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The geometric properties of parameter space are mostly described by Berry curvature and quan-
tum metric, which is the imaginary and real part of quantum geometric tensor, respectively. In this
work, we calculate the dressed Berry curvature and quantum metric containing eight Feynman dia-
grams, which is proportional to the leading-order of the concentration of impurities. For a two-band
gapped graphene model, we find the disorder does not break the original symmetry of Berry cur-
vature and quantum metric but decrease (increase) the absolute value of conductor (valence) band.
We show how impurities affect the Berry curvature and quantum metric, laying the foundation for
the study of the influence of impurities on the electron transport properties.

I. INTRODUCTION

As the frontier of condensed matter physics, the ge-
ometric properties of quantum states are of great sig-
nificance in many areas. One of the most general de-
scription of the evolution of a cell-periodic Bloch state
under the variation of a vector parameter k is the quan-
tum geometric tensor (QGT) proposed by Provost and
Vallee!. Its imaginary (anti-symmetric) part is Berry
curvature (BC), a quantity manifested in many trans-
port properties and observed in many materials, which
can be regarded as an emergent gauge field in the param-
eter space’ 4. Moreover, the integrated of BC over the
momentum space leads to the famous quantum number
in quantum Hall effect and Chern insulator®°, and in
nonlinear response'’ 2%, and so on. The quantum met-
ric (QM), the real (symmetric) part of QGT, is another
important geometric quantity?'26. Very recently, many
physical phenomena related to QM?27733 have been pro-
posed. As an illustration, Chen and Law establish a
Ginzburg-Landau theory from a microscopic flat-band
Hamiltonian to show that the superconducting coher-
ence length is determined directly by the QM?2". Fur-
thermore, some experiments have been conducted intend-
ing to confirm the nonlinear quantum transports induced
by the QM3436. Generally speaking, the BC and QM
are both fundamental quantities for understanding many
new topological effects, either known or unknown.

The BC and QM reflect the topology of many-particle
systems and regulate particles’ dynamics. Thus a quite
fundamental question may raise whether the dynamical
properties and many-body interaction can mutually mod-
ify the topological properties of the system. To be more
specific, a precise discussion how the interaction affects
BC and QM is urgently needed. Intriguingly, Wei Chen
has provided a formalism for the BC and QM?37, which
are applicable to realistic gapped materials at finite tem-
perature and in the presence of many-body interactions.
They introduce the spectral functions to characterize the
BC and QM, and discuss how many-body interactions in-

fluence the shape of these spectral functions. Neverthe-
less, they obtain the leading order of impurity scattering
which dose not contribute to the QM or BC in the Chern
insulator because the integral of the spectral function
is equal to zero. From another point of view, numerous
theoretical and experimental results have proved that im-
purities can affect electron transport®*%°. As quantum
transport is very closely related to the BC and QM, the
role of disorder on them should be explored.

In this work, we study this topic using eight Feynman
diagrams containing the first-order contributions of the
impurity with the help of the first Born approximation
(FBA) and vertex correction. We specifically study a
two-band gapped graphene model, and find that the dis-
order contribute a certain correction, named as dressed
BC and QM. Our calculation and results provide crucial
information for understanding the influence of impurity
interaction on BC and QM. Meanwhile, it is also a solid
foundation to further explore the contribution of impuri-
ties on geometric quantities.

The structure of this paper is organized as follows. In
Sec. II, we present the definition and relations of QGT,
BC and QM in the zero temperature and non-interaction
limit and introduce the dressed BC and QM with many
body interactions at finite temperatures. In Sec. III, we
give the eight Feynman diagrams about side jump scat-
tering to explain how to calculate the effect of disorder
using the FBA and vertex correction. Next we discuss
the results in a two-band gapped graphene model in Sec.
IV. Finally we summarize and discuss our results in Sec.

V.

