parts of
N + 1 spectra of the problems with different boundary conditions at x = 1 , where N ≥ 1 .
But the proportion of the needed eigenvalues should remain the same (see Remark 3).

Another motivation of this paper is that, in the local solvability and stability, the error caused
by the given potential q2 and the parameter H should be considered. In [37], the authors
gave the local solvability and stability for Inverse Problem 1 by assuming that only the given
subspectrum contains ε -error and the given potential q2 and the parameter H contain no
error. However, as one of the input data, the given potential q2 or the parameter H may also
contain ε -error. Therefore, for Inverse Problem 1, it is natural to consider the local solvability
and stability with the subspectrum, the potential q2 and H containing ε -error. For Inverse
Problem 2, since partial eigenvalues of the problem B0 are a part of the input data, the given
parameter H is assumed to contain no error, and the subspectra and the potential q2 contain
ε -error.

Let us discuss the essential novelties of our results comparing with the previous studies. First,
consider the case of real-valued potential q1(x) and simple eigenvalues {λi,n} . In this special
case, Inverse Problem 2 can be treated as the problem of Horváth [19] (see Remark 2), which
consists in recovering q1 and h from the eigenvalues {λn}n≥1 of the following problems

−y′′ + q1(x)y = λy, y′(0)− hy(0) = 0, y(d1) cosαn + y′(d1) sinαn = 0, n ≥ 1. (1.7)

We mean that the eigenvalues are taken from different spectra: λn ∈ σ(q1, h1, αn) , n ≥ 1 ,
where σ(q1, h, αn) is the spectrum of (1.7). In the case of h1 = ∞ (i.e. the Dirichlet boundary
condition at x = 0 ), Horváth [19] gave a necessary and sufficient condition for the uniqueness
of the inverse problem solution. In the case of h ∈ R , Horváth has separately obtained
a necessary condition and a sufficient one for the unique determination of q1 and h . The
necessary and sufficient conditions of [19] are formulated in terms of the closedness for some
exponential systems. Latter on, in the case of h = ∞ , Horváth and Kiss studied the stability
for the self-adjoint case in [21] and for the non-self-adjoint case in [22]. However, in this paper,
we investigate the local solvability of the inverse problem, which was not considered by Horváth
and Kiss. Moreover, in the case of multiple eigenvalues, our problem statement is different from
[19, 21, 22], so it requires a separate investigation. Also, we obtain a necessary and sufficient
condition for the uniqueness of solution for Inverse Problem 2 in terms of the completeness for
a sequence of two-element vector functions. This condition is different from that in [19].

Second, the boundary value problem (1.4)–(1.6) can be represented in the following form:

−y′′(x) + q1(x)y(x) = λy(x), 0 < x < d1, (1.8)

y′(0)− hy(0) = 0, f1(λ)y
′(d1) + f2(λ)y(d1) = 0, (1.9)

where f1(λ) and f2(λ) are some entire analytic functions, which are constructed by the known
data q2(x) , H , a1 , a2 (see Remark 2 for details). Thus, Inverse Problem 1 is reduced to the
recovery of q1 and h from a subspectrum of (1.8)–(1.9), while the entire functions f1(λ) and
f2(λ) are known a priori. The inverse spectral theory for the problems of form (1.8)–(1.9) has
been created in [3–5, 38] and subsequent studies (see the overview [6]). In particular, the case
of multiple eigenvalues was considered and local solvability and stability of inverse problems
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were proved. However, Inverse Problem 2 cannot be represented as (1.8)–(1.9), since it implies
different functions f i

1(λ) and f i
2(λ) for the problems Bi with i = 0 and i = 1 . Therefore,

the methods of [4, 5, 38] cannot be directly applied here. Moreover, an important feature of
our local solvability and stability analysis is that not only eigenvalue perturbations but also
perturbations of q2 and H are taken into account. In the papers [4, 5, 38] the functions f1(λ)
and f2(λ) remain fixed, so the results of [4, 5, 38] do not give us an opportunity to study
perturbations of q2 and H . It is worth mentioning that, for the case without discontinuity
( a1 = 1 , a2 = 0 , h = H = ∞ , a = 1/2 ), the local solvability and stability of the inverse
problem for the first time was proved in [3], during the investigation of the inverse transmission
eigenvalue problem. In [3], perturbations of the both subspectrum and the known potential were
considered in the case of multiple eigenvalues. Nevertheless, the presence of the discontinuity
causes additional difficulties and so requires a separate investigation. In this paper, we develop
the ideas of the previous studies [3–5, 22, 38], since we cannot directly apply their methods to
our problems.

The paper is organized as follows. In Section 2, we derive the main equations and introduce
the main results in this paper, including two uniqueness theorems, a reconstruction algorithm,
a theorem of the local solvability and stability, and two corollaries. In Section 3, we study the
asymptotic behavior of the vector functional sequence in the main equations. In Section 4, we
provide the proofs of the uniqueness theorems for Inverse Problem 2. In Section 5, we prove
the theorem for the local solvability and stability of Inverse Problems 1 and 2. In particular,
we first consider the general case a ∈ (0, 1) , namely, Inverse Problem 2, in which the given q2
contains ε -error. Then, we consider the case a ∈ (0, 1/2] , namely, Inverse Problem 1, in which
the given H and q2 contain ε -error. In Appendix, some auxiliary propositions of complex
and functional analyses are provided.

2. Main results

In this section, we first derive the main equations for solving Inverse Problems 1 and 2, and
then present the main results of this paper.

Let ϕ(x, λ) be the solution of (1.4) for j = 1 satisfying the initial conditions ϕ(0, λ) =
1, ϕ′(0, λ) = h . Let ψ0(x, λ) and ψ1(x, λ) be the solutions of (1.4) for j = 2 satisfying the
initial conditions

ψ0(0, λ) = 0, ψ′
0(0, λ) = 1, ψ1(0, λ) = 1, ψ′

1(0, λ) = H, (2.1)

respectively. Then, in view of (1.6), the eigenvalues {λi,n}n≥0 of the problem Bi ( i = 0, 1 ),
respectively, coincide with the zeros of the characteristic functions

∆i(λ) =

∣

∣

∣

∣

ϕ(a, λ) −a−1
1 ψi(d2, λ)

ϕ′(a, λ) a1ψ
′
i(d2, λ) + a2ψi(d2, λ)

∣

∣

∣

∣

:=

∣

∣

∣

∣

ϕ0(λ) gi,0(λ)
ϕ1(λ) gi,1(λ)

∣

∣

∣

∣

. (2.2)

Let λ = ρ2 . It is known [25, 26] that ϕ(x, λ) has the expression

ϕ(x, λ) = cos ρx+

∫ x

0

K(x, t) cos ρtdt, 0 ≤ x ≤ a, (2.3)
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where the kernel K(x, t) is a function of two variables, which has the first partial derivatives
Kx(x, ·), Kt(x, ·) ∈ L2(0, x) , and

ω1 = K(a, a) = h+
1

2

∫ a

0

q1(t)dt. (2.4)

The relation (2.3) together with (2.4) yield

ϕ0(λ) = cos ρa + ω1
sin ρa

ρ
−
∫ a

0

K1(t)
sin ρt

ρ
dt, (2.5)

ϕ1(λ) = −ρ sin ρa + ω1 cos ρa +

∫ a

0

K2(t) cos ρtdt, (2.6)

where K1(t) := Kt(a, t) and K2(t) := Kx(a, t) . The set {K1(t), K2(t), ω1} is called the
Cauchy data for q1 and h .

Substituting (2.5) and (2.6) into (2.2), we get

−∆i(λ) =ρ
−1gi,1(λ)

∫ a

0

K1(t) sin ρtdt + gi,0(λ)

∫ a

0

K2(t) cos ρtdt

−
[

cos ρa+
ω1 sin ρa

ρ

]

gi,1(λ) + gi,0(λ) [ω1 cos ρa− ρ sin ρa] . (2.7)

Introduce the Hilbert space of vector-valued functions H := L2(0, a)× L2(0, a) with the inner
product 〈·, ·〉 defined by

〈h,p〉 =
∫ a

0

h1(x)p1(x) + h2(x)p2(x)dx, ∀h := (h1, h2),p := (p1, p2) ∈ H. (2.8)

Rewrite (2.7) as

−∆i(λ) = 〈K(·),Ui(·, λ)〉 − fi(λ), i = 0, 1, (2.9)

where

fi(λ) :=

[

cos ρa + ω1
sin ρa

ρ

]

gi,1(λ)− gi,0(λ) [ω1 cos ρa− ρ sin ρa] , (2.10)

Ui(t, λ) := (Ui,1(t, λ), Ui,2(t, λ)), K(t) := (K1(t), K2(t)), (2.11)

Ui,1(t, λ) := gi,1(λ)s(t, λ), s(t, λ) :=
sin ρt

ρ
, Ui,2(t, λ) := gi,0(λ)c(t, λ), c(t, λ) := cos ρt.

(2.12)
Recall {µi,k}k≥0 = {λi,n}n∈Ii , i = 0, 1 . Let mi

n be the multiplicity of the value µi,n in the
sequence {µi,n}n≥0 . Without loss of generality, assume µi,n = µi,n+1 = · · · = µi,n+mi

n−1 . Note
that mi

n = 1 for n ≥ ni for some large ni . Consider the set

Si := {n ∈ N : µi,n 6= µi,n−1, n ≥ 1} ∪ {0}, i = 0, 1.

It is obvious that the sequence {µi,n}n∈Si
consists of elements of {µi,n}n≥0 being taken only

once. Denote

f 〈ν〉(λ) :=
1

ν!

dνf(λ)

dλν
, P 〈ν〉(t, λ) :=

1

ν!

∂νP (t, λ)

∂λν
.

