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ABSTRACT

In the composition process, selecting appropriate single-
instrumental music sequences and assigning their track-
role is an indispensable task. However, manually deter-
mining the track-role for a myriad of music samples can be
time-consuming and labor-intensive. This study introduces
a deep learning model designed to automatically predict
the track-role of single-instrumental music sequences. Our
evaluations show a prediction accuracy of 87% in the sym-
bolic domain and 84% in the audio domain. The proposed
track-role prediction methods hold promise for future ap-
plications in AI music generation and analysis.

1. INTRODUCTION

In the intricate process of musical creation, the determina-
tion of track-role in single-instrumental music sequences
(e.g., main melody, sub melody, pad, riff, accompaniment,
and bass) is undeniably paramount. Amidst a plethora of
diverse sounds available to a composer, the act of selecting
a specific sound and assigning it an appropriate role be-
comes a foundational determinant of the resulting musical
piece. Instrumentation, a cardinal element in the craft of
composition, also finds its articulate expression in track-
role features, as suggested by previous studies [1].

Furthermore, the importance of track-role has been
increasingly accentuated in the emerging discipline of
controllable music composition employing deep learning.
This avant-garde approach empowers composers and pro-
ducers with unprecedented control over the creative pro-
cess. By allowing the specification of instrument type,
bpm, and measure count [2] or even by inputting textual
descriptions [3], it offers a versatile canvas for musical ex-
perimentation. It is noteworthy that among the metadata
incorporated for control, track-role has been identified as
having a significant influence on the ultimate quality of the
composed music [4].

However, the task of sifting through myriad sounds and
discerning their appropriate track-role is not without its
challenges, often demanding considerable time and effort.
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Previous research has delved into the realm of audio sam-
ples, exploring avenues like identifying virtual instruments
within a sample [5] or classifying their inherent roles [6].
Such endeavors have been instrumental in assisting pro-
ducers in pinpointing desired samples with enhanced ef-
ficiency. Building on this foundation, the present research
introduces a novel approach leveraging deep learning tech-
niques. Our methodology proposes an automatic discern-
ment of track-role across both symbolic (e.g., MIDI) and
audio domains, promising a more streamlined and effective
music creation process.

2. PROPOSED METHODS

This study introduces a deep learning model designed
to predict the track-role of single-instrumental music se-
quences. For the purpose of classification, we consider a
total of six target classes for track-role: Main Melody, Sub
Melody, Pad, Riff, Accompaniment, and Bass. In terms
of input data, both the symbolic domain and the audio do-
main were taken into consideration. Symbolic data, with
its more explicit characteristics, offers potential for finer
and more accurate distinctions. In contrast, the audio do-
main provides versatility, presenting applicability across a
broader spectrum of scenarios.

In our approach to each input domain, we employed
a strategy of fine-tuning pre-trained models. First, for
the symbolic domain data, we fine-tuned the MusicBERT
model [7]. MusicBERT’s initial training was executed on
the expansive Million MIDI Dataset (MMD) which en-
compasses 1,524,557 songs. Meanwhile, a more compact
variant, the MusicBERT small, was trained utilizing the
Lakh MIDI Dataset (LMD), comprised of 148,403 songs.
To adapt these models to our specific task, a classifica-
tion and projection layer were appended to both. Subse-
quently, these enhanced models underwent a parameter up-
date phase, utilizing our dedicated training data.

Transitioning to the audio domain, we integrated the
PANNs model [8], which was initially trained on a volu-
minous 5000 hours of AudioSet data [9]. Furthermore,
we also contemplated a variant of PANNSs that incorpo-
rated attention feature fusion, referred to as PANN with
AFF (w/aff) [10]. The audio inputs, sampled at a rate of
48 kHz, were transformed into log-mel spectrograms. For
fine-tuning, two classification layers were added to the pre-
trained PANNS, and training data updated the parameters.
The attention feature fusion layer used initialized weights.



Fine-Tuned From-Scratch
Accuracy Precision Recall F1 Accuracy Precision Recall F1
MusicBERT_base * 0.871 0.872 0.871 0.872 0.797 0.804 0.797 0.800
MusicBERT_small * 0.853 0.851 0.853 0.852 0.783 0.781 0.783 0.782
PANNs w/o aff * 0.827 0.836 0.827 0.831 0.802 0.800 0.802 0.801
PANNs w/aff 0.843 0.850 0.843 0.846 0.820 0.820 0.820 0.820

Table 1: Model Performance (*: Symbolic domain model with ComMU, T: Audio domain model with SCM)

3. EXPERIMENTAL SETUP
3.1 Datasets

We utilized the ComMU dataset, containing 11,144 MIDI
samples, for training and evaluation. To balance sam-
ple distribution across track roles, we selected 500 sam-
ples from each role, based on the smallest class, "base."
Given ComMU’s symbolic nature, we developed the
Synthesized-ComMU (SCM) dataset for the audio domain.
This was achieved by aligning ComMU’s instrument data
with the NSynth dataset [11] and selecting randomized in-
strument presets for consistent timbre. The MIDI render-
ing pipeline ' and SCM ? can be accessed online.