II. QUANTUM GEOMETRIC TENSOR

The QGT of n-th band in the k space can be written as
Ty, whose imaginary (anti-symmetric) part is Berry cur-

vature (BC), 0, = —2ImT};, ,, and real (symmetric)
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part is quantum metric (QM) tensor, Gy = ReT), ™,
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the projector on the band n and the quantum metric
characterizes a distance in Hilbert space, defined as
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and the Berry curvature tensor is a gauge-field tensor de-
rived from the Berry vector poten‘uiad7 AR = i(ul | Vi|ug),
in analogy to electrodynamics®®,

=V x AL (3)

For the sake of discussing many-body interactions per-
turbatively, the dressed Berry curvature and quantum
metric at finite temperature can be proposed using the
linear response theory>”. Suppose that there is an exter-
nal electric field E*, the corresponding dipole energy can
be written as

Shy = —iqE" 9, (4)

where ¢ indicates the charge of the particle. Within the
linear response theory we can define a charge polariza-
tion operator U, x and the susceptibility x . k(iw) of its
average,
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where the driving electric field is E¥(t) = E¥e~! and
the Matsubara version of the susceptibility is calculated

by
/ dTe“”

Therefore, we can obtain the dressed BC and QM?>”
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where the superscript d indicates these quantities are
dressed by impurity scattering.

III. THE EFFECTS OF DISORDER

To study the effects of disorder in detail, we consider
an elastic scattering®?, i.e., V(r) = o9 ), uid(r — R;),
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FIG. 1. Feynman diagrams for susceptibility (a). Under FBA
and vertex correction, these diagrams are classed into (b) in-
trinsic contribution and (c¢) extrinsic side jump scattering. (i)
and (iii-vi) are for valence band while (ii) and (vii-x) are for
conduction band. The double and single solid lines stand for
the full and free-particles Matsubara Green’s function, where
arrows to the right and left indicate retarded and advanced
Green’s function, respectively. The Eigen bands of a generic
two-band model are labeled as . The dash-star-dashed lines
represent the disorder scattering. The light blue shadow rep-
resents the corrected vertices.

where the disorder is modeled as §-function scatters with
a random distribution {R;}, u; indicates the strength of
disorder satisfying (u;)imp = 0, (u?)ais = ug # 0, and oy
is a unit matrix.

We can draw the Feynman diagrams of the susceptibil-
16y X, 1 (w) according to Eq. (6), which is a two-particle
Green’s function with two operators at each of the exter-
nal vertices?® as shown in Fig. 1(a),

Xk (W ZAmﬁ vk 3 Z% ip +iw)%¢ (ip), (8)
ip

where n, m show different energy bands, A represents
the dressed vertices corrected by 1mpur1tles which we
will discuss below. And %, (ip) = ﬁ is the full

ip—e, —
Green’s function, where ¥y is the self—lénergy function
for electrons.

According to Eq. (8), we have retained several dia-
grams of the lager impurity contributions drawn in Fig.
1. Diagrams (b) are intrinsic contributions, not related
to the impurity scattering. By expanding the double-line
full Green’s function with the aid of FBA and dressed
vertices, we can obtain eight diagrams [Fig. 1(c)] show-
ing the effect of first-order disorder scattering, in which
(iii)-(vi) are for + band and (vii)-(x) are for — band. Ac-
cording to these diagrams, the susceptibility in Eq. (8)
can be calculated, and the influence of the impurities on
BC and QM can be further studied.

A. The summation on Matsubara frequencies in
Feynman diagrams

In order to derive the susceptibility, firstly we need
to calculate the summation on Matsubara frequencies



of Green’s function in the Feynman diagrams. Follow-
ing chapter 3 of Mahan”, we work with Matsubara fre-
quencies, while allow the evaluation of the integrals with
straightforward contour integral techniques. These de-
tails are shown in the Appendix A.