Define

Ui
n+ν(t) := U

〈ν〉
i (t, µi,n), n ∈ Si, ν = 0, mi

n − 1, i = 0, 1, (2.13)
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and

τ in+ν := f
〈ν〉
i (µi,n), n ∈ Si, ν = 0, mi

n − 1, i = 0, 1. (2.14)

Together with (2.9)–(2.14), we get the main equations of Inverse Problem 2
〈

K(·),Ui
n(·)
〉

= τ in, n ≥ 0, i = 0, 1. (2.15)

Let us formulate the uniqueness results for the solution of Inverse Problem 2. Firstly, using
the given data a1, a2 , H and q2 , we can uniquely recover the functions Ui(t, λ) ( i = 0, 1 )
with the help of (2.2), (2.11), and (2.12). Then, using the given eigenvalues {µi,n}n≥0,i=0,1 , we
can construct the system of functions {Ui

n(t)}n≥0,i=0,1 by (2.13).

Theorem 1 (Uniqueness 1). Assume that Inverse Problem 2 is solvable. Then the solution
of Inverse Problem 2 is unique if and only if the system {Ui

n(t)}n≥0,i=0,1 defined in (2.13) is
complete in H .

In Theorem 1, the condition depends on the system of functions {Ui
n(t)}n≥0,i=0,1 which,

visually, relies on not only the subspectra but also the data a1, a2, H and q2 . In the following
uniqueness theorem, the condition, visually, only depends on the subspectra. Denote

cin+ν(t) := c〈ν〉(t, µi,n) =
1

ν!

∂ν cos ρt

∂λν

∣

∣

∣

∣

λ=µi,n

, n ∈ Si, ν = 0, mi
n − 1, i = 0, 1. (2.16)

Theorem 2 (Uniqueness 2). Assume that Inverse Problem 2 is solvable. The solution of Inverse
Problem 2 is unique if the system {cin(t)}n≥0,i=0,1 defined in (2.16) is complete in L2(0, 2a) .

Remark 1. Theorem 1 gives the necessary and sufficient condition for the uniqueness of the
solution of Inverse Problem 2. Theorem 2 only gives the sufficient condition. From Lemmas 1
and 2 in Section 4, we know that the condition in Theorem 2 implies the condition in Theorem
1. However, the condition in Theorem 2 seems easier to verify in some special cases (see the
proof of Corollary 2). In general, if {Ui

n(t)}n≥0,i=0,1 is complete in H , it not clear whether
{cin(t)}n≥0,i=0,1 is complete in L2(0, 2a) .

Remark 2. The eigenvalues {λn}n≥1 and coefficients cosαn and sinαn in (1.7), and the
entire functions f1(λ) and f2(λ) in (1.9) can be constructed from the given data in Inverse
Problems 2 and 1, respectively. Indeed, in (1.7), {λn}n≥1 = {µ0,k, µ1,k}k≥0 and {αn}n≥1 =
{α0,k, α1,k}k≥0 , where αi,k ( i = 0, 1 ) satisfy

cosαi,k =
gi,1(µi,k)

√

gi,1(µi,k)2 + gi,0(µi,k)2
, sinαi,k =

−gi,0(µi,k)
√

gi,1(µi,k)2 + gi,0(µi,k)2
;

and in (1.9),

f1(λ) = g1,1(λ), f2(λ) = −g1,0(λ).
where the entire functions gi,j(λ) are defined in (2.2). In view of this observation, for the real-
valued potential q1 and simple eigenvalues, Theorem 2 can be viewed as a variant of Theorem
1.2 in [19]. Furthermore, for Inverse Problem 1, Theorem 2 can be obtained from Theorem 2.1
in [38]. However, for Inverse Problem 2 in the non-self-adjoint case with possible eigenvalue
multiplicities, Theorem 2 does not follow from previously known results.
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Remark 3. The above results can be easily generalized to the partial inverse problems from parts
of N+1 subspectra, where N ≥ 1 . Indeed, consider the problems Bi = B(d1, d2, q1, q2, h,Hi, a1, a2)
(i = 0, N) with H0 = ∞, H1 = H and Hl 6= Hj for l 6= j . For i = 0, N , let {µi,n}n≥0 be a
subspectrum of the corresponding problem Bi . Similarly to the definitions of Ui

n(t) and cin(t)
for i = 0, 1 , we can also define Ui

n(t) and cin(t) for i = 2, N by {µi,n}n≥0,i=2,N . Then we
have the generalized result: q1 and h are uniquely determined by a1 , a2 , q2 , ω1 , Hi and
{µi,n}n≥0 , i = 0, N , if and only if {Ui

n(t)}n≥0,i=0,N is complete in H (or if {cin(t)}n≥0,i=0,N

is complete in L2(0, 2a) ).

The next result is the algorithm for recovering the solution of Inverse Problem 2. It is known
that, in the self-adjoint case, one can use the Cauchy data {K1(t), K2(t), ω1} to recover q1 and
h directly (see [28]). In the non-self-adjoint case, one can first use the Cauchy data to recover
the functions ϕ0(λ) and ϕ1(λ) defined in (2.5) and (2.6), and then recover the complex-valued
potential q1 and h by the method of spectral mapping (see, e.g., [8, 12]). Therefore, we only
need to recover the Cauchy data. The solution of Inverse Problem 2 can be found by the
following algorithm under the assumption that {Ui

n(t)}n≥0,i=0,1 defined in (2.13) is a basis in
H .

Algorithm 1. Let {µi,n}n≥0 (i = 0, 1) be the given subspectra of the corresponding problems
Bi . We have to find q1 and h from a1, a2 , H , ω1 , and q2 .

(1) Find the solutions ψi(x, λ) ( i = 0, 1 ) of equation (1.4) with j = 2 under the initial
conditions (2.1) and then determine the functions gi,j by (2.2) from q2, H, a1 , and a2 ,
where i = 0, 1 and j = 0, 1 .

(2) Construct the basis {Ui
n}n≥0 (i = 0, 1) by (2.11), (2.12), and (2.13).

(3) Construct {τ in}n≥0 (i = 0, 1) by (2.10) and (2.14).
(4) Determine K = (K1, K2) ∈ H by the following formula

K(t) =
∑

n≥0

τ 0nU
0∗
n (t) +

∑

n≥0

τ 1nU
1∗
n (t),

where {U0∗
n (t)}n≥0∪{U1∗

n (t)}n≥0 is the basis, biorthonormal to {U0
n(t)}n≥0∪{U1

n(t)}n≥0 .
(5) Construct the functions ϕ0(λ) and ϕ1(λ) by (2.5) and (2.6).
(6) Recover the potential q1 and h from ϕ0(λ) and ϕ1(λ) by using the method of spectral

mappings (see [8, 12]).

The next result is a theorem on the local solvability and stability of Inverse Problem 2. This
theorem takes the error caused by the given partial potential into account.

Theorem 3. For i = 0, 1 , let {λi,n}n∈Ii(= {µi,k}k≥0) be a subspectrum of the corresponding
problem Bi = B(d1, d2, q1, q2, h,Hi, a1, a2) with the complex-valued potentials qj ∈ L2(0, dj), h,H1,

a2 ∈ C, a1 > 0 and H0 = ∞ . Suppose that the system of functions {
√

(|µ0,n|+ 1)U0
n(t)}n≥0 ∪

{U1
n(t)}n≥0 constructed in (2.13) is a Riesz basis in H . Then there exists ε > 0 (depending on

the problem B1 ) such that, for arbitrary sequences {λ̃i,n}n∈Ii and any function q̃2 ∈ L2(0, d2)
satisfying

Λ :=

√

∑

n∈I0

|λ0,n − λ̃0,n|2 +
∑

n∈I1

|λ1,n − λ̃1,n|2 ≤ ε, (2.17)
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and
∫ d2

0

q̃2(t)dt =

∫ d2

0

q2(t)dt, Q := ‖q̃2 − q2‖L2(0,d2) ≤ ε, (2.18)

respectively, there exist unique q̃1 ∈ L2(0, d1) and h̃ ∈ C such that h̃ + 1
2

∫ d1
0
q̃1(x)dx = ω1

and, for i = 0, 1 , {λ̃i,n}n∈Ii is a subspectrum of the problem B̃i := B(d1, d2, q̃1, q̃2, h̃, Hi, a1, a2) .
Moreover,

‖q̃1 − q1‖L2(0,d1) ≤ C(Λ +Q), |h̃− h| ≤ C(Λ +Q), (2.19)

where C > 0 depends only on the problem B1 .

Remark 4. From Lemma 3 in Section 4, we know that, in Theorem 3, the condition that
the system of functions {

√

(|µ0,n|+ 1)U0
n(t)}n≥0∪{U1

n(t)}n≥0 constructed in (2.13) is a Riesz
basis in H , can be replaced by the stronger but easier to verify condition that the system
{cin(t)}n≥0,i=0,1 defined in (2.16) is a Riesz basis in L2(0, 2a) .

As a corollary, we also give the local solvability and stability result for Inverse Problem 1, in
which the error caused by q2 and H is taken into account.