3.2 Training Details

We partitioned the ComMU and SCM datasets at a ratio of
8:2 for model training and evaluation, respectively. Addi-
tionally, 10% of the training data was earmarked as a val-
idation set to monitor the model’s performance during the
training phase. Data augmentation by manipulating BPM
and audio key were applied to the training dataset to en-
sure model robustness. For the optimization process, the
Adam optimizer was selected with a learning rate that ini-
tially peaked at Se-5 and was gradually reduced over the
course of training. When fine-tuning the pre-trained Mu-
sicBERT, we employed a step size of 8100, amounting to 4
epochs. In contrast, training from scratch involved a larger
step size of 40500, culminating in 20 epochs. As for the
PANNSs models, irrespective of whether attention feature
fusion was incorporated, a consistent step size of 20250
was used, which corresponded to 10 epochs.

4. RESULTS

Table 1 shows the performance results of each approach.
Notably, in both the Symbolic and Audio domains, models
that employed the fine-tuning strategy on pre-trained mod-
els consistently outperformed those trained from scratch
with identical architectures. The models in the Symbolic
domain that used MIDI data as input demonstrated supe-
rior performance compared to their Audio domain coun-
terparts. However, the difference in performance was not
vast. The best-performing model for the Symbolic domain
was the fine-tuned MusicBERT Base, achieving an accu-
racy of 0.871. In the Audio domain, the pinnacle of per-

Uhttps://github.com/spear011/NSynth-MIDI-Renderer-for-massive-
MIDI-dataset
2 https://github.com/spear011/SCM-Dataset

SRR RN ¢ e S E

Aci87% 2% 0% 4% 6% 1% Aci87% 1% 2% 2% 8% 0%

Bs| 0% 96% 0% 1% 1% 2% Bs 3% 97% 0% 0% 0% 0%
MM 2% 0% 82% 0% 2% 14% MM 2% 0% 90% 0% 1% 7%
Pad 5% 3% 0% 87% 1% 4% Pad 1% 1% 3% 94% 0% 1%
Riff| 2% 0% 3% 0% 94% 1% Riff 10% 0% 8% 0% 76% 6%

SM| 3% 4% 15% 0% 1% 77% SM| 4% 0% 25% 1% 8% 62%

(a) MusicBERT base (b) PANNSs w/aff

Figure 1: Model Confusion Matrix (Ac: Accompaniment,
Bs: Bass, MM: Main Melody, SM: Sub Melody)

formance was reached by the fine-tuned PANN model with
attention fusion, recording an accuracy of 0.843.

Figure 1 illustrates the class-wise accuracy of the top-
performing models. A consistent trend was observed
across both domains. Both models tended to struggle par-
ticularly when discerning between the Main Melody and
Sub Melody. For instance, a simplistic melodic contour
characterized by short measures interspersed with elon-
gated notes was erroneously predicted as a Sub Melody by
the model, even though the correct label was Main Melody.
Further, while analyzing the Audio domain model, in-
stances were observed where the Riff class was mistakenly
predicted as Accompaniment or Main Melody. To illus-
trate, a sequence comprising short notes in a repetitive pat-
tern was designated as a Riff by the model, but the ground
truth labeled it as Accompaniment.

5. CONCLUSION

This study introduces a method to predict the track-role of
music sequences in both the Symbolic and Audio domains,
utilizing fine-tuned deep learning models. The automati-
cally predicted Track-role data holds promise for future ap-
plications, including efficient sample search and manage-
ment, as well as advancements in Al-assisted composition
research. Experimental findings highlighted certain track-
role classes where prediction performance was suboptimal,
often corresponding to sequences exhibiting diverse musi-
cal forms. To bolster future performance, a systematic ap-
proach addressing the vast spectrum of musical structures
becomes imperative. One potential avenue could be adopt-
ing a learning strategy like curriculum learning, which in-
crementally tackles data that poses distinction challenges,
presenting a promising direction for enhancement.
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