B. The self-energy and relaxation time

Further, we need to figure out the self-energy and re-
laxation time of electrons. Herein, we define the free-
particle Green’s function is G(ip) = m and the
Dyson equation for full Green’s function ¢ can be writ-
ten as ¢ = G+ GX¥Y. Upon disorder averaging we obtain

the self-energy equation*®
Yk = (V)imp + (VGV)imp + (VGVGV )immp +--- . (9)
To get the leading order of disorder, we have
5 = (Vad Vi G+ (Viga Vi) imp G, (10)

where the eigenstates of a general two-band model are
labeled as n = 4+ and Vige = V(k — k') is the Fourier
transform of the single impurity potential. It is noted
that we ignore the off-diagonal part of the self-energy
because of the translation invariant after the impurity
average*®. Furthermore, the relaxation time can be ex-
pressed as

2
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FIG. 2. The Dyson equation for the dressed vertices. The
double solid lines stand for the full Matsubara Green’s func-
tion. The dash-star-dashed line represents the disorder scat-
tering.

Shown in Fig. 2, the Dyson equation for dressed ver-
tices is written as?6:48
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where the first term free of impurities is the Berry con-
nection without interaction. As we know, in vertex
correction, every disorder line that connects retarded
and advanced Green’s function provides a factor n;u3;
while the Green’s function product %94 is proportional
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FIG. 3. The 2D contour for off-diagonal component of (a),(c)
dressed BC Q,, . and (b),(d) Quy,x BC. (a)-(b) are for the +
band while (c)-(d) are for the — band. The parameters are
A=2eV, nuil? =10 eVZAQ7 vp = 10° m/s, ey =2 eV.

(niu2)~1. The overall vertex correction is independent of
the concentration of impurities n;. Thus, all the diagrams
[Fig. 1(iii)-(x)] are the leading order of the concentration
of impurities n; representing only the side jump scatter-
ing. Although higher order effects, i.e. skewing scatter-
ing, can also contribute to these geometric quantities, we
have neglected them in this work.

IV. TWO-BAND GAPPED GRAPHENE MODEL

To make our discussion more specifically, we consider
a two-band gapped graphene model®°,

A .
_ 5 vph(tk, — tky)
a= [th(Tkx + iky) -4 ’ (13)

where A is the gap, 7 = +1 are valley indexes, vp is the

Dirac velocity, and e = +1/v%h2k? + (%)2. The BC is

derived
+ 'U% FL2 A
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and the four components of QM are derived as
i vHhR? { [vhRPk? + (A/2)?] 8, — vh Pk, }
4 v h2K2 + (A/2)2)° '

pvk =

(15)
Motivated by the above discussions in Eqgs. (8)-(12) and
considered only the impurity average proportional to the
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FIG. 4. The 2D contour for off-diagonal component of (a),
(b) dressed QM g5, , and (c) QM goy k- (a) is for the 4+ band
while (b) is for the — band. The parameters are 7 =1, A = 2
eV, njulL? =10 eV2A% vp = 10° m/s, 5 = 2 V.

leading order of the concentration of impurities n;, we
can get self-energy and relaxation time (see Appendix

B1,B2)
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where we assume u; as a constant ug, L stands for unit

length, and €. is the cut-off energy. Thus, the dressed
vertex is derived as (see Appendix B 3)

1—B+;2Tk+2+i%quA
(1-B)2+ %1} s

Al (w) = (17)

nuOL + .2 4
where B = yIES €y sin” 01 .

A. The effect of disorder on BC

After tedious steps in Appendix B, we obtain the
dressed BC at zero temperature limit in Appendix B5
and present the results in Fig. 4. It is easy to see that
dressed BC and BC have the same symmetry, both be-
ing a circular in the k;-k, plane. This tells us that the
impurities scattering does not affect the symmetry of ge-
ometric quantity BC in the k space, although scatter-
ing potential energy is angle-dependent. The difference,
however, is that the bare BC (no dressing) of conduction
(valence) band [Fig. 3(b),(d)] is negative (positive) as
a whole, while both the dressed BC of conduction and
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FIG. 5. The 2D contour for diagonal components of (a),(b)
dressed QM g and (c),(d) QM g;f. (a)(c) are for zz com-
ponents while (b)(d) are for yy components. The parameters
are 7 =1, A = 2 eV, nuil? = 10 eVQAQ, vp = 10% m/s,
er=2eV.