Corollary 1. Assume that a ∈ (0, 1/2] . Let {λ1,n}n∈I(= {µ1,k}k≥0) be a subspectrum of the
problem B1 = B(d1, d2, q1, q2, h,H, a1, a2) with complex-valued potentials qj ∈ L2(0, dj), h,H,
a2 ∈ C and a1 > 0 . Suppose that the system of functions {U1

n(t)}n≥0 constructed in (2.13) is
a Riesz basis in H . Then, there exists ε > 0 (depending on the problem B1 ) such that, for

arbitrary sequence {λ̃1,n}n∈I , any q̃2 ∈ L2(0, d2) and H̃ ∈ C satisfying

Λ1 :=

√

∑

n∈I

|λ1,n − λ̃1,n|2 ≤ ε, (2.20)

and

H̃ +
1

2

∫ d2

0

q̃2(t)dt = H +
1

2

∫ d2

0

q2(t)dt, Q1 := |H̃ −H|+ ‖q̃2 − q2‖L2(0,d2) ≤ ε, (2.21)

respectively, there exist unique q̃1 ∈ L2(0, d1) and h̃ ∈ C such that h̃ + 1
2

∫ d1
0
q̃1(x)dx = ω1 ,

and {λ̃1,n}n∈I is a subspectrum of the problem B̃1 := B(d1, d2, q̃1, q̃2, h̃, H̃, a1, a2) . Moreover,

‖q̃1 − q1‖L2(0,d1) ≤ C(Λ1 +Q1), |h̃− h| ≤ C(Λ1 +Q1), (2.22)

where C > 0 depends only on the problem B1 .

Furthermore, in the case of the half inverse problem (i.e., d = 1/2 ), we do not need to require
the Riesz-basis property of {U1

n(t)}n≥0 and so obtain the following result.

Corollary 2. Assume that a = 1/2 . Let {λ1,n}n≥0 be the spectrum of the problem B1 =
B(1

2
, 1
2
, q1, q2, h,H, a1, a2) with complex-valued potentials qj ∈ L2(0, 1/2), h,H, a2 ∈ C and a1 >

0 . Then, there exists ε > 0 (depending on the problem B1 ) such that, for an arbitrary sequence

{λ̃1,n}n≥0 , any q̃2 ∈ L2(0, 1/2) and H̃ ∈ C satisfying

Λ1 :=

√

∑

n≥0

|λ1,n − λ̃1,n|2 ≤ ε,
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and

H̃ +
1

2

∫ 1

2

0

q̃2(t)dt = H +
1

2

∫ 1

2

0

q2(t)dt, Q1 := |H̃ −H|+ ‖q̃2 − q2‖L2(0,1/2) ≤ ε,

respectively, there exist unique q̃1 ∈ L2(0, 1
2
) and h̃ ∈ C such that h̃+ 1

2

∫ 1

2

0
q̃1(x)dx = ω1 , and

{λ̃1,n}n≥0 is the spectrum of the problem B̃1 := B(1
2
, 1
2
, q̃1, q̃2, h̃, H̃, a1, a2) . Moreover,

‖q̃1 − q1‖L2(0,1/2) ≤ C(Λ1 +Q1), |h̃− h| ≤ C(Λ1 +Q1),

where C > 0 depends only on the problem B1 .

Remark 5. Under the requirement Q1 = 0 , Corollaries 1 and 2 can be obtained by the method
of [38].

3. Some asymptotic estimates

In this section, we investigate the asymptotic behavior of the functions {Ui
n(t)}n≥0,i=0,1

defined in (2.13).
Note that ψ1(d2, λ) and ψ′

1(d2, λ) have expressions similar to (2.5) and (2.6) with a and

ω1 replaced by d2 and ω2 := H + 1
2

∫ d2
0
q2(t)dt , respectively. Then, we obtain

g1,0(λ) = −a−1
1 cos ρd2 − a−1

1 ω2
sin ρd2
ρ

+
1

ρ

∫ d2

−d2

P1,0(t)e
iρtdt, (3.1)

g1,1(λ) = −a1ρ sin ρd2 + (a1ω2 + a2)cos ρd2 +

∫ d2

−d2

P1,1(t)e
iρtdt, (3.2)

where P1,j(·) ∈ L2(−d2, d2) . Using the transformation operator expression for ψ0(x, λ) , we
also have

g0,0(λ) = −a−1
1

sin ρd2
ρ

+ a−1
1 ω0

cos ρd2
ρ2

+
1

ρ2

∫ d2

−d2

P0,0(t)e
iρtdt, (3.3)

g0,1(λ) = a1 cos ρd2 + (a1ω0 + a2)
sin ρd2
ρ

+
1

ρ

∫ d2

−d2

P0,1(t)e
iρtdt, (3.4)

where P0,j ∈ L2(−d2, d2) and ω0 =
1
2

∫ d2
0
q2(t)dt . Substituting (2.5)–(2.6) and (3.1)–(3.4) into

(2.2) and using the Paley-Wiener Theorem (see, e.g., [39, p.101]), we calculate

∆1(λ) = ∆0
1(λ) + η+ cos ρ+ η− cos ρ(2a− 1) +

∫ 1

−1

P1(t)e
iρtdt, (3.5)

∆0(λ) = ∆0
0(λ) + ζ+

sin ρ

ρ
+ ζ−

sin ρ(2a− 1)

ρ
+

1

ρ

∫ 1

−1

P0(t)e
iρtdt, (3.6)

where Pi ∈ L2(−1, 1) , i = 0, 1 , and

∆0
1(λ) := −ρ [b+ sin ρ− b− sin ρ(2a− 1)] , ∆0

0(λ) := b+ cos ρ+ b− cos ρ(2a− 1),

b± =
a1 ± a−1

1

2
, η± = b±(ω2 ± ω1)±

a2
2
, ζ± = b±(ω1 ± ω0)±

a2
2
.

For i = 0, 1 , let {λ0i,n}n≥0 be the zeros of ∆0
i (λ) , which are real and simple, since a1 > 0 .

Denote ρ0i,n :=
√

λ0i,n . Using a similar method to Lemma 1 in [1], it is easy to get that for
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each fixed i = 0, 1 , the sequence {ρ0i,n} is separated, namely, |ρ0i,n − ρ0i,m| ≥ c0 > 0 whenever
n 6= m . Using the standard method involving the Rouchè Theorem together with (3.5) and
(3.6), one can prove the following proposition (see, e.g., [1, 13, 40]).

Proposition 1. The eigenvalues {λi,n}n≥0 of the problem Bi have the asymptotic behavior

ρi,n :=
√

λi,n = ρ0i,n +
θi,n
ρ0i,n

+
κi,n
ρ0i,n

, {κi,n} ∈ l2, i = 0, 1, (3.7)

where

θ1,n =
η+ cos ρ01,n + η− cos ρ01,n(2a− 1)

2∆̇0
1(λ

0
1,n)

, θ0,n = −ζ+ sin ρ00,n + ζ− sin ρ00,n(2a− 1)

2ρ00,n∆̇
0
0(λ

0
0,n)

, (3.8)

here ∆̇0
i (λ) :=

d∆0

i (λ)

dλ
. Moreover, for each i = 0, 1 , there is ni ∈ N0 such that the sequence

{ρi,n}n≥ni
is separated.

Using (3.1), (3.2) in (2.12) and (3.3), (3.4) in (2.10), we obtain the following relations for
large |ρ| :

U1,1(t, λ) = u1,1(t, λ) +O

(

e|Imρ|(d2+t)

|ρ|

)

, U1,2(t, λ) = u1,2(t, λ) +O

(

e|Imρ|(d2+t)

|ρ|

)

, (3.9)

U0,1(t, λ) = u0,1(t, λ) +O

(

e|Imρ|(d2+t)

|ρ|2
)

, U0,2(t, λ) = u0,2(t, λ) +O

(

e|Imρ|(d2+t)

|ρ|2
)

, (3.10)

where

u1,1(t, λ) =
a1
2
[cos ρ(d2+t)−cos ρ(d2−t)], u1,2(t, λ) =

−1

2a1
[cos ρ(d2−t)+cos ρ(d2+t)], (3.11)

u0,1(t, λ) =
a1
2ρ

[sin ρ(d2+t)−sin ρ(d2−t)], u0,2(t, λ) =
−1

2a1ρ
[sin ρ(d2−t)+sin ρ(d2+t)]. (3.12)

Denote ui(t, λ) = (ui,1(t, λ), ui,2(t, λ)) , i = 0, 1 . From (3.11) and (3.12), and recalling
d2 = 1− a , we have

〈u1,u1〉 =
a21
4

∫ a

0

[cos ρ(d2 − t)− cos ρ(d2 + t)][cos ρ(d2 − t)− cos ρ(d2 + t)]dt

+
1

4a21

∫ a

0

[cos ρ(d2 − t) + cos ρ(d2 + t)][cos ρ(d2 − t) + cos ρ(d2 + t)]dt

=
a21 + a−2

1

4

∫ 1

1−2a

cos(ρt) cos(ρt)dt +
a−2
1 − a21

4

∫ 1

1−2a

cos(ρ(2d2 − t)) cos(ρt)dt

=
a21 + a−2

1

8

∫ 1

1−2a

[cos(ρ− ρ)t + cos(ρ+ ρ)t]dt

+
a−2
1 − a21

8

∫ 1

1−2a

[cos(2d2ρ− (ρ+ ρ)t) + cos(2d2ρ− (ρ− ρ)t)]dt (3.13)
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〈u0,u0〉 =
a21
4|λ|

∫ a

0

[sin ρ(d2 − t)− sin ρ(d2 + t)][sin ρ(d2 − t)− sin ρ(d2 + t)]dt

+
1

4a21|λ|

∫ a

0

[sin ρ(d2 − t) + sin ρ(d2 + t)][sin ρ(d2 − t) + sin ρ(d2 + t)]dt

=
a21 + a−2

1

4|λ|

∫ 1

1−2a

sin(ρt) sin(ρt)dt +
a−2
1 − a21

4

∫ 1

1−2a

sin(ρt) sin(ρ(2d2 − t))dt

=
a21 + a−2

1

8|λ|

∫ 1

1−2a

[cos(ρ− ρ)t− cos(ρ+ ρ)t]dt

+
a−2
1 − a21
8|λ|

∫ 1

1−2a

[cos(2d2ρ− (ρ+ ρ)t)− cos(2d2ρ− (ρ− ρ)t)]dt (3.14)

By Proposition 1, we know that Im
√

λi,n → 0 and Re
√

λi,n → ∞ as n→ ∞ . Using (3.9) and
(3.10) in (2.13), together with (3.13) and (3.14), and with the help of the mean value theorem,
we obtain

‖U1
n‖2H =

(a21 + a−2
1 )a

4
[1 + o(1)] +

(a−2
1 − a21)a

4

[

cos(2
√
µ1,n(1− a)) + o(1)

]

, n→ ∞, (3.15)

‖U0
n‖2H =

(a21 + a−2
1 )a

4|µ0,n|
[1 + o(1)]− (a−2

1 − a21)a

4|µ0,n|
[

cos(2
√
µ0,n(1− a)) + o(1)

]

, n→ ∞. (3.16)

By virtue of the eigenvalue asymptotics, we know that | cos(2√µi,n(1− a))| ≤ 1 , i = 0, 1 , for
sufficiently large n . It follows from (3.15) and (3.16) that

‖Ui
n‖2H =

(a21 + a−2
1 )a

4|µ0,n|1−i
[1 + ci,n + o(1)], i = 0, 1, n→ ∞, (3.17)

where {ci,n} is a sequence bounded by a constant less than 1 .

4. Proofs of the uniqueness theorems

In this section, we give the proofs of Theorems 1 and 2. In order to prove the necessity
in Theorem 1, we need the following proposition on the local solvability and stability of the
inverse problem by the Cauchy data.

Proposition 2 (See [34]). Let q1(x) be a fixed complex-valued function from L2(0, a) , and let
h ∈ C be a fixed number. Denote by {K1, K2, ω1} the corresponding Cauchy data. Then there

exists ε > 0 (depending only on q1 and h ) such that, for any functions {K̃1, K̃2} satisfying

Ξ := max{‖K̃1 −K1‖L2(0,a), ‖K̃2 −K2‖L2(0,a)} ≤ ε, (4.1)

there exists a unique function q̃1 ∈ L2(0, a) such that {K̃1, K̃2, ω1} are the Cauchy data for q̃1
and h̃ = ω1 − 1

2

∫ a

0
q̃1(x)dx . Moreover,

‖q̃1 − q1‖L2(0,a) ≤ CΞ, |h̃− h| ≤ CΞ, (4.2)

where C depends only on q1 and h .



12

Proof of Theorem 1. Firstly, note that the given data in Inverse Problem 2 implies the unique
determination of U(t, λ) , f(λ) , {Ui

n(t)}n≥0,i=0,1 and {τ in}n≥0,i=0,1 . Due to the condition
that Inverse problem 2 is solvable, assume (q1, h) is the solution such that {µi,n}n≥0 are
the subspectra of the corresponding problems B(d1, d2, q1, q2, h,Hi, a1, a2) ( i = 0, 1 ), where
H0 = ∞ and H1 = H . Let {K1, K2, ω1} be the Cauchy data for q1 and h .

(Sufficiency). If the system {Ui
n(t)}n≥0,i=0,1 defined in (2.13) is complete in H , then

there is at most one K(t) satisfying the main equations (2.15). It is obvious that K(t) =

(K1(t), K2(t)) . Note that there is at most one pair (q1, h) corresponding to the Cauchy data
{K1, K2, ω1} . Hence, the sufficiency is valid.

(Necessity). If the system {Ui
n(t)}n≥0,i=0,1 defined in (2.13) is not complete in H , then

there exists a solution K̂(t) =
(

K̂1(t), K̂2(t)
)

( ‖K̂‖H 6= 0 ) satisfying

〈

K̂,Ui
n

〉

= 0, n ≥ 0, i = 0, 1. (4.3)

Due to the linearity of (4.3) for K̂ , we can choose K̂ such that ‖K̂‖H ≤ ε for ε from
Proposition 2. Define

K̃ :=
(

K̃1, K̃2

)

, K̃1 := K1 + K̂1, K̃2 := K2 + K̂2.

Then using Proposition 2, we know that there is a unique q̃1 ∈ L2(0, 1) such that {K̃1, K̃2, ω1}
are the Cauchy data for q̃1 and h̃ = ω1 − 1

2

∫ a

0
q̃1(x)dx . Define the functions

ϕ̃0(λ) := cos ρa+ ω1
sin ρa

ρ
−
∫ a

0

K̃1(t)
sin ρt

ρ
dt,

ϕ̃1(λ) := −ρ sin ρa+ ω1 cos ρa +

∫ a

0

K̃2(t) cos ρtdt,

∆̃i(λ) =
〈

K̃(·),Ui(·, λ)
〉

− fi(λ), i = 0, 1. (4.4)

It is easy to get that functions ∆̃i(λ) defined in (4.4) have the expressions ∆̃i(λ) = ϕ̃0(λ)gi,1(λ)−
ϕ̃1(λ)gi,0(λ) , i = 0, 1 . Thus, ∆̃i(λ) are the characteristic functions of the correspond-

ing problems B(d1, d2, q̃1, q2, h̃, Hi, a1, a2) , i = 0, 1 . Due to (2.15), (4.3) and (4.4), we get

that µi,n (n ∈ Si ) are zeros of ∆̃i(λ) , i = 0, 1 , with the corresponding multiplicities mi
n .

Thus, {µi,n}n≥0 are the subspectra of the problems B(d1, d2, q̃1, q2, h̃, Hi, a1, a2) , respectively,
i = 0, 1 . We have proved that the solution of Inverse Problem 2 is not unique if {Ui

n(t)}n≥0,i=0,1

defined in (2.13) is not complete in H . The proof of necessity is complete. �

Now, let us prove Theorem 2 by proving two lemmas. Similar to (2.12) and (2.13), define

V(t, λ) := (V1(t, λ), V2(t, λ)), V1(t, λ) := ϕ1(λ)s(t, λ), V2(t, λ) := ϕ0(λ)c(t, λ), (4.5)

and

Vi
n+ν(t) := V 〈ν〉(t, µi,n), n ∈ Si, ν = 0, mi

n − 1, i = 0, 1. (4.6)

Lemma 1. The system {Ui
n(t)}n≥0,i=0,1 is complete in H if and only if {Vi

n(t)}n≥0,i=0,1 is
complete in H .
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Proof. Let h = (h1, h2) ∈ H . It is sufficient to show that

〈h,Ui
n〉 = 0, n ≥ 0, i = 0, 1 (4.7)

is equivalent to

〈h,Vi
n〉 = 0, n ≥ 0, i = 0, 1. (4.8)

Consider the functions

Gi(λ) := 〈h(·),Ui(·, λ)〉 =
∫ a

0

(

h1(t)gi,1(λ)s(t, λ) + h2(t)gi,0(λ)c(t, λ)
)

dt, i = 0, 1, (4.9)

F (λ) := 〈h(·),V(·, λ)〉 =
∫ a

0

(

h1(t)ϕ1(λ)s(t, λ) + h2(t)ϕ0(λ)c(t, λ)
)

dt. (4.10)

By the definitions of Ui
n(t) and Vi

n(t) , we know that (4.7) and (4.8) are equivalent to

G
〈ν〉
i (µi,n) = 0, n ∈ Si, ν = 0, mi

n − 1, i = 0, 1, (4.11)

and

F 〈ν〉(µi,n) = 0, n ∈ Si, ν = 0, mi
n − 1, i = 0, 1, (4.12)

respectively. Therefore, it is sufficient to show that (4.11) is equivalent to (4.12). Let us first
prove that (4.11) implies (4.12). Note that ϕ0(λ) and ϕ1(λ) have no common zero, and so do
gi,0(λ) and gi,1(λ) , i = 0, 1 . From (2.2) and Proposition A.1, we have

ϕ
〈ν〉
j (µi,n) =

ν
∑

k=0

M i
n,kg

〈ν−k〉
i,j (µi,n), n ∈ Si, ν = 0, mi

n − 1, j = 0, 1, (4.13)

where M i
n,ν are constants. Using (4.9) and (4.13), we obtain

F 〈ν〉(µi,n)=

ν
∑

j=0

∫ a

0

[

h1(t)ϕ
〈j〉
1 (µi,n)s

〈ν−j〉(t, µi,n) + h2(t)ϕ
〈j〉
0 (µi,n)c

〈ν−j〉(t, µi,n)
]

dt

=

ν
∑

j=0

j
∑

l=0

M i
n,l

∫ a

0

[

h1(t)g
〈j−l〉
i,1 (µi,n)s

〈ν−j〉(t, µi,n) + h2(t)g
〈j−l〉
i,0 (µi,n)c

〈ν−j〉(t, µi,n)
]

dt

=

ν
∑

l=0

M i
n,l

ν−l
∑

j=0

∫ a

0

[

h1(t)g
〈j〉
i,1 (µi,n)s

〈ν−l−j〉(t, µi,n) + h2(t)g
〈j〉
i,0 (µi,n)c

〈ν−l−j〉(t, µi,n)
]

dt

=
ν
∑

l=0

M i
n,lG

〈ν−l〉
i (µi,n) = 0.

Similarly, one can also prove that (4.12) implies (4.11). �

Lemma 2. If the system {cin(t)}n≥0,i=0,1 is complete in L2(0, 2a) , then {Vi
n(t)}n≥0,i=0,1 is

complete in H .