valence band [Fig. 3(a),(c)] are positive. Therefore, the
scattering will decrease the absolute value of conduction
band BC but increase the absolute value of valence band
BC. In addition, there are also some differences in trend
along the radial between dressed BC and BC. For con-
duction (valence) band, BC is minimum (maximum) at
ke = ky = 0 and gradually increases (decreases) as |k|
increases. In contrast, dressed BC first increases sharply
from k, = k, = 0 and then decreases gradually with the
increase of |k|. Numerically, when impurity n;ugL? = 10
eVZAz, the dressed BC is an order of magnitude smaller
than bare BC. For diagonal terms, both bare BC and the
dressed BC are zero according to Eq. (7).

B. The effect of disorder on QM

Fig. 4 illustrates the two-dimensional (2D) contour
plot for the off- diagonal elements of the dressed QM
gi /= and bare QM g ey k (see Appendix B5). It is seen
both dressed QM and bare QM are of the same symme-
try. There are in each graph two node lines where bare
QM is 0, centered at k; = k, = 0, and crossing through
k space. All of them are symmetric with respect to the
vertical mirror along k, = k, or k, = —k, and anti-
symmetric with respect to those along k, =0 or £, = 0.
Interestingly, while the bare QM and the dressed QM for
the valence band have a similar distribution, and both are
negative in the first and third quadrants and positive in
the second and fourth quadrants; while the dressed QM
for the conduction band is of opposite sign. It means that
the disorder scattering can reduce the absolute value of



QM for the conduction band (+ band) but increase the
absolute value of QM for valence band (— band). This
result is consistent with BC. It is found that the dressed
QM is an order of magnitude smaller than the bare QM.
The diagonal bare QM and dressed QM for conduction
band are shown in Fig. 5. All the four quantities, i.e.
z;yy " g:m Jyyk A€ of two symmetry vertical mirrors
along k, = O or k, = O The difference is that the nodal
lines for g « and g k lie along k, = 0 and k, = 0,
respectlvely Another feature is that there are a two- fold

axis along k, and k., respectively, for gm’k (and gm’k

) and gz’J“ (and g;y « ). Also, both g k and ggg‘fk are

extending in the y direction, and both g .k and g k
are extending in the x direction. These dlstrlbutlons in
momentum space of the zz and yy components of QM
look like atomic orbitals of p, and p, and probably of
the symmetry of p, and p, in the momentum space. In
other words, the rotation of g;x « by m/2 along the k. axis

completely yields g;'%k, which is also true for dressed QM.
Nevertheless, the maximum value of QM is located at the
center of k; = k, = 0; while dressed QM approaches zero
at that point, and the extreme value is located on both
side of the original point.

V. CONCLUSION AND DISCUSION

With the help of FBA and dressed vertices, we calcu-
late the eight Feynman diagrams to show how disorder
side-jump scattering affects BC and QM. In the gapped
graphene, we find that disorder does not affect the sym-
metry in k space but affect the magnitude of BC and
QM. Furthermore, impurities may affect some phenom-
ena, which are mainly induced by the BC or QM, such
as anomalous Hall effect*®, nonlinear Hall effect*?, etc.
Our calculations provide an idea to explain how impu-
rities affect transport, which is expected to be further
understood in the future.

In the process of calculation, we only consider all first-
order diagrams describing side jump scattering, where

J

the effect of disorder on BC and QM is about 0.1 times
as many as those with non-interaction. As for skew scat-
tering for second-order diagrams, proportional to n;u3
or (n;u3)?*8, which is not mentioned in this work. Hope-
fully we can discuss more about how they affect these
geometric quantities. On the other hand, there are also
other interactions, such as electron-electron®! or electron-
phonon®? interactions, can also be studied according to
Egs. (4)-(7). Moreover, herein we just applied this the-
ory to a two-band graphene, a linear approximation Dirac
model. In the future, we will consider the effect of impu-
rities scattering in the twist graphene?”-2®, which might
be more conducive to explore the contribution of disorder
scattering.