Proof. Substituting (2.5) and (2.6) into (4.5), we get

V1(t, λ) = v1(t, λ) +O

(

e2a|Imρ|

|ρ|

)

, V2(t, λ) = v2(t, λ) +O

(

e2a|Imρ|

|ρ|

)

, |ρ| → ∞, (4.14)
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where

v1(t, λ) =
1

2
[cos ρ(a+ t)− cos ρ(a− t)], v2(t, λ) =

1

2
[cos ρ(a− t) + cos ρ(a + t)]. (4.15)

Substituting (2.5) and (2.6) into (4.10) and taking (4.14) and (4.15) into account, we obtain

F (λ) =

∫ 2a

0

b0(t) cos ρtdt+ F1(ρ), (4.16)

where

b0(t) =











h1(a− t) + h2(a− t)

2
, 0 < t < a,

h2(t− a)− h1(t− a)

2
, a < t < 2a,

and the function F1(ρ) is an even and entire function of exponential type ≤ 2a , moreover,

F1(ρ) = O(|ρ|−1), |ρ| → ∞, ρ ∈ R.

It follows from the Paley-Wiener Theorem and the evenness of F1(ρ) that there exists b1(t) in
L2(0, 2a) such that

F (λ) =

∫ 2a

0

[b0(t) + b1(t)] cos ρtdt. (4.17)

Let h = (h1, h2) ∈ H such that (4.8) holds, or equivalently, (4.12) holds. From (4.17), (2.16)
and the completeness of {cin(t)}n≥0,i=0,1 , we get that b0(t)+ b1(t) = 0 in L2(0, 2a) . Therefore,
F (λ) ≡ 0 . Using (4.10) and Proposition A.2 in Appendix, we conclude that h2(t) = 0 and
h1(t) = 0 in L2(0, a) . �

Proof of Theorem 2. Using Lemmas 1 and 2, together with Theorem 1, we immediately finish
the proof of Theorem 2. �

In the end of this section, let us prove the following lemma, which indicates that the Riesz-
basicity H for the functional sequence {

√

(|µ0,n|+ 1)U0
n(t)}n≥0 ∪ {U1

n(t)}n≥0 , constructed in
(2.13), is reasonable. This lemma is also useful in the proof of Corollary 2.

Lemma 3. If the system {cin(t)}n≥0,i=0,1 is a Riesz basis in L2(0, 2a) then: (i) {Vi
n(t)}n≥0,i=0,1

is a Riesz basis in H ; (ii) {
√

(|µ0,n|+ 1)U0
n(t)}n≥0 ∪ {U1

n(t)}n≥0 is a Riesz basis in H .

Proof. (i) Note that mi
n = 1 for n ≥ ni for some large ni . Let {αn}n≥0 be the numbers such

that αk 6= αl and αk 6= αl for all k 6= l and

{αn}n≥n0+n1
= {√µ0,n}n≥n0

∪ {√µ1,n}n≥n1
.

Since {cin(t)}n≥0,i=0,1 is a Riesz basis in L2(0, 2a) , then {cosαnt}n≥0 is also a Riesz basis
in L2(0, 2a) . From Proposition A.3 in Appendix, we have that {(v1(t, α2

n), v2(t, α
2
n))}n≥0 is a

Riesz basis in H , where vj(t, λ) (j = 1, 2) are defined in (4.15). By (4.14) and (4.6), we know
that {Vi

n(t)}n≥0,i=0,1 is quadratically close to {(v1(t, α2
n), v2(t, α

2
n))}n≥0 . Using Proposition

1.8.5 in [13], together with Lemma 2, we conclude that {Vi
n(t)}n≥0,i=0,1 is a Riesz basis in H .

(ii) Using Proposition A.1, together with the definitions of Ui
n and Vi

n , we obtain that
Ui

n(t) = C i
nV

i
n(t) for n ≥ ni , where C i

n are nonzero constants. Note that {Ui
n(t)}n≥0,i=0,1 is

complete in H by (i) and Lemma 1. In view of (3.17), we get the conclusion (ii). �
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5. Proofs of the local solvability and stability

In this section, we prove Theorem 3 as well as Corollaries 1 and 2. For i = 0, 1 , let {µi,n}n≥0

be a fixed subspectrum of the problem Bi . We shall use the data {µ̃i,n}n≥0 , q̃2 , H̃1 , a1 , a2
and ω1 to construct q̃1 and h̃ by Algorithm 1. We agree that, if a certain symbol δi denotes
an object related to the problem Bi , then δ̃i will denote an analogous object related to the
sequence {µ̃i,n}n≥0 , q̃2 and H̃1 . In Theorem 3, we assume H1 = H̃1 . The notation C may
stand for different positive constants.

Let ψ̃i(x, λ) be the solution of the equation −y′′ + q̃2(x)y = λy under the initial conditions

ψ̃0(0, λ) = 0, ψ̃′
0(0, λ) = 1, ψ̃1(0, λ) = 1, ψ̃′

1(0, λ) = H̃1.

Lemma 4. (i) If (2.18) is fulfilled for some ε ≤ 1 , then there exist functions W i
0 ∈ L2(0, d2) (i =

0, 1) such that

ψ̃0(d2, λ)− ψ0(d2, λ) =
1

ρ2

∫ d2

0

W 0
0 (t) cos ρtdt, (5.1)

ψ̃′
0(d2, λ)− ψ′

0(d2, λ) =
1

ρ

∫ d2

0

W 1
0 (t) sin ρtdt. (5.2)

Moreover, ‖W i
0‖L2(0,d2) ≤ CQ , i = 0, 1 , where Q is defined in (2.18) and the constant C > 0

depends only on ‖q2‖L2(0,d2) .
(ii) If (2.21) is fulfilled for some ε ≤ 1 , then there exist functions W i

1 ∈ L2(0, d2) (i = 0, 1)
such that

ψ̃1(d2, λ)− ψ1(d2, λ) =
1

ρ

∫ d2

0

W 0
1 (t) sin ρtdt, (5.3)

ψ̃′
1(d2, λ)− ψ′

1(d2, λ) =

∫ d2

0

W 1
1 (t) cos ρtdt. (5.4)

Moreover, ‖W i
1‖L2(0,d2) ≤ CQ1 , i = 0, 1 , where Q1 is defined in (2.21) and the constant

C > 0 depends only on ‖q2‖L2(0,d2) and |H1| .

Proof. According to the theory of transformation operators [25, 35], there are functions M0(x, t)
and M1(x, t) , having the first partial derivatives, such that

ψ̃0(x, λ) = ψ0(x, λ) +

∫ x

0

M0(x, t)ψ0(t, λ)dt, ψ0(x, λ) =
sin ρx

ρ
+

∫ x

0

M1(x, t)
sin ρt

ρ
dt. (5.5)

Moreover, M i(x, t) (i = 0, 1) satisfy that M i
x(x, ·),M i

t (x, ·) ∈ L2(0, x) for each fixed x ∈ [0, d2]
and

M0(x, x) =
1

2

∫ x

0

[q̃2(t)− q2(t)]dt, M
1(x, x) =

1

2

∫ x

0

q2(t)dt, M
i(x, 0) = 0, (5.6)
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Substituting the second equation in (5.5) into the first one, integrating (5.5) by parts, and
taking (5.6) and the first equation in (2.18) into account, we obtain

ψ̃0(d2, λ)− ψ0(d2, λ) =
1

ρ2

∫ d2

0

M0(d2, x)

[

−M1(x, x) cos ρx+

∫ x

0

M1
t (x, t) cos ρtdt

]

dx

+
1

ρ2

∫ d2

0

M0
t (d2, t) cos ρtdt

=
1

ρ2

∫ d2

0

W 0
0 (t) cos ρtdt, (5.7)

with

W 0
0 (t) =M0

t (d2, t)−M0(d2, t)M
1(t, t) +

∫ d2

t

M0(d2, s)M
1
t (s, t)ds. (5.8)

Using the estimates for M i(x, t) (see, e.g., Proposition 2.1 in [35]), we have that, for each fixed
x ∈ [0, d2] , there hold

max
x≥t≥0

|M0(x, t)| ≤ CQ, ‖M0
x(x, ·)‖L2(0,x) ≤ CQ, ‖M0

t (x, ·)‖L2(0,x) ≤ CQ, (5.9)

where the positive constant C depends only on the sum of ‖q2‖L2(0,d2) and ‖q̃2‖L2(0,d2) . Note
that ‖q̃2‖L2(0,d2) ≤ ‖q2‖L2(0,d2) + Q and, by (2.18), Q ≤ ε ≤ 1 . Therefore, we have that the
constant C depends only on ‖q2‖L2(0,d2) . Using (5.9) in (5.8), we get that ‖W 0

0 ‖L2(0,d2) ≤ CQ .
Similarly, using (5.5) and (5.9), we arrive at (5.2) with

W 1
0 (t) =M0

x(d2, t) +

∫ d2

t

M0
x(d2, s)M

1(s, t)ds, ‖W 1
0 ‖L2(0,d2) ≤ CQ. (5.10)

Note that there are also functions N0(x, t) and N1(x, t) , having the first partial derivatives,
such that

ψ̃1(x, λ) = ψ1(x, λ) +

∫ x

0

N0(x, t)ψ1(t, λ)dt, ψ1(x, λ) = cos ρx+

∫ x

0

N1(x, t) cos ρtdt. (5.11)

Moreover, N i(x, t) (i = 0, 1) satisfy N i
x(x, ·), N i

t (x, ·) ∈ L2(0, x) for each fixed x ∈ [0, d2] and

N0(x, x) = H̃1 −H1 +
1

2

∫ x

0

[q̃2(t)− q2(t)]dt, N
1(x, x) = H1 +

1

2

∫ x

0

q2(t)dt, (5.12)

Similarly, using the estimates for N0(x, t) from Proposition 2.1 in [16], we get that, for each
fixed x ∈ [0, d2] , there hold

max
x≥t≥0

|N0(x, t)| ≤ CQ1, ‖N0
x(x, ·)‖L2(0,x) ≤ CQ1, ‖N0

t (x, ·)‖L2(0,x) ≤ CQ1, (5.13)

where the positive constant C depends only on the sum of ‖q2‖L2(0,d2) and |H1| , since Q1 ≤
ε ≤ 1 by (2.21). Using (5.11), integrating by parts, and taking (5.12), (5.13) and the first
equation in (2.21) into account, we can get (5.3) and (5.4) with

W 0
1 (t) = N0(d2, t)N

1(t, t)−N0
t (d2, t)−

∫ d2

t

N0(d2, s)N
1
t (s, t)ds, ‖W 0

1 ‖L2(0,d2) ≤ CQ1, (5.14)

and

W 1
1 (t) = N0

x(d2, t) +

∫ d2

t

N0
x(d2, s)N

1(s, t)ds, ‖W 1
1 ‖L2(0,d2) ≤ CQ1, (5.15)
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respectively. The proof is complete. �

Denote
g̃i,0(λ) := −a−1

1 ψ̃i(d2, λ), g̃i,1(λ) := a1ψ̃
′
i(d2, λ) + a2ψ̃i(d2, λ). (5.16)

Similarly to (2.10)–(2.12), define

Ũi(t, λ) := (Ũi,1(t, λ), Ũi,2(t, λ)), Ũi,1(t, λ) := g̃i,1(λ)s(t, λ), Ũi,2(t, λ) := g̃i,0(λ)c(t, λ),
(5.17)

f̃i(λ) :=

[

cos ρa+ ω1
sin ρa

ρ

]

g̃i,1(λ)− g̃i,0(λ) [ω1 cos ρa− ρ sin ρa] , i = 0, 1. (5.18)

Lemma 5. If the condition (2.18) is fulfilled for some ε ≤ 1 , then

∑

n∈S0

(|µ0,n|+1)

m0
n

∑

ν=0

∥

∥

∥
(Ũ

〈ν〉
0 −U

〈ν〉
0 )(t, µ0,n)

∥

∥

∥

2

H
+
∑

n∈S1

m1
n

∑

ν=0

∥

∥

∥
(Ũ

〈ν〉
1 −U

〈ν〉
1 )(t, µ1,n)

∥

∥

∥

2

H
≤ CQ2, (5.19)

∑

n∈S0

(|µ0,n|+ 1)

m0
n

∑

ν=0

∣

∣

∣
(f̃

〈ν〉
0 − f

〈ν〉
0 )(µ0,n)

∣

∣

∣

2

+
∑

n∈S1

m1
n

∑

ν=0

∣

∣

∣
(f̃

〈ν〉
1 − f

〈ν〉
1 )(µ1,n)

∣

∣

∣

2

≤ CQ2, (5.20)

where C depends only on the problem B1 .

Proof. Using Lemma 4 with H̃1 = H1 , together with definitions of Ui,j(t, λ) , Ũi,j(t, λ) , fi(λ)

and f̃i(λ) , we have that for ν ≥ 0 and i = 0, 1 there hold
∣

∣

∣
Ũ

〈ν〉
i,j (t, λ)− U

〈ν〉
i,j (t, λ)

∣

∣

∣
≤ CQ

e|Imρ|

(|ρ|+ 1)ν+2−i
, j = 1, 2, (5.21)

∣

∣

∣
f̃
〈ν〉
i (λ)− f

〈ν〉
i (λ)

∣

∣

∣
≤ C

e|Imρ|a

|ρ|ν+1−i

∣

∣

∣

∣

∫ d2

−d2

Wi(t)e
iρtdt

∣

∣

∣

∣

, ‖Wi‖L2(−d2,d2) ≤ CQ, (5.22)

where C depends only on ‖q‖L2(0,d2) . Note that mi
n = 1 for n ≥ ni , i = 0, 1 . In particular,

|√µi,m − √
µi,n| ≥ c0 > 0 for m,n ≥ ni and m 6= n , and |Im√

µi,n| ≤ c1 < ∞ . Using the
estimate (5.21) in (2.11) and (5.17), we obtain (5.19). Using (5.22), together with Proposition
A.4, we get (5.20). �

Note that multiplicities of µi,n and µ̃i,n may be distinct. However, by virtue of (2.17), we

have that Si ⊆ S̃i for sufficiently small ε > 0 . In particular, m̃i
n = 1 for n ≥ ni . Denote

Ũi
n+ν(t) := Ũ

〈ν〉
i (t, µ̃i,n), τ̃ in+ν := f̃

〈ν〉
i (µ̃i,n), n ∈ S̃i, ν = 0, m̃i

n − 1, i = 0, 1. (5.23)

Consider the system of equations
〈

K̃(·), Ũi
n(·)
〉

= τ̃ in, n ≥ 0, i = 0, 1, (5.24)

where K̃ = (K̃1, K̃2) is the unknown element in H .
For each i = 0, 1 , fix k ∈ [0, ni) ∩ Si , and assume that the value µi,k with the multiplicity

mi
k corresponds to the numbers {µ̃i,n}n∈M i

k
, where M i

k := {k, k + 1, · · ·, k +mi
k − 1} . Define

S̃i
k := S̃i ∩M i

k . Then the relation (5.24) for n ∈ S̃i
k can be rewritten as

〈

K̃(·), Ũ〈ν〉
i (·, µ̃i,n)

〉

= f̃
〈ν〉
i (µ̃i,n), n ∈ S̃i

k, ν = 0, m̃i
n − 1, i = 0, 1. (5.25)
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For each fixed t ∈ [0, a] and i = 0, 1 , let Ẽk,i,j(t, λ) , F̃k,i(λ) be the unique polynomials of

degree at most mi
k − 1 , respectively, interpolating Ũi,j(t, λ) (j = 1, 2) and f̃i(λ) and their

derivatives in the usual way at the points {µ̃i,n}n∈M i
k
. Namely,

Ẽ
〈ν〉
k,i,j(t, µ̃i,n) = Ũ

〈ν〉
i,j (t, µ̃i,n), F̃

〈ν〉
k,i (µ̃i,n) = f̃

〈ν〉
i (µ̃i,n), n ∈ S̃i

k, ν = 0, m̃i
n − 1. (5.26)

Denote Ẽk,i(t, λ) := (Ẽk,i,1(t, λ), Ẽk,i,2(t, λ)) . Eqs. (5.25) and (5.26) imply that
〈

K̃(·), Ẽ〈ν〉
k,i (·, µ̃i,n)

〉

= F̃
〈ν〉
k,i (µ̃i,n), n ∈ S̃i

k, ν = 0, m̃i
n − 1, i = 0, 1. (5.27)

Since Ẽk,i,j(t, λ) , F̃k,i(λ) are the polynomials of degree at most mi
k − 1 , we have

〈

K̃(·), Ẽk,i(·, λ)
〉

= F̃k,i(λ), λ ∈ C, n ∈ S̃i
k, ν = 0, m̃i

n − 1, i = 0, 1. (5.28)

In particular, we have
〈

K̃(·), Ẽ〈ν〉
k,i (·, µi,k)

〉

= F̃
〈ν〉
k,i (µi,k), ν = 0, mi

k − 1, i = 0, 1. (5.29)

Define the sequences { ˜̃Ui
n}n≥0 and {˜̃τ in}n≥0 for i = 0, 1 as follows







˜̃
Ui

n+ν(t) = Ẽ
〈ν〉
n,i(t, µi,n), ˜̃τ

i
n+ν = F̃

〈ν〉
n,i (µi,n), n ∈ Si ∩ [0, ni), ν = 0, mi

n − 1,

˜̃
Ui

n(t) = Ũi
n(t), ˜̃τ in = τ̃ in, n ≥ ni.

(5.30)

Then the system (5.24) is equivalent to
〈

K̃(·), ˜̃Ui
n(·)
〉

= ˜̃τ in, n ≥ 0, i = 0, 1. (5.31)

Lemma 6. There exists ε > 0 such that, if (2.17) and (2.18) are fulfilled, then the following
estimates hold

√

√

√

√

∑

n≥0

(

(|µ0,n|+ 1)
∥

∥

∥
U0

n − ˜̃
U0

n

∥

∥

∥

2

H
+
∥

∥

∥
U1

n − ˜̃
U1

n

∥

∥

∥

2

H

)

< C(Λ +Q), (5.32)

√

∑

n≥0

(

(|µ0,n|+ 1)
∣

∣τ 0n − ˜̃τ 0n
∣

∣

2
+
∣

∣τ 1n − ˜̃τ 1n
∣

∣

2
)

< C(Λ +Q). (5.33)

Proof. From the theory of the transformation operators [25], we know that

|ψ〈ν〉
i (x, λ)| ≤ C

e|Imρ|x

(|ρ|+ 1)ν+1−i
, |ψ′〈ν〉

i (x, λ)| ≤ C
e|Imρ|x

(|ρ|+ 1)ν−i
, ν ≥ 0, (5.34)

Using (5.34) in (2.12) and (2.10), together with the definitions of gi,j(λ) , we obtain the estimates

|U 〈ν〉
i,j (t, λ)| ≤ C

e|Imρ|

(|ρ|+ 1)ν+1−i
, ν ≥ 0, i = 0, 1, j = 1, 2, (5.35)

|f 〈ν〉
i (λ)| ≤ C

e|Imρ|

(|ρ|+ 1)ν−i
, ν ≥ 0, i = 0, 1. (5.36)
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In view of (5.21) and (5.22), and noting Q ≤ ε ≤ 1 , we also have

|Ũ 〈ν〉
i,j (t, λ)| ≤ C

e|Imρ|

(|ρ|+ 1)ν+1−i
, ν ≥ 0, i = 0, 1, j = 1, 2, (5.37)

|f̃ 〈ν〉
i (λ)| ≤ C

e|Imρ|

(|ρ|+ 1)ν−i
, ν ≥ 0, i = 0, 1. (5.38)