It is well known one can obtain the effect of dis-
order on BC by measuring quantum anomalous Hall
conductivity?, which is the integral of BC immediately.
Although QM is of equal importance, it has been less ex-
plored until now. Generally speaking, as an intermediate
physical quantity of multiple coefficients, including in-
trinsic nonlinear Hall conductivity'4%3, orbital magnetic
susceptibilities®, flat-band superconductivity?”, linear
displacement current®®, QM is difficult to measure di-
rectly due to being coupled with other complex functions.
But there have been continuous efforts to measure QM di-
rectly in different systems®°6. Thus, it is expected that
our results may be explained by experiments to prove the
effect of disorder on QM.

ACKNOWLEDGMENTS

This work is supported in part by the Training Pro-
gram of Major Research plan of the National Natural
Science Foundation of China (Grant No. 92165105),
and CAS Project for Young Scientists in Basic Research-
Grant No. YSBR-057, the NSFC (Grant No. 11974348
and No. 11834014), and the Strategic Priority Research
Program of CAS (Grant No. XDB28000000 and No.
XDB33000000).

Appendix A: The summation on Matsubara frequencies in Feynman diagrams

For the diagram (iii) in Fig. 1, we get

Skk’ ,111
Kk ip

where ij /4is the retarded (advanced) Green’s function.

)= 5 3 (V) G (i + ) G ip-+ i) G (ip) G (i),



Firstly, we calculate the sum of Green’s functions*®°7,
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Appendix B: Some calculations in two-band gapped
graphene

1. Impurity average

The Hamiltonian for two-band gapped graphene is

—iky)

A
_ 5 vph(Tk,
LDh(Tkz + ik,) -2 ’ (B1)
Let Kl = T’l}thz, K2 = Uthiy, K3 = %, K
VE2+ K3+ K3, tanp = %, cos = L2 g =

\/@7 b = \/@. Thus, the wave function can

be written as

= (ki) = ().
- (E)-(2)

where the + and — indicate the upper and lower energy
band. The Berry connection for inter and intraband are
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Considering the impurity average, Vkﬁ,' can be written
48
as
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And
Vit Vidimp = naud [a*a”® 4+ 6702 + 2ad’bb’ cos (@' — )]
(B5)
where a’, ', ¢’ are all dependent on the k.
2. Self-energy and relaxation time
. . o 1
According to the Dyson equation for 4 = T =t
we have
yt+t yt-
aviledy = (vor 1)
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Considering the impurity average, Green’s function be-
come diagonal with respect to the band index in eigen-



state representation, where
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Because the translation invariant is recovered after the

Then we obtain
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3. The corrected vertices
Take the A, (w) as an example. In the weak disorder limit and ¢ < fiw we have?
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where B = "7;,,0 7 51( sin GTk and L = 1A.
4. The calculations of dressed BC and QM
According to Eq. (8), for the diagram (iii) we can get
Xy aeii = D / AT (@) Af 0 Siae i (W) do = ZAy ” / A (@) Siae i (w)dw. (B14)
Kk’ 0 0

Considering the reciprocity of integration and summation, we deal with the integral part first,

Xy aeiii = ZAy w (Vi Vierd) / AT (W) ae it (w) dw, (B15)
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(B16)
Next, we plan to calculate the susceptibility for the diagram (iii) in Fig. 1,

ly,k iii Z Ay k’ Vk—"l_(j_v > /O Aii"{_ (W) Ikk/J (w) dw
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(B17)
As we know, at zero temperature limit we have
Flew) = fle) = ['(e) (e —e) = —0(ef —ef)(exf —epo)- (B18)
Thus, we obtain
. | 2 A2 o -~
v = iabnju3L? —EfAcosp —i [5f +(3) } S A+ (W)
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(B19)



Other three diagrams for + band are
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According to the Fig. 1, the (vii)-(ix) diagrams are for — band,
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5. The dressed DC and QM

The diagonal dressed Berry curvature and quantum metric for + band are written as

1 1
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