Since

Ũ
〈ν〉
i,j (t, µi,n)− Ũ

〈ν〉
i,j (t, µ̃i,n) = (ν + 1)

∫ µi,n

µ̃i,n

Ũ
〈ν+1〉
i,j (t, µ)dµ, ν ≥ 0, i = 0, 1, j = 1, 2,

it follows from (5.37) that

|Ũ 〈ν〉
i,j (t, µi,n)− Ũ

〈ν〉
i,j (t, µ̃i,n)| ≤ C

|µi,n − µ̃i,n|
(
√

|µi,n|+ 1)ν+2−i
, ν ≥ 0, i = 0, 1, j = 1, 2. (5.39)

Similarly, we get

|f̃ 〈ν〉
i (µi,n)− f̃

〈ν〉
i (µ̃i,n)| ≤ C

|µi,n − µ̃i,n|
(
√

|µi,n|+ 1)ν+1−i
, ν ≥ 0, i = 0, 1. (5.40)

Note that

|Ũ 〈ν〉
i,j (t, µ̃i,n)− U

〈ν〉
i,j (t, µi,n)| ≤ |Ũ 〈ν〉

i,j (t, µ̃i,n)− Ũ
〈ν〉
i,j (t, µi,n)|+ |Ũ 〈ν〉

i,j (t, µi,n)− U
〈ν〉
i,j (t, µi,n)|,

|f̃ 〈ν〉
i (µ̃i,n)− f

〈ν〉
i (µi,n)| ≤ |f̃ 〈ν〉

i (µ̃i,n)− f̃
〈ν〉
i (µi,n)|+ |f̃ 〈ν〉

i (µi,n)− f
〈ν〉
i (µi,n)|.

Using (5.39), (5.40) and Lemma 5, and noting mi
n = 1 for n ≥ ni , i = 0, 1 , we obtain

∑

n≥n0

(|µ0,n|+ 1)
∥

∥

∥
U0

n − ˜̃
U0

n

∥

∥

∥

2

H
+
∑

n≥n1

∥

∥

∥
U1

n − ˜̃
U1

n

∥

∥

∥

2

H
< C(Λ +Q)2, (5.41)

∑

n≥n0

(|µ0,n|+ 1)
∣

∣τ 0n − ˜̃τ 0n
∣

∣

2
+
∑

n≥n1

∣

∣τ 1n − ˜̃τ 1n
∣

∣

2
< C(Λ +Q)2. (5.42)

Now let us consider n ∈ [0, ni) , i = 0, 1 . Fix i = 0, 1 . By the definitions of Ẽn,i,j(t, λ) and

F̃n,i(λ) , using Proposition A.6, we have that for each fixed k ∈ [0, ni) ∩ Si ,
∣

∣

∣
Ẽ

〈ν〉
k,i,j(t, µi,k)− Ũ

〈ν〉
i,j (t, µi,k)

∣

∣

∣
≤ Cmax

n∈S̃i
k

|µ̃i,n − µi,k|, ν = 0, mi
k − 1, (5.43)

∣

∣

∣
F̃

〈ν〉
k,i (µi,k)− f̃

〈ν〉
i (µi,k)

∣

∣

∣
≤ Cmax

n∈S̃i
k

|µ̃i,n − µi,k|, ν = 0, mi
k − 1, (5.44)

for sufficient small ε > 0 . Note that
∣

∣

∣
Ẽ

〈ν〉
k,i,j(t, µi,k)− U

〈ν〉
i,j (t, µi,k)

∣

∣

∣
≤
∣

∣

∣
Ẽ

〈ν〉
k,i,j(t, µi,k)− Ũ

〈ν〉
i,j (t, µi,k)

∣

∣

∣
+
∣

∣

∣
Ũ

〈ν〉
i,j (t, µi,k)− U

〈ν〉
i,j (t, µi,k)

∣

∣

∣
,

∣

∣

∣
F̃

〈ν〉
k,i (µi,k)− f

〈ν〉
i (µi,k)

∣

∣

∣
≤
∣

∣

∣
F̃

〈ν〉
k,i (µi,k)− f̃

〈ν〉
i (µi,k)

∣

∣

∣
+
∣

∣

∣
f̃
〈ν〉
i (µi,k)− f

〈ν〉
i (µi,k)

∣

∣

∣
,

Using Lemma 5 and (5.43), (5.44), we obtain

∑

n∈M i
k

∥

∥

∥

˜̃
Ui

n −Ui
n

∥

∥

∥

H
≤ C

(

Q+max
n∈S̃i

k

|µ̃i,n − µi,k|
)

, k ∈ Si ∩ [0, ni), i = 0, 1,
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∑

n∈M i
k

|˜̃τ in − τ in| ≤ C

(

Q+max
n∈S̃i

k

|µ̃i,n − µi,k|
)

, k ∈ Si ∩ [0, ni), i = 0, 1.

Hence
n0−1
∑

n=0

(|µ0,n|+ 1)
∥

∥

∥
U0

n − ˜̃
U0

n

∥

∥

∥

2

H
+

n1−1
∑

n=0

∥

∥

∥
U1

n − ˜̃
U1

n

∥

∥

∥

2

H
< C(Λ +Q)2, (5.45)

n0−1
∑

n=0

(|µ0,n|+ 1)
∣

∣τ 0n − ˜̃τ 0n
∣

∣

2
+

n1−1
∑

n=0

∣

∣τ 1n − ˜̃τ 1n
∣

∣

2
< C(Λ +Q)2. (5.46)

Using (5.41), (5.42), (5.45), and (5.46), we arrive at (5.32) and (5.33). �

Proof of Theorem 3. Using Lemma 6 and Proposition A.5, we get that, for sufficiently small
ε > 0 , there is a unique K̃ = (K̃1, K̃2) ∈ H satisfying (5.31) that is equivalent to (5.24).

Recall the definitions (5.16)-(5.18) of Ũi(t, λ) and f̃i(λ) , i = 0, 1 . Define the functions ∆̃i(λ)

( i = 0, 1 ) with K̃(t) , Ũi(t, λ) and f̃i(λ)

∆̃i(λ) = −
〈

K̃(·), Ũi(·, λ)
〉

+ f̃i(λ), i = 0, 1. (5.47)

Then Eq.(5.24) together with (5.23) imply

∆̃
〈ν〉
i (µ̃i,n) = 0, n ∈ S̃i, ν = 0, m̃i

n − 1, i = 0, 1.

Note that Proposition A.5 also implies ‖K̃−K‖H ≤ C(Q+Λ) . Thus, using Proposition 2, we

conclude that there exists a unique q̃1 ∈ L2(0, a) such that {K̃1, K̃2, ω1} are the Cauchy data

for q̃1 and h̃ = ω1 − 1
2

∫ a

0
q̃1(x)dx , and the estimate (2.19) is valid. Define the functions ϕ̃0(λ)

and ϕ̃1(λ) by the Cauchy data {K̃1, K̃2, ω1}

ϕ̃0(λ) := cos ρa+ ω1
sin ρa

ρ
−
∫ a

0

K̃1(t)
sin ρt

ρ
dt, (5.48)

ϕ̃1(λ) := −ρ sin ρa+ ω1 cos ρa +

∫ a

0

K̃2(t) cos ρtdt, (5.49)

Then Eqs.(5.47), (5.48) and (5.49), together with (5.17) and (5.18), imply that the functions
∆̃i(λ) ( i = 0, 1 ) defined in (5.47) have the expressions

∆̃i(λ) := ϕ̃0(λ)g̃i,1(λ)− ϕ̃1(λ)g̃i,0(λ). (5.50)

The proof is complete. �

Proof of Corollary 1. The proof of Corollary 1 is similar to the proof of Theorem 3. Letting
{µ0,n}n≥0 = ∅ and using only (ii) of Lemma 4 in the proof of Theorem 3, we complete the proof
of Corollary 1. �

Proof of Corollary 2. If a = 1/2 , then λ1,n has the following asymptotics (cf.(3.7))

√

λ1,n = nπ +
η+ + η−(−1)n

nπb+
+
κ1,n
n
, {κ1,n} ∈ l2. (5.51)
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Using Proposition 1 in [7] with (5.51), we get that {c〈ν〉(t, λ1,n)}n∈S1,ν=0,m1
n−1 is a Riesz basis

in L2(0, 1) , where we have assumed µ1,n = λ1,n for all n ≥ 0 , and c(t, λ) = cos ρt . Then,
using Lemma 3 and Corollary 1, we get Corollary 2. �
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Appendix

In Appendix, we provide a few auxiliary propositions. One can also find partially similar
results in [3, 4]. For convenience of readers, we summarize them in Appendix.

In Propositions A.1 and A.2, we consider a sequence of complex numbers {zn}n≥0 with
finite multiplicities. Let mn denote the multiplicity of the value zn in the sequence {zn}n≥0 .
Without loss of generality, assume that zn = zn+1 = · · · = zn+mn−1 and denote

S := {n ∈ N : zn 6= zn−1, n ≥ 1} ∪ {0}.
Proposition A.1. Assume that {zn}n≥0 (counted with multiplicities) are the zeros of the
function

D(z) := φ0(z)g1(z)− φ1(z)g0(z),

where the functions φj(z) and gj(z) are analytic at zn (n ≥ 0) , j = 0, 1 . If the vectors
(g0(zn), g1(zn)) 6= (0, 0) 6= (φ0(zn), φ1(zn)) for n ∈ S , then there exist constants Cn,ν , Mn,ν ,
n ∈ S , ν = 0, mn − 1 such that Cn,0 6= 0 , Mn,0 6= 0 and

g
〈ν〉
j (zn) :=

1

ν!

dνgj(z)

dzν

∣

∣

∣

∣

z=zn

=
ν
∑

k=0

Cn,kφ
〈ν−k〉
j (zn), n ∈ S, ν = 0, mn − 1, j = 0, 1. (A.1)

φ
〈ν〉
j (zn) =

ν
∑

k=0

Mn,kg
〈ν−k〉
j (zn), n ∈ S, ν = 0, mn − 1, j = 0, 1, (A.2)

The proof of Proposition A.1 repeats the proof of Lemma 1 in [3], so we omit it.

Proposition A.2. Let φ0(z) and φ1(z) be nontrivial entire functions and
∫ a

0

(

h1(t)φ1(z)
sin

√
zt√
z

+ h2(t)φ0(z) cos
√
zt

)

dt ≡ 0, h1, h2 ∈ L2(0, a). (A.3)

Assume that φ1(z) has the zeros {zn}n≥0 (counted with multiplicities) satisfying the asymp-
totics √

zn =
nπ

a
+ κn, {κn} ∈ l2.

If φ0(zn) 6= 0 for all n , then h1 = 0 and h2 = 0 in L2(0, a) .

Proof. Define

c〈ν〉(t, zn) =
1

ν!

∂ν cos
√
zt

∂zν

∣

∣

∣

∣

z=zn

, ν = 0, mn − 1, n ∈ S.
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It follows from (A.3) that

ν
∑

k=0

φ
〈k〉
0 (zn)

∫ a

0

h2(t)c
〈ν−k〉(t, zn)dt = 0, ν = 0, mn − 1, n ∈ S.

From the asymptotics of zn , there is only a finite number of multiple values in {zn}n≥0 .
Without loss of generality, assume mn ≥ 2 for 0 ≤ n ≤ n0 − 1 for some n0 ∈ N , and mn = 1
for n ≥ n0 . Since φ0(zn) 6= 0 for n ∈ S , we have

∫ a

0

h2(t)c(t, zn)dt = 0, n ∈ S, (A.4)

∫ a

0

h2(t)

[

c〈ν〉(t, zn) +

ν
∑

k=1

φ
〈k〉
0 (zn)

φ0(zn)
c〈ν−k〉(t, zn)

]

dt = 0, ν = 1, mn − 1, n ∈ S ∩ [0, n0). (A.5)

It is known that {c〈ν〉(t, zn)}n∈S,ν=0,mn−1 is a Riesz basis in L2(0, a) (see Appendix in [7]).

Hence, by replacing the finite functions {c〈ν〉(t, zn)}n∈S∩[0,n0),ν=1,mn−1 with the functions

c〈ν〉(t, zn) +

ν
∑

k=1

φ
〈k〉
0 (zn)

φ0(zn)
c〈ν−k〉(t, zn), ν = 1, mn − 1, n ∈ S ∩ [0, n0), (A.6)

we know that the system of the functions in (A.6) and {c(t, zn)}n∈S is also complete in L2(0, a) .
It follows from (A.4) and (A.5) that h2(t) = 0 in L2(0, a) . Returning to (A.3), we have

φ1(z)

∫ a

0

h1(t)
sin

√
zt√
z

dt = 0, z ∈ C,

which implies h1(t) = 0 in L2(0, a) since φ1(z) is a nontrivial entire function. �

Proposition A.3. Assume that {αn}n≥1 are complex numbers satisfying αk 6= αl and αk 6= αl

for all k 6= l . Denote vn(t) = (v1(t, α
2
n), v2(t, α

2
n)) , where vj(t, λ) (j = 1, 2) are defined in

(4.15), where λ = ρ2 . Then the following assertions are equivalent:
(i) {cosαnt}n≥0 is a Riesz basis in L2(0, 2a) ;
(ii) {vn(t)}n≥0 is a Riesz basis in H := L2(0, a) × L2(0, a) , the inner product of which is
defined in (2.8).

Proof. By Theorem 9 in [39, p.32], we know that a system of functions {fn(t)}n≥0 is a Riesz
basis in some Hilbert space H if and only if it is complete and satisfies the two side inequality

C1

N
∑

n=0

|βn|2 ≤
∥

∥

∥

∥

∥

N
∑

n=0

βnfn

∥

∥

∥

∥

∥

H

≤ C2

N
∑

n=0

|βn|2,
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where {βn} is an arbitrary sequence, and N ≥ 0 is an arbitrary integer, C1 and C2 are some
fixed constants. In view of (4.15), we have that

〈vj,vk〉 =
1

4

∫ a

0

[cosαj(a− t)− cosαj(a+ t)][cosαk(a− t)− cosαk(a + t)]dt

+
1

4

∫ a

0

[cosαj(a− t) + cosαj(a+ t)][cosαk(a− t) + cosαk(a + t)]dt

=
1

2

∫ a

0

cos(αjt) cos(αkt)dt +
1

2

∫ 2a

a

cos(αjt) cos(αkt)dt

=
1

2

∫ 2a

0

cos(αjt) cos(αkt)dt.

Hence, we have
∥

∥

∥

∥

∥

N
∑

n=0

βnvn

∥

∥

∥

∥

∥

2

H

=
N
∑

j=0

N
∑

k=0

βjβk〈vj,vk〉 =
1

2

∥

∥

∥

∥

∥

N
∑

n=0

βn cos(αnt)

∥

∥

∥

∥

∥

2

L2(0,2a)

. (A.7)

In view of (A.7), it only remains to show that {cosαnt}n≥0 is complete in L2(0, 2a) if and
only if {(vn(t)}n≥0 is complete in H .

Assume that {cosαnt}n≥0 is complete in L2(0, 2a) . Let h = (h1, h2) ∈ H such that
〈h,vn〉 = 0 for all n ≥ 0 . Then the function

F0(λ) :=

∫ a

0

(h1(t)v1(t, λ) + h2(t)v2(t, λ)) dt (A.8)

has zeros {αn}n≥0 . By the definition of vj(t, λ) (cf.(4.15)), we get

F0(λ) =

∫ 2a

0

b0(t) cos ρtdt, b0(t) =











h1(a− t) + h2(a− t)

2
, 0 < t < a,

h2(t− a)− h1(t− a)

2
, a < t < 2a.

(A.9)

Since {cosαnt}n≥0 is complete in L2(0, 2a) , we have b0(t) = 0 in L2(0, 2a) . Hence h1(t) =
h2(t) = 0 in L2(0, a) .

Assume that {vn(t)}n≥0 is complete in H . Let b ∈ L2(0, 2a) such that
∫ 2a

0
b(t) cosαntdt = 0

for all n ≥ 0 . Namely, the function F2(λ) =
∫ 2a

0
b(t) cos ρtdt has zeros {αn}n≥0 . Note that

the function F2(λ) also has the form of (A.8) with

h1(t) = b(a− t)− b(a+ t), h2(t) = b(a− t) + b(a + t), t ∈ (0, a).

Since {(vn(t)}n≥0 is complete in H , then h1(t) = h2(t) = 0 in L2(0, a) and so b(t) = 0 in
L2(0, 2a) . �

Proposition A.4. Let {ρn} be separated complex numbers with bounded imaginary parts,
namely, |ρn − ρm| ≥ c0 > 0 whenever n 6= m and supn |Imρn| ≤ c1 < ∞ . If W ∈ L2(−b, b) ,
then

∑

n

∣

∣

∣

∣

∫ b

−b

W (t)eiρntdt

∣

∣

∣

∣

2

≤ C0‖W‖2L2(−b,b), (A.10)

where C0 > 0 depends only on b , c0 and c1 .
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Proof. Define f(ρ) =
∫ b

−b
W (t)eiρtdt . Then f(ρ) is an entire function of exponential type ≤ b .

By the theory of the Fourier transform, we know that ‖f‖2L2(−∞,∞) = 2π‖W‖2L2(−b,b) . Since

{ρn} are separated complex numbers with bounded imaginary parts, from Theorem 17 and its
Remark in [39, p.96-98], we have

∑

n

|f(ρn)|2 ≤ C1‖f‖2L2(−∞,∞) = 2πC1‖W‖2L2(−b,b),

which implies (A.10). Another proof of Proposition A.4 can be obtained from Lemma 1 in
[9]. �

Proposition A.5 (See, e.g., [38]). Let {vn} be a Riesz basis in a Hilbert space H . Then there
exists ε > 0 , such that every sequence {ṽn} , satisfying

V :=

(

∑

n

‖vn − ṽn‖2H

)1/2

≤ ε,

is also a Riesz basis in H . Furthermore, for some τ ∈ H , denote τn := (τ, vn)H , where (·, ·)H
is the inner product in H , then for any sequence {τ̃n} satisfying

Ω :=

(

∑

n

|τn − τ̃n|2
)1/2

≤ ε,

there exists a unique τ̃ ∈ H , such that τ̃n = (τ̃ , ṽn)H for all n , moreover,

‖τ − τ̃‖H ≤ C(V + Ω),

where the constant C depends only on {vn} and τ .

To deal with the multiple eigenvalues in the local solvability and stability, we need the
following proposition.

Proposition A.6 (See [27]). Assume that f(z) is an entire function, and z1 ,..., zm (not
necessarily distinct) are in the disc {z : |z−z0| ≤ r < 1/2} . Let p(z) be the unique polynomial
of degree at most m−1 which interpolates f(z) and its derivatives in the usual way at the points
zj , j = 1, m : namely, if zj appears mj times, then p(n)(zj) = f (n)(zj) for n = 0, mj − 1 .
Then for each j = 0, m− 1 ,

∣

∣f (j)(z0)− p(j)(z0)
∣

∣ ≤ Crm−j sup
|z−z0|=1

|f(z)| , (A.11)

here the constant C depends only on m .
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